
PreAxC: Error Distribution Prediction for
Approximate Computing Quality Control using

Graph Neural Networks
Lakshmi Sathidevi1, Abhinav Sharma2, Nan Wu3, Xun Jiao4, Cong Hao1

1Georgia Institute of Technology, GA, USA
2Indian Institute of Information Technology, Guwahati, India

3UC Santa Barbara, CA, USA; 4Villanova University, PA, USA

Abstract—While Approximate Computing (AxC) is a promis-
ing technique to trade off accuracy for energy efficiency, one
fundamental challenge is the lack of accurate and informative
error models of AxC applications. In this work, we propose
PreAxC, a novel error modeling and prediction flow for AxC
designs. Instead of using simple error statistics as in existing
work, we use error distribution for AxC circuit error analysis
with input awareness. We propose graph neural network (GNN)
based methods to predict the error distribution of AxC pro-
grams, which are represented as data flow graphs (DFGs). We
propose two approaches: model-free and model-based, where
the former directly predicts the error distribution histogram,
and the latter models the distribution using Gaussian Mixture
Model (GMM) and predicts the GMM parameters. Experiment
results demonstrate that our approaches can outperform existing
error statistics and can successfully predict the error distribution,
especially the model-free approach, even for completely unseen
graphs (representing new AxC programs) during training.

Index Terms—Approximate Computing, Error Modeling, Er-
ror Distribution Prediction, Graph Neural Network

I. INTRODUCTION

Approximate Computing (AxC) is a promising method
that slightly trades off accuracy in favor of a much more
efficient circuit design for applications that are intrinsically
error resilient [1]–[3]. AxC design can be done at behavioral-
and circuit-level; in this work, we focus on behavioral-level,
where algorithms can be represented as data flow graphs
(DFGs). In one DFG, some operations are assigned to AxC
functional units (FUs), while others use precise FUs; we call
it one DFG configuration.

AxC Challenges. Despite the great potential of AxC and
a large amount of existing study, there are still critical chal-
lenges. First, one of the greatest challenges is quality control:
although AxC applications are error tolerant, the output quality
still need to be carefully managed and ensured to be within a
threshold. For instance, in image processing, the peak signal-
to-noise ratio (PSNR) should be less than 30 dB. Such delicate
error management requires accurate error modeling and
prediction, meaning that the AxC design output error must
be accurately predictable to avoid large quality degradation.

Contact Authors: (LS, CH) {lsathidevi3, callie.hao}@gatech.edu

Data Flow Graph (DFG)
One Configuration

𝑚ଵ ൌ 𝑖ଵ ൅ 𝑖ଶ; 𝑚ଶ ൌ 𝑖ଷ ൅ 𝑖ସ; 𝑚ଷ ൌ 𝑖ହ ൅ 𝑖଺; 𝑚ସ ൌ 𝑚ଵ ൈ𝑚ଶ;
𝑚ହ ൌ 𝑚ଶ ൈ𝑚ଷ; 𝑜ଵ ൌ 𝑚ସ ൅ 𝑚ସ; 𝑜ଶ ൌ 𝑚ସ ൈ𝑚ହ

++ ൈ

ൈ +

+ ൈ

𝑜ଵ 𝑜ଶ

𝑛ଶ𝑛ଵ 𝑛ଷ

𝑛ସ 𝑛ହ

𝑛଺ 𝑛଻

𝑖ଵ 𝑖ଶ 𝑖ଷ 𝑖ସ 𝑖ହ 𝑖଺

𝑚ଶ𝑚ଵ 𝑚ଷ

𝑚ସ 𝑚ହ

+ +

ൈൈ

𝑜ଵ 𝑜ଶ

𝐴ଵ 𝐴ଶ

𝑀ଵ 𝑀ଶ

AxC Circuit

Behavioral Description

A: Adder
M: Multiplier

Precise FUs

AxC FUs

Guide

DFG Config. k

++ ൈ

ൈ +

+ ൈ

++ ൈ

ൈ +

+ ൈ

DFG Config. k+1

𝑛ହ 𝑛ହ𝑛ସ 𝑛ସ

Perturb AxC Design Knob:
Design Space Exploration (DSE)
(E.g., change operation n5’s adder

from precise to AxC)

Design Quality Evaluation
via Error Modeling

(E.g., are the errors of O1 and
O2 within constraints?)

Quality Evaluation
needs to be:
• Fast
• Accurate
• Informative

Behavioral‐level
Description in C/C++

DFG Extractor

DFG

Raw Error
Collections

Input vector <𝑖ଵ, 𝑖ଶ, …>

Error at output 𝑜௜

DFG Simulation

GMM Parameters <𝝎𝒊,𝝁𝒊,𝝈𝒊>

Loss: KL‐divergence with ground‐
truth raw distribution

Loss: MSE with discretized
ground‐truth

DFG Preparation Error Distribution

Graph Neural Network (GNN)

Model‐free Prediction
(Error Distribution Histogram)
1 Model‐based Prediction

(Gaussian Mixture Model)
2

Training Data Generation

Raw DFGs Error Distribution (during training)

a

b c

Fig. 1. Motivation for fast, accurate, and informative error modeling for
design quality evaluation.

Accurate error prediction serves as a preliminary and foun-
dation, without which there is no guarantee for AxC design
quality. Second, error modeling for design quality evaluation
must be fast and informative. As illustrated in Fig. 1,
AxC design quality evaluation (green block) examines if the
current output error is within constraint, which directly guides
the iterative design space exploration (DSE) by perturbing
AxC design knobs. Third, the error modeling must be easily
generalizable across AxC algorithms, i.e., the established
error model should be directly applicable to new algorithms
without time-consuming simulations. Therefore, accurate, fast,
and informative error modeling and prediction is fundamental
for practical and rapid AxC design.

Prior Art Limitations. There are a lot of prior work
on behavioral level AxC error modeling. Traditional ap-
proaches apply statistical analysis [4]–[6] to roughly analyze
the output error. Recently, ML-based algorithms have been
proposed, such as Bayesian network [7], [8], Approxilyzer [9],
Rumba [10], and AXNet [11]. Both static and ML-based ap-
proaches analyze output error statistics, including error mean,
error variance, or error level (e.g., acceptable, unacceptable,
precise). However, there are three major limitations. First, the
modeling statistics are too simple, uninformative, and can be
far from accurate (e.g., 10% to 20% estimation error [6]). One
reason is that, predicting error mean and variance implies that
the error follows Gaussian distribution, which is not true based
on our observation. As shown in Fig. 2(a), we randomly visu-

20
23

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

79
-8

-3
50

3-
34

75
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
57

92
7.

20
23

.1
01

29
39

3

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 23:25:10 UTC from IEEE Xplore. Restrictions apply.

Importance of input‐awareness

100 input vectors 250 input vectors

1000 input vectors

Error mean: 4.0% Error mean: 3.7%

Error mean: 3.5%

10 input vectors
Error mean: 4.3%

500 input vectors 750 input vectors
Error mean: 3.5% Error mean: 3.5%

0.15

0.13

0.11

0.09

0.07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Gaussian Component(s)

N
o
rm

al
iz
e
d
 S
co
re Avg. KL Divergence

Avg. Bhattacharyya’s Distance

100 input vectors 250 input vectors

1000 input vectors

Error mean: 4.0% Error mean: 3.7%

Error mean: 3.5%

10 input vectors
Error mean: 4.3%

500 input vectors 750 input vectors
Error mean: 3.5% Error mean: 3.5%

Ground truth

Modeled
by GMM

(a) Non‐Gaussian error distribution

(b) Importance of input‐awareness

Fig. 2. (a) Non-Gaussian error distribution can be nicely modeled by a
9-component Gaussian Mixture Model (GMM). (b) Importance of input-
awareness.

One DFG with
different AxC
design knobs

Output
simple error
statistics

The same DFG
with new AxC
design knobs

Training

A New DFG
(New app.)

Inference

Different DFGs
with different AxC

design knobs

Output
informative

error
distribution

Unseen DFGs
with different

AxC design knobs

Training Inference

A New DFG
(New app.)

Generalize without re‐training

New DFGs
require retrain

Existing Approaches with drawbacks

Our proposed solution with advantages

Behavioral
C/C++ Program

DFG Extractor

DFG

Raw Error
Collections

One DFG,
one configuration

GMM Parameters <𝝎𝒊,𝝁𝒊,𝝈𝒊>

Loss: KL‐divergence with ground‐
truth raw distribution

Loss: MSE with discretized
ground‐truth

DFG Preparation Error Distribution

Graph Neural Network (GNN)

Model‐free Prediction
(Error Distribution Histogram)
1 Model‐based Prediction

(Gaussian Mixture Model)
2

Training Data Collection via DFG Simulations Raw DFG extracted from an AxC program
under one configuration

DFG Extractor

DFG

Multiple programs

Different
programs

One DFG,
multiple configurations

DFG
Simulation

1 2 3

Perturb
AxC

config.

DFG
Simulation
for one AxC
configuration

Input vector
<𝑖ଵ, 𝑖ଶ, …>

Error at
output 𝑜௜

Change
input
vector

Why multiple input vectors for one DFG, one configuration?
(Ignored by existing work)

3

PLACE HOLDER

10 input vectors 500 input vectors 1000 input vectors

Two Proposed Approaches during Inference
++ ൈ

ൈ +

+ ൈ

++ ൈ

ൈ +

+ ൈ

𝑜ଵ 𝑜ଶ

<2>
<1>

<1> ++

ൈ

+
𝑜ଵ

+

Node
features

Edge
features

+ +
+

Node features
< 0/1, 0/1, err_rate >

ADD or MUL Precise or AxC

Edge features
< 0 / distance >

Original edge Newly added

Graph Expansion and Node/Edge Feature Illustration

(a) Illustration of DFG expansion
with newly added edge features

(a) GNN message passing using
both node and edge features

Fig. 3. Existing approaches v.s. proposed PreAxC. PreAxC is general-
izable without retrain, predicts error distribution with input-awareness,
and is more accurate and informative.

alize three error distribution plots, which apparently are non-
Gaussian. Second, existing ML-based approaches can only be
trained for a fixed program [8], [12] but do not generalize to
new applications. Applying to new AxC applications requires
retraining, which is extremely time-consuming and requires
new data collection via tedious simulation. Third, existing
error analysis approaches do not consider the impact of AxC
design inputs, i.e., are input-unaware. This may hurt the error
modeling accuracy, as we show in Fig. 2(b). For an AxC
application, we randomly generate 1000 different input vectors
following a uniform [0,1] distribution and plot the output error
distribution. For 10 input vectors only, the error mean is 4.3%;
when we increase the number of input vectors, the error mean
converges to 3.5% with a much more stable distribution shape.
This observation indicates the necessity of input-aware error
analysis.

Contributions. To address the above challenges and limi-
tations, we propose a novel ML-assisted error distribution
modeling and prediction for behavioral-level AxC, named

PreAxC, which is input-aware, informative, and generalizable,
as shown in Fig. 3. It is equipped with a graph neural
network (GNN) backbone and a distribution prediction head.
Our contributions include:
1) PreAxC is informative and accurate: it is the first output

error distribution modeling for AxC at behavioral-level.
Comparing with the traditional error statistic analysis such
as error mean and variance, error distribution is far more
informative and precise (and yet much more challenging
to predict).

2) PreAxC is generalizable: it can be directly applied to
unseen AxC algorithms by running inference solely on
the DFG, without any data re-collection and re-training
(Fig. 3). It is empowered by a GNN backbone for graph
learning, whose inductive capability enables generalization
to unseen applications.

3) PreAxC is input-aware: we collect training data by run-
ning sufficient simulations using randomly sampled input
vectors, until obtaining a stable error distribution. This
ensures that the error prediction is robust against inputs
that may be outliers.

4) On top of the GNN backbone, we propose two detection
heads to predict the distribution: model-free and model-
based. (i) Model-free approach discretizes the distribution
using histogram and directly predicts the histogram height
for each bin. (ii) For the mode-based approach, we pro-
pose to use Gaussian Mixture Model (GMM) to describe
arbitrary distributions, whose parameters are learned and
predicted by PreAxC.

5) Since error distribution prediction is very challenging
(more details in Sec. III-C), we propose a graph expansion
technique by adding auxiliary edges to the DFG to improve
the GNN message passing efficiency. It can greatly boost
the prediction performance and reduce the necessity of
deep GNNs.

6) The experiment results show that PreAxC with graph
expansion can predict the distribution shapes extremely
well for most of the time, and can outperform existing
approaches [4] and [8] in terms of error mean prediction
accuracy.

Since the error distribution prediction is already very chal-
lenging, we limit the paper scope to pure prediction without
using it to assist AxC designs yet. Despite the limitation, we
would like to point out that, error distribution prediction is
an essential and innovative step towards practical AxC that
no existing work has discussed before, which requires much
deeper exploration.

II. PRELIMINARY

Approximate Computing (AxC). Behavioral-level AxC de-
sign can be represented as a Data Flow Graph (DFG), as shown
in Fig. 1. The nodes in the DFG represent the operations such
as addition and multiplication; the edges represent data depen-
dency. The operations in the DFG can be mapped to physical
functional units (FU), for example, adders or multipliers. The
FUs can be either precise or approximate ones, where the

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 23:25:10 UTC from IEEE Xplore. Restrictions apply.

One DFG with
different AxC
design knobs

Output
simple error
statistics

The same DFG
with new AxC
design knobs

Training

A New DFG
(New app.)

Inference

Different DFGs
with different AxC

design knobs

Output
informative

error
distribution

Unseen DFGs
with different

AxC design knobs

Training Inference

A New DFG
(New app.)

Generalize without re‐training

New DFGs
require retrain

Existing Approaches with drawbacks

Our proposed solution with advantages

Behavioral
C/C++ Program

DFG Extractor

DFG

Raw Error
Collections

DFG Preparation Error Distribution

GMM Parameters <𝝎𝒊,𝝁𝒊,𝝈𝒊>

Loss: KL‐divergence with ground‐
truth raw distribution

Loss: MSE with discretized
ground‐truth

Graph Neural Network (GNN)

Model‐free Prediction
(Error Distribution Histogram)
1 Model‐based Prediction

(Gaussian Mixture Model)
2

Raw DFG extracted from an AxC program
under one configuration

Two Proposed Approaches during Inference
++ ൈ

ൈ +

+ ൈOne DFG,
one configuration

DFG Extractor

DFG

Multiple programs

Different
programs

One DFG,
multiple configurations

DFG
Simulation

1 2 3

Perturb
AxC

config.

DFG
Simulation
for one AxC
configuration

Input vector
<𝑖ଵ, 𝑖ଶ, …>

Error at
output 𝑜௜

Change
input
vector

In order to generalize across
DFGs and configurations

Ignored by
existing work

++ ൈ

ൈ +

+ ൈ

𝑜ଵ 𝑜ଶ

[1,2]

++

ൈ

+
𝑜ଵ

+

Node
features

Edge
features

+
+

Node features
[0/1, 0/1, rel_err, err_rate]

ADD or MUL Precise or AxC

Edge features [0/1, distance]

Original or new edge

(a)

𝒏𝟏

𝒏𝟐

𝒏𝟑

Expansion (a)

Expansion
(c)

Graph Expansion and Node/Edge Feature Illustration

𝒏𝟒 𝒏𝟓

𝒏𝟔

𝒏𝟕

(b)

1

3

Fig. 4. Input-aware training data collection.

AxC FUs usually consume less power and area with faster
execution speed. We refer the allocation of AxC FUs on the
DFG as one DFG configuration. AxC DFG configurations will
introduce errors by using AxC FUs, which will be propagated
to the primary outputs. The output error is jointly determined
by several factors: 1) the error introduced by AxC FUs; 2)
error propagation along the DFG; 3) the primary inputs of
the DFG, since different inputs will trigger different AxC FU
error.
Graph Neural Network (GNN). GNNs operate by aggre-
gating information along the edges of graphs. Each node
v and/or each edge e is associated with a representation,
i.e., embedding. A GNN layer updates each node represen-
tation by aggregating information of its neighbors, itself,
and possibly connected edges; this process is called message
passing. A GNN model can have multiple GNN layers; the
more GNN layers, the larger the receptive field is, i.e., the
information can be aggregated from farther nodes and edges.
Example prevalent GNNs include graph convolutional network
(GCN) [13], graph attention network (GAT) [14], and graph
isomorphism network (GIN) [15]. Among these, GIN is prov-
ably as powerful as the Weisfeiler-Lehman graph isomorphism
test, leveraging sum aggregators over a countable input feature
space.

III. PROPOSED APPROACHES

In this section, we first explain training data collection in
Sec. III-A. In Sec. III-C, we introduce our error prediction
workflow, PreAxC, using GNNs as the backbone; we further
propose a very important graph expansion technique, which
can significantly improve the prediction performance and
reduce the required GNN complexity. We then discuss two
prediction approaches on top of the GNN, model-free and
model-based, in Sec. III-D and Sec. III-E, respectively. For the
purpose of quantifying the similarity between the predictions
and the ground truth distributions we use the metrics KL
Divergence (KL), Bhattacharyya Distance (BD) and Relative
Error Mean (REM).

A. Training Data Collection

Fig. 4 explains the three steps of training data collection.
1 Extracting DFGs from multiple programs. Since real-world

AxC applications are not sufficient enough for model training,
we follow the work IronMan [16] and use synthetic DFGs for
model training, and use both synthetic and real-world DFGs

for testing. We randomly generate 250 DFGs, each contains
20 to 50 nodes. Each node represents an arithmetic operation,
either multiplication or addition, which can be implemented
by either precise or AxC FUs. 2 For each DFG, we run C
configurations; in our experiments, C = 30. Having multiple
DFGs and configurations in training enable the model gener-
alizability. 3 For one DFG’s one configuration, we conduct
comprehensive simulation by generating a sufficient number
of input vectors and collect the relative error at primary
outputs; this step is ignored by existing work. Without loss of
generality, we consider one output at a time. We first randomly
assign each input value between [0,1]; then we compute the
expected precise output values through the DFG propagation.
Next, we introduce a small random error at each AxC FU, e.g.,
±ω% of the correct value, and compute the erroneous output
values again. We then compute the relative error at outputs.
This procedure repeats N times by randomly changing the
input values, depending on the DFG size, which gives us a
raw error collection. For better visualization, we plot the error
distribution as a histogram with K bins, where each bin has
a normalized height hk (1 ≤ k ≤ K), as shown in Fig. 2.

B. Prediction Objectives

We use the following two metrics to quantify the similarity
between our prediction Φ̂ and the ground-truth distribution Φ:
• KL divergence [17] and Bhattacharyya distance (BD) [18],

which are commonly used to describe how similar two
distributions are. We compute both on the discretized his-
togram:

KL(Φ̂||Φ) =
∑

1≤k≤K

ĥk · log(ĥk

hk
) (1)

BD(Φ̂||Φ) =
∑

1≤k≤K

√
hk · ĥk (2)

• Relative Error Mean (REM). Existing works can only
predict error mean and variance. To make a comparison
with PreAxC, we compute the average of the relative error
δ(ϕj) within collection Φ for N input vectors, denoted
by REMgt, as the ground-truth error mean: REMgt =
1
N

∑
1≤j≤N δ(ϕj).

C. PreAxC Architecture using GNN
Given the natural graphs structures of DFGs, we propose to

use GNN for representation learning. The inductive capability
of GNNs also enables generalization to unseen graphs. On top
of the GNN backbone, we propose two distribution detection
heads (in Sec III-D and Sec. III-E). The overview of PreAxC
is shown in Fig. 5. During inference, the input to PreAxC is
the DFG extracted from an algorithm with its configuration;
the output is the predicted distribution.

Challenges of Applying GNN to DFG. Although the DFGs
are natural inputs to GNNs, applying GNNs directly on DFGs
is non-trivial. In our preliminary experiments, learning on the
raw DFGs do not produce satisfying results and the predic-
tion error is extremely high. We attribute the failure to the

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 23:25:10 UTC from IEEE Xplore. Restrictions apply.

One DFG with
different AxC
design knobs

Output
simple error
statistics

The same DFG
with new AxC
design knobs

Training

A New DFG
(New app.)

Inference

Different DFGs
with different AxC

design knobs

Output
informative

error
distribution

Unseen DFGs
with different

AxC design knobs

Training Inference

A New DFG
(New app.)

Generalize without re‐training

New DFGs
require retrain

Existing Approaches with drawbacks

Our proposed solution with advantages

Behavioral
C/C++ Program

DFG Extractor

DFG

Raw Error
Collections

DFG Preparation Error Distribution

GMM Parameters <𝝎𝒊,𝝁𝒊,𝝈𝒊>

Loss: KL‐divergence
with ground‐truth
raw distribution

Loss: MSE with
discretized
ground‐truth

Graph Neural Network (GNN)

Model‐free Prediction
(Error Distribution Histogram)
1 Model‐based Prediction

(Gaussian Mixture Model)
2

DFG extracted from AxC program with configuration ++ ൈ

ൈ +

+ ൈ

One DFG,
one configuration

DFG Extractor

DFG

Multiple programs

Different
programs

One DFG,
multiple configurations

DFG
Simulation

1 2 3

Perturb
AxC

config.

DFG
Simulation
for one AxC
configuration

Input vector
<𝑖ଵ, 𝑖ଶ, …>

Error at
output 𝑜௜

Change
input
vector

In order to generalize across
DFGs and configurations

Ignored by
existing work

++ ൈ

ൈ +

+ ൈ

𝑜ଵ 𝑜ଶ

[1,2]

++

ൈ

+
𝑜ଵ

+

Node
features

Edge
features

+
+

Node features
[0/1, 0/1, rel_err, err_rate]

ADD or MUL Precise or AxC

Edge features [0/1, distance]

Original or new edge

(a)

𝒏𝟏

𝒏𝟐

𝒏𝟑

Expansion (a)

Expansion
(c)

𝒏𝟒 𝒏𝟓

𝒏𝟔

𝒏𝟕

(b)

1

3

Fig. 5. Two proposed prediction approaches in PreAxC on top of GNN:
model-free and model-based.

One DFG with
different AxC
design knobs

Output
simple error
statistics

The same DFG
with new AxC
design knobs

Training

A New DFG
(New app.)

Inference

Different DFGs
with different AxC

design knobs

Output
informative

error
distribution

Unseen DFGs
with different

AxC design knobs

Training Inference

A New DFG
(New app.)

Generalize without re‐training

New DFGs
require retrain

Existing Approaches with drawbacks

Our proposed solution with advantages

Behavioral
C/C++ Program

DFG Extractor

DFG

Raw Error
Collections

DFG Preparation Error Distribution

GMM Parameters <𝝎𝒊,𝝁𝒊,𝝈𝒊>

Loss: KL‐divergence
with ground‐truth
raw distribution

Loss: MSE with
discretized
ground‐truth

Graph Neural Network (GNN)

Model‐free Prediction
(Error Distribution Histogram)
1 Model‐based Prediction

(Gaussian Mixture Model)
2

DFG extracted from AxC program with configuration ++ ൈ

ൈ +

+ ൈ

One DFG,
one configuration

DFG Extractor

DFG

Multiple programs

Different
programs

One DFG,
multiple configurations

DFG
Simulation

1 2 3

Perturb
AxC

config.

DFG
Simulation
for one AxC
configuration

Input vector
<𝑖ଵ, 𝑖ଶ, …>

Error at
output 𝑜௜

Change
input
vector

In order to generalize across
DFGs and configurations

Ignored by
existing work

++ ൈ

ൈ +

+ ൈ

𝑜ଵ 𝑜ଶ

[1,2]

++

ൈ

+
𝑜ଵ

+

Node
features

Edge
features

+
+

Node features
[0/1, 0/1, rel_err, err_rate]

ADD or MUL Precise or AxC

Edge features [0/1, distance]

Original or new edge

(a)

𝒏𝟏

𝒏𝟐

𝒏𝟑

Expansion (a)

Expansion
(c)

𝒏𝟒 𝒏𝟓

𝒏𝟔

𝒏𝟕

(b)

1

3

Fig. 6. (a) Graph expansion methods (1) and (3). Ablation study is in
Sec. IV. (b) GNN Message passing on the expanded DFG using both
node and edge features.

ineffectiveness of message passing between two nodes which
are far away but one’s (erroneous) output will eventually be
propagated to another. We use Fig. 6(a) as an example, where
the black edges are original edges in the DFG. In this example,
node n1’s output will be propagated to node n3 and output
o1. However, since the message passing mechanism in GNNs
usually only aggregate information from direct neighborhood
nodes per layer, in order to let node n3’s information be
aggregated to node n1, it requires at least two layers of GNNs.
If the DFG is deep (which is usually the case), i.e., there
are many nodes on the propagation path from one node to
the output node, it will require an extremely deep GNN with
many layers to capture the impact of the early node on the
output. However, many empirical experiments have shown that
deep GNNs do not perform well, sometimes even worse than
shallow GNNs [19], [20]. In addition, deep GNNs require
much more parameters, are hard to train, and do not scale in
our problem since the depth of a DFG can be very large. For
instance, a DFG with a longest path length 50 from input to
output node will require at least a 50-layer GNN to propagate
the error information, which is not applicable in practice.

Graph Expansion. Therefore, to address this challenge,
we propose a graph expansion technique by adding auxiliary
edges to connect nodes that are far away. We discuss three
ways of expanding and we will provide an ablation study in
Sec. IV-B. Expansion 1 : we connect every pair of nodes using
bi-directional edges with the longest node distance as edge
feature; it will result in a fully connected graph. Expansion 2 :
the edges are the same as expansion 1 but we remove all edge
features. Expansion 3 : only one-directional edges are added to

node pairs that are on the same path, with the longest distance
as edge features. Fig. 6(a) shows an example of the DFG with
newly added edges. The red edges are examples of expansion
1 , while the green edges are examples of expansion 3 . The

purpose of graph expansion is to increase the efficiency of
information propagation during GNN message passing and to
remove the necessity of deep GNNs, since two faraway nodes
may still collaboratively impact the output result. We recognize
that such an approach will still face scalability issue, which
must be addressed in future study.

Node/Edge Features and Message Passing. The node
features include: arithmetic operation type (addition or multi-
plication), FU type (precise or approximate), relative error (in
percentage), and error rate (in percentage). Because of graph
expansion, the edge features include two values: (1) the first is
a binary value indicating whether it is a newly added edge; (2)
if a newly added edge, the second value is the shortest path in
the original DFG between the two nodes. For example, for a
new edge connecting two 2-hop nodes, the edge feature vector
is [1, 2]. Initial node and edge features will be converted to
hidden embeddings using a linear layer. Fig. 6(b) explains
the message passing on the expanded DFG. For each node, it
aggregates information by integrating its neighborhood nodes’
messages as well as the incoming edge embeddings.

GNN Model. For the backbone GNN, we use GIN [15] as
the graph learning model, which is capable of including both
node and edge features and of discriminating large graphs. We
choose GIN not only because it is provably as powerful as the
Weisfeiler-Lehman graph isomorphism test, but also because
it can flexibly incorporate edge features, which is especially
important in our problem. In the experiments, we applied GCN
and GAT as well but neither perform well enough to produce
meaningful predictions.

Specifically, for the GIN used in PreAxC, the message
passing aggregation function is ϕ(x,m) = xl + ϵl · ml,
where ϕ(·) is the message transformation function, usually
a fully-connect layer or multi-layer perceptron; xl is the node
embedding of l-th layer, ml is the aggregated message, and ϵl
is a learnable coefficient.

D. Model-free Distribution Prediction
After the GNN backbone for graph learning on the DFGs,

we obtain a collection of node representations, which still
need to be processed by a head for distribution prediction.
We propose two approaches, model-free and model-based, as
demonstrated in Fig. 5.

Model-free approach directly learns from the histogram
of the error distribution without assuming any distribution
models (e.g., Gaussian, Beta, Poisson). Given K histogram
bins, where the j-th bin represents error ϵj with a height hj

(1 ≤ j ≤ K), the goal is to directly predict the height of each
bin ĥj . We use the Mean Squared Error (MSE) as the loss
function during training:

L =
1

K

∑
1≤j≤K

(hj − ĥj)
2 (3)

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 23:25:10 UTC from IEEE Xplore. Restrictions apply.

After the GIN backbone, we use a mean global pooling
and a multi-layer perceptron (MLP) with K output neurons,
where the j-th neuron outputs the height of ĥj . The Relative
Error Mean (REM) REMfree in model-free formulation is
REMfree =

∑
1≤j≤K ĥj · ϵj .

E. Model-based Distribution Prediction

Gaussian Mixture Model (GMM). The idea of model-
based prediction is to assume a distribution model first, and
the goal is to learn the distribution model parameters. Since
the error distribution can be far from Gaussian and is arbitrary
(as shown in Fig. 2(a)), we propose Gaussian Mixture Model
(GMM) to model the error distribution [21], which is a widely
used approach to describe unknown distributions. We denote
the number of Gaussian components as M , and the density
function is expressed as:

p(δ|λ) =
∑

1≤i≤M

ωi · N (x|µi, σ
2
i) (4)

where δ is a collection of the measured output error; λ =
{ωi, µi, σi} (1 ≤ i ≤ M) is a collection of GMM parameters;
N (x|µi, σ

2
i) is a Gaussian function with mean µi and variance

σ2
i ; ωi are the mixture weights that satisfies

∑M
i ωi = 1. The

Relative Error Mean REMgmm in model-based formulation is
REMgmm =

∑
1≤i≤M ωi · µi.

To verify the assumption that the error distribution can be
precisely modeled as GMM, we visualize three randomly se-
lected test cases in Fig. 2(a). The orange bars are ground-truth
raw distribution; the blue bars are modeled by GMM, obtained
by the Expectation–maximization (EM) algorithm [22]. This
visualization confirms that using GMM to model the error
distribution is valid.

GMM Parameter Learning. We let the GNN predict the
GMM parameters λ̂. In each training iteration, we sample N
data points following the predicted distribution Φ̂(λ̂), and use
the KL divergence described in Eq. (1) as the loss function:
L = −KL(Φ̂(λ̂)||Φ), where Φ̂(λ̂) is discretized as histogram
with K bins the same as Φ.

The GNN model uses the same GIN followed by a mean
global pooling and an MLP with 3M output neurons. The first
M output neurons represent the weights of GMM components,
which must sum up to 1, so for that we add a softmax before
them. The second 2M neurons use an absolute function to
guarantee that relative error mean µ̂i and error variance σ̂2

i

are positive.
Learning via Reparameterization. Since the sampling

process from Φ̂(λ̂) is non-differentiable, we adopt the repa-
rameterization trick to sample from a distribution following
GMM [23]. It is known that sampling from x ∼ N (µ, σ2) is
equivalent as sampling from z ∼ N (0, 1) with the transfor-
mation of x = z · σ2 + µ. Therefore for multiple Gaussian
components, each time we sample from the i-th component
with a probability of ωi, where ωi is the component weight.
In this way, the loss function is differentiable with respect
to the distribution parameter and can be updated via back
propagation.

Importance of input‐awareness

100 input vectors 250 input vectors

1000 input vectors

Error mean: 4.0% Error mean: 3.7%

Error mean: 3.5%

10 input vectors
Error mean: 4.3%

500 input vectors 750 input vectors
Error mean: 3.5% Error mean: 3.5%

0.15

0.13

0.11

0.09

0.07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Gaussian Component(s)

N
o
rm

al
iz
e
d
 S
co

re Avg. KL Divergence
Avg. Bhattacharyya’s Distance

Fig. 7. Normalized scores using different numbers of Gaussian compo-
nents (M). In our experiments we let M = 9.

Fig. 8. Ablation study on graph expansion methods. With graph
expansion (1), the distribution prediction is very close to the ground-
truth.

GMM Component Count. Since the number of Gaussian
components is critical since it directly determines the structure
of the predictor, we conduct a preliminary experiment on the
value of M . Fig. 7 shows the normalized similarity scores,
including KL divergence and Bhattacharyya’s Distance, be-
tween the predicted GMM-based distribution and the raw data
distribution. When M increases at the beginning, the score
decreases, indicating that the GMM becomes more expressive.
The trend saturates at M = 9, indicating that larger M will
introduce trivial components and will disturb the prediction.
Therefore in our experiments, we let M = 9.

IV. EXPERIMENTS

A. Experimental Setup and Baselines

Training Details. The training data collection is described
in Sec. III-A. We let both AxC adders and multipliers have an
error rate of 100% and relative error of 10%. Both models, the
model-free and model-based, are trained for 1000 epochs with
the Adadelta optimizer; the drop out is 0.4. The GIN backbone
has two layers; the dimension of node and edge embeddings
is 20. For the model-free predictor, we use a 20-20-20 MLP;
for the model-based predictor, we use a 20-20-20-30 MLP.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 23:25:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESULTS ON TRANSDUCTIVE (SEEN DFGS) AND INDUCTIVE (UNSEEN DFGS) SETTINGS. ALL REAL-CASES ARE INDUCTIVE. BN: BAYESIAN

NETWORK; REM: RELATIVE ERROR MEAN; KL: KL-DIVERGENCE; BD: BHATTACHARYYA DISTANCE. ALL METRICS ARE THE SMALLER THE BETTER.
*NOTE THAT BN DOES NOT GENERALIZE TO INDUCTIVE GRAPHS SO WE RETRAIN A NEW MODEL EACH CASE.

DFG Trav BN Ours Ours
[4] [8] Model-free Model-based

REM REM REM KL BD REM KL BD

Synthetic
Transductive 48.83% 19.51% 11.5% 0.1 0.02 18.7% 0.15 0.03

Inductive 39.48% 15.23%* 8.6% 0.13 0.02 37.1% 0.16 0.03

Real-case
FFT 52.07% 27.61%* 3.7% 0.09 0.01 5.4% 0.22 0.03

Sobel Filter 20.12% 16.48%* 6% 0.15 0.02 25.5% 0.3 0.06
(Inductive) Linear 44.29% 23.79%* 12% 0.37 0.03 9.4% 0.17 0.03

Model-free Model-based

Tr
an

sd
u

ct
iv

e

1

2

In
d

u
ct

iv
e

1

2

R
ea

lB
en

ch
m

ar
k

(I
n

d
u

ct
iv

e)

FF
T

Li
n

ea
r

FF
So

b
el

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

predicted
ground truth

Fig. 9. Visualization of error distributions predicted by model-free and
model-based approaches on expanded DFGs.

Transductive and Inductive Evaluations. We conduct
evaluation on two settings: transductive and inductive. Trans-
ductive means that the model is trained on all the DFGs and is
tested on seen DFGs but with unseen configurations; inductive
means that the model is trained on a subset of the DFGs and
is tested on unseen DFGs and configurations. Apparently, the
inductiveness is much more difficult but important; it enables
an ML model to be applied to new designs without any retrain-
ing or data collection, of which existing works fail to handle.
For inductive setting, we use 160 DFGs for training and 90
new DFGs for testing. Finally, we use three representative real-
cases: FFT, Sobel Filter, and a linear feedforward layer, which
are held out for testing only.

Baselines. We compare with two baselines: static DFG
traversal replicated from [4] and Bayesian Network (BN)
replicated from [8]. Since neither of them can predict error
distribution, we compute the error mean values from the
distribution predicted by PreAxC. Note that BN [8] is trained
on one DFG and infers on the same DFG with different
configurations, which does not generalize to unseen DFGs;
a new BN must be trained for every new DFG from scratch,
which also requires data collection. Therefore, it is not a fair
comparison since our PreAxC require no re-training at all.

B. Evaluation

Ablation Study of Graph Expansion. The necessity of
graph expansion is demonstrated in Fig. 8. Each column is one
randomly selected test case; each row shows one expansion
method. The visualization clearly demonstrates that the full
expansion 1 works surprisingly well while others and no
expansion perform worse. Comparing expansion 1 and 2 ,
it highlights the importance of the edge features we intro-
duced, the longest distance between a node pair. Comparing
expansion 1 and 3 , one plausible explanation is that, by fully
connecting node pairs, the GNN can learn the collaborative
effect of two operations, even though they are not on the same
path. Using the example in Fig. 6(a), where node n4 and node
n5 are both contributing to output o2 but are not on the same
path; adding an edge between n4 and n5 can be beneficial to
learn their joint impact on o2. This expansion can remove the
necessity of using deep GNNs and enable much more effective
message passing: in our experiments, just two GNN layers can
perform good enough.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 23:25:10 UTC from IEEE Xplore. Restrictions apply.

Comparisons with Baselines. We then compare our ap-
proach with baselines, static DFG traverse [4] and BN [8],
as shown in Table I. Since the existing works do not pre-
dict distribution but only error mean values, we compare
our computed error mean from GMM and the REM score
(indicating the prediction error). Table I shows that, in average,
the DFG transverse approach gives the largest prediction error,
from 20% to 52%. BN works relatively well for transductive
settings since it is trained per-DFG. Since it cannot handle
inductive cases, we re-train on each new case and show
their results (which is not a fair comparison with ours). Our
approach works well for both synthetic and real-case DFGs,
transductive and inductive. In synthetic transductive scenario,
both the model-free and model-based approach demonstrate
superior performance in REM comparing with existing works:
11.5% for model-free and 18.7% for model-based, compar-
ing with 19.51% for BN. In inductive setting, model-free
approach shows promisingly lower REM, 8.6%, comparing
with 15.32% of BN, especially that BN is retrained on these
cases. For the three real-world benchmarks, our approaches
also demonstrate remarkable generalizability with a consistent
low REM, especially much lower than DFG transverse. This
result demonstrates the promising prediction accuracy of our
proposed PreAxC workflow. Finally, we also evaluate the
similarity of the predicted and ground-truth distributions using
the metrics including KL and BD in Table I (Sec. III-B). The
KL and BD scores are consistently low for both transductive
and inductive cases as well as real-world cases, demonstrating
the generalizability of PreAxC.

Visualizations. Fig. 9 visualizes the error distribution in
the format of histogram. We plot four random synthetic cases
for transductive and inductive settings, as well as the three
inductive real-world benchmarks. Blue bars represent ground-
truth distribution and orange bars represent predicted. We
have the following observations. First, model-free approach
generally excels model-based. One possible reason is that the
learning task in model-free is easier. Second, in some cases,
the model-based method describes the detailed distribution
shape better than model-free. For example, for FFT, the
model-based method is able to predict the second distribution
spike towards the right, while model-free fails to do so.
Similar observation can be found in transductive Case 2. This
minute feature is only captured by the model-based approach.
Third, since the model-based approach assumes GMM, there
is always a misprediction around zero-value. Overall, the
visualization confirms that PreAxC is effective in predicting
the distribution shapes.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed PreAxC, the first work to
predict output error distribution using GNNs for AxC appli-
cations. PreAxC is more accurate and informative with input-
awareness and generalizability. We proposed two approaches:
model-free using histogram, and model-based using GMM.
We also proposed graph expansion to significantly improve
learning efficiency. Experiments demonstrated that PreAxC

works well for both transductive and inductive settings by
accurately depicting the distribution. Future works include
testing on real-world benchmarks and discussing how the
primary output error distribution affect the final application
quality, e.g., PSNR for image processing or accuracy for
classification.

VI. ACKNOWLEDGMENTS

This project is partially supported by the National Science
Foundation under Grant No.2202329.

REFERENCES

[1] Lukas Sekanina et al. Approximate circuits in low-power image and
video processing: The approximate median filter. Radioengineering,
26(3), 2017.

[2] Matthieu Courbariaux et al. Binaryconnect: Training deep neural
networks with binary weights during propagations. NeurIPS, 28:3123–
3131, 2015.

[3] Zhaowei Cai et al. Deep learning with low precision by half-wave
gaussian quantization. In CVPR, pages 5918–5926, 2017.

[4] Chaofan Li et al. Joint precision optimization and high level synthesis
for approximate computing. In DAC, pages 1–6. IEEE/ACM, 2015.

[5] Omid Akbari et al. X-cgra: An energy-efficient approximate coarse-
grained reconfigurable architecture. TCAD, 2019.

[6] Masoud Pashaeifar et al. A theoretical framework for quality estimation
and optimization of dsp applications using low-power approximate
adders. TCAS, 66(1):327–340, 2018.

[7] Xin Sui et al. Proactive control of approximate programs. ACM
SIGPLAN Notices, 51(4):607–621, 2016.

[8] Marcello Traiola et al. Probabilistic estimation of the application-
level impact of precision scaling in approximate computing applications.
Microelectronics Reliability, 102:113309, 2019.

[9] Radha Venkatagiri et al. Approxilyzer: Towards a systematic frame-
work for instruction-level approximate computing and its application to
hardware resiliency. In MICRO, pages 1–14. IEEE, 2016.

[10] Daya S Khudia et al. Rumba: An online quality management system
for approximate computing. In ISCA, pages 554–566, 2015.

[11] Zhenghao Peng et al. Axnet: Approximate computing using an end-to-
end trainable neural network. In ICCAD, pages 1–8, 2018.

[12] Sana Mazahir et al. Probabilistic error modeling for approximate adders.
IEEE Transactions on Computers, 66(3):515–530, 2016.

[13] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[14] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. In ICLR,
2018.

[15] Keyulu Xu et al. How powerful are graph neural networks? In ICLR,
2018.

[16] Nan Wu, Yuan Xie, and Cong Hao. Ironman: Gnn-assisted design
space exploration in high-level synthesis via reinforcement learning. In
GLSVLSI, 2021.

[17] Solomon Kullback and Richard A Leibler. On information and suffi-
ciency. The annals of mathematical statistics, 22(1):79–86, 1951.

[18] Thomas Kailath. The divergence and bhattacharyya distance measures
in signal selection. IEEE transactions on communication technology,
15(1):52–60, 1967.

[19] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI, 2018.

[20] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose
expressive power for node classification. In ICLR, 2019.

[21] Douglas A Reynolds. Gaussian mixture models. Encyclopedia of
biometrics, 741, 2009.

[22] Arthur P Dempster et al. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society, 39(1):1–22,
1977.

[23] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on July 29,2023 at 23:25:10 UTC from IEEE Xplore. Restrictions apply.

