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the output error. Recently, ML-based algorlthms have been
proposed, such as Bayesian network [7], [8], Approxilyzer [9],
Rumba [10], and AXNet [11]. Both static and ML-based ap-
proaches analyze output error statistics, including error mean,
error variance, or error level (e.g., acceptable, unacceptable,
precise). However, there are three major limitations. First, the
modeling statistics are too simple, uninformative, and can be
far from accurate (e.g., 10% to 20% estimation error [6]). One
reason is that, predicting error mean and variance implies that
the error follows Gaussian distribution, which is not true based
on our observation. As shown in Fig. 2(a), we randomly visu-
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Fig. 3. Existing approaches v.s. proposed PreAxC. PreAxC is general-
izable without retrain, predicts error distribution with input-awareness,
and is more accurate and informative.
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PreAxC, which is input-aware, informative, and generalizable,
as shown in Fig. 3. It is equipped with a graph neural
network (GNN) backbone and a distribution prediction head.
Our contributions include:

1) PreAxC is informative and accurate: it is the first output
error distribution modeling for AxC at behavioral-level.
Comparing with the traditional error statistic analysis such
as error mean and variance, error distribution is far more
informative and precise (and yet much more challenging
to predict).

2) PreAxC is generalizable: it can be directly applied to
unseen AxXC algorithms by running inference solely on
the DFG, without any data re-collection and re-training
(Fig. 3). It is empowered by a GNN backbone for graph
learning, whose inductive capability enables generalization
to unseen applications.

3) PreAxC is input-aware: we collect training data by run-
ning sufficient simulations using randomly sampled input
vectors, until obtaining a stable error distribution. This
ensures that the error prediction is robust against inputs
that may be outliers.
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Fig. 4. Input-aware training data collection.

AxC FUs usually consume less power and area with faster
execution speed. We refer the allocation of AxC FUs on the
DFG as one DFG configuration. AxC DFG configurations will
introduce errors by using AxC FUs, which will be propagated
to the primary outputs. The output error is jointly determined
by several factors: 1) the error introduced by AxC FUs; 2)
error propagation along the DFG; 3) the primary inputs of
the DFG, since different inputs will trigger different AxC FU
error.

Graph Neural Network (GNN). GNNs operate by aggre-
gating information along the edges of graphs. Each node
v and/or each edge e is associated with a representation,
i.e., embedding. A GNN layer updates each node represen-
tation by aggregating information of its neighbors, itself,
and possibly connected edges; this process is called message
passing. A GNN model can have multiple GNN layers; the
more GNN layers, the larger the receptive field is, i.e., the
information can be aggregated from farther nodes and edges.
Example prevalent GNNs include graph convolutional network
(GCN) [13], graph attention network (GAT) [14], and graph
isomorphism network (GIN) [15]. Among these, GIN is prov-
ably as powerful as the Weisfeiler-Lehman graph isomorphism
test, leveraging sum aggregators over a countable input feature
space.

III. PROPOSED APPROACHES

In this section, we first explain training data collection in
Sec. II-A. In Sec. III-C, we introduce our error prediction
workflow, PreAxC, using GNNs as the backbone; we further
propose a very important graph expansion technique, which
can significantly improve the prediction performance and
reduce the required GNN complexity. We then discuss two
prediction approaches on top of the GNN, model-free and
model-based, in Sec. III-D and Sec. III-E, respectively. For the
purpose of quantifying the similarity between the predictions
and the ground truth distributions we use the metrics KL
Divergence (KL), Bhattacharyya Distance (BD) and Relative
Error Mean (REM).

A. Training Data Collection

Fig. 4 explains the three steps of training data collection.
@ Extracting DFGs from multiple programs. Since real-world
AxC applications are not sufficient enough for model training,
we follow the work IronMan [16] and use synthetic DFGs for
model training, and use both synthetic and real-world DFGs
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e Relative Error Mean (REM). Existing works can only
predict error mean and variance. To make a comparison
with PreAxC, we compute the average of the relative error
0(¢;) within collection ® for N input vectors, denoted
by REMyg, as the ground-truth error mean: REMy =
% ZlgjgN 5(¢j)-

C. PreAxC Architecture using GNN
Given the natural graphs structures of DFGs, we propose to

use GNN for representation learning. The inductive capability
of GNNs also enables generalization to unseen graphs. On top
of the GNN backbone, we propose two distribution detection
heads (in Sec III-D and Sec. III-E). The overview of PreAxC
is shown in Fig. 5. During inference, the input to PreAxC is
the DFG extracted from an algorithm with its configuration;
the output is the predicted distribution.

Challenges of Applying GNN to DFG. Although the DFGs
are natural inputs to GNNs, applying GNNs directly on DFGs
is non-trivial. In our preliminary experiments, learning on the
raw DFGs do not produce satisfying results and the predic-
tion error is extremely high. We attribute the failure to the
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Sec. IV. (b) GNN Message passing on the expanded DFG using both
node and edge features.

ineffectiveness of message passing between two nodes which
are far away but one’s (erroneous) output will eventually be
propagated to another. We use Fig. 6(a) as an example, where
the black edges are original edges in the DFG. In this example,
node n;’s output will be propagated to node ns and output
01. However, since the message passing mechanism in GNNs
usually only aggregate information from direct neighborhood
nodes per layer, in order to let node m3’s information be
aggregated to node nq, it requires at least two layers of GNNs.
If the DFG is deep (which is usually the case), i.e., there
are many nodes on the propagation path from one node to
the output node, it will require an extremely deep GNN with
many layers to capture the impact of the early node on the
output. However, many empirical experiments have shown that
deep GNNs do not perform well, sometimes even worse than
shallow GNNs [19], [20]. In addition, deep GNNs require
much more parameters, are hard to train, and do not scale in
our problem since the depth of a DFG can be very large. For
instance, a DFG with a longest path length 50 from input to
output node will require at least a 50-layer GNN to propagate
the error information, which is not applicable in practice.
Graph Expansion. Therefore, to address this challenge,
we propose a graph expansion technique by adding auxiliary
edges to connect nodes that are far away. We discuss three
ways of expanding and we will provide an ablation study in
Sec. IV-B. Expansion @: we connect every pair of nodes using
bi-directional edges with the longest node distance as edge
feature; it will result in a fully connected graph. Expansion @:
the edges are the same as expansion @ but we remove all edge
features. Expansion @: only one-directional edges are added to

node pairs that are on the same path, with the longest distance
as edge features. Fig. 6(a) shows an example of the DFG with
newly added edges. The red edges are examples of expansion
@, while the green edges are examples of expansion €. The
purpose of graph expansion is to increase the efficiency of
information propagation during GNN message passing and to
remove the necessity of deep GNNs, since two faraway nodes
may still collaboratively impact the output result. We recognize
that such an approach will still face scalability issue, which
must be addressed in future study.

Node/Edge Features and Message Passing. The node
features include: arithmetic operation type (addition or multi-
plication), FU type (precise or approximate), relative error (in
percentage), and error rate (in percentage). Because of graph
expansion, the edge features include two values: (1) the first is
a binary value indicating whether it is a newly added edge; (2)
if a newly added edge, the second value is the shortest path in
the original DFG between the two nodes. For example, for a
new edge connecting two 2-hop nodes, the edge feature vector
is [1, 2]. Initial node and edge features will be converted to
hidden embeddings using a linear layer. Fig. 6(b) explains
the message passing on the expanded DFG. For each node, it
aggregates information by integrating its neighborhood nodes’
messages as well as the incoming edge embeddings.

GNN Model. For the backbone GNN, we use GIN [15] as
the graph learning model, which is capable of including both
node and edge features and of discriminating large graphs. We
choose GIN not only because it is provably as powerful as the
Weisfeiler-Lehman graph isomorphism test, but also because
it can flexibly incorporate edge features, which is especially
important in our problem. In the experiments, we applied GCN
and GAT as well but neither perform well enough to produce
meaningful predictions.

Specifically, for the GIN used in PreAxC, the message
passing aggregation function is ¢(x,m) = =z + ¢ - my,
where ¢(-) is the message transformation function, usually
a fully-connect layer or multi-layer perceptron; z; is the node
embedding of [-th layer, m; is the aggregated message, and ¢;
is a learnable coefficient.

D. Model-free Distribution Prediction

After the GNN backbone for graph learning on the DFGs,
we obtain a collection of node representations, which still
need to be processed by a head for distribution prediction.
We propose two approaches, model-free and model-based, as
demonstrated in Fig. 5.

Model-free approach directly learns from the histogram
of the error distribution without assuming any distribution
models (e.g., Gaussian, Beta, Poisson). Given K histogram
bins, where the j-th bin represents error €; with a height h;
(1 €5 < K), the goal is to directly predict the height of each
bin l{j. We use the Mean Squared Error (MSE) as the loss
function during training:

1 R
L=5 Y (hj—hy)? 3)
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After the GIN backbone, we use a me:
and a multi-layer perceptron (MLP) with k
where the j-th neuron outputs the height of
Error Mean (REM) REMfree in model-fr
RE Mfree = 21<J<Kh €5

E. Model-based Distribution Prediction

Gaussian Mixture Model (GMM). Th
based prediction is to assume a distributior
the goal is to learn the distribution model |
the error distribution can be far from Gaussi:
(as shown in Fig. 2(a)), we propose Gaussic
(GMM) to model the error distribution [21],
used approach to describe unknown distribt
the number of Gaussian components as M
function is expressed as:

PN = > wi N(al,

1<i<M

where ¢ is a collection of the measured o
{wi, piy 03} (1 < i < M) is a collection of (
N (x|u;,o?) is a Gaussian function with mee
O',LZ; w; are the mixture weights that satisfies
Relative Error Mean RE My, in model-bas
REMgmm = ZlSiSM Wi+ i

To verify the assumption that the error d
precisely modeled as GMM, we visualize t
lected test cases in Fig. 2(a). The orange bar
raw distribution; the blue bars are modeled b
by the Expectation—maximization (EM) alg
visualization confirms that using GMM to
distribution is valid.

GMM Parameter Learning. We let the GNN predict the
GMM parameters . In each training iteration, we sample N
data points following the predicted distribution ®(}), and use
the KL divergence described in Eq. (1) as the loss function:
L = —KL(®(\)||®), where ®()\) is discretized as histogram
with K bins the same as ®.

The GNN model uses the same GIN followed by a mean
global pooling and an MLP with 30 output neurons. The first
M output neurons represent the weights of GMM components,
which must sum up to 1, so for that we add a softmax before
them. The second 20 neurons use an absolute function to
guarantee that relative error mean fi; and error variance 67
are positive.

Learning via Reparameterization. Since the sampling
process from CTD(S\) is non-differentiable, we adopt the repa-
rameterization trick to sample from a distribution following
GMM [23]. It is known that sampling from x ~ N (u,0?) is
equivalent as sampling from z ~ N(0,1) with the transfor-
mation of x = z - 02 + p. Therefore for multiple Gaussian
components, each time we sample from the ¢-th component
with a probability of w;, where w; is the component weight.
In this way, the loss function is differentiable with respect
to the distribution parameter and can be updated via back
propagation.
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GMM Component Count. Since the number of Gaussian
components is critical since it directly determines the structure
of the predictor, we conduct a preliminary experiment on the
value of M. Fig. 7 shows the normalized similarity scores,
including KL divergence and Bhattacharyya’s Distance, be-
tween the predicted GMM-based distribution and the raw data
distribution. When M increases at the beginning, the score
decreases, indicating that the GMM becomes more expressive.
The trend saturates at M = 9, indicating that larger M will
introduce trivial components and will disturb the prediction.
Therefore in our experiments, we let M = 9.

IV. EXPERIMENTS
A. Experimental Setup and Baselines

Training Details. The training data collection is described
in Sec. III-A. We let both AxC adders and multipliers have an
error rate of 100% and relative error of 10%. Both models, the
model-free and model-based, are trained for 1000 epochs with
the Adadelta optimizer; the drop out is 0.4. The GIN backbone
has two layers; the dimension of node and edge embeddings
is 20. For the model-free predictor, we use a 20-20-20 MLP;
for the model-based predictor, we use a 20-20-20-30 MLP.
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TABLE I
RESULTS ON TRANSDUCTIVE (SEEN DFGS) AND INDUCTIVE (UNSEEN DFGS) SETTINGS. ALL REAL-CASES ARE INDUCTIVE. BN: BAYESIAN
NETWORK; REM: RELATIVE ERROR MEAN; KL: KL-DIVERGENCE; BD: BHATTACHARY YA DISTANCE. ALL METRICS ARE THE SMALLER THE BETTER.
*NOTE THAT BN DOES NOT GENERALIZE TO INDUCTIVE GRAPHS SO WE RETRAIN A NEW MODEL EACH CASE.

DFG Trav BN Ours Ours
[4] [8] Model-free Model-based
REM REM REM KL BD REM KL BD
Synthetic Transductive 48.83% 19.51% 11.5% 0.1 0.02 18.7% 0.15 0.03
Inductive 39.48% 15.23%* 8.6% 0.13 0.02 37.1% 0.16 0.03
Real-case FFT 52.07% 27.61%* 3.7% 0.09 0.01 5.4% 0.22 0.03
Sobel Filter 20.12% 16.48%* 6% 0.15 0.02 25.5% 0.3 0.06
(Inductive) Linear 44.29% 23.79%* 12% 0.37 0.03 9.4% 0.17 0.03
Transductive and Inductive Evaluations. We conduct
Model-free Model-based
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Fig. 9. Visualization of error distributions predicted by model-free and
model-based approaches on expanded DFGs.

evaluation on two settings: transductive and inductive. Trans-
ductive means that the model is trained on all the DFGs and is
tested on seen DFGs but with unseen configurations; inductive
means that the model is trained on a subset of the DFGs and
is tested on unseen DFGs and configurations. Apparently, the
inductiveness is much more difficult but important; it enables
an ML model to be applied to new designs without any retrain-
ing or data collection, of which existing works fail to handle.
For inductive setting, we use 160 DFGs for training and 90
new DFGs for testing. Finally, we use three representative real-
cases: FFT, Sobel Filter, and a linear feedforward layer, which
are held out for testing only.

Baselines. We compare with two baselines: static DFG
traversal replicated from [4] and Bayesian Network (BN)
replicated from [8]. Since neither of them can predict error
distribution, we compute the error mean values from the
distribution predicted by PreAxC. Note that BN [8] is trained
on one DFG and infers on the same DFG with different
configurations, which does not generalize to unseen DFGs;
a new BN must be trained for every new DFG from scratch,
which also requires data collection. Therefore, it is not a fair
comparison since our PreAxC require no re-training at all.

B. Evaluation

Ablation Study of Graph Expansion. The necessity of
graph expansion is demonstrated in Fig. 8. Each column is one
randomly selected test case; each row shows one expansion
method. The visualization clearly demonstrates that the full
expansion @ works surprisingly well while others and no
expansion perform worse. Comparing expansion @ and @,
it highlights the importance of the edge features we intro-
duced, the longest distance between a node pair. Comparing
expansion @ and @), one plausible explanation is that, by fully
connecting node pairs, the GNN can learn the collaborative
effect of two operations, even though they are not on the same
path. Using the example in Fig. 6(a), where node n4 and node
ns are both contributing to output oo but are not on the same
path; adding an edge between n4 and ns can be beneficial to
learn their joint impact on 0. This expansion can remove the
necessity of using deep GNNs and enable much more effective
message passing: in our experiments, just two GNN layers can
perform good enough.
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Comparisons with Baselines. We then compare our ap-
proach with baselines, static DFG traverse [4] and BN [8],
as shown in Table I. Since the existing works do not pre-
dict distribution but only error mean values, we compare
our computed error mean from GMM and the REM score
(indicating the prediction error). Table I shows that, in average,
the DFG transverse approach gives the largest prediction error,
from 20% to 52%. BN works relatively well for transductive
settings since it is trained per-DFG. Since it cannot handle
inductive cases, we re-train on each new case and show
their results (which is not a fair comparison with ours). Our
approach works well for both synthetic and real-case DFGs,
transductive and inductive. In synthetic transductive scenario,
both the model-free and model-based approach demonstrate
superior performance in REM comparing with existing works:
11.5% for model-free and 18.7% for model-based, compar-
ing with 19.51% for BN. In inductive setting, model-free
approach shows promisingly lower REM, 8.6%, comparing
with 15.32% of BN, especially that BN is retrained on these
cases. For the three real-world benchmarks, our approaches
also demonstrate remarkable generalizability with a consistent
low REM, especially much lower than DFG transverse. This
result demonstrates the promising prediction accuracy of our
proposed PreAxC workflow. Finally, we also evaluate the
similarity of the predicted and ground-truth distributions using
the metrics including KL and BD in Table I (Sec. III-B). The
KL and BD scores are consistently low for both transductive
and inductive cases as well as real-world cases, demonstrating
the generalizability of PreAxC.

Visualizations. Fig. 9 visualizes the error distribution in
the format of histogram. We plot four random synthetic cases
for transductive and inductive settings, as well as the three
inductive real-world benchmarks. Blue bars represent ground-
truth distribution and orange bars represent predicted. We
have the following observations. First, model-free approach
generally excels model-based. One possible reason is that the
learning task in model-free is easier. Second, in some cases,
the model-based method describes the detailed distribution
shape better than model-free. For example, for FFT, the
model-based method is able to predict the second distribution
spike towards the right, while model-free fails to do so.
Similar observation can be found in transductive Case 2. This
minute feature is only captured by the model-based approach.
Third, since the model-based approach assumes GMM, there
is always a misprediction around zero-value. Overall, the
visualization confirms that PreAxC is effective in predicting
the distribution shapes.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed PreAxC, the first work to
predict output error distribution using GNNs for AxC appli-
cations. PreAxC is more accurate and informative with input-
awareness and generalizability. We proposed two approaches:
model-free using histogram, and model-based using GMM.
We also proposed graph expansion to significantly improve
learning efficiency. Experiments demonstrated that PreAxC

works well for both transductive and inductive settings by
accurately depicting the distribution. Future works include
testing on real-world benchmarks and discussing how the
primary output error distribution affect the final application
quality, e.g., PSNR for image processing or accuracy for
classification.
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