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Abstract

The spectroscopic characterization of terrestrial exoplanets over a wide spectral range from the near- to the mid-
infrared will be made possible for the first time with the JWST. One challenge is that it is not known a priori
whether such planets possess optically thick atmospheres or even any atmospheres altogether. However, this
challenge also presents an opportunity, the potential to detect the surface of an extrasolar world. This study
explores the feasibility of characterizing with the JWST the atmosphere and surface of LHS 3844b, the highest
signal-to-noise rocky thermal emission target among planets that are cool enough to have nonmolten surfaces. We
model the planetary emission, including the spectral signal of both the atmosphere and surface, and we explore all
scenarios that are consistent with the existing Spitzer 4.5 μm measurement of LHS 3844b from Kreidberg et al. In
summary, we find a range of plausible surfaces and atmospheres that are within 3σ of the observationless reflective
metal-rich, iron-oxidized, and basaltic compositions are allowed, and atmospheres are restricted to a maximum
thickness of 1 bar, if near-infrared absorbers at 100 ppm are included. We further make predictions on the
observability of surfaces and atmospheres and find that a small number (∼3) of eclipse observations should suffice
to differentiate between surface and atmospheric features. We also perform a Bayesian retrieval analysis on
simulated JWST data and find that the surface signal may make it harder to precisely constrain the abundance of
atmospheric species and may falsely induce a weak H2O detection.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanet surfaces (2118); Theoretical
models (2107); Infrared spectroscopy (2285)

1. Introduction

1.1. Characterizing Terrestrial Exoplanets in the Era of
the JWST

During the next few years the James Webb Space Telescope
(JWST) will serve as the prime observatory enabling us to
characterize rocky exoplanets using spectroscopic information
about the planetary thermal emission. The challenges to
characterizing such planets include their smaller sizes and
increased potential for atmospheric diversity, compared to
more well-studied hot Jupiters. Another less-appreciated
challenge is that, while it may generally be likely for terrestrial
planets to have atmospheres, it is possible for an individual
terrestrial exoplanet to lack an atmosphere that is sufficiently
thick to be detectable. Whether or not a terrestrial exoplanet has
a detectable atmosphere cannot be known a priori. This leads to
a potential source of confusion in characterizing rocky worlds
—it is not initially clear whether a planet’s emission originates
from its surface, or from its optically thick atmosphere. A third
possibility is a semi-optically thin atmosphere, for which the
surface is seen directly at certain wavelengths corresponding to

transparent windows through the atmosphere. One such
example is Titan, where parts of the surface can be seen in
between CH4 bands. (McCord et al. 2006). To optimize the
scientific yield of observations of rocky exoplanets with the
JWST, it is therefore crucial to understand the spectroscopic
fingerprints of both their atmospheres and surfaces and how
these translate to an emission signal recorded by the telescope.
Even before the age of the JWST, there have been a small

number of spectroscopic observations of terrestrial exoplanets.
For example, the transmission spectra of planets b, c, d, e, f,
and g of the TRAPPIST-1 system were observed with the
Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3)
and Spitzer Infrared Array Camera (IRAC) Channel 2 (de Wit
et al. 2016; Gillon et al. 2017; de Wit et al. 2018). These
observations allowed us to constrain the atmospheric properties
of these planets to a certain degree, as their relatively
featureless spectra are inconsistent with cloudless, hydrogen-
dominated envelopes indicating either high mean molecular
weight or cloudy atmospheres. Still, even a no-atmosphere case
for the rocky planets cannot be ruled out by these data. More
recently, Swain et al. (2021) observed the transmission
spectrum of GJ 1132b with HST/WFC3 and concluded a low
mean molecular weight atmosphere that exhibits spectral
signatures of HCN and CH4 as well as aerosol scattering.
However, Mugnai et al. (2021) and Libby-Roberts et al. (2022)
analyzed the same GJ 1132b data and both obtained a
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featureless spectrum as the best fit, giving the same implica-
tions as for the atmospheres of the TRAPPIST-1 planets. To
date, there has been no definitive detection of a terrestrial
exoplanet atmosphere (Mugnai et al. 2021).

Terrestrial exoplanets that are found to not possess atmo-
spheres could present the first opportunities to characterize the
surface composition of planets beyond our solar system. The
analogs of airless or nearly airless rocky bodies in the solar
system are Mercury, Mars, the Moon, and various asteroids.
Before they could be spatially well resolved, many of these
objects were studied using the spectra of reflected solar
radiation or of thermal emission. The lunar mare are generally
dark and absorb strongly at 1 and 2 μm, indicating that they are
basaltic in composition (Pieters 1978), while the lunar high-
lands are bright and relatively featureless, pointing to a
plagioclase feldspar composition (Pieters 1986). The spectral
features of the Martian surface, together with its visually red
appearance and its polarization properties, show that it is rich in
ferric oxides (McCord & Westphal 1971). Spectra of Mercury’s
surface initially indicated that it had a similar composition to
that of the lunar highlands due to its relatively flat spectrum
(Blewett et al. 1997). However, recent observations of Mercury
from spacecraft have pointed to a surface that is closer to
ultramafic (Nittler et al. 2011)—the more recent revision
demonstrates the challenges in using remote sensing data to
uniquely constrain planetary surface composition. Present-day
Earth possesses a granitoid surface, a tertiary crust that is a
record of plate tectonics and the incorporation of water in
subducted crustal materials. All of these solar system examples
present plausible surface compositions for terrestrial exopla-
nets. Additional possibilities include a metal-rich surface,
which would be indicative of a world with the mantle stripped
off (Hu et al. 2012), among others, as discussed in Section 4.2
of Mansfield et al. (2019).

At the limit of airless planets, Hu et al. (2012) proposed to
use reflected and emitted light spectra of terrestrial exoplanets
to constrain their surface compositions. However, the surface
characterization may be complicated by the fact that such
planets could possess substantial atmospheres, which could
obscure the surface from view. We therefore need to explore
whether an exoplanet’s surface composition can be constrained
in the absence of an atmosphere, and whether degeneracies
exist between determining atmospheric and surface properties
for cases in which an overlying atmosphere is present. This is
the purpose of our current work.

1.2. The Rocky Super-Earth LHS 3844b

In this study, we focus on the specific test case of the hot,
rocky exoplanet LHS 3844b. We assess our ability to
characterize the planet with the JWST with a focus on plausible
atmospheric and surface compositions, given our current
knowledge of the planet’s properties. LHS 3844b, discovered
in 2018 by the Transiting Exoplanet Survey Satellite (TESS;
Ricker et al. 2015), is a presumed tidally locked super-Earth
with a radius of 1.303± 0.022 REarth and orbits its red dwarf
M5-type host star every 11 hr (Vanderspek et al. 2019). With
an emission spectroscopy metric (ESM) of 28 (Kempton et al.
2018), LHS 3844b provides one of the strongest emission
signals for any exoplanet that is believed to have a dayside
made of solid rock (in contrast to even hotter magma worlds),
making it a prime target for future characterization. Indeed,
LHS 3844b will be observed during three secondary eclipses

with the JWST Mid-InfraRed Instrument (MIRI) Low-Resolu-
tion Spectrometer (LRS) as part of Cycle 1 of the General
Observer program.
Due to the very high irradiation level from the host star,

which promotes atmospheric escape, any hydrogen-dominated
primordial atmosphere of LHS 3844b is thought to have been
lost over the course of its lifetime (Owen & Wu 2013, 2017).
However, without observational constraints it is difficult to
assess the presence of secondary atmospheres as these can be
produced through many pathways during the planet’s evol-
ution, e.g., degassing during accretion (Elkins-Tanton &
Seager 2008), vaporization of a molten mantle (Schaefer
et al. 2012), reactions between nebula gas and magma (Kite &
Schaefer 2021), high-energy impacts (Lupu et al. 2014), and
volcanism (Gaillard & Scaillet 2014). However, there are also a
number of potential conditions that would prevent the
formation and retention of a thick secondary atmosphere on
LHS 3844b or similar planets, including (i) a volatile-poor
formation and associated inhibition of late-stage degassing
(Kite & Barnett 2020), (ii) stripping of the atmosphere due to
impacts (Schlichting et al. 2015), (iii) primordial atmosphere
loss, as heavier molecules will be dragged away alongside H2
when the flux is high (Hunten et al. 1987), and (iv) a high
stellar UV flux preventing the revival of an atmosphere (Kite &
Barnett 2020).
Empirical data appear to strengthen the picture that LHS

3844b does not possess a thick atmosphere. Namely, Spitzer
phase curve observations with IRAC Channel 2 at 4.5 μm by
Kreidberg et al. (2019) measured a high dayside brightness
temperature of 1040± 40 K, an undetectably small emission
from the nightside, and a phase curve offset consistent with
zero. As the main driver of heat redistribution is large-scale
atmospheric circulation, the finding of a negligible longitudinal
heat transport points toward the absence of a thick atmosphere
(Showman et al. 2013; Koll 2022). Furthermore, comparing
atmospheric model predictions to the measured eclipse depth of
380± 40 ppm, Kreidberg et al. (2019) narrowed the possible
surface pressure to 10 bars or less. Simulating atmospheric
mass loss over the planet’s history, Kreidberg et al. (2019)
further concluded that only with an initial water inventory of at
least ∼100 Earth oceans could atmospheric erosion be
prevented. Additionally, more recent ground-based observa-
tions using 13 transits in the optical to near-infrared by
Diamond-Lowe et al. (2020) reveal a flat transmission
spectrum, which is also consistent with a bare-rock scenario.
In particular, the transmission spectrum observations ruled out
a hydrogen-dominated atmosphere with high confidence
(unless there are high-altitude clouds that would also flatten
the spectrum) and disfavored a water-steam atmosphere with a
surface pressure� 0.1 bar.
The most promising strategy to constrain the surface

composition of rocky exoplanets is through secondary eclipse
observations, which probe the planetary reflection and thermal
emission spectrum. In contrast to the transmission spectrum,
the planetary surface signal is imprinted on the emission
spectrum in wavelengths where the atmosphere is optically
thin. In addition, as the thermal emission signal scales with the
planetary temperature, secondary eclipse spectroscopy appears
to be especially well suited for atmospheric detection and
characterization of hot planets, such as LHS 3844b (Morley
et al. 2017; Koll et al. 2019). Due to these reasons, we model
the planetary emission spectrum and make predictions on the
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distinguishability of plausible atmospheres and surfaces and on
the inference of the atmospheric composition of LHS 3844b
using secondary eclipse observations in the current work.

2. Methods

2.1. Radiative Transfer Modeling

We generate model spectra of LHS 3844b with different
assumed atmospheric species and surfaces with the open-
source, 1D radiative transfer (RT) code HELIOS9 (Malik et al.
2017, 2019a, 2019b), which simulates the atmosphere in
radiative–convective equilibrium and the corresponding plane-
tary emission. In contrast to most radiative transfer models used
in the exoplanet field, HELIOS takes the radiative effects of the
surface on both the atmosphere and the resulting planetary
spectrum into account. Previously, only a gray surface albedo,
constant over all wavelengths, could be modeled with
HELIOS, as described in detail in Malik et al. (2019a). We
have since expanded the code’s functionality to include a
surface albedo as a function of the wavelength, enabling the
consideration of realistic surface albedos in the model. We
describe updates to the HELIOS code and the new method of
modeling the surface in Appendix A.

In HELIOS the radiative transfer calculation is performed
twice. First, the atmospheric temperature profile and the surface
temperature in radiative–convective equilibrium are obtained.
For this step, we use the k-distribution method with 420
wavelength bins between 0.245 and 105 μm (distributed evenly
in the wavenumber space) and 20 Gaussian points within each
bin. The k coefficients are calculated from high-resolution
gaseous opacities (see Section 2.3) with the ktable program
that is included in the HELIOS software package. As in this
work each atmospheric setup consists of only a single main
infrared absorbing species alone, or in combination with a less
absorbing background gas, the induced error by mixing k
coefficients from different sources via the correlated-k approx-
imation is marginal. Once the equilibrium state is found,
HELIOS is used in post-processing mode to generate the
emission spectrum using opacity sampling with a resolution of
R= 4000.

Convection is treated in HELIOS via convective adjustment
with the adiabatic coefficient ( )� � s sT Plog log Sad —
where T is the temperature, P is the pressure, and S is the
entropy—set to 2/7 (1/4) if a diatomic (triatomic) molecule
acts as the atmospheric bulk gas, according to the ideal gas
approximation. We model dayside-averaged conditions and use
the scaling theory for heat redistribution of Koll (2022), their
Equation (10), making the day-to-night heat transport

dependent on the thickness of the atmosphere. Note that the
scaling of the heat redistribution subtracts the total heat that is
assumed to be transported to the nightside from the incoming
stellar flux in order to estimate the dayside heat content, but it
does not include any vertical dependency of the day-to-night
heat flow. In the no-atmosphere case, we assume no global heat
transport and set the redistribution parameter accordingly to
f= 2/3 (Burrows et al. 2008; Hansen 2008). Lastly, a
numerical limitation of the HELIOS code is that it is not
possible to model a surface without an overlaying atmosphere,
and so we approximate this situation by including an
atmosphere with Psurf = 2× 10−9 bar, which has a∼ 10−10

Planck mean optical depth.10

We use a PHOENIX stellar model (Husser et al. 2013) to
simulate the spectrum of the host star, downloaded from the
online spectral library11 and linearly interpolated in effective
temperature and �glog10 with gå being the stellar surface
gravity. The numerical values for the stellar parameters of LHS
3844 are listed in Table 1. The high-resolution PHOENIX
spectrum is further rebinned to the HELIOS wavelength grid,
conserving the wavelength-integrated flux. Further input
parameters include the planetary surface gravity, semimajor
axis, planet radius, stellar radius, stellar temperature, stellar
surface gravity, and stellar metallicity. The adopted numerical
values for these parameters are displayed in Table 1.

2.2. Atmospheric and Surface Compositions Considered

For the atmospheric models of LHS 3844b we choose N2,
O2, and CO2 as potential dominant atmospheric species. From
an empirical perspective, there are two solar system rocky
bodies with thick atmospheres that have N2 as the main
constituent: Earth, which is of similar size to LHS 3844b, and
Titan. There are a number of hypothetical pathways that may
lead to substantial amounts of atmospheric N2 (see discussion
in Lammer et al. 2019). For instance, N2 outgassing can
potentially counteract nitrogen fixation by lightning, meteoritic
impacts, and high-energy UV or flares, leading to atmospheric
N2 buildup (Chameides & Walker 1981; Mikhail & Sverjensky
2014; Airapetian et al. 2016). Another theoretical prediction is
an O2-dominated atmosphere, which is a potential product of
an initially water-rich atmosphere that lost most of its hydrogen
due to high irradiation from the host star (Wordsworth &
Pierrehumbert 2014; Luger & Barnes 2015; Wordsworth et al.
2018). The high stellar irradiation places LHS 3844b close to
the “cosmic shoreline” (Zahnle & Catling 2017), assuming an

Table 1
Numerical Values for the Planetary and Stellar Parameters used in this Study

Planetary and Stellar Parameters

Rpl (REarth) gpl (cm s−2) a (au) Rstar (Re) Tstar (K) �glog (cm s−2) [M/H]å

1.246a 1600b 0.00622a 0.178b 3036a 5.136 0a

Notes. As the planet’s mass is unknown, the surface gravity is approximated assuming an Earth-like bulk density. Note that the surface gravity affects the emission
spectrum more weakly than the planetary transmission spectrum. The stellar surface gravity is calculated via Newton’s law of gravity using a stellar mass of
Må = 0.158 Me (Kreidberg et al. 2019).
a Vanderspek et al. (2019).
b Kreidberg et al. (2019).

9 https://github.com/exoclime/helios

10 According to our tests, an atmosphere with Psurf < 10−6 bar does not
noticeably affect the surface temperature or planetary emission found in the
model.
11 ftp://phoenix.astro.physik.uni-goettingen.de/HiResFITS/
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Earth-like bulk density. The idea here is that if this planet
started with a thick envelope and a sufficient water abundance,
it is expected to have undergone a runaway greenhouse effect
at one point during its history, possibly ending up as a Venus
analog (Kane et al. 2014).

Additional absorbers in our models include CO2, CO, SO2,
CH4, and H2O. They are all found in the atmospheres of Earth,
Mars, and Venus, and they are predicted to be ubiquitous and
major constituents in rocky exoplanet atmospheres as well, be
it from mantle degassing (Schaefer & Bruce 2011; Schaefer
et al. 2012; Liggins et al. 2022), meteoritic accretion (Lupu
et al. 2014; Zahnle et al. 2020), photochemistry (Gao et al.
2015), or late-stage volcanism (Gaillard & Scaillet 2014).
Additionally, all of these species exhibit strong absorption
bands in the infrared, providing an opportunity to be detected
with the JWST.

Our atmospheric grid consists of the following gas
combinations. On one side we explore oxygen-rich and
oxidizing atmospheres: bulk O2 with H2O, bulk O2 with
CO2, bulk O2 with SO2, and a pure CO2 scenario; and on the
other side we explore nitrogen-rich and reducing atmospheres:
bulk N2 with CO, bulk N2 with CH4, bulk N2 with CO2, and a
pure CO scenario.

For the surface contribution, six realistic surfaces composi-
tions are tested: metal-rich (pyrite), feldspathic (97% Fe-
plagioclase, 3% augite), ultramafic (60% olivine, 40%
enstatite), basaltic (76% plagioclase, 8% augite, 6% enstatite,
5% glass, 1% olivine), granitoid (40% K-feldspar, 35% quartz,
20% plagioclase, 5% biotite), and iron-oxidized (50% nano-
phase hematite, 50% basalt), which are ubiquitous in the solar
system and common products of geological processes (see
Section 1 and further discussion in Hu et al. 2012). We use the
geometric albedo spectra from Hu et al. (2012) for these
surfaces, pre-tabulated between 0.3 and 25 μm, which were
obtained from experimental data taken on rock powders and
extended by radiative transfer modeling. Although these albedo
spectra are mineralogically realistic, spectra of the surface of
Mars and the Moon differ from that of mineral mixtures in the
laboratory due to various effects (e.g., Carli et al. 2015; Bishop
et al. 2019). We extrapolate the tabulated albedo data to the
whole wavelength range of the RT calculation by using the
albedo value at 0.3 μm for all smaller wavelengths and the
value at 25 μm for all larger wavelengths. Lastly, we include a
uniform gray surface with a geometric albedo of 0.1 as control
to test the impact of the nongray albedo variation of realistic
surfaces. The albedo spectra used in this work are shown in
Figure 1.

2.3. Opacities & Scattering Cross Sections

Molecular opacities are calculated with HELIOS-K (Grimm
& Heng 2015; Grimm et al. 2021). Included are O2 (Gordon
et al. 2017), H2O (Polyansky et al. 2018), CO (Li et al. 2015),
CO2 (Rothman et al. 2010), CH4 (Yurchenko et al. 2017), and
SO2 (Underwood et al. 2016). The opacities are calculated on a
wavenumber grid with a resolution of 0.01 cm−1, assuming a
Voigt profile with a wing cutoff at 100 cm−1. For H2O, CH4,
and SO2 we include the default pressure broadening coeffi-
cients provided by the Exomol database12 (Tennyson et al.
2020). For O2, CO, and CO2 we use the High-resolution
Transmission broadening formalism with self-broadening only.

Further included is collision-induced absorption (CIA) by
O2–O2, O2–CO2, CO2–CO2, N2-N2, and N2–CH4 (Richard
et al. 2012) and Rayleigh scattering of H2O, O2, N2, CO2, and
CO (Cox 2000; Sneep & Ubachs 2005; Wagner & Kretzschmar
2008; Thalman et al. 2014).

2.4. Simulating JWST Observations

To simulate observations with the JWST, the Python
package Pandexo13 (Batalha et al. 2017) is used. We focus
on two JWST instruments that will be suitable and are planned
to be utilized for rocky exoplanet characterization, MIRI LRS
and NIRSpec G395H. Being on the long-wave end of the
JWST capabilities, the bandpass of MIRI LRS (5.02–13.86μm)
maximizes the recorded secondary eclipse depth (planet-to-star
contrast), as the emission of the hotter star falls off faster with the
wavelength than the planetary emission. Although the relative
eclipse depth is smaller in the NIRSpec G395H range
(2.87–5.18 μm), a larger stellar flux at these wavelengths leads
to a smaller overall photon noise. Additionally, many atmo-
spheric species possess strong spectral signatures in the near-
infrared range, making NIRSpec G395H one of the preferred
choices for exoplanet observations.
When simulating observations with Pandexo, we insert the

model values from the HELIOS spectrum (consistent with
noise-free data), set a given instrument, resolution, and number
of secondary eclipse measurements, and add the simulated
statistical noise as error bars. For all tests done over the entire
instrument wavelength range, points are rebinned using
Pandexoʼs integrated functionality, which defines new
wavelength bins of a constant resolution and uses the included
“uniform_tophat_mean” function to calculate the new bin-
averaged function values together with the their uncertainty. In
some cases, in addition to using the whole instrument range, we
also focus on the detectability of individual spectral features by
sampling over the width of these features, manually applying
Pandexoʼs rebinning procedure. As for the systematic noise
floor, we assume a value of 30 ppm based on tentative
estimates (Matsuo et al. 2019; Schlawin et al. 2020, 2021). To
test this assumption, the same analysis as shown in Figure C7
has been conducted with the noise floor set to 0 ppm, which has
led to indistinguishable results compared to our nominal setup.
Therefore, we assume that the choice of noise floor has
negligible impact on our results.

2.5. Bayesian Retrieval Modeling

We retrieve the simulated JWST spectrum using a modified
version of the Bayesian retrieval code PLATON (Zhang et al.
2018, 2020). Our version, first utilized in Ih & Kempton
(2021), differs from the main branch of PLATON in that it
allows for measuring abundances of multiple species during
retrieval (the so-called “free” retrieval). PLATON natively
supports custom abundance profiles during forward models, but
is configured to only perform equilibrium chemistry retrievals,
in which the mixing ratios of all species are prescribed by the
metallicity and C-to-O ratio defined globally, and temperature
and pressure per layer. We relax this restriction by allowing the
abundances of each species to be included as a retrieved
parameters. All other details regarding radiative transfer remain
the same as the original implementation.

12 https://exomol.com/data/molecules/ 13 https://exoctk.stsci.edu/pandexo/
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In our free retrieval, the atmosphere is parameterized as
follows. For the composition of the atmosphere, we assume
two possible background gases that do not have a spectral
signature (O2 and N2). We then assign a parameter corresp-
onding to the vertically fixed log-abundance of each species
other than the background gases and a (linear) abundance for
one of the background gases. The abundance of the other
background gas is then derived as the remainder from unity.
The thermal structure of the atmosphere is described by using
the parametric T–P profile as given by Madhusudhan & Seager
(2009). Having been developed with gas planets in focus, the
retrieval code does not offer the possibility to include a solid
surface. Still, we mimic the location of the surface in the
retrieval modeling by the pressure level above which an
isotherm is assumed, set by the parameter P3 in the formalism
of Madhusudhan & Seager (2009). As a surface radiating as a
blackbody is equivalent to an optically thick atmosphere of a
single temperature, P3 should in theory correspond to a limit on
the surface pressure. Approximating the surface with a
blackbody does not allow us to make any statements about a
nonzero surface albedo, and thus we do not retrieve on the
surface but merely on the atmosphere in this work.

We perform our retrievals on the spectra generated using
Pandexo by binning (resampling) the data down to a
resolution of R= 100 and using uncertainties based on five
simulated secondary eclipse observations.

3. Results

3.1. LHS 3844b Spitzer Eclipse Depth Constraint

In the following we first explore which of the tested surface
types agree with the Spitzer eclipse depth measurement without
considering an atmosphere (no-atmosphere limit). Then,
analogously, we find the atmospheric models (varying
composition and thickness) that are consistent with the Spitzer
measurement. Among those we determine the atmospheres
with the largest spectral features that may allow for
characterization with the JWST (thick atmosphere limit).

Whether or not a model is in agreement with the Spitzer
observation is determined by comparing the HELIOS-generated

spectrum of the planet for each surface with the observed Spitzer
4.5μm eclipse depth. The model is considered consistent with
the data point if the simulated emission over the Spitzer
bandpass, obtained by convolving the model spectrum with the
Spitzer IRAC channel 2 bandpass function,14 is within a 3σ
confidence interval from the observed value.

3.1.1. No-atmosphere Limit

In the no-atmosphere limit we generate planetary emission
spectra including the surface albedo signal only. Each model
assumes that the whole planetary dayside is covered by one of
the considered surface compositions. The secondary eclipse
spectra of the surface-only models are shown in Figure 2.
Based on this analysis, the Spitzer data point is most consistent
with a metal-rich surface (1.39σ from Spitzer measurement),
followed by an iron-oxidized (2.05σ) and a basaltic (2.28σ)
surface. The ultramafic (3.61σ), feldspathic (4.79σ), and
granitoid (4.80σ) surfaces are excluded by the data based on
the assumed confidence limit. Curiously, all explored models
predict a smaller eclipse depth than Spitzer with no single
model prediction within 1σ of the observation. The best-fit
surface model is the metal-rich surface at 1.39σ, giving a p-
value of 0.163. First, this could be due to stochastic noise
(although unlikely), but it could also indicate that the error of
the Spitzer observation is underestimated due to an unknown
systematic bias. As the reanalysis of the raw Spitzer phase
curve of Kreidberg et al. (2019) is beyond the scope of this
work, we limit ourselves to taking the Spitzer measurement at
its face value. Second, it should be noted that not only is the
albedo affected by grain size but even more the shortwave
albedo can be lowered by small amounts of minor surface
constituents, e.g., carbon, like on Mercury’s surface (Izenberg
et al. 2014), and metallic iron produced by space weathering.

Figure 1. Nongray albedo vs. wavelength for each of the six tested surfaces as
well as the gray control case with a constant 0.1 albedo (dashed). The nongray
albedo extends over the wavelength range from 0.3 to 25 μm and thus captures
the physically correct amount of reflected stellar light as well as thermal
emissivity. The albedo data are from Hu et al. (2012).

Figure 2. Secondary eclipse spectra for each of the tested surfaces and the gray
albedo control case, shown at R = 100. The actual Spitzer 4.5 μm measurement
is shown in black, where the y-axis error bar represents the uncertainty and the
x-axis error bar represents the width of the bandpass. Modeled Spitzer points
for each surface are shown in their respective color. We find the gray, metal-
rich, iron-oxidized, and basaltic surfaces to be consistent (bold), i.e., <3σ from
the observation, and the ultramafic, granitoid, and feldspathic surfaces to be
inconsistent with the Spitzer measurement. The granitoid and feldspathic mock
Spitzer points are almost directly overlapping.

14 We use the Spitzer IRAC.I2 filter transmission function from http://svo2.
cab.inta-csic.es/theory/fps/.
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Thus, by increasing the absorption of light in the shortwave and
consequently boosting the thermal emission in the infrared,
minor modeling assumptions can in theory affect the ordering
of surfaces as well as the answer to whether they are consistent
with the Spitzer data point. Testing these assumptions is again
beyond the scope of this work.

Compared to the previous analysis of Kreidberg et al. (2019)
we obtain consistently shallower eclipse depths for the same
surface compositions and also find the ultramafic crust
inconsistent with the observation, which is in contrast to the
modeling result in Kreidberg et al. (2019). This discrepancy is
discussed in Section 4.2.

3.1.2. Including an Atmosphere

As the bottom boundary our nominal atmosphere models use
the metal-rich surface. Being the most consistent with Spitzer,
this choice maximizes the allowed atmospheric parameter
space. Following the style of Figure 3 from Kreidberg et al.
(2019), our Figure 3 shows the modeled eclipse depths for each
tested atmospheric composition plotted across the range of
probed surface pressures. The atmospheric temperature–pres-
sure (T–P) profiles for the 10 bar and 1 mbar atmospheres are
shown in Figure C1. The associated maximum surface
pressures consistent with Spitzer for the 20 combinations of
gases, and their abundances are listed in Table 2. We find that
the modeled eclipse depths result from a combination of three

distinct effects: day–night heat transport, greenhouse warming,
and strength of gaseous absorption at 4.5 μm. Optically thick
atmospheres transport more heat from the day to the nightside
than thinner atmospheres and consequently lead to a smaller
dayside emission (Koll 2022). This mechanism translates to a
decreasing eclipse depth with increasing surface pressure and
also a decreasing eclipse depth with increasing absorber
abundance. The second effect is the greenhouse effect. As all
of the explored absorbers are greenhouse gases, the T–P
profiles increase with the pressure in optically thick atmo-
spheric regions. (Note that the surface is smoothly connected to
the first atmospheric layer via convective stability, i.e.,
temperature jumps at the surface are not permitted.) If the
planetary emission originates at or near the surface, increasing
surface pressure consequently leads to an increased thermal
emission and larger eclipse depth. Similarly, increasing the
greenhouse gas abundance increases the strength of the
greenhouse effect, which warms the surface leading to a larger
eclipse depth in spectral window regions (the total energy
budget remains constant in radiative equilibrium). Finally,
some species (CO2, CO) exhibit a strong absorption band
around 4.5 μm, whereas others do not (H2O, SO2) or even
exhibit an absorption window (CH4) that affects the eclipse
depth at that wavelength location. These combined effects lead
to nonmonotonic trends in the eclipse depth versus surface
pressure or absorber abundance (as visible in Figure 3) and also
nonmonotonic trends in the maximum surface pressure

Figure 3. Predicted Spitzer 4.5 μm eclipse depth for the explored atmospheric models in combination with a metal-rich surface as a function of the surface pressure
compared to the Spitzer measurement (black horizontal line). Oxidizing/O2-dominated atmospheres are on the left and reducing/N2-dominated atmospheres on the
right. The gray shaded area corresponds to a 1σ uncertainty, and the pink shaded area to a 3σ uncertainty in the negative direction from the observed value.

Table 2
Maximum Surface Pressure (bar) Consistent with the Spitzer 4.5 μm Eclipse Depth at 3σ, for Each Atmospheric Composition Modeled

Maximum Pressure (bar) Consistent with Spitzer Eclipse Depth

N2 with CO2 N2 with CO N2 with CH4 O2 with CO2 O2 with SO2 O2 with H2O

1 ppm 1 1 1 1 10 10
100 ppm 10−2 10−1 1 10−1 1 1
1% 10−3 10−2 1 10−3 10−2 10−1

100% No Soln. No Soln. Not Modeled No Soln. Not Modeled Not Modeled

Note. Abundances listed in the left-hand column correspond to abundances of the second-listed gas. The overall maximum surface pressure consistent with Spitzer is
10 bar among all setups and 1 bar once an infrared absorber at �100 ppm is included. The atmospheric models in bold possess the largest features and are used in the
JWST observability analysis. If a value is listed as “No Soln”., then there was no solution consistent with Spitzer.
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consistent with Spitzer versus the absorber abundance (as
visible in Table 2).

Overall, we find that some atmospheres with a surface
pressure of 10 bar are consistent with the Spitzer measurement
(see Table 2), but those possess a mixing ratio of only 1 ppm of
a near-infrared absorber, which in the vast majority of cases has
a marginal effect on the atmospheric extinction (1 ppm of H2O
being the exception among our models). Once absorbing
species with a mixing ratio of at least 100 ppm are included, the
maximum surface pressure for any tested atmosphere is 1 bar,
obtained for compositions with CH4, SO2, or H2O. With CO2
or CO as the absorber, the maximum surface pressure allowed
decreases to 0.1 bar.

The eclipse depths of the atmospheric models with O2 and
CO2 deviate from the model predictions in Kreidberg et al.
(2019) and also the overall maximum surface pressure is lower
than the previously obtained maximum limit of 10 bar
previously found. These differences are discussed in
Section 4.2.

Lastly, exploring the impact of the surface on the allowed
atmospheric parameter space, Figure C2 shows the analogous
suite of atmospheric models as Figure 3 but with a basaltic
surface. As expected, the modeled eclipse depths for each
atmospheric composition are generally more consistent with
Spitzer for the metal-rich surface than the basaltic surface as the
latter is overall more reflective and thus less consistent with the
Spitzer observation.

3.1.3. Determining the Thick Atmosphere Limit

In the following we pick for each gas pair (background and
infrared absorber) the atmospheric model that provides the
largest spectral features. Those models are then used for
the JWST observability analysis presented in Section 3.2.3 and
the retrieval analysis in Section 3.3. The eclipse spectra of the
atmospheric models that are consistent with the Spitzer
measurement are shown in Figure 4. As the atmospheric
optical thickness depends on both the amount of absorbers in
the atmosphere and the overall atmospheric density, the size of
absorption features is degenerate in those parameters. As CO2
and CO are strongly absorbing in the Spitzer bandpass, the only
atmospheric models not excluded by Spitzer are those that
either have no significant amount of these absorbers or low
surface pressures. Hence, model spectra including those two
absorbers have only weak features. The models including CO2
appear to be very similar to each other, independent of the
background gas, as the only noticeable absorption features are
due to CO2. Thus, we pick the scenario with O2 as the
background case for further analysis, in particular the O2 with
100 ppm CO2 model as it provides the largest CO2 feature at
4.3 μm. No model with CO exhibits visible features and thus
no CO models are used for further analysis. In contrast, H2O,
SO2, and CH4 have no absorption feature directly at 4.5 μm,
which allows for larger atmospheric abundances of these
species, still satisfying the Spitzer constraint. Among the
corresponding models, we find that O2 with 100 ppm SO2 and
N2 with 1% CH4 provide the largest spectral features. In
particular, SO2 possesses a large double-peaked feature at
7–9 μm and a smaller one at 4 μm, and CH4 has strong
absorption bands at 2–3 μm and from 4 to 8 μm. Lastly, the O2
with 1 ppm H2O model provides the largest spectral feature
among all models that include H2O. Interestingly, the striking
feature at 5.5–7.5 μm is not due to H2O alone, but also has a

contribution from O2–O2 collision-induced absorption (CIA),
which covers the small dip at 6.3 μm in the H2O opacity.
The four atmospheric models picked for the JWST

observability analysis in the thick atmosphere limit are O2
with 100 ppm SO2 and Psurface = 1 bar (hereafter O2|
SO 2(100 ppm)), N2 with 1% CH4 and Psurface = 1 bar (N2|
CH 4(1%)), O2 with 100 ppm CO2 and Psurface = 10−1 bar
(O2|CO 2(100 ppm)), and O2 with 1 ppm H2O and Psurface= 10 bar
(O2|H2O (1ppm)).

3.2. Observability with the JWST

In the following, we first explore the observability of
surfaces without an overlying atmosphere (no-atmosphere
limit). For that we use all six surface types shown in
Figure 1 including the three surfaces excluded by the Spitzer
measurement for general applicability of our results (see
Section 3.1.1). In contrast, the observability of atmospheres is
assessed only for the atmospheric models that are consistent
with the recorded Spitzer eclipse depth and that provide the
largest signal for each background composition and gas
absorber (thick atmosphere limit; see Section 3.1.3).

3.2.1. No-atmosphere Limit

First, we test how many secondary eclipse observations
would be necessary with the JWST in order to distinguish each
surface emission from a blackbody spectrum using the MIRI
LRS or the NIRSpec G395H instrument. We use a blackbody
spectrum to establish a featureless reference spectrum, which
allows us to test the visibility of the features stemming from the
surface albedo variations.
For the two models to be considered “distinguishable,” a chi-

square test is conducted and a p-value is obtained for a given
number of eclipses, where the p-value represents the prob-
ability that the simulated data from the model to be tested are
consistent with a reference model. We begin with one eclipse
and increase in integer steps until the two models are
distinguishable by 3σ, given by a p-value of less than
0.0027. We declare the models indistinguishable under realistic
observation times if the number of required eclipse observa-
tions exceeds 30, which is an arbitrary number chosen to be
higher than what is expected to be economically feasible for the
JWST to allocate for observing a single planet. The blackbody
spectrum is obtained by fitting the mock JWST spectrum using
SciPy’s “curve_fit” function, with uncertainties on each data
point at the given resolution obtained by Pandexo. Fitting
the blackbody spectrum to the data allows us to infer a
brightness temperature and corresponding planetary albedo; see
Section 3.2.2 for further details. First, the mock data used as
input for the blackbody fitting are downsampled to the
resolution R= 10. Second, to determine the eclipses needed
to differentiate each surface from a blackbody we use R= 3,
analogous to distinguishing surfaces pairwise (see reasoning
and Figure 5 further below).
The number of eclipses needed to distinguish each surface

from a blackbody is listed in the first column and the first row
of Table 3, depending on the JWST instrument used. In
addition, the surface spectra for all plausible (i.e., consistent
with Spitzer) surfaces together with the blackbody fit are
displayed in Figure 6, and those that are inconsistent with
Spitzer surface compositions are displayed in Figure 7.
Unfortunately, we find that not a single surface will be
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distinguishable from a blackbody with a feasible number of
eclipses. The only scenario with less than 30 eclipses is the
ultramafic surface using MIRI, yet still requiring 25 eclipse
observations. We conclude that the size of surface features
alone is not sufficient for the tested surface to be characterized
by the JWST.

As a next test, we assess the number of eclipses needed to
distinguish each surface from one another, again using MIRI or
NIRSpec and R= 3 for the data binning. This resolution is found
to require the least number of eclipses for distinguishing surface
models (see Figure 5 for the number of eclipses necessary to
distinguish the metal-rich and granitoid surfaces dependent on the
resolution of the binned mock data.) It appears that a small
number of data points are sufficient, as the surface features tend to
be broad and the comparison appears to be driven by the overall
eclipse depth rather than the shape of individual features.

Table 3 shows the number of eclipses needed to distinguish
surface pairs, and Figure C3 shows the secondary eclipse
spectra for each pair of surfaces. It can be seen that many of the
surfaces are more easily distinguishable from each other in the
NIRSpec G395H band than in the MIRI LRS band. For
example, the metal-rich and basaltic surfaces are indistinguish-
able in the MIRI LRS band, but are distinguishable with five
secondary eclipses in the NIRSpec G395H band. Additionally,
while the metal-rich and iron-oxidized surfaces are indis-
tinguishable with MIRI LRS, they are distinguishable with 10
secondary eclipses using NIRSpec G395H. Overall, we find
that less reflective materials are harder to disentangle due to
their small features and eclipse depth variations than the more
reflective ultramafic, granitoid, and feldspathic surfaces.
In addition to utilizing the entire instrument wavelength

range and constant binning for the pairwise distinguishability,

Figure 4. Secondary eclipse spectra for each atmosphere and metal-rich surface model at the maximum surface pressure consistent with the Spitzer observation. On
each plot, the spectrum labeled ”No Atmosphere” represents the surface-only spectrum for the metal-rich surface for comparison. The Spitzer 4.5 μm point is shown in
black, where the y-axis error bar represents the uncertainty and the x-axis error bar represents the width of the bandpass. The atmospheric models with the largest
features (bold) are used in the JWST observability analysis. No models are picked for the N2 with CO2 and the N2 with CO cases as the former is very similar to O2
with CO2 and the latter does not exhibit any noticeable features.
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we also conduct the same exploration focusing on the most
prominent surface feature on either of the two surfaces and
using optimized binning over the range of that feature. This is
only done using the MIRI LRS instrument, as there are no
prominent surface features within the NIRSpec G395H
wavelength range (see Figure C3 on the right). Using
qualitative ranking, we choose three prominent features to be
included in this analysis. The double feature around 10 μm for
the ultramafic, the double feature at 8.5 μm for the granitoid,
and the double feature around 10 μm for the feldspathic
surface, each of which is visible in its respective surface
spectrum shown in Figure 7. The gray, basaltic, metal-rich, and
iron-oxidized surfaces do not exhibit any sufficiently signifi-
cant features for this analysis. Table 4 shows the number of
eclipses needed to distinguish the ultramafic, granitoid, and
feldspathic from all other surfaces using the described method,

while the corresponding pairs of surface spectra are shown in
Figure C4. We adopt a binning with a resolution such that each
feature would encompass two data points spanning its whole
width. The resolution this has resulted in is R= 4, 7, or 9
depending on the feature being spanned, and can be seen in the
upper left corner of each plot in Figure C4.
Using this optimized binning over the most prominent

surface feature, the number of eclipses needed to distinguish
between three of the surface combinations was reduced,
meaning that this method represented an improvement upon
constant binning over the entire instrument wavelength range.
More specifically, the number of eclipses was reduced from 6
to 3 for the granitoid and ultramafic surfaces, from 27 to 11 for
the granitoid and feldspathic surfaces, and from 16 to 10 for the
feldspathic and ultramafic surfaces. However, all other surface
combinations tested using this optimized binning either
remained unchanged or needed a greater number of eclipses
than in the runs using the whole instrument range. As pointed
out before, this result indicates that the constraining of surface
compositions is largely driven by the Bond albedo of the
surface (overall eclipse depth offset over the width of an
instrument bandpass) rather than the spectral variation of
features.

3.2.2. Inferring Planetary Albedo and Temperature

In the previous section we have fit the model spectra with a
blackbody to determine whether surface features are detectable.
However, the blackbody fit can also be used to determine the
brightness temperature over a certain wavelength range. The
brightness temperature in turn allows us to infer the planetary
Bond albedo, which is a useful quantity that can be used to
place constraints on the presence and properties of an
atmosphere, as elucidated in detail in Mansfield et al. (2019).
However, as pointed out in that work, inferring the Bond
albedo from MIRI observations is prone to be biased due to the
nongray shape of the surface albedo. In the following we
reenact their assessment of this issue for LHS 3844b using the
nongray radiative transfer code HELIOS and extend it to
NIRSpec observations as well. First we assume that the
brightness temperature is equivalent to the temperature of the
blackbody fit for each surface. The inferred albedo is then

Table 3
Number of Secondary Eclipse Observations Needed with the JWST to Distinguish Each Surface from a Blackbody Fit and from Another Surface at 3σ

Surface Detectability Using Whole Instrument Range

BB fit Gray Basaltic Ultramafic Metal-rich Fe-oxidized Granitoid Feldspathic

BB fit �30 �30 �30 �30 �30 �30 �30

gray �30 4 1 �30 8 1 1

Basaltic �30 �30 3 5 �30 1 1

Ultramafic 25 10 17 1 2 3 4

Metal-rich �30 �30 �30 11 10 1 1

Fe-oxidized �30 �30 �30 14 �30 1 1

Granitoid �30 3 4 7 4 4 �30

Feldspathic �30 5 6 21 6 6 �30

Note. The number of eclipses using MIRI LRS is shown in cyan while the number of eclipses using NIRSpec G395H is shown in gray. A constant binning with R = 3
and the whole wavelength range of each instrument are used for this test. The detectability is not analyzed beyond 30 eclipses.

Figure 5. Number of secondary eclipse observations needed to distinguish the
metal-rich and the granitoid surfaces as dependent on the binning resolution of
the mock data. These two surfaces are used as an example pair to demonstrate
the correlation between the resolution and eclipse number that is found to
similarly hold for any surface pair. Eclipse observations with MIRI LRS are
shown in cyan while observations with NIRSpec G395H are shown in
dark gray.
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calculated according to
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where αin is the inferred albedo, Tbb is the temperature from the
blackbody fit, Tstar is the temperature of the star, a is the
semimajor axis of the planetary orbit, and Rstar is the radius of
the star. We set the heat redistribution factor f to 2/3 as
predicted for a “vanishingly thin” atmosphere. The wavelength-
integrated emissivity ò is a priori unknown and thus set to 1 in
our reference models, which is equivalent to assuming that the
surface radiates as a blackbody. We also discuss the effects of
assuming ò< 1 in Appendix B. We calculate the true Bond
albedo for each surface by integrating the flux reflected from
the planet over all wavelengths, and dividing by the total stellar
flux received by the planet.

The upper two rows of Table 5 list the temperatures of the
best fit associated with each of these blackbody models based on
the MIRI or NIRSpec spectra, while the third row of Table 5 lists
the true surface temperatures obtained in the HELIOS models.
The Bond albedos and inferred albedos for each surface are

listed in the bottom part of Table 5. Each surface has a separate
inferred albedo for each JWST instrument, in contrast to the Bond
albedo, which is a single quantity resulting from the interplay
between the planetary surface and the stellar irradiation.
Figure 8 displays the inferred brightness temperatures

against the true model temperatures (left panel) and the
inferred albedos against the Bond albedo (right panel) for each
surface based on simulated MIRI observations. We find that the
surface temperature of the planet is consistently underestimated
by the blackbody fitting. This is because the fitting routine
assumes an emissivity of 1 (equivalent to an albedo of 0),
which assumes that the planet radiates heat more efficiently

Figure 6. Secondary eclipse spectra of the surface-only models, mock data points for observations with the JWST MIRI LRS (left) and NIRSpec G395H (right), and
corresponding blackbody fits. Note that the blackbody models do not appear as smooth curves because the emitted flux is divided by the stellar spectrum model to
obtain the eclipse depth. Only the surfaces consistent with the Spitzer 4.5 μm eclipse depth are shown here. The mock data points are rebinned to R = 3 for the chi-
square analysis and rebinned to R = 10 for the blackbody fitting. The error bars correspond to five eclipse observations. The original model spectra are downsampled
from their native resolution to R = 100 for clarity.
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than it does in reality, finding a lower temperature for a given
amount of thermal heat. The right panel shows that the majority
of surfaces have an inferred albedo in the MIRI LRS band,
which is lower than the true Bond albedo. This can be
explained by the nongray albedo variation, discussed in detail
in Mansfield et al. (2019). As a realistic, nongray surface

albedo exhibits strong variations in the near to mid-infrared, the
planetary emission is muted in the albedo peaks, and amplified
in the albedo troughs, in accordance with Kirchhoff’s law of
radiation. As the majority of the surfaces tested here have a
lower albedo within the MIRI bandpass than outside of it,
emission within the bandpass is amplified, leading to an

Figure 7. Secondary eclipse spectra of the surface-only models, mock data points for observations with the JWST MIRI LRS (left) and NIRSpec G395H (right), and
corresponding blackbody fits. Shown here are the surfaces inconsistent with the Spitzer 4.5 μm eclipse depth. The mock data points are rebinned to R = 3 for the chi-
square analysis and rebinned to R = 10 for the blackbody fitting. Error bars correspond to five eclipse observations. The model spectra are downsampled from their
native resolution to R = 100 for clarity.
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underestimation of the inferred albedo. In contrast, the albedo
of the iron-oxidized surface is determined accurately and
moreover the metal-rich albedo is overestimated. Here, the
wavelength variation effect is countered by another bias
induced by the assumption of an emissivity of unity, which
leads to an overestimation of the albedo, best visible for the
gray surfaces added as control cases (for more details see
Appendix B). Lastly, another bias on the inferred albedo stems
from the reflected stellar light being superimposed on the
planetary thermal emission, mimicking a higher planetary
emission and lower albedo. However, as the fraction of
reflected light in the MIRI bandpass is minor, we find that this
effect is relatively small (see Figure C5, left panel).

Interestingly, compared to the previous MIRI predictions in
Mansfield et al. (2019) our new calculation predicts a consistently
smaller observational bias for the albedo. After comparing the
current and previous calculations, we have found an incon-
sistency in Mansfield et al. (2019) that we think is responsible for
the stark difference between the current and previously obtained
albedo values. In contrast to our current method, which is
using blackbody fitting to infer the brightness temperature
over an instrument bandpass, in Mansfield et al. (2019) we

solved for the secondary eclipse depth integrated over the
MIRI bandpass to infer the brightness temperature (see
Equation (5) therein). For that we calculated the planetary
eclipse depth using a PHOENIX stellar spectrum that is
extrapolated by a blackbody of temperature 2755 K over the
MIRI bandpass, but subsequently used a blackbody spectrum
based on the effective temperature of LHS 3844 (Teff=
3036 K) to infer the brightness temperature over the MIRI
bandpass. This inconsistency in the stellar flux results in
different baselines for the secondary eclipse depth, which
directly translates to a bias in the planetary flux and in turn the
inferred brightness temperature and the albedo.
With the NIRSpec instrument the albedo can be inferred

more accurately than with MIRI, even though the temperature
of the blackbody fit is similarly underestimated (see Figure 9).
The albedo is in general, just as with MIRI, somewhat
underestimated. However, here the main reason for the bias is
the scattered light, the amount of which in the NIRSpec
bandpass is significant for the more reflective surfaces. If the
scattered light is removed from the analysis, the inferred albedo
values become higher and predominantly overestimated (see
Figure C5, right panel). The emissivity effect, a major source of

Table 4
Number of Secondary Eclipse Observations Needed with the JWST to Distinguish Surfaces at 3σ, Focusing on Isolated Features with Optimal Binning

Distinguishing Surfaces with Optimal Binning of MIRI LRS

Gray Basaltic Ultramafic Metal-rich Fe-oxidized Granitoid

Ultramafic �30 �30 �30 25

Granitoid 3 3 3 3 3

Feldspathic 7 7 10 10 6 11

Note. Only MIRI LRS is used for this test as there are no sufficiently pronounced features in the NIRSpec G395H bandpass for any of the tested surface compositions.

Table 5
Top: Inferred Brightness Temperature Corresponding to the Blackbody Fit Temperature for Each Surface Based on Simulated MIRI LRS or NIRSpec G395H

Observations at R = 10, Compared to the True Surface Temperature in Radiative Equilibrium Found by the HELIOS Radiative Transfer Code

Inferred Temperature and Albedo for Each Surface

Inferred Temperature / Blackbody Fit Temperature (K)

Gray (0.1) Basaltic Ultramafic Metal-rich Fe-oxidized Granitoid Feldspathic

MIRI 961 ± 1 950 ± 1 918 ± 6 953 ± 2 950 ± 1 866 ± 8 891 ± 4

NIRSpec 977 ± 2 942 ± 2 895 ± 4 974 ± 3 951 ± 3 844 ± 4 846 ± 6

HELIOS Surface Temperature (K)

1000.78 979.831 990.324 998.682 992.145 926.571 928.914

Inferred Albedo

Gray (0.1) Basaltic Ultramafic Metal-rich Fe-oxidized Granitoid Feldspathic

MIRI 0.150 ± 0.005 0.189 ± 0.005 0.292 ± 0.018 0.179 ± 0.008 0.188 ± 0.005 0.439 ± 0.021 0.372 ± 0.012

NIRSpec 0.091 ± 0.006 0.215 ± 0.006 0.359 ± 0.010 0.103 ± 0.011 0.184 ± 0.009 0.494 ± 0.009 0.488 ± 0.014

Bond Albedo

0.100 0.218 0.384 0.128 0.185 0.526 0.511

Note. The uncertainties correspond to five eclipse observations. The observed brightness temperature as measured by Spitzer is 1040 ± 40 K. Bottom: Inferred albedo
derived from the best-fit blackbody temperatures, listed on the top, and the true Bond albedo for each surface.
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inference bias when using MIRI, is only significant for the
higher-albedo surface in the case of NIRSpec, as is further
explained in Appendix B.

3.2.3. Thick Atmosphere Limit

In the following we explore whether the atmospheres in the
thick limit (recall Section 3.1.3) are detectable with the JWST,
i.e., if they can be distinguished from a pure surface spectrum.
First, we utilize the whole instrument bandpasses of MIRI LRS
and NIRSpec G395H and choose the resolution R= 10 as this
represents a good compromise between statistical noise and
sampling of the spectral features. The number of secondary
eclipse observations needed to detect the atmosphere in each
tested scenario is listed in Table 6 (top rows). We find that all
of the atmospheres are detectable with� 9 eclipse observations
if using the preferred instrument, with NIRSpec being
preferable at finding CO2 and CH4, and MIRI preferable at
finding SO2 and H2O. The detections with the lowest time
requirement are O2|SO2(100 ppm) with MIRI and N2|CH 4(1%)
with NIRSpec, both requiring three eclipse observations. The
O2|H2O (1ppm) atmosphere is detectable with MIRI and seven

eclipses. As a worst case observing scenario, with MIRI the
O2|CO2(100 ppm) atmosphere is indistinguishable from a surface.
The spectra of the atmospheric models and the associated
surface-only spectra can be seen in Figure C7.
Similar as in the surface observability analysis, we conduct

another examination focusing on individual atmospheric
absorption features or bands in isolation instead of taking the
whole instrument range. In particular, for SO2 we test the
feature at 4 μm and the double-peaked band around 8 μm, for
CH4 we test the feature at 3.5 μm and the band around 7 μm,
and for CO2 we test the feature at 4.3 μm. There are no
discernible features within the MIRI instrument range for the
atmosphere with CO2 and, analogously, no discernible features
within the NIRSpec range for the atmosphere with H2O. The
resolution and binning of each spectrum are chosen to ensure
that there are two to three data points sampling the feature
being probed. The number of secondary eclipses needed to
distinguish each atmospheric feature from the surface-only
spectrum is listed in Table 6 (bottom rows). The resulting
atmospheric model spectra and their no-atmosphere counter-
parts are shown in Figure 10, with error bars representing the

Figure 9. Same as Figure 8 but using simulated observations with the NIRSpec G395H instrument at R = 10.

Figure 8. Left: Surface temperature obtained with HELIOS vs. inferred temperature of the blackbody fit for simulated MIRI LRS data at R = 10. The black dotted line
represents the location where the inferred and HELIOS temperatures are equal. The error bars correspond to five eclipse observations. The choice of an emissivity of 1
when inferring the temperature causes it to be an underestimate compared to the true surface temperature. Right: Analogous to the left panel but showing the Bond
albedo vs. inferred albedo. The inferred albedo is calculated with Equation (1) using the inferred temperature of the blackbody fit.
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uncertainty after five secondary eclipse measurements. We find
that isolating the gaseous features increases the detectability
significantly to the extent that all explored atmospheres can be
distinguished from a surface with at most three eclipses if using
the preferred instrument for each case. Most promisingly, the
CH4 and SO2 cases can be detected with only a single eclipse
using NIRSpec or MIRI, respectively. The O2|H2O (1ppm)
atmosphere is detectable with MIRI and two eclipses and the
O2|CO2(100 ppm) atmosphere with NIRSpec and three eclipses.

3.3. Atmospheric Retrieval

In addition to the chi-square tests presented in the last
section, we further run atmospheric retrieval models in order to
determine how JWST observations may help constrain the
atmospheric composition of LHS 3844b using a Bayesian
framework. To this end, we use the simulated JWST data from
both the NIRSpec G395H and MIRI LRS instruments with
errors equivalent to five eclipses as input for the retrieval
modeling. Note that, as described in Section 2.5, our code
generating the forward models, HELIOS, adds the nongray
surface to the spectrum, but the retrieval code PLATON does
not include the surface and only assumes an isotherm extending
to the infinite, which should mimic retrieving the pressure
where the surface is expected. Hence this analysis further
allows us to explore the impact of the realistic surface albedo
on the results of the retrieval modeling.

Instead of immediately using the forward models that
include a nongray surface, we first test the retrieval
performance on pure atmosphere models, i.e., models with an
atmosphere and a zero albedo surface. This test is indicative of
whether the atmospheric signal alone is sufficient to make any
statements about the gas inventory of the planetary envelope.
Second, we then use the same atmospheric models and include

the albedo signal of various surfaces. We include the crusts that
are consistent with the Spitzer measurement, namely, basaltic,
metal-rich, and iron-oxidized surfaces with the addition of
ultramafic surfaces, in order to have an example of a more
reflective surface. Finally, the last set of retrievals uses the
surface spectrum only in order to explore whether the surface
albedo variation itself can be interpreted as a false atmospheric
signal by the retrieval algorithm in the case of the planet having
no atmosphere at all.
The results of the atmospheric retrievals with and without a

surface contribution are listed in Table 7 and the surface-only
retrievals in Table 8. The striking results, discussed in detail in
the main text and presented in Figures 11 and 12, are
highlighted in magenta. This includes the gas volume mixing
ratios retrieved from the no-surface models, a comparison
between retrieved mixing ratios from the O2|H2O (1ppm) model
when including an ultramafic surface and no surface, and H2O
mixing ratios retrieved for the surface-only models. Note that
the species O2 and N2, not explicitly listed in the tables, are
treated as background gases in the retrieval, and their mixing
ratios always add up to unity with the other absorbers.
In the atmosphere-only setup the retrieval model manages to

recover the absorbing species in each case it is present (see
Figure 11, top row). Curiously, only the true H2O mixing ratio
of 1 ppm lies within the 1σ region of the retrieved posterior,

� � �
�flog 6.67H O 2.80

3.38
2

. The mixing ratios of the other
absorbers, CO2, SO2, and CH4, although the true values lie
close to the 1σ range of the respective posteriors, are somewhat
overestimated by the retrieval algorithm. This is likely a
consequence of the degeneracy between the mixing ratio of an
absorber, the atmospheric temperature, and the mean molecular
weight of the atmosphere; all parameters that impact the optical
depth of the atmosphere and different combinations of which
can lead to a similar planetary spectrum. In this context, a
systematic bias in any of these parameters could be caused by
the fact that HELIOS and PLATON have radiative transfer
solvers and ingredients that are not identical, e.g., they use
different opacity line lists and scattering prescriptions.
Furthermore, being limited by its simplified numerical scheme
that relies on parameterized temperature profiles, PLATON
cannot fully reproduce the radiative equilibrium state found by
HELIOS. A second general finding is that, just as the retrieval
algorithm succeeds at recovering present species, it also
correctly disfavors absent species, as the retrieved mean
mixing ratios of the latter do not exceed ∼0.1 ppm in any of
the tested cases (see Figure C8 for a full grid of atmosphere-
only model posteriors).
We find that the addition of a realistic surface crust generally

appears not to impede our ability to detect absorbing species
that are present in the atmosphere and sufficiently visible in the
planetary spectrum. In all setups the posterior distributions of
absorbers that are present are consistent between the cases with
and without a nongray surface signal. However, we find a
tendency that a nongray surface makes it harder for the retrieval
code to reject species that are absent in the forward model. This
phenomenon is best visible in the case of the O2|H2O (1ppm)
atmosphere (see Figure 12). While the posteriors of the
atmosphere-only setup appear to be well-behaved, with a clear
upper limit on the mixing ratio (see CO2, SO2, and CH4 panels
of Figure 12), the posterior distributions in the case with the
ultramafic surface remain broad and undetermined. Techni-
cally, it appears that the retrieval algorithm tries to match the

Table 6
Top: Number of Secondary Eclipses Needed to Distinguish an Atmospheric
Model in the “Thick Limit” (see Section 3.1.3) from a Surface-only Spectrum

at 3σ using MIRI and NIRSpec Mock Observations at R = 10

Eclipses Needed to Distinguish Atmospheres from the Surface-only Case

O2 with
100 ppm CO2

O2 with
100 ppm
SO2

O2 with 1 ppm
H2O

N2

with
1%
CH4

Utilizing Whole Instrument Bandpass

MIRI LRS �30 3 7 6

NIRSpec
G395H

9 7 10 3

Focusing on Individual Gas Features

MIRI LRS No Discernible
Features

1 2 2

NIRSpec
G395H

3 3 No Discernible
Features

1

Note. The metal-rich surface is used for this test. The distinguishability of
models is not analyzed beyond 30 secondary eclipses. Bottom: Same as above
but focusing on the strongest gas features and absorption bands in isolation. No
discernible features are found within the MIRI LRS range for the O2 with
100 ppm CO2 case and within the NIRSpec G395H range for the O2 with
1 ppm H2O case.
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surface features in the planetary spectrum with combinations of
small amounts of atmospheric absorbers leading to many
degenerate solutions. For instance, for SO2 higher mixing ratios
of1 ppm are strongly disfavored in the no-surface case,
( � � �

�flog 9.17SO 1.68
2.54

2 ), but once the ultramafic signal is added
( � � �

�flog 5.75SO 3.95
3.26

2 ) even mixing ratios of ∼1 % cannot be
ruled out.

This last finding is further supported by our results from
retrieving on the surface-only models. In general we find that
the surface signatures imprinted on the planetary spectrum
mislead the retrieval algorithm to falsely allow for the presence
of atmospheric gases, with possible mixing ratios given by
broad posterior distributions with a mean around ∼1 ppm. The
extreme case is H2O for which the retrieved mixing ratios are
higher with a mean around ∼100 ppm in the cases of the
basaltic, iron-oxidized, and ultramafic crusts (see Figure 11,
bottom row). Also, in these cases the posterior distributions are
more clearly defined and could misleadingly point to a weak
H2O detection. Figure C9 shows the full grid of surface-only
model posteriors.

4. Discussion and Conclusions

4.1. New Constraints on the Surface and Atmosphere of LHS
3844b and their Observability

In this study we have explored the feasibility of characteriz-
ing the atmosphere and surface of rocky super-Earth LHS
3844b with the JWST. To find the parameter space of
atmospheres and surface types that are plausible for LHS
3844b, we have modeled the planetary emission of LHS 3844b,
including the spectral signal of both atmosphere and surface,
and exhaustively explored all scenarios that are consistent with
the existing Spitzer 4.5 μm measurement of Kreidberg et al.
(2019). For the surface we have assumed six crust composi-
tions that are common in the solar system and found that the
surfaces that are consistent with Spitzer are metal-rich, iron-
oxidized, and basaltic crusts (see Figure 2). In contrast,
inconsistent with the data are ultramafic, granitoid, and
feldspathic surfaces, whose high albedos lead to a planetary
thermal emission too far below the recorded one. Our atmo-
spheric models consist of O2-, N2-, CO2-, and CO-dominated

Figure 10. Secondary eclipse spectra of atmospheric models vs. surface-only models over the range of the strongest absorption bands in the respective models,
overlaid with MIRI LRS (left) and NIRSpec G395H (right) simulated data points. The metal-rich surface is used for this test. The error bars show the uncertainties for
five eclipse observations. The model spectra are downsampled from the native resolution to R = 100 for clarity.
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atmospheres with H2O, CO2, CO, CH4, and SO2 as additionally
included near-infrared absorbers of various mixing ratios. We
have found that in order to be consistent with Spitzer the
maximum surface pressure is 10−1 bars for the models including
CO2 or CO and 1 bar for the models including H2O, CH4, or SO2

if the mixing ratio of the included infrared absorber� 100 ppm
(see Figure 3 and Table 2).
Next, we have conducted a JWST observability analysis

exploring two limits; on one end we have assumed there is no
atmosphere, and on the other end we have investigated the
atmospheric scenarios that provide the largest gas features
while being consistent with the Spitzer data. In the no-
atmosphere limit our analysis predicts that it will be very
difficult to disentangle specific surface types from a blackbody
null hypothesis. However, making use of not only the feature
strength but also the total offset of the surface emission (or
reflection) over an instrument bandpass, we have found that
among the plausible surfaces the basaltic and metal-rich

Table 7
Logarithm of Input and Retrieved Gas Volume Mixing Ratios for the Atmospheres in the “Thick” Limit (see Section 3.1.3) without and with a Realistic Surface Crust

Retrieval Results for Atmosphere Models with and without Surface

CO2 SO2 H2O CH4

No Surface, O2|CO 2(100 ppm) −4 � �
�2.33 1.38

1.17 N Inc � �
�8.24 2.35

2.24 N Inc � �
�7.46 2.81

2.91 N Inc � �
�8.45 2.33

2.70

No Surface, O2|SO 2(100 ppm) N Inc � �
�8.19 2.32

2.25 −4 � �
�1.92 1.25

1.05 N Inc � �
�8.30 2.35

2.64 N Inc � �
�8.13 2.36

2.44

No Surface, O2|H2O (1ppm) N Inc � �
�9.49 1.56

3.55 N Inc � �
�9.17 1.68

2.54 −6 � �
�6.67 2.80

3.38 N Inc � �
�8.40 2.05

2.12

No Surface, N2|CH 4(1%) N Inc � �
�7.16 3.15

1.93 N Inc � �
�6.79 2.90

2.66 N Inc � �
�7.02 3.28

3.23 −2 � �
�0.95 0.84

0.58

Basaltic, O2|CO 2(100 ppm) −4 � �
�2.31 1.63

1.21 N Inc � �
�8.17 2.25

2.02 N Inc � �
�7.28 2.80

3.23 N Inc � �
�7.65 2.65

2.72

Basaltic, O2|SO 2(100 ppm) N Inc � �
�8.27 2.40

2.58 −4 � �
�1.66 1.20

0.97 N Inc � �
�7.77 2.58

2.76 N Inc � �
�7.23 2.85

2.49

Basaltic, O2|H2O (1ppm) N Inc � �
�6.62 3.60

4.00 N Inc � �
�6.31 3.55

3.52 −6 � �
�5.93 3.75

3.56 N Inc � �
�6.12 3.51

3.37

Basaltic, N2|CH 4(1%) N Inc � �
�8.12 2.03

2.26 N Inc � �
�7.75 2.78

3.10 N Inc � �
�7.54 2.82

2.97 −2 � �
�1.21 0.92

0.65

Metal-rich, O2|CO 2(100 ppm) −4 � �
�2.33 1.56

1.19 N Inc � �
�8.17 2.40

2.28 N Inc � �
�7.73 2.66

3.05 N Inc � �
�7.81 2.55

2.71

Metal-rich, O2|SO 2(100 ppm) N Inc � �
�8.41 2.25

2.51 −4 � �
�2.10 1.27

1.24 N Inc � �
�8.05 2.22

2.70 N Inc � �
�8.15 2.30

2.37

Metal-rich, O2|H2O (1ppm) N Inc � �
�7.54 2.99

4.99 N Inc � �
�7.53 2.87

4.52 −6 � �
�6.86 3.24

3.70 N Inc � �
�7.36 2.87

4.13

Metal-rich, N2|CH 4(1%) N Inc � �
�7.80 2.33

2.19 N Inc � �
�7.47 2.34

2.53 N Inc � �
�6.68 3.35

2.79 −2 � �
�1.16 0.75

0.61

Fe-oxidized, O2|CO 2(100 ppm) −4 � �
�2.06 1.68

1.10 N Inc � �
�7.86 2.55

2.42 N Inc � �
�7.35 2.92

3.07 N Inc � �
�7.75 2.50

2.73

Fe-oxidized, O2|SO 2(100 ppm) N Inc � �
�7.92 2.47

2.19 −4 � �
�1.71 1.34

0.97 N Inc � �
�8.32 2.40

2.94 N Inc � �
�7.67 2.59

2.57

Fe-oxidized, O2|H2O (1ppm) N Inc � �
�6.31 3.62

3.58 N Inc � �
�5.99 3.55

3.47 −6 � �
�5.77 3.91

3.40 N Inc � �
�6.09 3.56

3.64

Fe-oxidized, N2|CH 4(1%) N Inc � �
�8.23 2.08

1.88 N Inc � �
�7.77 2.10

2.59 N Inc � �
�8.13 2.69

3.83 −2 � �
�1.39 0.98

0.71

Ultramafic, O2|CO 2(100 ppm) −4 � �
�2.62 2.01

1.45 N Inc � �
�8.30 2.12

2.45 N Inc � �
�6.09 3.71

3.24 N Inc � �
�7.14 2.96

2.42

Ultramafic, O2|SO 2(100 ppm) N Inc � �
�8.04 2.31

2.61 −4 � �
�1.64 1.30

0.90 N Inc � �
�7.61 2.68

2.84 N Inc � �
�7.67 2.66

3.03

Ultramafic, O2|H2O (1ppm) N Inc � �
�6.83 3.47

3.56 N Inc � �
�5.75 3.95

3.26 −6 � �
�6.03 3.70

3.47 N Inc � �
�6.36 3.68

3.76

Ultramafic, N2|CH 4(1%) N Inc � �
�8.40 2.35

2.39 N Inc � �
�7.44 2.40

2.57 N Inc � �
�6.31 2.97

2.82 −2 � �
�1.18 0.84

0.65

Note. “N Inc” means that the species is not included in the forward model. Individual results discussed in Section 3.3 and presented in Figures 11 and 12 are
highlighted in magenta. Note that O2 and N2, treated as background gases in the retrieval modeling, are not directly retrieved, and thus their mixing ratios are not
listed here.

Table 8
Logarithm of Retrieved Gas Volume Mixing Ratios for Surface Models

without Including an Atmosphere

Retrieval Results for Surface-only Models

CO2 SO2 H2O CH4

Basaltic, No Atmo. � �
�6.79 3.11

3.58 � �
�6.11 3.53

3.20 � �
�4.07 5.10

2.56 � �
�6.57 3.18

3.41

Metal-rich,
No Atmo.

� �
�6.67 3.31

3.83 � �
�6.86 3.15

3.55 � �
�5.53 4.18

3.43 � �
�6.32 3.55

3.55

Fe-oxidized,
No Atmo.

� �
�6.57 3.40

3.77 � �
�6.95 3.06

3.62 � �
�3.54 4.42

2.21 � �
�6.99 2.98

3.85

Ultramafic,
No Atmo.

� �
�7.03 3.12

3.62 � �
�6.04 3.91

3.70 � �
�4.05 4.85

2.49 � �
�6.10 3.64

3.82

Note. Individual results discussed in Section 3.3 and presented in Figure 11 are
highlighted in magenta. Note that O2 and N2, treated as background gases in
the retrieval modeling, are not directly retrieved, and thus their mixing ratios
are not listed here.
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Figure 11. Top: Posterior distributions of the retrieved volume mixing ratios of CO2, SO2, H2O, and CH4 using atmospheric forward models without a nongray
surface. The retrieved mean and 1σ width is given on top of each panel and shown with black solid and dashed vertical lines. The input mixing ratio (the “true” value)
is shown as a red vertical line. The atmospheric composition used in the forward model is listed below the horizontal axis label. All atmospheric species are recovered
in the retrieval, although the retrieved mixing ratio tends to be somewhat overpredicted for CO2, SO2, and CH4. Bottom: Posterior distributions of the retrieved H2O
volume mixing ratios from the surface-only (no atmosphere) forward models. The surface crust used in the forward model is listed below the horizontal axis label. The
basaltic, iron-oxidized, and ultramafic surfaces lead to a relatively pronounced posterior distribution that may erroneously be interpreted as a weak detection of
atmospheric H2O.

Figure 12. Posterior distributions of volume mixing ratios using the O2 with 1 ppm H2O atmosphere as input for the retrieval modeling, once without a nongray
surface (top) and once with an ultramafic surface (bottom). The retrieved mean and 1σ width is given on top of each panel and shown with black solid and dashed
vertical lines. The input mixing ratio (the “true” value) is shown as a red vertical line. Compared to the atmosphere-only case, adding the ultramafic signal leads to
“washed-out” posteriors making it harder to place limits on the mixing ratios. Note that O2 and N2 are treated as background gases in the retrieval modeling and are not
directly retrieved.
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surfaces are distinguishable with five eclipse measurements and
the metal-rich and iron-oxidized surfaces are distinguishable
with 10 eclipse measurements using NIRSpec. The more
reflective surfaces disfavored by Spitzer, the granitoid,
feldspathic, and ultramafic crusts, would be distinguishable
from most of the other surfaces with 1–4 eclipses using
NIRSpec (as seen in Table 3).

Exploring the limit with an atmosphere, we have found that
each atmospheric model with discernible features is distin-
guishable from a surface-only spectrum in under three eclipse
observations if the better-suited JWST instrument, MIRI or
NIRSpec, is used in each case. The most amenable cases are
the atmospheres with SO2 and CH4, each requiring only a
single eclipse to be constrained using MIRI or NIRSpec,
respectively (see Figure 10 and Table 6).

Lastly, we have run a suite of atmospheric retrieval models
to determine how JWST may help constrain the atmospheric
composition of LHS 3844b with a Bayesian framework. We
have also explored whether surface albedo variations could bias
the retrieval algorithm or even be mistaken for atmospheric
signatures. Using uncertainties based on five eclipse observa-
tions, we have been able to detect all four of the included gas
absorbers, albeit three of the retrieved mixing ratios are
somewhat overpredicted (see Figure 11). Furthermore, we have
found that the nongray surface has negligible effect on an
atmospheric species’ retrieved mixing ratio if the species’
spectral signature is sufficiently large. However, the surface
contamination of the atmospheric retrieval may lead to a false
weak detection of atmospheric H2O and may also make it
harder to disfavor the presence of gas species (see Figure 12
and Tables 1 and 8).

LHS 3844b will be observed during three secondary eclipses
with the JWST MIRI/LRS as part of Cycle 1 of the General
Observer program. First, these observations will extend our
knowledge about the presence and thickness of an atmosphere
and also verify the existing Spitzer data point, testing the
measured eclipse depth at 4.5 μm and its derived error.
Furthermore, according to our predictions these MIRI observa-
tions will indicate whether the planet’s surface is granitoid in
nature, but the allocated time will not suffice to place any
constrains on the other potential surface crusts. Also, if present,
any significant amounts of H2O, SO2, or CH4 should be
detected, provided the planetary atmosphere is thick enough.

4.2. Comparison to Kreidberg et al. (2019) and Implications
for Surface and Atmosphere

Our current study expands the LHS 3844b phase curve
analysis of Kreidberg et al. (2019; herein after K19) on
multiple fronts. First, we have extended the number of tested
surface types from ultramafic, feldspathic, basaltic, and
granitoid to further include a metal-rich and an iron-oxidized
surface. Additionally, while K19 assumed atmospheres made
up of O2, N2, and CO2, we have tested a wider range of
atmospheres by including CO, CH4, SO2, and H2O as
absorbers. Finally, our modeling of LHS 3844b is done using
a radiative–convective two-stream radiative transfer code that
additionally accounts for energy balance at the planet’s solid
surface. The analysis of LHS 3844b in K19 was performed
against atmosphere models using the techniques described in
Morley et al. (2017), which utilize a simplified temperature
prescription and do not natively account for a surface.

While our results are in broad agreement with the LHS
3844b phase curve analysis of K19, we also find differences
between our and their model predictions that are worth
discussion. First, the wavelength-varying secondary eclipse
depths and consequently the modeled Spitzer 4.5 μm eclipse
depths of the bare-rock models in our work are noticeably
lower than predicted by K19 for the same conditions. For
example, our predicted eclipse depths for the basaltic and
ultramafic models are 79 ppm (1.98σ) and 40 ppm (1σ) lower
than predicted by K19. Second, analogously to the bare-rock
models, the eclipse depths of the models with (optically) thin
atmospheres are also noticeably lower than found by K19 for
the same conditions. In contrast, the optically thick atmo-
spheres provide eclipse depths that are larger than in K19. For
example, K19ʼs calculated eclipse depths of the O2 + 1 ppm
CO2 atmospheres are approximately 15–50 ppm (0.4–1.3σ)
larger than ours for all surface pressures� 10 bar.
However, K19ʼs models with 100% CO2 provide an
approximately 40–60 ppm (1–1.5σ) shallower eclipse depth
throughout almost all surface pressures compared to ours (apart
from 1 bar where the eclipse depth is roughly the same).
We believe the discrepancy in the atmosphere models can be

at least partially attributed to the sophistication of the
atmospheric radiative transfer modeling as we utilize self-
consistent radiative–convective equilibrium models, whereas
they relied on parameterized temperature profiles that do not
take the nongray radiative feedback of gas absorbers into
account. Yet, the modeling treatment of the atmosphere can
only explain the cases with optically thick atmospheres, as
otherwise the atmosphere has a marginal impact on the
planetary spectrum. We believe that the discrepancy in the
optically thin atmosphere and no-atmosphere models is due to
the treatment of the host star radiation. In K19, they scaled the
stellar spectrum model to match the measured stellar flux
density over the Spitzer 4.5 μm bandpass. However, this
absolute flux measurement is not consistent with the parameters
of LHS 3844 derived from spectral energy distribution fitting
(Kreidberg et al. 2019; Vanderspek et al. 2019). In the present
work, we have chosen to follow the literature and use a
PHOENIX stellar spectrum for the parameters given in K19
without any additional spectrum scaling, as it remains unclear
whether the eclipse modeling should be guided by the single-
band photometric measurement (that could be prone to an
unknown systematic error) or the parameters derived from the
overall stellar fit. Ultimately, if multiple flux measurements of
the star cannot be reconciled, the correct modeling procedure
remains ambiguous. This highlights the need for accurate
stellar flux measurements as any uncertainty in the treatment of
the star directly affects the secondary eclipse depth.
A shallower eclipse depth prediction for the bare-rock

models compared to K19 directly translates to tighter
constraints on the type of surfaces that are possible for this
planet when taking the Spitzer data point at face value. We
recover their result that a basaltic surface is consistent with
Spitzer at 3σ, but our ultramafic model is outside of this
confidence interval in contrast to their modeling.
In terms of atmospheric thickness, our new modeling sets the

top limit on the surface pressure at ∼1 bar down from the
previous limit of 10 bar, if an infrared absorbing gas is included
at�100 ppm. Their best-fit models (< 1σ deviation from
observation) that include a nonmarginal amount of near-
infrared absorber at�10 ppm require a thin atmosphere with a
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surface pressure< 0.1 bar. Interestingly, our models that fall
within 1σ allow atmospheres with up to 1 bar surface pressure
if CH4 is included. That is because CH4 is not only a strong
greenhouse gas, thus warming the deep atmosphere and
surface, but also CH4 is weakly absorbing in a spectral window
around 4.5 μm, enabling a higher thermal emission from the
deep atmosphere in the Spitzer bandpass.

4.3. General Implications for the Characterization of Rocky
Exoplanets

Expanding the study of exoplanet atmospheres into the
terrestrial planet regime is a major goal in the JWST era. Yet
such planets will still be challenging atmospheric characteriza-
tion targets, even with the improved observing capabilities of
the JWST. It is therefore necessary to establish robust strategies
for extracting meaningful constraints on terrestrial planet
atmospheres. Among such targets, hot rocky planets orbiting
bright stars, such as LHS 3844b present the best opportunities
for detailed characterization.

A zeroth-order question to answer for rocky exoplanet
targets is whether they possess atmospheres at all, and if so,
how thick said atmospheres are (Koll et al. 2019; Kreidberg
et al. 2019). The next natural follow-up question is to establish
the composition of the planet’s atmosphere and surface.

In this work, we have demonstrated how to go about
addressing questions of surface and atmosphere composition
for the thick (or thin) and no-atmosphere cases, as applied to
the most amenable rocky target for thermal emission
characterization, LHS 3844b. We have quantified the amount
of observing time required and the limitations to which types of
surfaces and atmospheres can be uniquely distinguished. We
have also identified shortcomings in our current retrieval
capabilities for measuring the properties of terrestrial planet
atmospheres. The approach that we have outlined here can be
applied, in principle, to any rocky planet target that presents
sufficiently high signal-to-noise thermal emission.

One particularly subtle challenge that we have discussed at
length in this work is that of measuring a planet’s albedo and its
surface temperature. When interpreting the measured planetary
emission one should be aware that due to the less-than-unity
emissivity of the realistic surfaces, the inferred brightness
temperature is substantially lower than the true surface
temperature for both NIRSpec and MIRI observations.
However, while inferring the planetary albedo (using the
techniques described in this paper and in Mansfield et al. 2019)
with NIRSpec is relatively accurate, using MIRI the inferred
albedo is somewhat underestimated for the higher-albedo
surfaces and overestimated for the lower-albedo surfaces.

The Kreidberg et al. (2019) Spitzer phase curve observations
and our interpretation in this paper have already provided a
phenomenal degree of insight into the properties of LHS
3844b. If the planet possesses an atmosphere at all, it is thinner
than the Earth’s. Yet this conclusion is based only on
photometric measurements in a single bandpass. JWST will,
for the first time, open the door to the spectroscopic
characterization over a wide wavelength range of LHS 3844b
as well as a wealth of other rocky planets, building on previous
efforts that started with the spectroscopic analysis of terrestrial
exoplanets with HST/WFC3 and Spitzer, like the observations
of the TRAPPIST-1 system and GJ 1132b (de Wit et al.
2016, 2018; Mugnai et al. 2021; Swain et al. 2021; Libby-
Roberts et al. 2022). Ultimately, efforts like these will provide

much deeper insight into the fundamental properties of
terrestrial planet surfaces and atmospheres. We look forward
to the era of rocky planet characterization that is just beginning.
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Appendix A
Updated Numerical Iteration in HELIOS With Added

Surface

For this work we have updated the numerical forward
stepping algorithm of HELIOS that iterates toward radiative–
convective equilibrium, and, in contrast to the previous
implementation where the surface temperature was calculated
directly from the energy balance across the surface boundary
(see Equation (4) in Malik et al. 2019a), we have also included
the surface temperature in the numerical iteration.
The original expression for the temperature iteration (see

Equation (24) in Malik et al. 2017), required the knowledge of
local atmospheric properties, such as the density and heat
capacity. Furthermore, the radiative timescale was used (see
Equation (27) in Malik et al. 2017), to make the forward
stepping independent of local atmospheric inertia, allowing for
a faster and more stable convergence toward equilibrium.
However, as the steady-state radiative equilibrium merely
requires a vanishing net flux divergence across each atmo-
spheric layer, we have found the inclusion and calculation of
such a large number of atmospheric properties not necessary.
That is why we have simplified the original formalism to the
following expressions. Note that we denote the wavelength-
integrated “bolometric” flux with � ([ ]�� erg s−1 cm−2) and
the spectral flux with F ([F]= erg s−1 cm−3). The change in the
temperature of atmospheric layer i, ΔTi, between successive
iteration steps is calculated as

( )% � �
%

%�T f
P
P

, A1i i
i

i
ipre, net,

where Pi is the pressure in the center of layer i, ΔPi is the
pressure difference across layer i, %� inet, is the net flux
difference across layer i, and f ipre, is a dimensional prefactor
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The goal of this prefactor is first to make the iteration more
stable by dampening the impact of %� inet, , thus making the
temperature iteration smoother between neighboring layers.
Second, f ipre, is used to adapt the temperature step during the
iteration. If the temperature is close to equilibrium, f ipre,
becomes increasingly smaller. This prevents numerical oscilla-
tions around the equilibrium temperature without ever reaching
it (details on the exact evolution of f ipre, are given in Malik
et al. 2017). Analogous to the atmospheric layer temperatures,
the surface temperature starts from the planetary dayside-
averaged temperature at the beginning of the run and then
advances with each iteration step as

( )% � �
%

%�T f
P
P

, A3surf pre, surf
0

0
net, surf

with

( )% � �� � � , A4net,surf net,0 intern

where �intern is the internal heat flux. The index “0” denotes the
first atmospheric layer or interface from the bottom. The
prefactor fpre, surf is calculated with Equation (A2), but using
%�net,surf in the denominator. The net flux at the surface
boundary is given by � �³ m� � �net,0 ,0 ,0. One caveat of
including the surface in the numerical iteration of the
atmosphere is that the surface and the first atmospheric layer
sometimes become “stuck,” oscillating back and forth between
iterations, prone to happen when the near-surface atmosphere is
optically thick. We employ a numerical trick to solve that issue.
As long as the first atmospheric layer is not in radiative
equilibrium, we use �net,1 in place of �net,0 in Equation (A4),
which essentially includes the first atmospheric layer in the
energy balance of the surface. Once the first atmospheric layer
has converged, we switch back to the correct energy balance
expression for the surface, as given by Equation (A4).

Finally, the wavelength-varying surface albedo is included in
the upward flux from the surface. Namely, the upward pointing
spectral flux at the surface is calculated as

( ) ( ) ( )Q� � �M M M M M³ mF A F A B T1 , A5,0, surf, ,0, surf, surf

where Asurf,λ is the wavelength-dependent surface albedo, Bλ is
the Planck function, and Tsurf is the surface temperature.

Appendix B
Role of the Emissivity on the Inferred Albedo

The effect of assuming different emissivity values on the
inferred albedo is shown in Figure C6, where we plot three

different emissivity values: 1.0, 0.9, and 0.7, as seen in the
upper left of each plot. When fitting a blackbody curve to a
spectrum, the total area under the curve integrated from zero to
infinity, analogous to the total energy emitted, is not conserved.
This discrepancy is exacerbated if the assumed emissivity of
the blackbody model significantly differs from the one of the
realistic surface spectrum. Moreover, the farther the wave-
length region for the fitting is separated from the peak of the
planetary thermal emission, the larger is the discrepancy in the
areas below the two curves. In the MIRI case, if the blackbody
fit assumes an emissivity higher than the one used in the
physical model the total energy of the blackbody emission is
smaller than in the physical model, resulting in a too low
blackbody temperature and consequently a too high inferred
albedo. This is best visible for the three gray albedo models
with α= 0, α= 0.1, and α= 0.3. When the fit for the gray
albedo models is conducted with the correct emissivity the
inferred albedo matches the real bond albedo.
When using NIRSpec, this emissivity effect is somewhat

smaller and also nonmonotonic. This is because in this case
the instrument bandpass overlaps with the peak planetary
emission making the areas between the blackbody curve and
the planetary spectrum more similar. Furthermore, there
appears to be a dependence on individual albedo variation.
The surfaces showing an inverse trend have an overall
higher albedo and a more strongly varying albedo within the
NIRSpec bandpass.

Appendix C
Additional Figures

Figure C1 displays temperature-pressure profiles for all
relevant models of atmospheric constituents at surface pressures
of 10−3 bars (top) and 10 bars (bottom). Figure C2 is analogous
to Figure 3, but for a basaltic rather than a metal-rich surface.
Figure C3 displays secondary eclipse spectra for all possible
model pairs for both the MIRI LRS and NIRSpec G395H
instruments over their entire wavelength range. These spectra
help visualize the surface detectability values listed in Table 3.
The spectra used for distinguishing surfaces with optimal binning
of MIRI LRS (see Table 4) are shown in Figure C4. Figure C5
shows the bond albedo versus the inferred albedo obtained for
each modeled surface, including albedo inferred from the full
spectrum (emission and reflection) as well as the albedo inferred
using only the emission from the planet. Similarly, Figure C6
shows the bond albedo versus inferred albedo for each surface
using the full spectrum, but this time the emissivity assumed is
varied. Figure C7 shows the eclipse spectra of the atmospheric
models vs. surface-only models, where here the full wavelength
range of each instrument is covered. Figure C8 shows the
posterior distributions of all atmosphere-only models retrieved
on by PLATON, while Figure C9 shows posterior distributions
for all surface-only models retrieved on by PLATON.

20

The Astronomical Journal, 164:258 (27pp), 2022 December Whittaker et al.



Figure C1. Temperature–pressure (T–P) profiles for oxidizing/O2-dominated atmosphere models (left) and reducing/N2-dominated atmosphere models (right)
assuming a surface pressure of 10−3 bars (top) and 10 bars (bottom).

Figure C2. Predicted Spitzer 4.5 μm eclipse depth for the explored atmospheric models in combination with a basaltic surface as a function of the surface pressure
compared to the Spitzer measurement (black horizontal line). Oxidizing/O2-dominated atmospheres are on the left and reducing/N2-dominated atmospheres on the
right. The gray shaded area corresponds to a 1σ uncertainty, and the pink shaded area to a 3σ uncertainty in the negative direction from the observed value.
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Figure C3. Secondary eclipse spectra of surface-only model pairs over the full range of the NIRSpec G395H (top) and MIRI LRS (bottom) bandpasses with overlaid
mock data points at R = 3. The error bars correspond to five secondary eclipse observations. The model spectra are downsampled to R = 100 for clarity.
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Figure C4. Secondary eclipse spectra of surface-only model pairs over the range of selected surface features within the MIRI LRS bandpass with overlaid mock data
points. Each case uses a resolution (shown in the top left corner) to optimally match the spectral features. The error bars correspond to five secondary eclipse
observations. The model spectra are downsampled to R = 100 for clarity.

Figure C5. Left: Bond albedo vs. inferred albedo for simulated MIRI LRS data at R = 10. The black dotted line represents the location where the inferred and Bond
albedos are equal. The inferred albedo is determined using once the full spectrum (i.e., both planetary emission and reflected light contributions) and once the emitted
radiation only. The nominal case uses the full spectrum. Right: analogous to the left panel but using simulated NIRSpec G395H data at R = 10.
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Figure C6. Left: Bond albedo vs. inferred albedo for simulated MIRI LRS data at R = 10. The black dotted line represents the location where the inferred and Bond
albedos are equal. Three values of emissivity, 1.0, 0.9, and 0.7, are assumed for the planetary emission when inferring the temperature and the albedo. The nominal
value used is 1.0. Right: analogous to the left panel but using simulated NIRSpec G395H data at R = 10.
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Figure C7. Secondary eclipse spectra of atmospheric models vs. surface-only models, overlaid with MIRI LRS (left) and NIRSpec G395H (right) simulated data
points at R = 10 over the whole instrument bandpass. The metal-rich surface is used for this test. The error bars show the uncertainties for five eclipse observations.
The model spectra are downsampled from the native resolution to R = 100 for clarity.

25

The Astronomical Journal, 164:258 (27pp), 2022 December Whittaker et al.



Figure C8. Posterior distributions of retrieved volume mixing ratios using atmospheric forward models without a nongray surface. The retrieved mean and 1σ width
are given on top of each panel and shown with black solid and dashed vertical lines. The input mixing ratio (the “true” value) is shown as a red vertical line. The
corresponding T–P profiles are shown on the right with the input profile (from the forward model) in blue, and the profiles realizations from the retrieval modeling are
shown as red lines.

Figure C9. Same as Figure C8 but showing here the retrieval results using the surface-only (no atmosphere) forward models with different surface crusts.
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