Advances in Mathematics 412 (2023) 108804

Contents lists available at ScienceDirect

MATHEMATICS

Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

The localized slice spectral sequence, norms of Real
bordism, and the Segal conjecture

L))

Check for
updates

Lennart Meier #, XiaoLin Danny Shi®, Mingcong Zeng ¢

& Mathematical Institute, Utrecht University, Utrecht, 3584 CD, the Netherlands

b Department of Mathematics, University of Washington, 4110 E Stevens Way NE,
Seattle, WA 98195, United States of America

¢ Mazx Planck Institute for Mathematics, Vivatsgasse 7, 58111 Bonn, Germany

ARTICLE INFO ABSTRACT
Article history: In this paper, we introduce the localized slice spectral
Received 10 December 2021 sequence, a variant of the equivariant slice spectral sequence

Received in revised form 18 October
2022

Accepted 7 November 2022
Available online 5 December 2022
Communicated by A. Blumberg

that computes geometric fixed points equipped with residue
group actions. We prove convergence and recovery theorems
for the localized slice spectral sequence and use it to analyze
the norms of the Real bordism spectrum. As a consequence,
we relate the Real bordism spectrum and its norms to a form

Keywords: of the C2-Segal conjecture. We compute the localized slice
Real bordism spectral sequence of the Cs-norm of BPR in a range and
Slice spectral sequence show that the Hill-Hopkins—Ravenel slice differentials are in
Lubin-Tate spectra one-to-one correspondence with a family of Tate differentials
Segal conjecture for N12H]F2.

© 2022 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents
1. Introduction . . . . . . . . . . e 2
2. Equivariant stable homotopy theory . . . ... ... ... . . . . . . . .. 8
3. The slice spectral sequence and the localized slice spectral sequence . . ... ............ 18
4. The localized slice spectral sequences of BP(G): summary of results . ............... 36

E-mail addresses: f.l.m.meier@Quu.nl (L. Meier), dannyshixl@gmail.com (X.D. Shi),
mingcongzeng@gmail.com (M. Zeng).

https://doi.org/10.1016/j.aim.2022.108804
0001-8708/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).



2 L. Meier et al. / Advances in Mathematics 412 (2023) 108804

5. Computing the localized slice spectral sequences of BP(G) .. ... ... .. .. 38
6. The Tate spectral sequence of NZHFo . . .. ... e 60
References . . . ... 72

1. Introduction

The complex conjugation action on the complex bordism spectrum MU defines a Cs-
spectrum M Ug, the Real bordism spectrum of Landweber, Fujii, and Araki [37,19,4]. Tts
norms

MU = NG MUg = N3 MU

have played a central role in the solution of the Kervaire invariant one problem [33].
After localizing at 2, the norm My©m) splits as a wedge of suspensions of BP(Can) .=
Ns " BPg, where BPg is the Real BrownPeterson spectrum.

The spectra M U©) and BP(©2") connect many fundamental objects and com-
putations in non-equivariant stable homotopy theory to equivariant stable homotopy
theory. The fixed points of these norms are ring spectra, and their Hurewicz images
detect families of elements in the stable homotopy groups of spheres [33,30,40]. The
Lubin—Tate spectra at prime 2 with finite group actions can also be built from these
norms and their quotients [26,8]. They produce higher height analogues of topological
K-theory and play a fundamental role in chromatic homotopy theory.

To compute the equivariant homotopy groups of MU (©27) and BP((CQ”)), Hill, Hop-
kins, and Ravenel introduced the equivariant slice spectral sequence [33]. However, due
to the complexity of the equivariant computations, besides MUy and B Pg, we still know
relatively little about the behavior of their norms. For example, we are still far from a
complete understanding of the equivariant homotopy groups of BPp(C),

Our project arose from the desire to systematically understand the equivariant ho-
motopy groups of MU (@) and BP(“2") The goal of this paper is two-fold: first, we
establish our main computational tool, the localized slice spectral sequence. This is a
variant of the slice spectral sequence that is easier for computations while at the same
time recovers the original slice differentials. Second, as an application of the localized
slice spectral sequence, we focus on the Cy-norm BP9 we compute its localized slice
spectral sequence in a range and build a new connection to the Segal conjecture at Cs.
As a consequence, we establish correspondences between families of slice differentials for
BP() and families of differentials in the Tate spectral sequence for NZHTF,.

1.1. Fized points and geometric fized points

It is well-known in equivariant stable homotopy theory that a map between G-spectra
is a weak equivalence if and only if for all subgroups H C G, it induces (non-equivariant)
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weak equivalences on all H-fixed points or H-geometric fixed points. Despite this fact,
fixed points and geometric fixed points behave very differently.

The fixed points of a G-spectrum X can be difficult to understand. For a suspen-
sion spectrum, its fixed points can be described by using the tom Dieck splitting [39,
Section V.11], but such a splitting does not exist in general. Nevertheless, by the Wirth-
miiller isomorphism, there are natural maps between fixed points of different subgroups
of G. The induced maps on their homotopy groups can be assembled into an algebraic
object m, X, called a Mackey functor. Organizing information in terms of Mackey func-
tors is one of the most powerful ideas in equivariant stable homotopy theory, and this
has produced new insights in both theory and computation (e.g. [24,33]).

As an important example, the Cs-fixed points of the Real bordism spectrum MUy
are computable but complicated [36,23]. For groups beyond Cj, we still don’t know

(©2n) aside from the computations

very much about the fixed points of the norms MU
in [33,34,30,31]. Nevertheless, these fixed points contain very rich information about
the stable homotopy groups of spheres (such as the Kervaire invariant elements) and
chromatic homotopy theory [33,40,26,8].

On the other hand, the geometric fixed points are easier to understand. The geometric
fixed points functor ®: Sp, — Sp is compatible with the suspension spectrum functor,
commutes with all homotopy colimits, and is symmetric monoidal.

For the Real bordism spectrum MUp, a straightforward geometric argument, based
on the fact that the fixed points of the Cy-Galois action on C are R, shows that the Cs-
geometric fixed points of MUgr and BPr are MO (the unoriented bordism spectrum)
and HIF5, respectively. The geometric fixed points functor also behaves well with respect
to the norm functor [33, Proposition 2.57]. This renders the geometric fixed points of
the norms MU (“2") easy to understand.

Although the homotopy groups of the geometric fixed points for various subgroups
do not form a Mackey functor, there are reconstruction theorems which recovers a G-
spectrum from structures on its geometric fixed points [1,21,5].

At this point, it is natural to ask the following questions:

(1) How do the fixed points and the geometric fixed points of an equivariant spectrum
interact with each other?

(2) Computationally, how to recover the fixed points of equivariant spectra, such as
norms of MUpg, through their geometric fixed points, which are significantly easier
to compute?

In order to attack these questions, the first observation is that it is necessary to
consider the H-geometric fixed points not only as a non-equivariant spectrum, but as
a We(H)-equivariant spectrum, where We(H) is the Weyl group. In our examples of
interest, H will be a normal subgroup of G, so that Wg(H) = G/H. When the G-
spectrum is of the form NEX , we prove the following theorem.
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Theorem 1.1. Let H C G be a normal subgroup and X be an H-spectrum. Then we have
an equivalence of G/ H -spectra

PHINGX ~ NE/HPH (X)),

If X is an H-commutative ring spectrum, then this equivalence is an equivalence of
G/ H -commutative ring spectra.

This theorem is by no means difficult to prove, and in fact it only marks the starting
point of our analysis. To understand how the H-fixed points and H-geometric fixed
points interact with each other, we introduce our main computational tool: the localized
slice spectral sequence.

1.2. The localized slice spectral sequence

Let X be a G-spectrum and H C G a normal subgroup. As a G/H-spectrum, ®7 X
can be constructed as (EF[H] A X) | where EF[H] is the universal space of the family
F[H] consisting of all subgroups that do not contain H. In many cases, including G
cyclic, smashing with EF[H] is equivalent to inverting an Euler class ay € 7%, S°
for V a certain G-representation. In particular, the residue fixed points (®7X )G/ H are
equivalent to the fixed points (aj,' X)¢.

To define the localized slice spectral sequence, let P®*X be the regular slice tower of
X [33][55]. The ay -localized slice spectral sequence of X is, by definition, the spectral
sequence corresponding to the localized tower {a‘_/lP’X }. It has Ea-page

st __ —1pt
Ey" =my_.a, PP X.

Theorem 1.2. Let X be a Can-spectrum and V be an actual Con-representation. Then the
avy -localized slice spectral sequence converges strongly to the homotopy groups ﬂt_sa(/lX.

The localized slice spectral sequence serves as a bridge between the fixed points X
and the residue fixed points (®# X )G/ H_ More precisely, even though the localized slice
spectral sequence only computes the geometric fixed points, its Eo-page is closely related
to the original slice spectral sequence, which computes the fixed points. From now on,
we will denote the regular slice spectral sequence and the ay-localized slice spectral
sequence of X by SliceSS(X) and a(/l SliceSS(X), respectively. The following theorem
directly follows from computations of the homotopy groups of HZ [34, Section 3].

Theorem 1.3. Let X be a (—1)-connected Caon-spectrum whose slices are wedges of the
form Cany Ac,, Yk HZ, and X be the 2-dimensional real Can-representation that is
rotation by 57— . Then the localizing map

SliceSS(X) — a; ! SliceSS(X)
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induces an isomorphism on the Es-page for classes whose filtration is greater than 0. On
the 0-line, this map is surjective, with kernel consisting of elements in the image of the

Con

transfer T'rg

By the slice theorem [33, Theorem 6.1], the Con-norms of MUg and BPgr both satisfy
the conditions of Theorem 1.3.

An upshot of Theorem 1.3 is that despite the fact that the fixed points are harder
to compute than the geometric fixed points, if we already know the differentials in the
localized slice spectral sequence, then we can use the isomorphism on the Es-page given
by Theorem 1.3 to recover differentials in the original slice spectral sequence. This allows
us to approach the computation of the fixed points X from the residue fixed points
(®H X)G/H

A subtlety that arises from the localized slice spectral sequence is its compatibility
with multiplicative structures. More precisely, let R be a connective G-commutative ring
spectrum. Ullman [55] has shown that the slice tower of R is multiplicative. Therefore, the
corresponding slice spectral sequence has all the desired multiplicative properties such
as the Leibniz rule, the Frobenius relation [34, Definition 2.3], and most importantly,
the norm [34, Corollary 4.8]. On the other hand, the localization a(,lR can never be a
G-commutative ring spectrum because its underlying spectrum is contractible.

To establish multiplicative properties for the localizations, we apply the theory of N.-
operads from [10]. More precisely, in Section 2.5, we establish a criterion generalizing
the results of [32] and [13]. As a consequence, we obtain the following theorem, which
shows that ay-localization preserves algebra structures over a certain No.-operad O that
depends on the class ay .

Theorem 1.4. Let V be a G-representation. Assume that Ind% Res?( V is a summand of
a multiple of Resg V' for every K C H C G such that H/K is an admissible H-set. Then
localization at ay preserves O-algebras.

Therefore, the homotopy of the ay-localization of an equivariant commutative ring
spectrum such as MU(“") forms an incomplete Tambara functor [11], and the norm
maps essential to our computation are still available. In Section 3.4, we draw conse-
quences of the behavior of norms in the localized slice spectral sequence.

Aside from the localized slice spectral sequence a; ' SliceSS(X), the G/ H-slice spec-
tral sequence of ® X also computes the residue fixed points (¥ X)/H . Even though
both spectral sequences compute the same homotopy groups, their behaviors can be
very different. Surprisingly, we have the following theorem, which shows that after a
modification of filtrations, there is map between the two spectral sequences.

Theorem 1.5. Let X be a Can-spectrum, then there is a canonical map of spectral se-
quences

ay ' SliceSS" (X) = Py, /0, 7SliceSS7>"/ P2 (292 X))
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that converges to an isomorphism in homotopy groups. Here 2 is the doubling operation
defined in Section 3.5, which slows down a tower by a factor of 2, and P, /Cs is the
pullback functor from [29], which is recalled in Section 2.2.

In the second half of the paper, as an application of all the tools that we have devel-
oped, we will use the localized slice spectral sequence to analyze the norms of MUg.

1.8. Norms of Real bordism and the Segal conjecture

The Segal conjecture is a deep result in equivariant homotopy theory. In its original
formulation, it was proven by Lin [41] for the group Cs and by Carlsson [16] for all finite
groups, building on the works of May—McClure [46] and Adams—Gunawardena—Miller
[2]. When the group is Co, the most general formulation can be found in Lunge-Nielsen—
Rognes [42] and Nikolaus—Scholze [54]: for every bounded below spectrum X, the Tate
diagonal map X — (N2X)!“? is a 2-adic equivalence.

We are interested in the case when X = HIF5, the mod 2 Eilenberg—Mac Lane spec-
trum. This case is intriguing for at least two reasons: first, Nikolaus—Scholze [54] show
that the general formulation follows formally from this case. Second, even though the
Segal conjecture implies the equivalence HFy ~ (N2 HIF5)!“2, this is still a mystery from
a computational perspective.

More precisely, the Tate spectral sequence computing (N?HTF;)*“? has E,-page
H* (Cq; A,), the Tate cohomology of the dual Steenrod algebra A, with the conjugate
Cs-action. This cohomology is highly nontrivial and we currently don’t even have a
closed formula [15]. However, because of the equivalence HFy ~ (NZHIF,)!“? given by
the Segal conjecture, every element besides 1 € Fo & H 9(Cq; (A4)o) must either support
or receive a differential.

Understanding equivariant equivalences from a computational perspective can be
extremely useful. For example, in the case of BPg and its norms, it is relatively straight-
forward to establish the equivalence ®C2» BP(>") ~ $C2BPy ~ HF,. By working
backwards, Hill-Hopkins—Ravenel used this equivalence to prove a family of differentials
in the slice spectral sequence of Bp(C) [33, Theorem 9.9], from which their Periodicity
Theorem and eventually the nonexistence of the Kervaire invariant elements followed.

By Theorem 1.1, we have a Cs-equivalence

o2 pp(C) ~ NZHF,.

For the left hand side, we can use the localized slice spectral sequence to compute the Cs-
fixed points of ®> BP(“4) We demonstrate this computation in a range (Theorem 4.4).
Note that we can actually compute much further than the range we have shown, but the
point is to give the readers a taste of the computations involved and to draw comparisons
to the slice spectral sequence computations in [33,34,31].

After demonstrating these computations, we use Theorem 1.5 to establish a map
between the slice spectral sequence of BP(C4) and the Tate spectral sequence of NZHTF,.
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We prove that this map establishes a correspondence between families of differentials in
the two spectral sequences.

Theorem 1.6. After the Es-page, the Hill-Hopkins—Ravenel slice differentials [33, Theo-
rem 9.9] are in one-to-one correspondence to a family of differentials on the first diagonal
of slope (—1) in the Tate spectral sequence of N HFy. This completely determines all the
differentials in the Tate spectral sequence that originate from the first diagonal of slope

(=1).

In the future, we wish to reverse the flow of information: to prove slice differentials
from spectral sequences associated to N2 HF,. Computations along this line appear in
[7] and will be refined in an upcoming article by the same authors. There are various
methods to study the norms of HFs and their modules, such as the modified Adams
spectral sequence [49,14] and the descent spectral sequence [27]. These methods allow
one to understand modules over norms of HFFy and BPg from different perspectives.

It is worth noting that in another direction, one can prove the Cs-Segal conjecture
by showing that NjMUpg is cofree and using Theorem 1.1. This approach is taken by
Carrick in [17].

Theorem 1.6 has an unexpected consequence. Let R be an arbitrary non-equivariant
(—1)-connected homotopy ring spectrum with moR = Z (or a localization thereof not
containing %) We can use the (stable) EHP spectral sequence and the Tate spectral
sequence of N2 HFy to bound the length of differentials on powers of the Tate generator
in the Tate spectral sequence of NZR.

Theorem 1.7. Let v € EQ(CQ;WON%R) be the generator of the Tate cohomology, and Iy,
be the length of differential that v?* supports in the Tate spectral sequence of NER. Then

p(2k+1) S lk S 2}€+2 . 1’
where p(n) is the Radon—Hurwitz number.
1.4. Outline of paper

In Section 2, we recall a few basics of equivariant homotopy theory. In particular,
we discuss the interplay between the norm functor, the geometric fixed points functor,
and the pull back functor. We prove Theorem 1.1. We also investigate the multiplicative
structure of localizations and give a criterion for a localization at an element to preserve
multiplicative structures, thus proving Theorem 1.4.

In Section 3, we recall the spectra MU (@) and BP(Y) and their slice spectral se-
quences. We then introduce the main computational tool for this paper, the localized
slice spectral sequence. We prove Theorem 1.2, the strong convergence of the localized
slice spectral sequence (Theorem 3.3). We also discuss exotic extensions and norms.
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Sections 4 and 5 are dedicated to the computation of the localized slice spectral
sequence of a;lBP((C‘*)). In Section 4, we give an outline of the computation and list our
main results (Theorem 4.1 and Theorem 4.4). The detailed computations are in Section 5.
While computing differentials, we make full use of the Mackey functor structure of the
spectral sequence. Certain differentials are proven using exotic extensions and norms by
methods established in Section 3.

In Section 6, we turn our attention to the Tate spectral sequence of NZHF5. We use
the computation of the localized slice spectral sequence of BP(C) 4 prove families of
differentials and compute the Tate spectral sequence in a range. In particular, Theo-
rem 1.6 is proven as Theorem 6.6, which describes the first infinite family of differentials
in the Tate spectral sequence.

Acknowledgments

The authors would like to thank Bob Bruner for sharing his computation on the Tate
generators of the dual Steenrod algebra, and J.D. Quigley for sharing his computation
of the Adams spectral sequence of NZHFy. The authors would furthermore like to thank
Agnés Beaudry, Christian Carrick, Gijs Heuts, Mike Hill, Tyler Lawson, Guchuan Li,
Viet-Cuong Pham, Doug Ravenel, John Rognes and Jonathan Rubin for helpful conver-
sations. Finally, we would like to thank the anonymous referee for the many detailed
suggestions. The second author was supported by National Science Foundation grant
DMS-2104844.

Conventions

(1) Given a finite group G, all representations will be finite-dimensional and orthogonal.
Per default actions will be from the left.

(2) We denote by pg the real regular representation of a finite group G and we abbreviate
pcy to pa.

(3) We will often use the abbreviation BP(C4) for N3BPg and more generally BP(&)
for Ng2 BPg.

(4) All spectral sequences use the Adams grading.

(5) We use the regular slice filtration and its corresponding tower and spectral sequence
defined in [55] throughout the paper, often omitting “regular”.

2. Equivariant stable homotopy theory
2.1. A few basics
We work in the category of genuine G-spectra for a finite group G, and our particular

model will be the category of orthogonal G-spectra Sps. For us these will be simply
G-objects in orthogonal spectra as in [52], which will often be just called G-spectra. This
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category is equivalent to the categories of orthogonal G-spectra considered in [45] and
[33]. In particular, we are able to evaluate a G-spectrum at an arbitrary G-representation
to obtain a G-space. We refer to the three cited sources for general background on G-
equivariant stable homotopy theory, of which we will recall some for the convenience of
the reader.

For each G-representation V, we denote by SV its one-point compactification. Denot-
ing further by pg the regular representation, we obtain for each subgroup H C G and
each G-spectrum its homotopy groups

7 (X) = colimy [S*¢+" X (kpg)|H.

These assemble into a Mackey functor m,(X). A map of G-spectra is an equivalence
if it induces an isomorphism on all x,,. Inverting the equivalences of G-spectra in the
1-categorical sense yields the genuine equivariant stable homotopy category Ho(Sp)
and inverting them in the co-categorical sense the oco-category of G-spectra Spgr. These
constructions are well-behaved as there is a stable model structure on Sp, with the weak
equivalences we just described [45, Theorem I11.4.2]. The fibrant objects are precisely the
0-G-spectra. In the main body of the paper we will implicitly work in Ho(Sp) or Spg;
in particular, commutative squares are meant to be only commutative up to (possibly
specified) homotopy.

By [45, Proposition V.3.4], the categorical fixed point construction Sp,; — Sp is a right
Quillen functor. We call the right derived functor (—)%: Spgy — Sp™ the (genuine) fived
points. We can define fixed point functors for subgroups H C G by applying first the
restriction functor Sp; — Spy and then the H-fixed point functor. One easily shows
that 7, X = 72 X Thus, a map is an equivalence if it is an equivalence on all fixed
points.

Note that if H C G is normal, the categorical fixed points carry a residual G/H-
action. The resulting functor Spg — Spg g is a right Quillen functor as well [45, p. 81]
and thus H-fixed points actually define a functor Spgy — Spgo/ 7. The left adjoint of this
is the inflation functor p* associated to the projection p: G — G/H.

As 7 translates filtered homotopy colimits into colimits, we see that fixed points
Spg — Sp™ preserve filtered homotopy colimits. As they preserve homotopy limits as
well (as they are induced by a Quillen right adjoint) and are a functor between stable co-
categories, they preserve all finite homotopy colimits [44, Proposition 1.1.4.1] and hence
all homotopy colimits [43, Proposition 4.4.2.7]. By the associativity of fixed points, the
same is true for (=) : Spgy — Spg/p for a normal subgroup H C G.

2.2. Geometric fized points and pullbacks
To define other versions of fixed points, we need the notion of a universal space for

a given family F of subgroups of G, i.e. a collection of subgroups closed under taking
subgroups and conjugation. For every such family there exists a universal space, i.e. a
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G-CW complex EF, which is up to G-homotopy equivalence characterized by its fixed
points:

(EF)H = {* if He F

o ifH¢F
Examples of such families include the case F = {e} of just the trivial group, where we
denote EF by EG, and the case F = P of all proper subgroups. To each family, we can
associate furthermore the cofiber EF of EF, — S°, which is again characterized by its
fixed points

- if H
(E]-“)H: * i e F
SY ifH¢F

For each family F and every G-spectrum we have an associated isotropy separation
diagram, whose rows are parts of cofiber sequences:

XANEF, X XANEF

N .

XANEF, —= XF¥+ — ~ XBF+ NEF

Upon taking fixed points, we can identify some of the entries with well-known construc-
tions. If EF = EG, then (XF7+)% is the spectrum of homotopy fized points X" and
(X AN EF.)% is (by the Adams isomorphism) the spectrum of homotopy orbits Xpq.
Moreover, one calls in this case (XF7+ A EF)C the Tate construction and denotes it
by Xt¢. If F = P, then (X A EP)G is called the geometric fized points and denoted by
®% X. One can show that ®¢(X>®°X) ~ %>®° X for pointed G-spaces X.

Let H C G be normal. As mentioned above, H-fixed points define a functor Spg —
Spgm- We want to define a similar version for geometric fixed points. Let F[H] be the
family of all subgroups of G not containing H. We consider the functor

o Spy — Spgym, X — (EF[H]AX)T.

This agrees with our previous definition when H = G since |G| = P. Another important
special case is G = Cyn and H = C5; then E}"[H] - EG.

As the geometric fixed points functor ®#: Sp¥ — Sp%o/ g is the composition of
smashing with a space and taking fixed points, it preserves all homotopy colimits as
well.

This property implies that ® must possess a right adjoint, which was constructed
in [29, Definition 4.1] as the pullback functor
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P/m: Sp&/m — SpS X — EF[H|Ap*X,

where p* is the functor induced by the projection p: G — G/H, as defined in the
previous subsection. For the adjointness see [29, Proposition 4.4], at least on the level of
homotopy categories. Several pleasant properties of Pf, /H ATe shown in [29, Section 4.1],
in particular that Pf, JH defines a fully-faithful embedding of G/ H-spectra into G-spectra
(with image agreeing with that of — A EF[H]). Equivalently, the unit map id — ®# Pén
is an equivalence. This also implies that P, JH is (strong) symmetric monoidal (since the
image of P, /H is closed under A). Moreover, it follows that P, / Hq)H is equivalent to
— A EF[H].
We furthermore note:

Lemma 2.1. For every G/H -spectrum X, every H C K C G and every V € RO(G/H),
there is a canonical isomorphism

* ~ K/H
Tl (PE pX) 2y (X).

Here we view V' also as an element of RO(G) by pullback along G — G/H.

Proof. Essentially by definition, w{f(P(*;/HX) = [ZVG/KJF,PE/HX]G. By the contain-
ment H C K, all points in G/K are H-fixed and moreover V¥ = V. Hence we get
OEYVG/K, ~ ¥V (G/H)/(K/H),. By the adjointness of ® and Pt/ we thus ob-
tain the result. O

2.8. Universal properties of G-spectra

In [20, Corollary C.7], Gepner and the first-named author established a universal
property for symmetric monoidal colimit-preserving functors out of Spg. We will need
a variant of this for functors just preserving filtered colimits.

Localizing the 1-category of pointed finite G-CW-complexes at G-homotopy equiv-
alences yields an oo-category 8¢ This oo-category is essentially small. For every
essentially small co-category C, we can freely adjoin filtered colimits to obtain an oo-
category Ind(C) [43, Section 5.3]. The inclusion S7¢ — S% into the oo-category of
pointed G-spaces induces a functor Ind(S™¢) — SE. Since ST consists of compact
objects inside S¢ and generates S¢ under filtered colimits, the functor is an equivalence.

Let us explain to obtain G-spectra and finite G-spectra as stabilization of S¢ and
Shin.¢ respectively. Let U be a complete G-universe and denote by Suby the poset of
finite-dimensional sub-representations. Following [20, Appendix C], we can consider func-
tors T and T from Suby to Cat%, (resp. Cat,), sending each V € Suby to S& (resp.
an’G) and each inclusion V' C W to smashing with S~V Here, Cat, is the co-category
of compactly generated oco-categories with compact object preserving left adjoints as

morphisms, and W — V is the orthogonal complement of V' in W. As explained in [20,
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Appendix C], colimgyy,, 7 carries a canonical symmetric monoidal structure, which is as

a symmetric monoidal co-category canonically equivalent to SpOGO. Denote colimgp,, 7"

by SpS-fi". General properties of colimits in Cat®, ([43, Proposition 5.5.7.10]) imply that
G.fin

the functor Spg™" — Spg;o extends to an equivalence Ind(Sp%ﬁn) ~ SpOGO. This yields

directly:

Lemma 2.2. Let D be an oo-category with filtered colimits. The space of functors Spg’vO —
D preserving filtered colimits is equivalent to that of functors Spgg’G — D.

Remark 2.3. With our convention that G is always finite, we could simplify the colimit
colimgyp,, 7 to the colimit of the directed system

Sra SrG SrG

S¢ S¢

SG

and similarly for 8¢ For possible future applications, we chose however to present
the proofs in this section in a way that applies to all compact Lie groups.

fin,G

We want to discuss a universal property of Sp.}

using symmetric monoidal struc-
tures. For this, we need the following result of Robalo. Recall here that an object X in
a symmetric monoidal co-category is symmetric if the cyclic permutation of X ® X ® X

is homotopic to the identity.

Proposition 2.4. Let C be a small symmetric monoidal co-category and X € C symmetric.
Then C[X 1] := colimC 280 X9 . hasa symmetric monoidal structure such that
C — C[X 1] refines to a symmetric monoidal functor, which is initial among all those
that send X to an invertible object.

Proof. The proof is the same as that of [50, Corollary 2.22]; all necessary previous results
are actually proven for small co-categories and not just for presentable ones. O

Corollary 2.5. Let D be a symmetric monoidal oco-category. Then taking the suspen-
sion spectrum defines an equivalence between the space of symmetric monoidal functors
Spgg’G — D and the space of symmetric monoidal functors sinG _ p sending SV for
any G-representation to an invertible object.

Proof. This can be deduced from the previous proposition as in [20, Corollary C.7] O

Corollary 2.6. Let D be a symmetric monoidal co-category with filtered colimits. Then any

symmetric monoidal functor F': SpOGO — D which preserves filtered colimits is uniquely

fin,G
S

(up to equivalence) determined by its restriction F¥™°: — D (as a symmetric

monoidal functor).
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Remark 2.7. The idea behind the preceding corollary is that we can write every G-
spectrum canonically as a filtered homotopy colimit of S~ A X% X. We chose the above
treatment to give a precise meaning to how canonical this colimit actually is.

2.4. Norms and pullbacks

In this section, we will identify certain localizations of norm functors with pullbacks

&) this is a central ingredient of this

of norms from quotient groups. In the case of BP(
paper.

First, we will recall the norm construction. For a group G, let BG denote the category
with one object and having G as morphisms. Given an arbitrary symmetric monoidal

category (C,®, 1), there is for a subgroup H C G a norm functor
CPH - CPY, X Xx®nC

from H-objects to G-objects, where the G-action is induced by the right G-action on G. In
the case of spaces or sets, one can identify X *#% with Map (G, X) and for based spaces
or sets, one can likewise identify X"#% with Mapj; (G, X). In the case of orthogonal
spectra, one can by [33, Proposition B.105] left derive the functor (—)"#% to obtain a
functor Ng. (Often, Ng is also used for the corresponding underived functor, but the
derived functor will be more important for us.) The functor N§ commutes with filtered
(homotopy) colimits by [33, Propositions A.53, B.89]. Note moreover that N§X°X ~
¥ Mapy; (G, X) (if X is cofibrant or at least well-pointed) as ¥ is symmetric monoidal.

Lemma 2.8. Let G be a finite group, K,H C G be two subgroups and X be a (based)
topological H-space. Let H\G/K = {Hqn K, ...,Hg K}. Then there are natural (based)
homeomorphisms

MapH<G7X>K o~ xo Kol 'NH oy xaKg 'NH
and
Mapj{(G’X)K ~ xoi1Kgr 'NH /\'.'/\XglKgl—lmH’ W

where the K-action on the mapping spaces is induced by the right K-action on G. In
particular, if H = K is normal, we obtain a natural G/H -equivariant homeomorphism

Mapi (G, X)" = Map* (G/H, X,
Proof. The first two statements follow from the H-K-equivariant decomposition of G

into H§:1 Hg;K. For the last one observe that if H = K is normal, H\G/K = G/H
and G/H permutes the factors of the decomposition in (1). O
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To put the following theorem and its corollary into context, recall from [33, Proposition
B.213] that ?°NEX ~ X X. We show more generally that @TNGX ~ NEHQK X if
K C H C G and H is normal. Before we do so in Corollary 2.11, we provide a version
that gives an equivalence on the level of G-spectra, i.e. before taking fixed points.

Theorem 2.9. Let H C G be a normal subgroup and X be an H-spectrum. Then we have
an equivalence of G-spectra

EF[H|AN§GX ~ Pg, (NP o (X)).
Proof. We have
PHNGX ~ NG/HH X (2)
for all H-spectra X. Indeed: If X is a suspension spectrum, this reduces to the space-
level statement Mapj, (G, X)# ~ Map*(G/H, XH), which is part of Lemma 2.8. Both
sides of (2) are symmetric monoidal and commute with filtered homotopy colimits. Thus
Corollary 2.6 implies the claim.

Applying PC*;/H to (2), it suffices to check that PE/HCI)HNSX is equivalent to EF[H]A
NS X. But the equivalence of PE/H@H with EF[H] A — was already noted above. 0O

Corollary 2.10. Let K C H C G be subgroups and assume that H C G is normal. Let
moreover X be a K-spectrum. Then there is an equivalence of G-spectra

EF[H] ANEX ~ P55 (NFHOK (X))

Proof. This follows from Theorem 2.9 by applying it to N X. Here, we use N$X =~
NGNEX and ®UNEX ~®KX. O

Taking H-fixed points we obtain a strengthened form of Theorem 1.1:

Corollary 2.11. Let K C H C G be subgroups and assume that H C G is normal. Let
moreover X be a K-spectrum. Then there is an equivalence of G /H -spectra

PINGX ~ NG/HOK (X)),
Remark 2.12. An alternative proof of this result is possible using [56, Theorem 2.7].
As we will recall below, there is a Cy-spectrum BPg with geometric fixed points HIF5.
For G = C4 and H = (3, we can express E]—'[H] as S, where X is the 2-dimension

representation of Cy corresponding to rotation by an angle of 7. Denoting the norm
Ng;BP]R by BP((C4)), we obtain our main example for Theorem 2.9.
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Corollary 2.13. There is an equivalence
BP(@D) A §%A ~ Py NE(HT>).
We end this section with a different kind of compatibility of norms and pullbacks.

Proposition 2.14. Let K C H C G be subgroups such that K is normal in G. Then there

s a natural equivalence NgPIfI/K ~ P(*;/KNS;E of functors Sp?{"/K — Spey -

Proof. Since both NEPI’;/K and PC*;/KNS;g commute with filtered colimits and are
symmetric monoidal, it suffices (as in the proof of Theorem 2.9) to provide a natural

equivalence of their restriction to suspension spectra. We compute
NG Pl X ~ NESCEF[H] A X ~ ¥ Mapy (G, EFu[K]) A Mapy (G, X)
and

PNy e 5% X o PS5 Mapyy i (G/K, X) ~ %% EFG[K] A Map (G, X),
where we used a subscript at EF to indicate whether it is a G-space or an H-space. Using
Lemma 2.8, one can check that Mapj; (G, EFyx[K])* ~ S if L C K and is contractible
otherwise; thus indeed Mapy; (G, EFg[K]) ~ EFg[K]. D

2.5. Multiplicative structures of localizations

In many cases, smashing with EF[H] is equivalent to localizing at a certain element
in WgS (for example if G is cyclic). The goal of this section is to investigate which kind
of multiplicative structure localization at such an element preserves. More specifically
let us fix an No-operad O, i.e. an operad O in (unbased) G-spaces such that each O(n)
is a universal space for a family JF,, of graph subgroups of G x %,,, containing all H x {e}
for subgroups H C G. This notion was introduced in [10]. In the maximal case, we speak
of a G-E-operad and by [10, Theorem A.6] every algebra over such an operad can be
strictified to a commutative G-spectrum. In the minimal case, we speak of a (naive)
FE.-operad.

Essentially, the different versions of N.,-operads encode which norms we see in the
homotopy groups of an O-algebra. To be more precise, call an H-set T admissible if the

graph of the H-action on 7' lies in F|7|. By [3, Remark 5.15] an O-algebra R admits
H

IndZ Vv
an RO(G)-graded incomplete Tambara functor.

norms N II;I : ﬂ{f R—om R if H/K is admissible, and the groups ﬂ'f R assemble into

As already observed in [47], localizations only need to preserve naive F..-structures,
but not G-E-structures. Later, [32] gave a criterion when localizations indeed preserve
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G-E-structures and this was extended in [13] to N.-algebras, albeit only for localiza-
tions of elements in degree 0. In this section, we will extend this work to elements in
non-trivial degree and follow the proof strategy of [13, Proposition 2.30].

Let us first recall what localizing at some z € 71"(/% S means. We say that a G-spectrum
E is x-local if x acts invertibly on E or, equivalently, on Trf,E. Given a G-spectrum FE,
we construct its z-localization as

2~ E = hocolim (E Ly VEL v VR L, ) .
Note that 2~ 'E ~ E Az~ !S.

Example 2.15. Given a G-representation V, let ay : S° — SV be the Euler class. Then
a‘_/lS ~ §V and hence in general a‘_/lE ~ SV A E. In particular, we can reformulate
Corollary 2.13 as

ay'BP() ~ Py NY(HF»).

A map f: E — F is an z-local equivalence if f A 7S is an equivalence; by abuse
of notation, we call for H C G a map of H-spectra an z-equivalence if it is a Res% (z)-
equivalence.

Definition 2.16. Localization at = preserves O-algebras if for every O-algebra R, we can
lift the morphism R — 2~ 'R in Ho(Sp®) (up to isomorphism) to a morphism in Ho(O —
Alg).
We will use the following specialization of a criterion of [25, Corollary 7.10]:
Proposition 2.17. Localization at x preserves O-algebras if and only if
NHRes$: SpS — SplL
preserves x-equivalences for every K C H C G such that H/K is admissible as an H -set.

To reformulate this criterion, we need the following lemma.

Lemma 2.18. There is an equivalence N ResG(z7'S) ~ (N Res%(x))"*(Sw) for Su

the H-equivariant sphere spectrum.
Proof. Applying N Resﬁ to
SHE VS LRSS

we obtain precisely
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NI Res§ () N Res () N Res$ ()

_ H .G _ Hp, G
) IndKRebKVSH ) 2IndKRe:>KVSH

SuH

Here we have used that the norm of a representation sphere is computed by induction.
As both NZ and Resg preserve filtered homotopy colimits, the result follows. O

Proposition 2.19. Localization at x preserves O-algebras if and only if N ResIG((x) di-
vides a power of Res$(x) for every K € H C G such that H/K is admissible as an
H-set.

Proof. Let K C H C G be subgroups such that H/K is admissible as an H-set. By
Proposition 2.17, we have to show that NZ Res% () divides a power of Res% (z) if and
only if

NHRes$: SpS — SplL

preserves z-equivalences.

Assume first that N Ilg ReSIG( preserves z-equivalences. By the preceding lemma, we
see in particular that Sy — (N Res% (x))~ 'Sy is an z-equivalence, i.e. NE Res% (x)
becomes a unit after inverting Res% (z) and just must divide a power of it.

Assume now that N Res%(z) divides a power of Res% (x). Then the map Sy —
Res$ () 'Sy factors over the standard map Sy — (N Res% (x)) 'Sy

Let now f: E — F be an z-equivalence of G-spectra, i.e. we assume that fAz 'S is an
equivalence. As N# and Res$ are symmetric monoidal, we see that N Res$ (fAz~1S) is
equivalent to NZ Res (f)A(NE Res$ () ~'Syr, which is thus an equivalence. Tensoring
with Res$ (2) 'Sy over (N Res% (z))~'Sy yields the result. O

We specialize now to the case that z is the Euler class ay : S° — SV. In this case we
have N¢ Resg Ay = 1y4¢ ResG v+ 1hus to see which multiplicative structure localization
at ay preserves, we only have to understand divisibility relations between Euler classes.
In particular, we obtain the following corollary:

Corollary 2.20. Let V be a G-representation. Assume that Indi Res® V is a summand
of a multiple of Resg V for every K C H C G such that H/K is an admissible H -set.
Then localizing at ay preserves O-algebras.

Remark 2.21. While this corollary is everything we need, one can be more precise. For
a H-representation V, let ]-"‘f}x be the family of subgroups K C H such that VE #£ 0.

Thus, a;lSH ~ SOV ~ Ef‘f}x. In general, ay divides a power of ay if and only if
a;vla(,lSH ~ a;lSH, ie. if }'&}‘ - ]-"f}x. (This is a weaker condition than W being
contained in a multiple of V: for example, take G = Cg and W and V be the two-
dimensional real representation corresponding to rotation by §~27r and %-2#, respectively,
which both have trivial fixed point family.)
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Specializing Proposition 2.19 thus yields: For a G-representation V', localization at ay
preserves O-algebras if and only if ﬁl"d Resg v C Fg’cfsg v forall K C H C G such that
H/K is an admissible H-set.

Example 2.22. Let G = Con and A = A" be the two-dimensional representation of Con
given by rotation by an angle of g—ff We observe that Resgfk A" = AF and Indgf; A=
2m=FX™ unless k = 1. Thus localizing at ay preserves O-algebras if the following holds:
H/K is H-admissible if and only if K # e. In particular, we see that for any commutative
Con-spectrum R, the localization a;lR admits norms from 7r*02k to 72" for 0 < k < m,
but will not admit norms from 7§ unless the target is zero. The example we care most
about is a;lMU((C”)).

These considerations have consequences for the multiplicative behavior of the pullback
functor Péw /Cs Let R be an algebra over a Can /Co-Es-operad O in Con /Cy-spectra.
Denoting the projection Con — Can /Cy by p, we see that p*O is an N-operad for which
I' C Cyn X X, is in F, if and only if T'/(Cy X e) is a graph subgroup of (Can/C3) X X,,.
This means that H/K is H-admissible if and only if K # e. Note further that

P, ;c, R =p"RAEF[Cy) ~ p*Rlay ]

since A\ = 0 unless K is trivial. Using the paragraph above we see that Fe,. /CZR retains
the structure of a p*O-algebra.

Likewise we can apply our considerations to the geometric fixed point functor. With
p*O as above, we see that for a G-commutative ring spectrum R, the localization a;lR
retains an action of p*O and thus ®“2R ~ (a;'R)“* has the structure of a O-algebra.
Thus ®2 R is equivalent to a G /Ca-commutative ring spectrum.

3. The slice spectral sequence and the localized slice spectral sequence
3.1. The slice spectral sequence of MU©) gng pp(©z)

Our main computational tool in this paper is a modification of the equivariant slice
spectral sequence of Hill-Hopkins—Ravenel. In this subsection, we list some important
facts about the slice filtration for norms of M Ug and B Pg, which we will need for the rest
of the paper. For a detailed construction of the slice spectral sequence and its properties,
see [33, Section 4] and [34].

Let G = Cy» be the cyclic group of order 2", with generator . The spectrum MU©)
is defined as

MU .= N§ MUR.

The underlying spectrum of MU (&) is the smash product of 2"~ 1-copies of MU.
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Hill, Hopkins, and Ravenel [33, Section 5] constructed elements
7 € m2 MU
such that

76 MU > 7]G - 71,G T, .. .

*pP2

Here, G - = denotes the set {z,vz,v2z,...,7>  }, and the Weyl action is given by

_ FHE 0<j<2nl—2
VYT = e .oy
(-7, j=2""1—-1.

Adjoint to each map
70 S — iy, MU(G)
2
is an associative algebra map from the free associative algebra

SOl =\ (§)N — iz, MU
Jj=0

Applying the norm and using the norm-restriction adjunction, this gives a G-equivariant
associative algebra map

S°G 7] = N& S°[F;] — MU

Smashing these maps together produces an associative algebra map

A:=8G 71,G To,...| = /\ S°G - 7] — MU,

i=1

Note that by construction, A is a wedge of representation spheres, indexed by monomials
in the 7;s. By the Slice Theorem [33, Theorem 6.1], the slice filtration of MU is the
filtration associated with the powers of the augmentation ideal of A. The slice associated
graded for MU (@) s the graded spectrum

SUG-71,G - To,...| NHZ,

where the degree of a summand corresponding to a monomial in the 7; generators and
their conjugates is the underlying degree.

As a consequence of the slice theorem, the slice spectral sequence for the RO(G)-
graded homotopy groups of MU®) has E,-term the RO(G)-graded homology of S°[G -
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71, G - Ta,...] with coefficients in the constant Mackey functor Z. To compute this, note
that S°[G - 71, G - Ta,...] can be decomposed into a wedge sum of slice cells of the form

|p]
TH,PH
G+ /\Hp S THpl 1”7

where p ranges over a set of representatives for the orbits of monomials in the /7;
generators, and H, C G is the stabilizer of p (mod 2). Therefore, the Es-page of the

integer graded slice spectral sequence can be computed completely by writing down

_pl
explicit equivariant chain complexes for the representation spheres STs17"r

The exact same story holds for norms of BPg as well. By [36, Theorems 2.25, 2.33], the
classical Quillen idempotent MU — MU lifts to a multiplicative idempotent MU —
MUy with image BPg, resulting in particular in a multiplicative C3-equivariant map

MUR — BPR
Taking the norm Ngg(—) of this map produces a multiplicative G-equivariant map
MU@ — pp(©@ = N& BPg.

The exact same technique as the one used in [33, Section 5] shows that there are gener-
ators

7 C G
ti € w5y, BP(Y

such that
782 BP() 2 7, (G 11,G - T, ...

Throughout the paper, the generators ; are chosen to be the coefficients of the canon-
ical isomorphism from the formal group law of the first BPr component to the formal
group law of the second BPg-component. In the case when G = (Y, it is the canonical
isomorphism from the formal group law F, to Fg, where Fp, is induced by the map

BPr ~ BPg A S° — BPg A BPFg,
and F'r is induced by the map
BPg ~ S° A\ BPg —» BPg A BPg.

Remark 3.1. Our specific choice of the formal group law and the generators #; is because
we would like to control their geometric fixed points (see Proposition 6.2). Nevertheless,
we would like to remark that the proofs and formulas in both [33] and [8] work for any
choice of formal group law and the corresponding t; generators we get for W*C;QBP((G»,
as long as the conditions in [33, Proposition 5.45] are satisfied.
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Just like MU ((G)), we can build an equivariant refinement
SO[G T, G - ty,...] — BP(D)

from which the Slice Theorem implies that the slice associated graded for BP() i the
graded spectrum S°[G - #1,G - ta,...] A HZ ).

Remark 3.2. The regular slice towers of MU (@) and BP(E) are isomorphic to their slice
towers in [33], since all the HHR-slices of them are regular slices. For a proof of the slice
theorem in terms of the regular slice filtration, see [35, Chapter 12.4].

Since the slice filtration is an equivariant filtration, the slice spectral sequence is a
spectral sequence of RO(G)-graded Mackey functors. Moreover, the slice spectral se-
quences for MU (&) and BPUE) are multiplicative spectral sequences and the natural
maps between them are multiplicative as well (see [33, Section 4.7]), and the slice spec-
tral sequence for BP(E) i 5 spectral sequence of modules over the spectral sequence of
MU in Mackey functors.

3.2. The localized spectral sequence

In this subsection, we introduce a variant of the slice spectral sequence which we
call the localized slice spectral sequence. This will be our main computational tool to
compute a;\lBP((C“)) in the later sections.

Let Agn—i denote the 2-dimensional real Cyn-representation corresponding to rotation
by (QTLL,) and o denote the real sign representation of Con. Given a Con-spectrum X,
we have an equivalence

EF[Cy] NX = 8Pt AX ~ay! X
for all 1 < ¢ < n. For example, there are equivalences
o 1y _ 1y _ —1
EF[Con] AN X ~ay X =ay, X =a, X,
EF[Con] AX = a}}' X,
EF[Cyn—2] A X ~aj'X.

The following theorem shows that one can compute the homotopy groups of EF [Coi] A
X = a;;an by smashing the slice tower of X with EF[Cyi]. The resulting localized

slice spectral sequence will converge to the homotopy groups of a;:nii X.

Theorem 3.3. Let X be a Can-spectrum, and let {P*} denote the (regular) slice tower for
X. Consider the tower
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{Q°} = {EF[Cy] A P}

obtained by smashing {P*} with EF[Cy:]. The spectral sequence associated to {Q*} con-
verges strongly to the homotopy groups of EF[Coi] A X.

Proof. Let A := Ayn—:. Consider the tower

S®AA X —— lim(S™* A P*X)
—

l
i

SCANP'X —— SAAPEX

|

SEANPTTIX —— SXMAPIX

|

We will first show that the spectral sequence converges to the limit, @1(50‘”‘ A P*X).
Since smash products commute with colimits, we have the equivalence

lim(S** A P*X) ~ %
—

and so the colimit of the tower is contractible. The slices P}’ X satisfy P}X > n for all n.
Furthermore, since S*°* > 0, we also have

SANPIX >

by [33, Proposition 4.26]." Applying Proposition 4.40 in [33] to S°°* A P? X shows that
the homotopy groups

nZOandk<L%j,

T (SN PR X) =0 if
i nX) {n<0andk<n.

This gives a vanishing line on the Fs-page of the spectral sequence. It follows that the
spectral sequence converges strongly to the homotopy groups of the limit, 7, lln(S AN
P*X) [12, Section 5-6].

1 The proof of this result and of the part of [33, Proposition 4.40] we need are still valid for the regular
slice filtration instead of the slice filtration as used in [33].
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To finish our proof, it suffices to show that the map
S>A N X — 1im (S A P*X)
—

is an equivalence.
Consider the cofiber sequence

P X — X — P'X

used in the definition of the slice tower. In the cofiber sequence, P,11X > n + 1 and
P"X < n. Smashing this cofiber sequence with S>* produces a new cofiber sequence

S¥ANP 1 X — SN X — SAA PRX.
Since S>* > 0, [33, Proposition 4.26] implies that
S®¥MAP, 1 X >n+1.
Applying [33, Proposition 4.40] to S** A P,;1X shows that

n+120andk<[7%‘1j,

S®MA Pry1X) =0 if
Tk +X) =01 {n+1<0andk<n+1.
The cofiber sequence above induces the following long exact sequence in homotopy
groups:
7, (SMNP, 11 X) — 1, (S®MX) — 1, (SCMNPX) — 1, (SCMAP 1 X) — - -
It follows from this long exact sequence and the discussion above that
1>0and k < | 2L,
T (S A X) 2, (S A Prx) if T A L]
n+1<0and k <n+1.
This means that for any k, the kth homotopy groups of S>* A X and S>°* A P*X will be
isomorphic when n is large enough. In particular, the map S®* A P"T1X — §®AA PP X

will induce an isomorphism on 7. It is then immediate that the system ), (S™* A P* X)
satisfies the Mittag—Leffler condition and therefore

T, Im (SN A PPX) 2 limm, (S A P*X) 2 m, (S A P X)

for n large.

Another way to observe this is by using the localized slice spectral sequence. As we
have shown, the spectral sequence associated to the tower {Q*} := {S®* A P*} converges
to the homotopy groups of @(SOOA A P*X). Tt takes the form
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slope |G| — 1

contribution from P?(S®* A X), n >0

contribution from P7(S™* A X), m < 0

Bl S L LR EE F

E

Fig. 1. Spectral sequence associated to the tower { EF[Ca:] A P®}.

Ey" = 1, (8% A P2X) = m,_, lm(S™ A P*X).
By [33, Proposition 4.40], the homotopy groups

s (SN N PX)

T

do not contribute to m, liLn(S"O)‘ AP*X) whenn >0and k < L%j, or when n < 0 and
k < n (see Fig. 1). Therefore,

n>0and k<[],

7, im(S>®A A P*X) 2 1, (S®M A P X) if
— n<0and k <n.

For any k, consider the diagram

To(S®MNAX) —— 7, leiLn(SOC)‘ A P*X)

|-

7, (2 A PP X)
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We have proven that when n is large enough (n > k), the vertical arrow and the diagonal
arrow are isomorphisms. Therefore, the horizontal arrow induces an isomorphism

(5% A X) & m, lim (8% A P*X)
for all k. It follows that S™* A X =~ lim(S>* A P*X), as desired. O

From the discussion in [55, Section 1.4] it follows that the localized slice spectral se-
quences of MU and BP(%) (and more generally of G-ring spectra) are multiplicative
spectral sequences.

3.8. Ezxotic transfers

If the transfer of a given class in the slice spectral sequence is zero, it might still
support a non-trivial ezotic transfer in a higher filtration. Understanding these is both
crucial for understanding the Mackey functor structure of the spectral sequence and
helpful to deduce differentials and extensions inside the spectral sequence. While the
concept of exotic transfers is pretty transparent for permanent cycles, it is slightly more
subtle for exotic transfers just happening on finite pages. Following the lead of [6] (in the
case of the Picard spectral sequence), we will give a precise definition of this phenomenon
and show how it behaves with respect to differentials. It turns out that it is no more
difficult to treat a more general setting, which specializes to several different known
spectral sequences and allows also for more general operations than just transfers.

In this subsection, we will first state a general definition of exotic w-operations and
prove some general results. Then, we will specialize to the case of cyclic 2-groups and
prove a variant of [34, Theorem 4.4] that also work for exotic transfers and restrictions
on finite pages.

We consider a tower

ce XL X XL

of G-spectra. Recall that to this we can associate a spectral sequence as follows: Let
X™m = fib(X™ — X"~1). For V a virtual G-representation of dimension ¢, we set E;*V =
Ty _.(X}) and more generally

B =im(my_ X, 7Y o my Xl y).

The differentials d,.: E$Y — ESTV+7=1 are defined as the restrictions of the boundary
maps d: zvstttf(er) — £V7371X51f71 (coming from the cofiber sequence Xttil(rfl) —
t+(r—1) ¢
X2y = X (o9
an ascending filtration. Our setting specializes in particular to the following spectral

). See e.g. [44, Section 1.2.2] for some details in the setting of

sequences:
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(1) Given a spectrum Z with a G-action, set X’ = (7<;Z)®%+. We recover the homotopy
fixed point spectral sequence.

(2) Given a spectrum Z with a G-action, set X* = (7<;Z A EG)PG+. We recover the
Tate spectral sequence.

(3) Given a G-spectrum Z, set X* = P'Z, the slice tower. We obtain the slice spectral
sequence.

(4) Given a Cya-spectrum Z and 1 < j < n, set X* = EF[Cy] A P*Z. We obtain the
localized slice spectral sequence. This will be the main example of relevance for us.

We fix an arbitrary map ¥°G/K — %°°G/H and denote the resulting operation 72 —
75 by w. The most important case for us will be H C K and w = Trg. But equally
well w could be a restriction map, multiplication by a fixed element such as 2, or any
combination of these.

For notational simplicity, we will restrict for our treatment of exotic w-operations to
integer degrees. By suspending by a representation sphere, one can easily translate our
definitions and results to the RO(G)-grading.

Definition 3.4. Let x € E$*(G/H), and let 0 < p <7 —2and 0 < g < p. We may lift the

thtiﬁ_q_(r_z) since by defi-

nition, we can actually lift it to an element in Wt[{tht-i-(?“—Q). If w(z) € thistig—q—(r—z)
lies in Efig’tﬂ)(G/K), we call it a w-operation of x of filtration jump p and page jump
q.

If p > 0, we speak of an exotic w-operation, which, depending on w, might be an

corresponding element in w7 X! ., to an element z € 7/1

exotic transfer, exotic restriction etc.? If the page jump is zero, we omit the mention of
it.

This definition can be illustrated with the following diagram:

z “
T (XD ) — (X ()

Wﬁs(Xfiﬁqu(H)) - 7Tgis(Xtt—(r—m)

w()

2 If w is multiplication by an integer, then the existence of exotic w-operations corresponds essentially to
hidden extensions. The basic issue of dependence on choices is already present in this more classical case.
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Remark 3.5.

(1) The w-operations of filtration jump 0 are just the algebraic w-operations on the E,.-
page as inherited from the Fs-page. This is why we call the w-operations of higher
filtration jump ezotic.

(2) The most classical case of exotic w-operations is the limiting case when r = oco. If
r € E3Y(G/H) and X denotes lim; X, we can actually lift z to 7 € n/L X (which
is further than to m/L X7 as required by the previous definition). If w(Z) # 0, it
must be detected in some ESP'P(G/K) and the resulting element is an example
of a w-operation of filtration jump p on x. In the case when z is just on a finite page,
we can suitably truncate the original spectral sequence to force x to be a permanent
cycle that survives to the F..-page. We will do this in the proof of Lemma 3.7.

(3) Even in the classical situation of the last item, exotic w-operations are in general not
unique; in other words, w(Z) will depend on the choice of lift . With notation as in
the last bullet point, suppose for example that there exists z € E3F%+{(G/H) for
0 < i < p such that 2 supports a non-exotic w-operation. If we lift 2 to z € 7L X,
then w(Z + z) will be detected by w(z) € ESI%*(G/K), while  + 2 lifts z. In
the extreme case, x might even be zero. In Lemma 3.7, we will prove a criterion
that ensures the uniqueness of exotic w-operations. This criterion is often fulfilled in
practice.

(4) A w-operation z = w(Z) of filtration jump p and page jump 0 defines a w-operation
of filtration jump p and page Jump qifdy(z) =+ = dryq—1(2) = 0 by just mapping
zemf GX:LZ: (r_2) down to ;% gXtﬂf 4 (r_a)- All w-operations of page jump ¢ are
of this form.

(5) With = and Z fixed, a w-operation of filtration jump p can only exist if all
w-operations of lower filtration jump vanish. Indeed, if the image of w(Z) in

e SXfig 4 (r_o) lies in Eﬁig’tﬂ’(G/K) it is in the image of X SXfingqHT 2,
The map from this group to /< GX:I:: ; (r_2)_1 factors through m;* gXttj_rg t=o.

The following lemma holds by definition.

Lemma 3.6. Let x € ES4(G/H) be a d,-cycle and denote by T its image in EJ},(G/H).
Let z € Eﬁig’Hp be a w-operation on x of filtration jump p and page jump q > 1. Then
z 1s a w-operation on T of filtration jump p and page jump q — 1.

The following is the uniqueness result for exotic w-operations that we will use.

Lemma 3.7. Letx € ES'(G/H) and 0 < p < r—2. Suppose every class in EHk G/ H)
for 0 < k < p is either hit by a differential of length at most r + k — 1 or supports
a differential of length at most p — k + 1. Denoting by I the image of all (r + p)-

cycles in w(Ey™"P(G/H)) in E,Sig’HP(G/K), then there is at most one class in

E9+p ,t+p

vty C(G/K)/I that is a w-operation of x of filtration jump p and page jump p.
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Proof. Consider the towers X and X* with

X

P G T
X else

and

N X by ittty
X' = Xt_(r_Q) ift—(r—2)<i<t+p.
0 else

The maps X® — X + X* induce maps of spectral sequences E¢* — Ev° < Ee*®. The
first induces isomorphisms ES,’H — F;/’t/ for t’ < t + p and the second isomorphisms
E‘;l’t/ — E;/’t/ for ' > t— (r —2). Via the maps of spectral sequences, differentials in the
original spectral sequence enforce corresponding differentials in the E‘—spectral sequence
in the range ¢ — (r—2)<t/'<t+pIn particular E$*t injects into Eﬁ’t. Note moreover
that the E- spectral sequence converges to m, X (T 2"
Our assumptions imply that B+ "+ (G/H) = 0 for 0 < k < p and moreover Est =
ES:. Thus, we can lift the image of z in E5! uniquely to 72 _X'*P __ modulo ES7+7.

t—(r—2)
The latter term is a quotient of E5 PP = pStPi+p,
P

In summary, we have shown that we can lift = uniquely to = € m/L sti_(r modulo

the image from 7~ SXf_tg Thus, w(7) € 7/ X7 __ is indeed well-defined modulo the

t—(r—2)
image of w(w SXfI;:) w(EyTPP). o

Remark 3.8. One can probably formulate a sharper criterion for the uniqueness of exotic
w-operations, without requiring that all classes between = and its target vanish. The
essential point is to require that there are no interleaving w-operations such as classes
in B3R with 0 < k < p that admit nonzero w-operations of filtration jump smaller
than p — k. Moreover, one would have to enlarge I to include exotic w-operations as well.
We refrain from making this precise.

Proposition 3.9. Let x € ES'(G/H) and z a class with d.(z) = x. Suppose d,q(w(z))
is zero for ¢ < p. Then dyyp(w(2)) is a w-operation of x of filtration jump p and page
Jump p.

Proof. We choose a lift of z € 7 X/ 73%  to Z € nfL  X/7}, 1. As 6(%) in the
diagram below is a lift of x, contemplating the fate of w(Z) passing along the two different
travel paths from the upper left corner to the lower right corner proves the proposition.
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K K yittr—2
- s+1Xt r+1 . &

Tt
s—r,t—r41 K t—r+1 t+p S+p,t+
E? C Ml 1 Xy o713 7Tt s Xt fpry2 = EZTptTe

| |

s—rt—r+1 K t—r41 6 t+p
Erer g 7ths+1X - 7Tt X

s+p,t+p
t—2r4+3—p D E

—r+2 r+p O

While our definition and results so far are very general (and our proofs would also
apply to other settings than equivariant homotopy theory), we will now formulate a
result that is specific to cyclic 2-groups. For the following proposition, both the statement
and the proof are variants of [34, Theorem 4.4], but also work for exotic transfers and
restrictions on finite pages and circumvent a mistake in [34, Lemma 4.5].%

Proposition 3.10. Let G be a cyclic 2-group, H C G an index 2 subgroup, and V €
RO(G).

1) Let y € with a,y = 0 € ’ . en y 18 an (exotic
L EX(G/G) with 0 € EXPYTG/G). Th ' '
transfer of filtration jump (at most) r — 1.

(ii) Let z € ETH(G/H) with Tr( )=0¢€ ETH(G/G) Then z is an (exotic restriction)

from EiJrY D,V =(r-D+(1-0) of filtration jump (at most) r — 1.

Proof. For the first part, by shifting the tower and applying suspension if necessary, we
can fix the bidegree of y to be (r—1,7—1). The term E:;ll’Pl (G/@G) injects into 75 X~
Smashing the long exact sequence associated with the cofiber sequence G/H, — S° 2%,
S? with X ~1 and taking homotopy groups, we get the long exact sequence

—1 ao —1 Res 1 Tr ac,
GXg 1 G XT 1 ﬂ_é{Xg 1 GX’I" 1 G XT 1

From this long exact sequence, we see that a,y = 0 implies y = Tr(w) with @ € mg X
By definition, this defines an element w € E +1(G /H) such that y is an exotic transfer
of w of filtration jump r — 1.

3 With notation as in the cited lemma, a counterexample is the following: Fix an object A. Take A to
be £ 1A, zero or A, depending on whether i + j is smaller, equal or larger than 2. The a;,; and b; ; are id
if possible, with the exception of a1 being an arbitrary self-equivalence of A, which is not equivalent to
+id. Take further W = A and fs = id. Then f; exists (and can be taken to be id), but f; and fs cannot
simultaneously exist. Strictly speaking, the cited lemma is ambiguous on whether it claims that f; and f2
exist simultaneously if fi exists, but this seems to be the way that it is later used in [34, Theorem 4.4].

4 The “at most” is actually unnecessary here, as the proof shows that y is an exotic transfer of filtration
jump r — 1. We write it for emphasis though since y might be very well also an exotic transfer of smaller
filtration jump. This is related to the non-uniqueness described in Item 3 of Remark 3.5. Thus the statement
is best used in conjunction with a uniqueness result like Lemma 3.7.
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For the second part, we can fix the bidegree of z to be (r—1,r— 1) by shifting the tower
and applying suspension if necessary to view z as an element in 77 X~ ! Using the long
exact Sequence induced by G/H, — S° 225 S again, we see that z is the restriction of
some ¥ € 7 X7, By definition, this defines an element v € ES+11 ?(G/G) such that
z is an exotic restriction of v of filtration jump r — 1. O

Let us give an example of a possible workflow working with exotic transfers, which
we will apply in Proposition 5.19.

Workflow 3.11. Let G be a cyclic 2-group and H C G of index 2. Let y €
Estr=Litr=1(GQ/G) and ' > r. We assume the following:

(1) aqy is nonzero and is hit by a d,-differential;
(2) y persists to a nonzero class in the F,.,_1-page, which we denote by the same name;
3) every class in ESTRIR(G/H) for 0 < k < r — 1 is either hit by a differential of
2
length at most r + k — 1 or supports a differential of length at most r — k;
(4) y e B3 7" is not the image of a (2r — 1)-cycle in By which is the transfer of

Lt4r—1
a class in EHT e

By (1), ary vanishes on E,1. Thus, by Proposition 3.10, there exists = € E>,(G/H)
such that y € EZT]~ LHTH(@G/G) is an exotic transfer of z of filtration jump 7 — 1.
Applying Lemma 3.7 in conjunction with (3) and (4), we see that « cannot be zero (as
zero is the unique exotic transfer of zero under our assumptions); in case that there is
only one non-zero element in the relevant bidegree, this already uniquely determines x.

Suppose now further that:

(5) = =dy (a);
(6) dpig(Tr$a)=0for 0<qg<r—1.

Then Proposition 3.9 implies that d,y,_1(Tr%(a)) is an exotic transfer of z in the same
degree as y € ES! vi+r—1 and thus must be y by Lemma 3.7 again.

3.4. The behavior of norms

This section is about the behavior of norms in the (regular) slice spectral sequence
and its localized variant. We will formulate a generalization of [55, Chapter 1.5] and then
discuss how it applies to Ullman’s original setting (the regular slice spectral sequence),
to the localized slice spectral sequence and the homotopy fixed point spectral sequence.

We will first work in an abstract setting: Let (X*) be a tower of G-spectra and E;"*
be the associated spectral sequence as in the preceding subsection. Set X>° = lim; X*
and X, = X2°.
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Let H C G be a subgroup of index h. We assume that we have maps Nan — Xhn
and Nngj — X,’L’;f that are (up to homotopy) compatible with the maps X,, — X,,_1
and X,, — X7. (Here we leave the restriction maps implicit.) We call this a norm

. hs,Ind$ V+h
structure. It induces norm maps N§: BV — ghoindia VEhs,

Proposition 3.12. Let © € E2(G/H) be an element representing zero in E,yo(G/H).
Then N§(x) represents zero in E,p12(G/G).

Proof. The proof is the same as that of [55, Proposition 1.5.17]. O

Example 3.13. Our first example of this setting is the regular slice tower of [55], which
coincides with the slice tower of [33] for norms of MUg and BPgr — thus there should be
no danger of confusion if we use the same notation P*X for the regular slice tower.
Ullman constructs in [55, Corollaries 1.5.10 and 1.5.11] for every H-spectrum X natural
compatible maps NSPT,,X — PnhNgX and NgP]LLX — PT%’NSX . Moreover the square

NSP,X P NS X

| |

ngn—lx - Phn—hNgX

commutes, as NG P, X is > hn by [55, Corollary 1.5.8] and both maps into NG P, X —
P;m_hNSX are compatible with the respective maps to NgX .

Let R be a G-spectrum with a map Ng Resg R — R. The composite Nan Resg R —
PnhNICj Resg R — P,n R and its analogue for P, define a norm structure on the regular
slice tower of R. This applies in particular if R is a G-commutative ring spectrum.

Example 3.14. Let R be a G-commutative ring spectrum with G = Caon. We will define
a norm structure on the tower X* = a;lPiX defining the localized regular slice spectral
sequence. Using the observations above for the regular slice spectral sequence, it suffices
to produce natural maps N Resg a;anR — a;\lNg Resg Py R and similarly for P
As Ng and Resg are monoidal, by Lemma 2.18 it thus suffices to provide a natural map
a;lSG ~ a;lNgSH — Ng Resy ayx-1Sqg ~ a;nhg Resd AS(;

As observed before, Ind$ Res$ A is a multiple of A if H # e and contains a trivial
summand if H = e. This produces the norm structure if H # e. In contrast for H = e,
all norms would have to be zero.

We remark that we have not used the full strength of our considerations in Section 2.5
here, but we expect that these will be necessary for deeper considerations about norms.

Example 3.15. Lastly we define a norm structure on the homotopy fixed point spectral
sequence. Observe first that there is for H-spectra X a natural map
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NGXPH: o (NG XEH+)EG Z (NG X)EC+,

where the latter map is an equivalence as ReseG NEX — ReseG NEX EHt s an equiva-
lence.

Recall that the tower defining the homotopy fixed point spectral sequence for a spec-
trum R is defined by X" = (1<, R)¥¢+. We observe that we have natural equivalences
X, ~ (P,R)F% and X ~ (P"R)P%+ for (P"R),, the regular slice tower. Combining
these equivalences with the natural map from the last paragraph, the norm structure
from Example 3.13 induces a norm structure on the homotopy fixed point spectral se-
quence.

We will use the following proposition without further comment.
Proposition 3.16. Both in the regular slice spectral sequence and in the localized regular
slice spectral sequence of a G-commutative Ting spectrum, the norms are multiplicative:

Nfi(zy) = N (x)Nf (y).

Proof. This follows from the commutativity of

NS(PoX APY) ——— NG (PpinX AY)

| |

thNgX AN PhnNgY E—— th+;mNg(X AN Y)
for G-spectra X and Y. This in turn follows as there is up to homotopy just one map
NS(PpX APY) = Pomimn NG(X AY)

compatible with the maps to NG(X AY) as N§(P,X A P,Y) > h(m + n) by [55,
Corollaries 1.4.2 and 1.5.8]. O

Given two towers (X") and (Y™) with norm structures, a morphism of towers (X") —
(Y™) is compatible with the norm structures if the diagrams

NSX, —= Xy,

L

NSY, —= Yy,

commute for all n and similarly for X' and Y,'. Such a morphism induces in particular
a morphism of spectral sequence that is compatible with the norms on the FEs-terms.



L. Meier et al. / Advances in Mathematics 412 (2023) 108804 33

Example 3.17. Given any spectrum X, there is a natural map from the regular slice
tower to the tower defining the homotopy fixed point spectral sequence, namely P*"X —
(P"X)EC+. In case that X is a G-commutative ring spectrum (or more generally a
spectrum admitting a map Ng RestX — X)), this map of towers is (essentially by
construction) compatible with the norm structures introduced in Example 3.13 and Ex-
ample 3.15.

3.5. Comparison of spectral sequences

When computing localizations of a norm, we can apply different spectral sequences.
For instance, in the isomorphism

EF[H|ANGX ~ PG (NS (X))

of Theorem 2.9, the left hand side EF[H]AN$X can be computed by the localized slice
spectral sequence we just built, while the right hand side can be computed by the pullback
of the (G/H)-equivariant slice spectral sequence of NE MHGH X | In this section, we give
a comparison map between these spectral sequences, which we will use in understanding
the homotopy fixed points and the Tate spectral sequence of NCG THeH x|

Such comparison can only be made by regrading the slice tower. In the cases of
relevance for us this takes the shape of the following doubling process: Let P® be a
tower, we define ZP°, the doubled tower of P°®, as

9Pt .= pr

for e = 0,1. We also use Z as a prefix of a spectral sequence obtained from a tower as
the spectral sequence of the doubled tower.

In the following theorem we will use both the slice tower P*® and the pullback functor
P, /Cs from Section 2.2; the double usage of P will hopefully not cause any confusion to
the reader.

Theorem 3.18. Let G = Con, X € Sp& and Y = ®“2X € Sp/C2. Let P*X and P°Y be
their slice towers in the corresponding categories. Then there is a commutative diagram
of towers

P‘JX — P0, 9P°Y
EGAP*X
such that the map EGAP*X — P(*;/Cz D P*Y converges to the G-equivalence EGANX —

PLe,Y.
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In particular, the induced map on the Ca-level spectral sequences of P*X —
Pé/cz P P°Y converges to the geometric fized points map

dC2 . 7T€2X — Ty Y.
Proof. To construct the map P*X — P /Cs 2P°Y, consider the composition
X = ay' X ~ Phe,Y = Py, 2P,

We only need to show P, /Cs DP?Y <gspice 2i for each i (the analogous statement for
9 P21 follows from this). This can be checked by testing against slice cells of dimension
more than 2i. By induction we can assume that our claim is true after restriction to any
proper subgroup of GG, so we can ignore induced slice cells. Thus it suffices to check that
[SkPG,PC*;/CzQPQiY]G = 0 for k|G| > 2i.

The following equivalence of G-spectra is essential to our proof:

EG N S*6 ~ Py, 5*061C2,

It comes from the fact that both sides are equivalent to the representation sphere

So°AtrPc/cy  The left hand side of the equivalence is a localization of a slice cell of

dimension k|G| while the right hand side is a pullback of a slice cell of dimension @

This difference is the reason of doubling the tower of Y.
Using this equivalence, we have a series of equivalences of mapping sets:

(5506, P 10, 2P*Y g = [EG A S*¢, PG 0, 7P*Y ]
= [P0, S0/, PG )0, PP*Y ]
>~ [Shreres 9 PY |y
~ [Skre/c PIY )y
0.

2

i

I

The change-of-group isomorphism comes from the fact that Pg /Cs is fully faithful on
homotopy categories, and the last isomorphism is because S*PG/c: is a slice cell of di-
mension > i in G/Ca-spectra.

By construction, the map P*X — P(*;/C2 2 P°Y converges to the map X — a;lX ~
Pé/CQY. Since everything in the tower Pé/c2 2P°Y is already ay-local, the tower map
factors through the ay-localization EFG A P*X. O

Proposition 3.19. Let G = Cyn and X € Sp© a G-commutative ring spectrum. Then the
tower PC*:/Cz PP*®“2 X has a norm structure in the sense of Section 3./ and the maps

P*X — P50, 2P*®*X  and ay'P*X — PG 0, 7P 92X
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from Theorem 3.18 are compatible with norms from subgroups containing Cs.
Proof. Let H C G be a subgroup of index h such that Cy C H. Then we obtain maps

NP0, Pan® X ~ P, N 62 Pon @2 X = Pl Ponn @ X

and

NG PG e, Pn® X = PG o, Nt o2 Pan 092X — PG, P @ X,
which are compatible in the necessary sense. Here we use the norm structure on the
regular slice tower from Example 3.13, the G /Cy-commutative ring structure on ®¢2X
from Example 2.22 and the commutation of norms and pullbacks from Proposition 2.14.
To show that P*X — P, /Cs PP*®“2 X is compatible with norm structures, note first
that the diagram

G G px* C. ~ D% G/C2 zC
NgX —— NHPG/Cch) 2X_PG/C2NH/022(I) 2 X

X P, 2 X

commutes since X — Pg /C2¢CQX ~ a;lX is a morphism of O-algebras by Defini-
tion 2.16 and Example 2.22, where O is an N,-operad arising as the pullback of a
G /Co-E-operad. Next consider the diagram

dC:NGP, X — > N9/ P, 002X — = N9/l X

H/CZ H/C2
®C2 Py, X Popn®2 X D¢

The outer rectangle is obtained from the previous diagram by applying ®“2 (and
using the maps P, X — X and P, X — X) and thus commutes. Given the connec-
tivity estimate [55, Corollary 1.5.8] and the universal property of Pap,, we see that
<I>C2NﬁPnX — ®C2X factors through Py, ®°2 in an essentially unique way, so the
left square also has to commute. By the adjointness of ®> and P /Cs this implies the
commutativity of

NGP, X ——= NGPg o, Pin®% X

P! l

50y Ponn @2 X

Prn X
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The proof of the commutativity for the corresponding square for P is completely anal-
ogous. The ay-inverted case follows again because the target is ay-local. O

4. The localized slice spectral sequences of BP(%): summary of results

We now turn to analyze the localized slice spectral sequence of BP(S) for G = Can.
From now on, everything will be implicitly 2-localized. In this section, we list our main
results and give an outline of the computation. Detailed computations of the results
stated in this section are in Section 5.

As we discussed in Section 3, the Slice Theorem [33, Theorem 6.1] implies that the
slice associated graded of BP(2") g

HZIG 1,G 1, .. ],

where t; € W(C;%il)szP((CZ" ) (see also [33, Section 2.4] for details).

For the rest of the paper, we use A for the 2-dimensional real representation of Con
which is rotation by (2,7%), and o for the 1-dimensional sign representation of G. We
use o for the sign representation of the unique subgroup Cy in G. Let ¢ < j < n, we will
use Resgz, Trgj and N22: for restrictions, transfers and norms between Cy: and Cy; as
subgroups of G. If their subscript and superscript are omitted, they mean the restriction,

transfer and norm between Cy and Cjy.
Theorem 4.1.

(1) Let G = Can and H = C5 be the subgroup of order 2 inside G. There is a RO(G/H)-
graded spectral sequence of Mackey functors a;l SliceSS(BP(E)) that converges to
the RO(G/H)-graded homotopy Mackey functor of NeG/HHIFQ. The Es-page of this
spectral sequence is

a;lHZ*[G-th'fg,“'].

(2) The integral Es-page of a;l SliceSS(BP((G))) is bounded by the vanishing lines s =
(2" —=1)(t—s) and s = —(t — s) in Adams grading. In other words, at stem t — s, the
classes with filtrations greater than (2" —1)(t — s) or less than —(t — s) are all zero.

(3) On the integral Es-page, the ax-localizing map

SliceSS(BP(D)) — ! SliceSS(BP())
induces an isomorphism of classes in positive filtrations. The kernel of this map con-

sists of transfer classes in SliceSS(BP((G))) from the trivial subgroup in filtration 0.
These classes are all permanent cycles.
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Proof. By Theorem 3.3, a;\l SliceSS(BP()) computes the homotopy of EG A BP(G),
By Theorem 2.9 and the fact that ®“2(BPg) ~ HIF,

EGABP(©) ~ P o (N HE).
Since the Fs-page of the slice spectral sequence of BPU) has the form
HZ,|G-t1,G - ta,.. ],
the Ex-page of a) ' SliceSS(BP(D) is
a\'HZ, |G 1,G 1a,..]

Together with Theorem 2.9 and Theorem 3.3 this proves (1).

The top vanishing line s = (2" —1)(¢—s) follows from the fact that m,(S**¢tAAHZ) =
0 for k,1 > 0 and i < k (see [33, Theorem 4.42]). For the second vanishing line y = —z,
note that in stem ¢ — s, classes in filtration less than —(¢ — s) are contributed by slices
of negative dimension, but BP() has no negative slices. This proves (2).

To prove (3), by unpacking the description of the Es-page, we need to show that for
k,l > 0, the ay-multiplication map

ay : w8 (kPN N HZ) —s 78 (SkPe+ DA A H7)

is an isomorphism for k& < i < k|G| + 2] and is surjective with kernel consisting of
transfer classes from trivial subgroup for ¢ = k|G| + 2. Using the cellular structures
and their corresponding chain complexes described in [34, Section 3], we see that when
k < i < k|G| + 2l, a) induces isomorphism on the cellular chain complexes, therefore
it induces isomorphism on homology for k < ¢ < k|G| + 2 and surjection on homology
for i = k|G| + 21 with the kernel exactly the image of Tr?". Since the underlying tower
of the slice tower is the Postnikov tower, all the class in the trivial subgroup and their
transfers are permanent cycles. O

Remark 4.2. In fact, (2) and (3) of Theorem 4.1 hold in a greater generality. For instance,
they are true for any (—1)-connected G-spectrum. We will investigate properties of the
localized slice spectral sequences in a future paper.

By [42] and [14], all Con norms of HIFy are cofree, therefore we will not distinguish
between their fixed points and homotopy fixed points.

Corollary 4.3. The 0-th homotopy group of (N2 HF5)"Can—1 is isomorphic to Z./2".

Proof. In a;\l SliceSS(BP(%)), the only Mackey functor contributing to the 0-stem is
mo(ay ' HZ), and we claim that
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7§ (ay ' HLZ)(G/G) = Z/2".

Indeed, the maps 7§’ (S™ A HZ) — n§ (S DA A HZ) are isomorphisms for n > 1 and
7§ (S*AHZ) is the cokernel of the transfer Tr? : 7§ HZ — n5?" HZ, i.e. of multiplication
by 2" on Z. O

For the rest of the paper, we focus on the case G = Cy.

Theorem 4.4. The first 8 stems of w&t (a;lBP((C“))) ~ 12 N2HF, are shown in the
following chart:

il o1 ]2 3 4[5 6 7 8 \
m | z/alz)2|z/Az2ez/2 |22 22| 2/402/2 | 22626 L/26L/2 | /26 L/26Z/2 |

On the Eo-page of the localized spectral sequence, the black subgroups are those generated
by non-exotic transfers from A, = m.(HFy A HF3), and the red subgroups consist of
everything else. (For interpretation of the colors in the text and figures, the reader is
referred to the web version of this article.) For the Mackey functor structure, see Fig. 0.
Modulo transfers from A, the homotopy groups have the following generators:

(1) w1 is generated by n = N(t1)ara,, the image of the first Hopf invariant one element
under the composition S — (BP(C))Ca _, (a/(lBP((C”))C4 ;

(2) m is generated by g = 2u,\aj1;

(3) w3 is generated by v = N(t2)a3a3, the image of the second Hopf invariant one

o’
element;

(4) me is generated by ”72 =2ula,’?;
w7 15 generated by N(t3)alal an ta)urus,asa,, and one of them detects the

5 ' ted by N(t3)asal and N(t 2 d them detects th
third Hopf invariant one element o.

(6) 7g is generated by Try (fgf?a;) + Tr5(Est1ad,) + N(t2) N (t1)u3,ab.

In [51], Rognes shows that the unit map S° — (NZHTF,)"“2 induces a splitting
injection on mod 2 homology as an A,-comodule thus a splitting injection on the Fs-
page of the Adams spectral sequence. Therefore, the ring spectrum (NZHF,)"¢? ~
(a;lBP((C“)))C‘l detects all Hopf invariant one elements. They all restrict to 0, since
the underlying Adams spectral sequence of HIFs A HFs is concentrated in filtration 0.
Therefore, they are detected by red subgroups in the corresponding degree.

The proof of Theorem 4.4 is by computing a;l SliceSS(BP((C4))) and is given in the
next section. The most relevant differentials in the spectral sequence are listed in the
table below.

5. Computing the localized slice spectral sequences of BP(G)

In this section, we compute a;l SliceSS(BP((C4))) and prove Theorem 4.4. Our ap-
proach is similar to that of [34] and [31]. When going through the computations in this
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Differential | Formula Proof

ds ds(uz0,) = (];2 gljr 71) Proposition 5.8
ds(ux) = Tr(ag t1)

ds ds(uzy) = N(fl)akai Theorem 5.7

ds ds(u3) = N(1)urasa, Proposition 5.11

dr dy (ugﬂz) = a;z (t2 + 4 ~ia) Theorem. 5.4 ‘
d7(2u?) = Tri(a’, 2) Proposition 5.16

dr d7(uy) = Tra(FiuZ, al ) Proposition 5.18

dis diz(uya,) = N(t2 + T3 + v(f2))u2_al | Proposition 5.22

dis di5(2u}) = Trg(fgza},f) Proposition 5.23

section, the following guiding principles are useful to keep in mind. We hope these points
would serve as a road map that will be helpful to the readers who are new to these types
of computations.

(1) The Es-page of the spectral sequence can be obtained by computing the RO(Cy)-
graded homotopy groups of a;lH Z.

(2) The Cs-level spectral sequence, a;; SliceSS(BPr N\ BPR), is easy to compute, as it
is completely determined by the Hill-Hopkins—Ravenel slice differentials.

(3) In the positive cone part of a; ' SliceSS(BP(C4)) (which includes the entire integer-
graded spectral sequence), the only algebra generators that are not permanent cycles
are essentially classes of forms uy and uya,. Therefore, we only need to focus on
finding differentials on these classes, and then use the Leibniz rule. This is why even
though the integer-graded spectral sequence is the computation of interest, we often
move to analyze certain classes in RO(Cy)-degrees.

(4) Many of the differentials are proven by using the Ch-level spectral sequence, and
using the restrictions and transfers on the Es-page. More precisely, if one knows that
dr(Resg;f x) = y, then x must support a differential of length at most r. Similarly,
if d.(z) = y, and Trg;‘ (y) is not zero on the Es-page, then it must be killed by a
differential of length at most r.

(5) The remaining differentials and extension are proven by using the Hill-Hopkins—
Ravenel norm and the theory of exotic restrictions and transfers.

We would like to also remark that the differentials proven in this section determine all
the differentials in the integer-graded spectral sequence in our range of interest. There
are other differentials in the RO(Cy)-graded page (both in the positive cone and outside
the positive cone) that don’t influence the integer-graded page of the spectral sequence.

5.1. Computing the FEs-page

We will first give a complete algebraic description of the Fs-page of a;\l
SliceSS(BP((C“))) in terms of generators and relations. To do so, by Theorem 4.1, we
need to describe the Ci-homotopy groups E*(a;;H Z) and the Cy-homotopy groups
Ty (ay HZ).
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Proposition 5.1. We have

my(ay HL) = Falusg,, af)].
The Mackey functor structure is determined by the contractibility of the underlying spec-
trum.

This proposition is proved by a standard Tate cohomology computation, see [22,
Section 2.C] for details.
Let S be the subring of

R= Z/4[ag,ugtal,uAaxl]/(Zag,u,\axlag = 2Us,)

generated by the elements {aq,uzq, uray ', 2ub,, ub uray' |k < 0}, and let M =
Z/Q[ui,u)\axl,aﬂ]/(u%, aZ®) be considered as a module over S. Here, R[z*1]/(2>) is

g

the cokernel of the map R[z] — R[z*!].
Proposition 5.2. We have
7§40y HE) = (S & S M)[ad),

where S @ 1M is the square-zero extension of M over S of degree —1.
The Green functor structure is determined by the following facts:

(1) The Cy-restriction of a;\lHZ is the spectrum a;21HZ in Proposition 5.1.
(2) The Cs-restrictions of the classes uy and ug, are usy, and 1, respectively.
(3) Given V € RO(Cy), there is an exact sequence (see [3/, Lemma 4.2])

Tr2 04 Res2 02
X-->7FVX->VUX~‘—> v1X

In other words, the kernel of a,-multiplication is the image of the transfer from Cs
to Cy, and the image of a,-multiplication is the kernel of the restriction from Cy to

Cs.

The proof of Proposition 5.2 and a more explicit presentation of the Mackey functor
are given in [57, Proposition 6.7]. Fortunately, in most of the paper we only need the
“positive cone” of the coefficient Green functor, that is, the part % = a 4+ bo + ¢ for
b < 0. The Green functor structure of this part is computed in [34, Section 3]. However,
the other part also plays an important role on the computation, see for example the
proofs of Propos1t10n .14 and Proposition 5.21.

The relation uya, a(7 = 2uy, and its integral version uya2 = 2us,a, are commonly
called the gold relation (see [34, Lemma 3.6]).



L. Meier et al. / Advances in Mathematics 412 (2023) 108804 41

Symbol o A v
Lewis Diagram | Z/4 7)2 Z]2
) f Ja| o g Jo o g E
Z)2 Z)2 7)2
O 0 1y
0 0 0
Symbol . ° .
Lewis Diagram | Z/2 72 0
(0] () | ()
0 | Z/2Ci/C] | Z/2
O 0 1y
0 0 0

Fig. 2. Table of C4-Mackey functors.

6|V|eloplo]| | O] O] |9
REEnEnEnGE:

A T vefeT el Tel Tol o
vi¢l[s|s]s|e|s]e]o]®

2 AN I - I e
slefe[s]s]els]e

0 sl el Tl [¢
— I =11 =11

e|v|e|P|®®

2 sl [l [0
s[els]e

—4 d‘)
sle

—6 )
-6 -4 -2 0 2 4 6
Fig. 3. m, (a5 'HZ) for —6 < a,b < 6.

Fig. 2 gives the Lewis diagrams (first introduced in [38]) we use for Cy-Mackey func-
tors, where restrictions Resg map downwards and transfers Trfl map upwards. These
notations are consistent with [34, Section 5].

Fig. 3 shows 7, ,,(ay ' HZ) in the range —6 < a,b < 6. In the figure, the horizontal
coordinate is a and the vertical coordinate is b. Vertical lines are a,-multiplications,
where solid lines are surjections and the dashed lines represent maps of the form Z /2 «—
Z/4.

Although we mostly care the most about the Cj-equivariant homotopy groups of
a;lBP((C“)), there are two advantages for computing a; ' SliceSS(BP(C4)) as a spectral
sequence of Mackey functors:

(1) The Mackey functor structure can transport certain differentials on the Ch-level to
differentials on the Cy-level.
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(2) The Mackey functor structure and d,-differentials can result in exotic extensions of
filtration  — 1 (see Section 3.3).

We will see (1) in the computations of ds, d7, and dys-differentials below. (2) will be
used to prove certain extensions forming the (Z/4)s in Theorem 4.4, see Propositions
5.14 and 5.21
Notation 5.3. Let V' € RO(H) be a virtual representation that is in the image of the
restriction i}, : RO(G) — RO(H). Then for any preimage W of V, there is a transfer
map

GW | _H G
Try "y X = X,

as a part of the homotopy Mackey functor structure. In our computation we will omit
writing W when it is clear from the context what W is.

5.2. The Cy-spectral sequence

We start our computation with the Cy-underlying spectral sequence of a;l
SliceSS(BP(C1)).

Theorem 5.4.

(1) The underlying Co-spectral sequence of ay * SliceSS(BP(CD)) s a,,) SliceSS(BPg A
BPR). Its Es-page is

a;;HZ*[ﬁ,’ﬁl,f%’Yi% o ]

More precisely, the Es-page of the underlying non-equivariant spectral sequence is
trivial, and the Es-page of the Cy-spectral sequence is

FQ[’“’QG‘Q? ][t1;7t1,t277t27 ]

The elements ua,,,t; and yt; have filtration 0, while a,, has filtration 1.°
(2) All the differentials in a} SliceSS(BPr A BPr) are determined by as,, t; and vi;
being permanent cycles, the differentials

ok— 1 2k+1_1
d2k+171(’u’202 - Ztk z’yt’b? Z 1

5 We recall the convention here that the filtration of an element in ™ P"X in the slice spectral sequence
for some X is in filtration n — dimg V. In particular the classes ay will bc always in filtration dimg V.
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and the Leibniz formula (for notational convenience, we let 1o = ~vtg = 1). The
Eskv1-page has the form

k — —
FQ[U%UQ,G/fg][t]_,’Yt]_, o ']/(617627 e ,Ek)

ko o
where U, = > tp_; V.
i=0
(3) The Eo-page of a} SliceSS(BPr A BPR) is

F2[a¢:;t21][fl”yz1’ ’ "]/(517@2’ o )

In particular, in the integral grading, all the stem-n non-trivial permanent cycles are
located in filtration n.

Proof. For (1), note that since i’62BP((C4» = BPr A BPg, the Cs-underlying slice
spectral sequence of SliceSS(BP(“4)) is SliceSS(BPg A BPg). Moreover, Qg an = aZ,.
Therefore inverting ay in the Cy-spectral sequence inverts a,, in the underlying Cs-
spectral sequence.

For (2), we use the Hill-Hopkins—Ravenel slice differential theorem [33, Theorem 9.9]
and the formula in [8, Theorem 1.1] that expresses the v;-generators in terms of the #;-
generators (our v; and ¢; are ficz’ and fiC‘L respectively in [8]). The Hill-Hopkins—Ravenel
slice differential theorem states that in the slice spectral sequence of BPg, there are
differentials

ok=1\  _ ok+1_3
dor+1_1(u3,, ) = Tra, , k>1

The formula in [8, Theorem 3.1] shows that under the left unit map BPr — BPr A BPg,

i

k

_ L _ _

Uy = E tp_;vt: mod (2,71, -+ ,T—1).
i=0

The left unit map induces a map
a,} SliceSS(BPr) — a} SliceSS(BPg A BPR)

of spectral sequences. We will use naturality and induction to obtain the differentials
and the description of the For+1-page.

To start the induction process, note that the description of the FEs-page is al-
ready given in (1). Now assume that we have obtained a description of the Esu-
page. For degree reasons, the next potential differential is of length exactly 25+1 — 1.
The differential formula for a) SliceSS(BPg) above shows that for any polynomial
P € Falty,vt1,--+]/(v1,02, - ,Uk—1) and [ an odd number, we have the differential
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Fig. 4. The integral Es- and E.-pages of a;; SliceSS(BPr A BPR).

d2k+1_1(Pung2) = Pﬁkugzgllazfj—l_l
in a;} SliceSS(BPr A BPR). The source and the target of this differential are always
non-zero on the F,x-page because the sequence (U7, Da, - --) is a regular sequence in the
polynomial ring Fa[t1,~t1, - - -]. Taking the quotient of the kernel and cokernel of this
differential, we see that the Fqr+1-page has the above description.
(3) is a direct consequence of (2) by letting k — oco. See Fig. 4 for the integral Es and
F-pages of this spectral sequence. O

Remark 5.5. In Proposition 6.2 we show that the Cs-geometric fixed points of the t;

and ~t; generators are the & and (; generators in the mod 2 dual Steenrod algebra A,.
Therefore, the formula

ko

_ 2t _ _

vy = E t_iyti mod (2,71, ,U_1)
i=0

ko
reduces to Milnor’s conjugation formula 0 = Y &2 .¢; in A,.
i=0
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5.8. The Cy-spectral sequence: ds, ds and dr-differentials

The rest of this section is dedicated to computing the first 8 stems of the Cy-Mackey
functor homotopy groups of a;lBP((C4)). The result is stated in Theorem 4.4. By Sec-
tion 3.4, we are free to use the norm structure from Cs to Cy in the localized slice spectral
sequence.

As a consequence of the slice theorem [33, Theorem 6.1], the 0-th slice of MU ()
is HZ and mgMU (@) =~ 7. Therefore, every Mackey functor in the (localized) slice
spectral sequence and the homotopy of any MU(%)-module is a module over Z. By [53,
Theorem 16.5], we have the following proposition.

Proposition 5.6. Let K C H C G, and x be an element in the G/H-level of a Mackey
functor either in the (localized) slice spectral sequence or the homotopy of a MU(G)-
module, then

Tri(Restt(x)) = [H : K]z.

Before getting to the page-by-page computation, we note that all the differentials on
the classes u%f, for k > 0 are already known by the work of Hill-Hopkins—Ravenel. Their
theorem is originally formulated for the slice spectral sequence for MU(C4) and the exact
same statement and proof carries over to SliceSS(BP(“4)) and ay! SliceSS(BP(C4).

Theorem 5.7 (/33, Theorem 9.9]). For k >0 and i < 23 — 3, dy(u3.) = 0 and

K _ k+1_ k+2_
dyrrs_3(u3,) = N(fpy1)ay  ~tad

Now we start the page-by-page computation. First, note that for degree reasons all
the differential lengths will be odd.

Proposition 5.8.
d3(ux) = T (t1a7,)
Proof. By Theorem 5.4, the restriction Resj(uy) = ugs, supports the differential
d3(uge,) = (B2 + 1)),

in the Cy-spectral sequence. By naturality and degree reasons, the class u) must also
support a ds-differential in the Cy-spectral sequence whose target restricts to the class
(t1 +~t1)a2,. The only class that restricts to (£; +~¢1)a3, with RO(Cy)-degree 1 — X is
Try(fad,). O

In Fig. 5, this proposition gives all d3 coming out of o, namely u)\agl at (2,—2),
N(t1)2u\ugsay at (6,2) and ulay® at (6, —6).
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Corollary 5.9. Let P be a polynomial of t;, vl;, ay,, then
ds(u3 1 Try Y (P)) = w3 Ty VA (P +91)ad, )
for all k > 0 and any V € RO(Cy) restricting to the RO(Cq)-degree of P.

Proof. This is a direct consequence of Proposition 5.8, the Frobenius relation [34, Defi-
nition 2.3] and the Leibniz rule. 0O

As displayed in Fig. 5, this corollary gives all other dz-differentials. We now explain
them in detail.
In terms of Mackey functors, the ds-differentials give the following exact sequences:

ds. . _
0—>e—0-6—>e—0
. ds A
0—e —e—0
_ ds. .
0—e =6 —V—0.

Here are examples of d3-differentials corresponding to each exact sequence above:

ds(uy) = Trs(f1ad,)
ds(Tra(Frag, Jun) = Tra(fr (F1 +9E1)ay,)

d3(U20,00,) = (t1 + 7{1)0'3'2'

Note that the last differential is a Cs-differential, but it has an effect on the Cy-level
Mackey functor structure. By results in Section 3.3, the ds-differentials also give certain
exotic restrictions of filtration jump at most 2 (that is, the image of the restriction is of
filtration at most 2 higher than the source). For example, consider the element N (¢;)uya,
at (3,1). This class is a d3-cycle. By Proposition 5.8, the class N (t;)uy supports the d3-
differential

ds(N (F1)uy) = Tra(TiyEral,).

By Proposition 3.10, the class f?vfla; receives an exotic restriction of filtration jump at
most 2 in integral degree, and the only possible source is N (f1)uya,. The same argument
applies to all 2-torsions classes with (t—s, s)-bidegrees (344i+4j, 1+4i—45) for ¢, > 0.
The exotic restrictions are represented by the vertical green dashed lines in Fig. 5.

Remark 5.10. These exotic restrictions are the first family of examples of an interesting
phenomenon in the RO(G)-graded spectral sequence of Mackey functors. Exotic restric-
tions and transfers can imply nontrivial abelian group extensions. By Proposition 5.6,
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the transfer of a restriction of a class must be the multiple of this class by the index of
the subgroup. Therefore, As Mackey functors, these extensions are of the form

0—>e—=0—=V—=0,
which represents a nontrivial extension
0-Z/2—-2/4—Z/2—0

if one evaluates the exact sequence of Mackey functors at Cy/Cy4. Notice that in the
category of Mackey functors, there are essentially two nontrivial extensions between e
and A, but only the one above fits into Proposition 5.6.

For readers who are familiar with Lubin—Tate FE-theories and topological modular
forms, the family of 2-extensions above is a generalization of the type of 2-extension
between the class v at (3,1) and the class 2v at (3,3) in the homotopy fixed points

spectral sequences of EX* and TM Fy(5) (see [6] and [9]).

In summary, the ds-differentials can be described as follows:

(1) On Cy-level, it is the first differential in Theorem 5.4.

(2) The Green functor structure of the spectral sequence gives ds-differentials on the
Cjy-level, by Proposition 5.8 and Corollary 5.9. After these ds-differentials, there is
no room for further ds-differentials.

(3) Every ds-differential of the form ® — @ gives an extension of filtration 2 by the above
remark.

Now we will prove the ds-differentials. There are two different types of ds-differentials.
The first type is given by Theorem 5.7:

d5(U20-) = N(Zl)akai.

Since N(#1) and ay are both permanent cycles, on the integral page for our range, it
gives the following ds-differential at (4,4):

d5(N(t1)*ug0a3) = N(t1)*a3al,

and it repeats by multiplying by N(f;)axa,. In Fig. 5, these are the ds-differentials with
sources on or above the line of slope 1.
The second type of ds-differentials is given by the following proposition.

Proposition 5.11.

ds(u3) = N(t)uraiao,

d5(u§ag) = 2N(¥1)UQUCL§.
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Proof. The restriction Ress (u3) = u%m supports the d7-differential
= - 73
dr(u3,,) = (f2 +7t2 + #))ag,

by Theorem 5.4. By naturality, u?\ must support a differential of length at most 7. For
degree reasons, the length of this differential can only be 5 or 7. If the length of this
differential is 7, the target must restrict to the class (fo + vta + f‘;’)azz. However, this
class is not in the image of the restriction map Resg. Therefore, u3 must support a ds-
differential. The only possible target of this ds-differential is N (fl)uxaiag. This proves
the first ds-differential.

Multiplying with a, on both sides of the first ds-differential gives

ds(ula,) = N(t1)ura3a?.
Applying the gold relation uya? = 2ug,ay gives the second ds-differential. O

In Fig. 5, the ds-differentials in Proposition 5.11 can be seen on the following classes:

(1) u3ay? at (4,-4),

(2) N(t)uiay'a, at (5,-1),

(3) N(t1)*u3ugs at (8,0),

(4) N(t1)3u3ussara, and N(t2)uius,aras at (9,3).

Remark 5.12. Although 3 and u3a, support differentials of the same length, this is not
true in general. For example, we will see soon that u‘i supports a dr-differential, while
uﬁag supports a dq3-differential.

Corollary 5.13.
ds(u3ag) = 2N () Jurugsas.

Proof. First, we will show that uya, is a nontrivial permanent cycle. Since the target
of the ds-differential on u) is a transfer class, it is killed by a,, and therefore uya,
is a ds-cycle. The only potential non-trivial differential that uya, can support is the
ds-differential

ds(uras) = N(t1)a3a?

o

If this differential happens, then multiplying a, on both sides and using the gold relation
will produce the differential

ds(2ugsay) = N(t1)a3a’

o
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This is a contradiction to Theorem 5.7.
Applying the Leibniz rule on the first ds-differential in Proposition 5.11 with the class
uxa, produces the ds-differential

ds(u3ae) = unasds(u3) = N(t))uia3a? = 2N (t))urugsas. O

In Fig. 5, this ds-differential implies the ds-differential on the class N(Z;)u3a} *a,

at (7,-3). Notlce that the class N(t;)uyuz,a3 supports a dz-differential and the class
2N (t1)u Au%a?\ is killed by a ds-differential. In the integral grading, this happens to the
Z/4 in (6,2).

There are extensions of filtration jump 4 induced by the ds-differentials.

Proposition 5.14. There is an exotic transfer of filtration jump 4 from (2,2) to (2,6):
-2
Trg(tlagz) N(t1) a)\az
There is an exotic restriction of filtration jump 4, from (2,-2) to (2,2):
Resj (2unay ') = ﬁa?m

Proof. We use Proposition 3.10 to prove both extensions.

For the first claim, note that ds(N(f1)ussan) = N(#1)%a3a3, and N(t1)%a3a2 is a
nontrivial dz-cycle. Therefore, N (f1)%a3a?2 is the target of an exotic transfer of filtration
jump 4 in Fg, and the only possible source is f1a§2

For the second claim, first note that by Proposition 5.2 (also see Fig. 3) and the gold
relation,

1 u3 2
2upa, s = (—)‘a; ag> Qg -
U20

We have the ds-differential

U2o

2
ds (—a)\2aa> = Tr%(ffaé).

2
To prove this differential, consider the class %a;? This class supports a ds-differential
because after multiplying it by u3,a3 (which is a ds-cycle), the class u3us, supports the
ds-differential

ds(uiusg) = N(T))urtoeasas

by Proposition 5.11. Therefore
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Multiplying both sides by a,, we have

2
ds <u—’\a>\2aa> = N(fl)&ag = 2N (f1)ay = Try(Ress(N(f1)ay))

U220

- -2
= Try(fiytial,) = Trs(tal,)

The last equation holds because by Theorem 5.4, t; = «#; after the ds-differentials in
the Cs-spectral sequence.

Therefore, f?agg must receive an exotic restriction of filtration jump 4 in the integral
degree, and the only source of the restriction is 2u>\a;1. O

In Fig. 6, the exotic restrictions and transfers are the green and blue dashed lines,
respectively.

Remark 5.15. Similar to Remark 5.10, the exotic restrictions and transfers also give
extensions of abelian groups on the Cy-level. The situation is more subtle here because
each individual exotic extension doesn’t involve non-trivial extensions of abelian groups
at any level. When we combine the two extensions together, however, we obtain an
abelian group extension of filtration 8 from (2, —2) to (2,6):

0—2Z/2—2Z]4—1Z]2—0,

and 2(2uxay ') = N(#1)%a3a2 in homotopy. This extension is similar to the extension in
the 22-stem of B2 and TMFy(5). (See [6, Figure 10] and [9, Section 2].)

We will now prove the dy-differentials. While we state them in some RO(Cy)-graded
page first, we recommend that the reader multiplies with appropriate powers of a) when-
ever possible to visualize the arguments in Fig. 5.

Proposition 5.16. We have the following d;-differentials

— -3
d7(2u3) = Try* X al, 1),

—2)\— -3
dr(2u5use) = Try® ™27 (a] 1Y)

(see Notation 5.3 for the transfer notations).

Proof. We will prove the first differential. The second differential is proven by the exact
same method. On the Cs-level, we have the dr-differential

- -3 -
dr(u3,,) = (T2 + 17 +~l2)al,

by Theorem 5.4. Taking transfer on the target and using naturality, the class
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_ -3 - _ -3
Trg’B 2/\(‘1(772 (t2 + 1) +t2)) = TT§73 A (aiztl)

must be killed by a differential of length at most 7. For degree reasons, it must be the
dr-differential with source 2u§\. O

Remark 5.17. These differentials can also be proved by combining Proposition 3.9 and
Remark 5.10. One sets the exotic w-operation to be multiplication by 2, and Remark 5.10
shows that the exotic restriction gives such an exotic multiplication.

In Fig. 5, The dr-differentials in Proposition 5.16 and the underlying Cs-level dr-
differentials in Theorem 5.4 are supported by the classes at (4 + i, —4 + i) for ¢ > 0.

Proposition 5.18.
-3
dr(u3) = uj Try(Tiag,).

Proof. We will prove in Proposition 5.22 that there is a nontrivial d;s-differential on the
class u‘/{a(7 (we can already prove it at this point, but for organization reasons we prove
it later). This implies that the class uj must support a differential of length at most 13.
For degree reasons, the claimed dr-differential is the only possibility. O

In Fig. 5, the dr-differential in Proposition 5.18 gives the d;-differential supported by
the class uja,* at (8, —8).

5.4. The Cy-spectral sequence: higher differentials and extensions

We will now prove the higher differentials in our range (see Fig. 6). The next possible
differential is a dq3-differential from Theorem 5.7:

di3(u3,) = N(T2)a3ay.

However, we won’t see this differential in Fig. 6. This is because its first appearance
in the integer graded spectral sequence is on the class (10, 14), which is outside of our
range. Note also that even though some classes at (8,8) contain u3,, they don’t support
dy3-differentials. We will give a detailed discussion of the classes at (8,8) in Section 5.5.

Proposition 5.19.
di3(ufugs) = N(f2)urui, aSas

Proof. On the Cy-level, the restriction Resj(ujus,) = ui,, supports a dis-differential

hitting the class T3a? = (f3 + Toh + Tyl + vt3)ay>. Since this class is not in the image

of the restriction after the ds-differentials, by naturality the class u§us, must support a
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Fig. 6. Left: dyi3- and dps-differentials in a;l SliceSS(BP((c“))). Right: E..-page of a;\l SliceSS(BP((C4)))

with all extensions.
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differential of length shorter than 15. After computing the first few pages, we see that
for degree reasons the potential targets are the following classes:

3((F2 + f? + 'yfg)u%@ al,) in filtration 7;
(t1)3u\u3,ala, in filtration 13;
t

Tr
2) N
N (t2)uru3,ala, in filtration 13.
We will first prove that the class Try((%2 —|—t1 +'yt2)u202 02) supports the d;;-differential
A (T3 (F2 + 71 +7E2)ui3,, 07,)) = N(fn) 30305
To prove this, first note that

Tr2((t2 + t1 + ’Vt2)u2crz 02) Trz( 1u202a22)

since the class (2 +7t2)a,, transfers to 0 in the homotopy. On the Cs-level, we have the
dr-differential

-3 -3 - -3 _
dr(tyu3,,ah,) =t (T2 + 1) +7l2)al,

The transfer of the target, Trj (tl (t2 +t1 +qt2)all) = Trj (t6 1), is zero. This is because
after the Cs-level ds-differentials, the class t1a14 is identified with the class tlfytlagg,
which transfers to 0. We will show that the class tla},‘é actually supports an exotic
transfer of filtration jump 4. Let = N(#;)%aju3,. We have the ds-differential from
Theorem 5.7

ds(z) = N(t1) u20a§a3

By Proposition 3. 1() N (Zl)4ugaa§a2 receives an exotic transfer of jump 4, and the only
possible source is tla . Applying Proposition 3.9 to this exotic transfer and the Cs-level
d7, we prove the claimed d1;.

The class N (t1)3usu3,aSa, in filtration 13 is killed by a ds-differential from Proposi-
tion 5.11:

N(t1) uru3 alaq = ds(N(f) uxub,a))-
It follows that the class N(f2)upu3,ala, is the only possible target. O

Remark 5.20. The class u‘iuzg is a permanent cycle in the homotopy fixed points spectral
sequence of E5“* (see [6, Proposition 5.23]) because N (%) is zero there.

Although this d;3 doesn’t imply any differentials in our range, it is used in proving
extensions.
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Proposition 5.21.
(1) There is an exotic transfer in stem 6 of filtration 12,
Trs(fayt2al,) = N(2)%alal.
(2) There is an exotic restriction in stem 6 of filtration 12,
Resj(2uiay®) = taytaal,.

Proof. The proof is similar to that of Proposition 5.14. The exotic transfer comes from
applying Proposition 3.10 to the d;3-differential
d13 (N(%Q)U%aas) = N(EQ)QGSS\(IZ

in Theorem 5.7.
4
For the exotic restriction, first note that 2u§\a;3 = (%a;‘lag) a, by the gold re-

4
lation. We will prove that the class %a;‘lag supports a djs-differential. To do so, we
multiply this class by u3,a3. After multiplying the differential in Proposition 5.19 by a,,
we have

di3(ujugga,) = 2N (o)ud ak.

As by the gold relation u3 kills di3(u3,a}), we can use the Leibniz rule to obtain the
dq3-differential

4

u _ —

d13 (—A Cl)\4ag) = 2N(t2)u20a§.
U2o

On the Ey-page, 2N (f2)uzsa3 = Trj(t2yt2al,). By Proposition 3.10, f27f2al  must
receive an exotic restriction of filtration jump 12, and the only possible source is 2u§’\a;3

(see Fig. 6). O

In Fig. 6, they are the exotic restriction from the class (6, —6) to (6,6) and the exotic
transfer from (6,6) to (6,18). Since these extensions involve elements containing t2, we
expect similar extensions in the homotopy fixed points spectral sequence of EZC“ by [8,

Theorem 1.1].

Proposition 5.22.

_ 2 — _
dlg(uﬁag) = N(tz + 170 + th)uggaz\.
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Proof. Consider the Cs-differential

—C
d?(ugﬁ) = tzzaZ .

Applying Proposition 3.12 to its target, we see that its norm N (¢, —|—ffﬁl +7(f2))a} must
be killed by a differential of length 13 or shorter. Since the restriction of this element
is killed by dr, it must be killed by a differential of length between 7 and 13. Since u3,
supports a dy3, if d.(z) = N(i2 + f?’yfl +7(%2))a% happens for r < 13, one can multiply
both sides by u3,. However, for degree reasons N (3 —&—f?’yfl +vE2)u3,a’ cannot be hit by
a differential shorter than a dy3. Thus this element and hence also N (%5 + %, +7(t2))a’
must be hit by a d;3 and the only possible source is u‘f\ag. O

On the integer graded page, this contributes to the d;s-differential supported by the
class N (t)uia;3a, at (9, —5).
The last differential in our range is a d;5-differential.

Proposition 5.23. We have the dy5-differential

dis(2ut) = Tri(E5%al?).

o2
Proof. In the Cs-spectral sequence, we have the dj5-differential

—C.
dis(us,,) =5 als.

Applying the transfer shows that the class Tr;l (f302 a}fi) must be killed by a differential
of length at most 15. By naturality and degree reasons, the only possible source is the

class 2u} = Trj(ud,,). O

In Fig. 6, this contributes to the djs-differential supported by the class 2u‘}\a;4 at
(8, —8) (the dys-differential supported by the class at (9, —7) is a Cs-level differential).

These are all the differentials and extensions in the first 8 stems. Now we will discuss
in detail the generators and relations in degree (8,8) after each differential in order
to illustrate the technical aspect of tracking differentials in the localized slice spectral
sequences.

5.5. The classes at (8,8)

Since our discussion here focuses on a single degree, we will omit the powers of ay
and uy classes on each monomial, except in formulas of differentials. That is, we omit
u3,a} on Cy-classes and a® on Ch-classes.

On the E3-page, there are 2 o and 16 8. The 2 o are N(¢;)* and N(#2)N(#;). The 16

® are



L. Meier et al. / Advances in Mathematics 412 (2023) 108804 57

7 - -6 -2 -5 -3
%T‘rg(tlvt14), Tr[21(t17t1)73T1”;21(151Wt1); ) s , .
47 74 < 47 73 7 47 72 7 477 7 47 7
%)7 Tr2(gf1’yf1), TTQ(Et@z’tl)a Try(tatiyty), Tra(tativty), Tra(tayty);
1) Trg(tQtl’Ytl): Trg(tQth)E
)
27tat]);
st1), Trs(tsvt).

At the Cy-level, the ds-differentials identifies #; with v#;. At the Cy-level, the effects
of the ds-differentials are as follows:

(1) All the classes in (1) are identified with 2N (£1)*;

(2) all the classes in (2) are identified to be the same;
(3) all the classes in (3) are identified to be the same;
(4) the class Trl(E27EoL. ) is identified with 2N (£)N (£1);
(5) all the classes in (5) are identified to be the same.

Therefore after the ds-differentials, there are 2 o, generated by N(#;)* and N(2)N (1),
and 3 ¢, generated by Tri(fof;), Tra(Eaf;), and Tri(Zsfy).
On the Es5-page, by Proposition 5.11, we have the following two ds-differentials:

ds(N (t1)3u3 ussaras) = 2N (t1)u3 a3,
d5 (N(fg)uiu%a)\ao) = 2N(fg)N(f1)u§aa§
It follows that after the ds-differentials, the 2 o become 2 A, with the same generators.
In total, there are 2 A and 3 & at (8, 8) after the ds-differentials (with the same generator
as before).
Now we will discuss the d7-differentials. At (9, 1), there are two classes on the E;-page:

a ® generated by Trj (fgf?) and a ® generated by f? (it only exists on the Ca-level). Since
Vg = 1oy + Zi’ + ~yta, the dy-differential on the class TréL (ngf) hits the class

22 3 2 ) < 25 . 2222 < 25
Try(Fay (Fa + 1) + 7)) = Tra(Tohy) + Tra(faly) + Trg(Faviaty) = Tra(Bfy) + Tra(faly).
In other words, it identifies the classes Trj (ngf) and Trj (fgf?).
The d7-differential on the class fi’ hits the class
B +9T2 +1) = Bf +950 +1
— _5 —
= Res;(Try(fafy)) + Resy (N (£1)")
—92-9 -
= Res;(Tra(f511)) + Resy (N (11)*).

As Mackey functors, we have

A

e 27y 9436 - oA 2.
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In the quotient we need to choose our generators carefully: The e is generated by
N ()% + Trj (52#) because the image of ® identifies the restriction of N(#;)* with the
restriction of Trj (t2 2) Therefore their sum is the unique element in Cy-level that has
trivial restriction. The A is generated by N (t2)N (1), as it still has nontrivial restriction.
The two # are generated by Tri(£5L. ) and Tri(%:%)).

The next differential is a dy3-differential supported by the class N(t; )uAa)\ ac, at
(9,—5). By Proposition 5.22, the target of this differential is the class N (¢1)N (¢2 + tl +
vta)u3,a. The restriction of this class is

— —_ —_ _3 —_ —_ _3 —
tiyta(t2 + 1) + yt2) (vl2 + 91y — t2),
which, after the ds-differentials, is
—2-2 -2-2 -8 -2-2 .
oty + iy, + 1 = Resy(Try(fof;)) 4+ Resy(N(£)%).

As we have discussed above, this class is killed by the dr-differentials supported by the
class fi’. It follows that the target of the dy3-differential is the generator of e, the unique
nontrivial element that restricts to 0.

There is another possible d;3-differential supported by some classes at (8,8) that is
induced by the differential

diz(u3,) = N(t2)a3ag.

However, in (8,8) every monomial containing u3, also contains N(#;). By [33, Corol-
lary 9.13],

di3(N(f1)u3,) = N(f1)N(f2)adal = ds(N (f2)uzsa3az).

This makes all elements containing u3, in (8, 8) di3-cycles.

In summary, after the dys-differentials, we have two e, generated by Trg(fgff) and
Trj(Zst,), and A, generated by N(t)N(%;).

Our final differential is a dj5-differential on the Csy-level supported by the class at
(9, =7):

ds(Frud,,a;7) = 11 (T + Toly + 7oty + 7Es)al,
(Faf1 + 7Est1)aS, + (Tk; +~faly)a,
= Trd (555 + (tgtlytﬁff + Taytaly)ad,
Trd(fsty) + Tra(BF) + Tri Resi (N (L) N (1)).

The map in Mackey functors is

s 15 A% —» 026,
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On the E-page, (8,8) is given by e2é. The generators for the two & are Trg(fif?) and
Trd(fs%1). The generator for e is Tri(Tat;) + Tri(fst1) + N (L) N(f).

5.6. A family of permanent cycles

We will now present families of nontrivial permanent cycles in a;\l SliceSS(BP((C4))).
These families will be used in the proof of Theorem 6.6.

Lemma 5.24. In 7124(1;18, the element ay is invertible.

Proof. We have the following commutative diagram of pointed Cy-spaces

SOLSA

N

520

2

where 6 is the Cy-equivariant 2-folded branched cover. Since fay = a

is invertible, ay
is invertible. O

Proposition 5.25. In wi“angP((C“)), the classes N(tx)al fork >0 and 0 <i < 2kl -1
are non-zero.

Proof. By Lemma 5.24 we have a map of spectral sequences
ay ! SliceSS(BP(C)) —s 41 SliceSS(BP(C)),

Notice that in a; ' SliceSS( BP(CD) the differentials in Theorem 5.7 completely deter-
mine the spectral sequence (see [33, Remark 9.11]). In particular, we have the following
differentials in a; ' SliceSS(BP(“4):;

k—1 _(ok_ _(ok+1_ . _ .
d2k+2_3(u§g a/\(2 1)a0(2 1)‘“):N(tk)afj.

On Fyr+2_g-page, this is the only differential happens in this degree.
o1 (ok+1_ .
By Proposition 5.2 and the gold relation, the class u2, az® 7 is in the image

of
7r§4a;1HZ — Wi‘la;lHZ
only when a, has a non-negative power, i.e. i > 2¥*1 — 1. Therefore by naturality, if the

class N(#)a’, 0 <4 < 2871 — 1 is killed in aj ' SliceSS(BP(“4)), the differential killing
it must be of length longer than 2¥+2 — 3. However, by Proposition 5.2 and Theorem 4.1,
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the potential source of such a differential must be trivial in the Fs-page. Therefore the
classes N (x)al for k> 0 and 0 <4 < 2¥*1 — 1 are nontrivial permanent cycles. 0O

ok+1l_1
g

Remark 5.26. After inverting ay, the element N (fx)a is zero by Theorem 5.7.

6. The Tate spectral sequence of N12H Iy

The goal of this section is to advance our knowledge of the Tate spectral sequence of
N2 HTF,y. We compute it in a range and also give all differentials originating from the first
diagonal of slope —1. Our main method is comparison with the localized slice spectral
sequence, a method we describe first.

There is a canonical map SliceSS(X) — HFPSS(X) which is an isomorphism on the
underlying level [55]. When X = N2HF, ~ (BP(©))*C2 combining with Theorem 3.18,
we obtain the following comparison map of spectral sequences

ay ! SliceSS(BP(“Y) — Py, #SliceSS(N} HF,) — Pj,, ZHFPSS(N} HF;),

where we use P; /o852 short-hand for the pullback functor Pa /Cs from Section 2.2. Both

maps of spectral sequences are compatible with the norm N3 = Ng; by Example 3.17
and Proposition 3.19. On the Cs-level the composition sends permanent cycles from
SliceSS(BP(C4)) to their Cy-geometric fixed points.

We localize the map

ay ! SliceSS(BP(“Y) — P}, ZHFPSS(NT HF,)
further at a,. Since o is the pullback of the sign representation on Cy/Cs,
a; ' P}y PHFPSS(N? HFy) ~ Py ya, ' PHFPSS(NT HFy).

Notice that localizing at a, in Cyy/Co-spectra is exactly smashing with EF[Cy/Cs], which
turns the homotopy fixed points into the Tate fixed points. Therefore

P} ya; PHFPSS(N? HFy) =~ Py, P TateSS(NT HFy).

The above argument, along with Lemma 5.24, gives the following comparison square,
which is central to our computation in this section.

ay ' SliceSS(BP(“)) ———— P}, ZHFPSS(NZHF»)
agl(f) a;l(—) (3)

a; ! SliceSS(BP(C))y — 5 pr

/27 TateSS(NT HF2)
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Proposition 6.1. In the comparison square, both horizontal maps converge to isomor-
phisms in homotopy groups.

Proof. The top horizontal map is the composition
ay ! SliceSS(BP(“)) — Py, 7SliceSS(N} HFy) — P; ), PHFPSS(NT HF,).

The first map converges to an isomorphism by Theorem 3.18. By the Segal conjecture,
N2 HTy is cofree, that is, the map N?HFy — F(ECy,, N2HTF3) is an equivalence. By
construction, the second map of the spectral sequences converges to this map on homo-
topy.

The bottom map is the a,-localization of the top map, thus also converges to an
isomorphism. O

The bottom map in the comparison square is particularly interesting: We completely
understand a3 SliceSS(BP(“4)), which is determined by the fact that it computes
. HFo. All differentials are derived from the slice differential theorem [33, Theorem 9.9,
Remark 9.11]. On the other hand, the Tate spectral sequence of N2 HF, is very myste-
rious: its Fs-page is determined by the Tate cohomology H *(C4; Ay), for which we do
not know a closed formula yet. Nevertheless, the Segal conjecture shows that the Tate
spectral sequence converges to 7, HIF3, meaning almost everything kills each other by
differentials. Using Theorem 3.18, we can apply our understanding of the slice spectral
sequence to understand partially how differentials work in the Tate spectral sequence.

Fig. 7 consists of the integral F>-pages of the four spectral sequences in the comparison
square. Red elements in the homotopy fixed points and the Tate spectral sequences are
those in the image of the horizontal maps. We prove these claims in Corollary 6.5.

Using the comparison square, we establish an infinite family of differential in the Tate
spectral sequence. We also compute all differentials in the Tate spectral sequence in
the same range we computed a;l SliceSS(BP((C4))) in Section 5. Specifically, we show all
differentials hitting elements from stem 0 to 8 which map non-trivially into the homotopy
orbit spectral sequence. In the (doubled) Tate spectral sequence of Fig. 7, they are
elements below slope 1 from stem 0 to 8.

Because of the comparison square, we make our statements and arguments entirely in
the spectral sequences Py /QQHFPSS and Py /QQTateSS. The translation back to the Cs-
homotopy fixed points and the Tate spectral sequence is straightforward. As a reference,
TateSS(N?HF,) with known differentials is shown as Fig. 9.

To start the computation, we want to understand how the maps of the compar-
ison square behave on the FEsj-page. By Theorem 3.18, they are determined by the
Cs-geometric fixed points of elements in 7r§2 Bp(Ca),

Proposition 6.2. Under the equivalence eC2pp(Ca) ~ HF, A HTF,, the Cy-geometric

fized points of t; and ~t; in W(C;%_l)pQBP((C“)) are & and (;, the Milnor generators and

their conjugates in the dual Steenrod algebra, respectively.
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Fig. 7. The comparison square (3).
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Proof. We will show ®2(%;) = &; the formula ®“2(v%;) = (; follows from the fact that
the residue C4/Cs-action on $C2 BPU(C4) becomes the conjugate action on the dual
Steenrod algebra.

Let e : S — BPgr be the unit map and F; and F, be the formal groups laws on
W%zBPR A BPg induced by the map

BPg A S° Y BPr A BPg

and

SO A BPr Y BPx A BPg

respectively, and let &1, 2 be the corresponding power series generators. As in Section 3,
the elements ¢; are defined as

ooF )

. 2o ol

.TQZE tz.’E%
=0

Taking HC2 maps Z1 and Ty to the two M O-orientation on HFy; A HF5. The following
lemma completes the proof. O

Lemma 6.3. Let x1, 70 € (HFy A HF3) (RP>) be the M O-orientations corresponding to
the maps

idAp

HFy A S° =25 HF, A HF,
and
SO A HF, ™ HF, A HF,

respectively. Then we have

> .

ot

o = E fixl .
=0

e

Proof. Identify (HF; A HF,)*(RP>) with A.[z1], and write 2y = Y- a;27"!. We will

7=0
[ee] .
show that asi_; = & and all other a;’s are 0. First, since the power series ) ajmle
j=0
is an automorphism of the additive formal group law in an Fs-algebra, we must have
ap=1,and a; =0 for j # 2 — 1.

Let I be an admissible sequence and define

0r : (HFy A HF,)*(RP™®) — (HFy A HF,)* (R P>)
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to be the composition

idASq!

RP>® — HFy A HFy 2% S HFy A HF,.
One can verify directly that 7 has the following properties:

o Or(xg) =23 if I = (271,272 .. 2,1), and 0;(x2) = 0 otherwise.
e Or(xy) =1 if I = (0) and 0;(x1) = 0 otherwise.

- I
« On homotopy, the map HFy A HFy ““2C SIIIHF, A HF, induces the map

91 . A* — A*,m.
For any £ € A, 0;(§) is the cap product

. _ I
A DA A, ST g

between ¢ and Sq’. In the case when |¢| = |I], 0;(¢) = (€, S¢!), the pairing between
the Steenrod algebra and its dual.
e When I = (i), 0 satisfies the Cartan formula:

0i(ab) = Z 0i—(a)0;(b).

(oo} .
Now, let T = (2"~1,27=2,...,2,1), and apply 6; to o = > asi_127 . The left hand side
=0

becomes

o 2" o0
271_ 275 o 2n 2n+i
Ty = E Qoi 17 = E Qoi 17 s
i=0 =0

and the right hand side becomes

E 2 E 2
9] Agi_1Tq = 0](&21‘_1)1‘1 .
=0 7=0

Comparing the coefficient of x%n in both expressions, we see that 1 = 0r(agn_1) =
{agn_1,8q"). Now, if I is any other admissible sequence with |I| = 2" —1, then ;(x2) = 0
and thus 0 = f7(agn_1) = (azn_1,S5¢’). This is exactly the definition of &,, see [48,
Chapter 6, Proposition 1]. O

We pause here to clarify notations in PI/QQHFPSS(NfHFQ) and Py,

PTateSS(NZHTF3). The Co-level of this spectral sequence is the spectral sequence of



L. Meier et al. / Advances in Mathematics 412 (2023) 108804 65

the doubled Postnikov tower of HF; A HIF5, treated as a Chy-equivariant spectral se-
quence whose underlying level is trivial (and thus a,, acts invertibly). Therefore, given
an element = € A,, there are elements in different RO(G)-grading differing by powers of
4y, that deserve the name z. We name the corresponding element in the integral grading
by z, and name all others by af,zx for some ¢ € Z. Notice that in this way, &, has stem
and filtration 2" — 1 since we are working in the doubled spectral sequence. Under this
notation, the map

ay ! SliceSS(BP(“Y) — Py, ZHFPSS(NT HF>)

sends ; to a;2(21'_1)§¢ (on the Cy-level), as follows from Theorem 3.18 and Proposition 6.2:
since the target spectral sequence collapses on Ca-level, the image of #; is determined by
its RO(Cy)-degree and its image under ®°2.

In the Cj-level, we need to be extra careful. By taking N = Nj on ; a;(2171)§i,
we see that

N(E) = ay @ IN(E),

where N (&;) is in RO(Cy)-degree (2¢—1)(1+0) and filtration 2(2¢—1). The complication
comes from the fact that there are other generators of Tate cohomology than N(¢;). For
example, the element &; is invariant under the conjugate action and thus gives a generator
of H 9(Cy; (Ax)1). For such generators in degree i of A, we will use the notation b;, and
define that they are in the integral grading. For example, the generator of H°(Cy; (A,)1)
is named by, and has bidegree (1,1) in the double of the homotopy fixed points and the
Tate spectral sequence. Since the square of by restricts to £ = &(;, we have (for degree
reasons) a multiplicative relation

b% = N(é‘l)uo',
where u, is a generator of the Tate cohomology of trivial module

IA{*(CQ;]FQ) = Fg[af,uf].
The generator u, has degree 1 — ¢ and a, has degree —g. The classical integral graded
Tate cohomology

H*(Cy; Fy) = Fylz™]
with degree 1 generator z is related to the RO(Cs)-graded cohomology via x = u,a .
Since the sign representation on Cy/Cy pulls back to the sign representation on Cy, we
use the same notations u, and a, in the pullback of the homotopy fixed points and the
Tate spectral sequence.
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In summary, the Cs-level of PI/2@HFPSS(N12H]F2) has the form

FaolaZ )61, &2, ]

where &; has both degree and filtration 2! — 1. The Cy-level of PZ/QQHFPSS(NfHFQ)
has the form

HO<C2;A*)[af7 ag,u;t]/(Tr(x)ag,Vx € A,

where an element in H%(Cy; (A.);) has both degree and filtration i if it doesn’t restrict
to elements of the form &(y; if this happens, the integral graded element is named by
N(ﬁk)ugi’l. The class u, is of stem 1 — o and of filtration 0, while a, is of stem —c and
filtration 1.

The Cy-level of Pj,, 7 TateSS(N{HF2) has the form

H(Cos AL)af, a ],

g o

with names of elements in H° from the image of the surjective map H°(Cy; A,) —

]:IO<CQ,.A*)

Proposition 6.4. In the Tate cohomology ﬁO(CQ; A.) the following elements are nontriv-
ial:

6161, &G0, (£262)%, &3, (63G3)2, (63G)%, (&:G0)F

fori >4 and k < 4.

The proof is purely combinatorical and is irrelevant to other parts of the paper. It
uses computations and ideas from [18].

Proof. We argue by monomial degrees in A, = F3[¢1,&2, - -] and the Milnor conjugate
formula

i-1
G=Y &G
j=0

The conjugate formula tells us that the transfer of a monomial (i.e. the sum of the
monomial and its conjugate) in the & can only increase its monomial degree. It also tells
us that the monomial with minimal monomial degree in (&;¢;)* is 2. Therefore, (£;¢;)*
being in the image of transfer can only happen when £2¥ appears in the transfer of a
monomial, which has smaller monomial degree and the same topological degree.

To streamline the computation, we define that a monomial P has bidegree (a,b) if P
has monomial degree b and topological degree a — b. In this way, ¢; has bidegree (2¢,1).
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To find monomials which have smaller monomial degree and the same topological degree,
we can look at the binary expansion of a. Let ¢ be a positive integer, and Bin(t) be the
number of 1s in the binary expansion of ¢. If a monomial has bidegree (a, b), then both a
must be even and Bin(a) < b. Since &; has bidegree (2%, 1), any monomial whose transfer
contains €2 must be in bidegree (a,b) where a — b = 2k(2° — 1).

We will only check the highest power of &;(; listed in the statement of the proposition,
since if (&¢;)" is nontrivial in Tate cohomology, then (£;¢;)7 for j < k are all nontrivial.

The class of £1(; is obviously nontrivial in Tate cohomology, so we start our argument
with (£2¢2)%. Writing it as a polynomial in the &;, the leading term is &3, which has
bidegree (16,4). We only need to check if there is a nontrivial monomial in bidegree
(14,2). Since Bin(14) = 3 > 2, there is no monomial in this degree. Therefore (£2(2)? is
nontrivial in the Tate cohomology.

Next we consider (£3¢3)3. The leading term is £5, which has bidegree (48,6). In (46,4)
there is only one monomial £5£3€2&1. It is direct to check that

E5&36081 + (GG # (63¢3)°.

In (42,2), there is no monomial since Bin(42) = 3 > 2.

For (£;¢;)* where i > 3, a similar argument applies. When i = 4 there is a monomial in
(126, 6), namely £a€5€4€3€2€7, but it cannot transfer to (£4¢4)*. And there is no monomial
with smaller monomial degree with the same topological degree. When ¢ > 4 there is
simply no suitable monomial below (2i73,8) since Bin(2!*3 — t) for t = 2,4,6 are all
greater than 8 —¢t. O

The proof can certainly be generalized. For example, (£;¢;)® are nontrivial in the Tate
cohomology for ¢ > 11. However, what we proved is sufficient for our computation.
Recall that the element us, in 7r2C “ 9o HZ maps to u2 in Tate cohomology.
Corollary 6.5. Under the map

a; ' SliceSS(BP() — Py, P TateSS(NT HF,),

the classes

map to

for 5 > 0 and k,l,m € Z. The image is nontrivial if and only if (£¢;)? represents a
nontrivial element in HO(Cy; A,).
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Fig. 8. PI/QQTateSS(NfH]Fz) with differentials.

The slice differentials in [33] completely describe a;! SliceSS(BP(C4)). By under-
standing its image in P} /2@TateSS(N12H F2), we can deduce many differentials in the
Tate spectral sequence. We prove all differentials in their most natural RO(Cy)-degree.
They can be translated into the integral degree by invertible a) and a, multiplications.
Fig. 8 presents P /2@TateSS(N12H Fy) with differentials proved below. For reference,
Fig. 9 presents the original Tate spectral sequence TateSS(NZHTF5) with the same dif-
ferentials.

Theorem 6.6. In PZ/QQTateSS(NfHFQ), we have differentials

dorr2_5(uZ ) = N(&)aZ !

forall k> 1.
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Fig. 9. TateSS(NfH]FQ) with differentials.

Proof. By Proposition 6.4, both the source and the target are in the image of

a,* SliceSS(BP(?)) — P}, 7 TateSS(NT HF).
There is no element below ugk in the Es-page, so N(fk)a§k+1_1, which is in stem 2% —
1 — 2%¢ and filtration 22 — 3, can only be killed by a differential of length at most
2F+2 _ 3. Therefore we only need to show that N (§k)a§k+l_1 is not killed by a differential
of length less than 2¢%2 — 3. To prove this, we show that if such a shorter differential
happens, it implies N(§k)a§k+1’2 =0 in 7T§2N12H]F2. Combining with Proposition 6.2,
it contradicts Proposition 5.25.
gk+1_

Assume that there is a differential d;(x) = N(&)a2 ~! in PI/QQTateSS(NfHFg)

for | < 22 — 3. To show N(&)a2 =2 =0 in 7T§2N12HIF2, we work with the map

P}y PHFPSS(N{ HFy) — Py, P TateSS(NT HF,)

in RO(Cy)-grading. By writing an arbitrary element y of stem m + no in PI/Q
PTateSS(NEHF,) in the form zufad with z € HO(Cy, ., NEHF2), we see that y is in
the image from the spectral sequence PZ‘/2@HFPSS(N12HIE’2) if and only if g > 0. This
happens if and only if the filtration |z|+g¢ is at least m+n = (|z|+ f)+(—=f—g) = |z| —g.
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The class z is of stem 2F — 2F¢ and filtration 2¥T2 — 3 — [; the filtration is at least 2
since [ must be odd because of the doubling operator Z. Thus za " is still in the image
from Py, PHFPSS(N?HTF,) and likewise is N (§)a2 " ~la;t = N(&)a2"" ~2. Thus, we

o g

have d;(za; ') = N(fk)ang*Q in PZ/2.@HFPSS(N12HF2), unless the target is killed by
22 = 0in 7P NZHF,. O

a shorter differential. In any case, N(&)as

The exact same argument gives the following differentials.

Corollary 6.7. In P:/29TateSS(N12HIF2), we have differentials:

dorsa_g(N (&) u2 ) = N(&,) a2 1

These differentials and their propagation are the red differentials in Fig. 9. Notice
that N(&,)7T! can be zero in the Ej-page of the Tate spectral sequence. For example,
N(&)? = 0 in the Tate cohomology, since

G =& =& +¢) =Tr(6é)

As a result, the target of ds (N (£1)u?2) predicted by the corollary is zero. Instead, N (&1)u?
supports a nontrivial dg, see Proposition 6.9

As an interesting consequence, we can bound the length of differentials on elements of
the first diagonal in the Tate spectral sequence of NZR for a large family of ring spectra.

Corollary 6.8. Let R be a non-equivariant (—1)-connected homotopy ring spectrum with
mo(X) = Zg being a localization of Z such that § ¢ Zs. Let v € H?(Cy; moN2X) =
ﬁQ(Cg;ZS) be the generator of the Tate cohomology. Then 02" supports a non-trivial
differential of length 1 with

p(2k+1) < lk < 2k+2 —1.
Here p(n) is the Radon—Hurwitz number (with p(n) — 1 the mazimal number of indepen-
dent vector fields on S™~1): for n = k2%%¢ with k odd and 0 < ¢ < 4, it is defined as
p(n) = 8b+2¢.5
Proof. Consider the sequence of non-equivariant ring maps

S% — R — HF,,

where the last map is the composition of the 0-Postnikov section and the mod 2 map.

6 Beware that the lower bound is based on a classical result for which we don’t know of a published
reference.
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Take the norm N7 and take the Tate spectral sequence, we have
TateSS(S°) — TateSS(N:R) — TateSS(NZHT,).

Note that ToN2X = Zg ® Zs = Zg. Since v maps to u2a,? in TateSS(NZHTF3), Theo-
rem 6.6 gives the upper bound. The lower bound is given by the corresponding differential
in TateSS(S?). Positive powers of v lie in the homotopy orbit spectral sequence part of
TateSS(S?), and the homotopy orbit spectral sequence can be identified with the Atiyah—
Hirzebruch spectral sequence of RP> with homology theory m,. This spectral sequence
is the stabilization of the EHP spectral sequence. The element corresponding to v2" in
the EHP spectral sequence supports differentials related to the vector fields of sphere
problems: it supports a differential of length p(28*1), with target in the image of J. (See
[28, Lectures 20 and 21].) O

Now we discuss the rest of differentials in the range we are concerned with, which are
differentials hitting elements in Fig. 9 below slope 1 and in stem 0 to 8. In this range,
the ring H9(Cy; A,) is presented by the following generators:

by restricts to &
N (&1)u, restricts to £1¢1
N (&)u? restricts to €2(o

with relations:

The following differentials present the only remaining differentials in this range.
Proposition 6.9. In PZ/QQTateSS(N%HIFz), we have differentials:

dS(UU) = blu;1a§7

d3(br) = N(&1)u, ' a

o]

do(N(£1)u2) = N(&2)u, 'a).

Proof. For the first differential, since u2 supports a ds by Theorem 6.6, u, must support
a shorter differential, and the dj is the only possibility.

For the second differential, consider the class N(&1)u,, which is the class in (2,2) in
Fig. 9. Its preimage in the homotopy fixed points spectral sequence is the only class in
stem 2 that can support a nontrivial restriction. By Theorem 4.4, w5 of the homotopy
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fixed points is Z /4, therefore its generator must support a nontrivial restriction (Propo-
sition 5.6). Thus N(&;)u, doesn’t support a differential in the homotopy fixed points
spectral sequence, and it must be killed by a differential in the Tate spectral sequence.

The only possible source is bju2a,? and the differential is a ds. Since u2 supports a ds,
we obtain d3(b1) = N(£1)u, a2 by multiplication by u2a2.

For the last differential, we only need to show that the class at (6,6) in Fig. 9, which
has the name N (£2)u3, is a cycle. By the same argument as above, its preimage is the only
class in stem 6 that can support a restriction, and this indeed happens by Theorem 4.4.

In the Tate spectral sequence, the only possible differential killing it has the form
dy(N (&1)uga;”) = N(&)ug.

Multiplying both sides by u;%a3, we obtain the last differential. O

ag

In Fig. 9, the first two differentials and their propagation are colored purple. The last
differential is colored blue.

The computation of the Tate spectral sequence is largely limited by the complexity of
the Tate cohomology H*(Cy; A,). A better understanding of the Tate cohomology shall
allow us to compute most differentials in the Tate spectral sequence via comparison to
the localized slice spectral sequence, but can also feed back to the computation of the
slice spectral sequence of Bp(Ca),
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