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1. Introduction

The complex conjugation action on the complex bordism spectrum MU defines a C2-

spectrum MUR, the Real bordism spectrum of Landweber, Fujii, and Araki [37,19,4]. Its 

norms

MU ((C2n )) := NC2n

C2
MUR = N2n

2 MUR

have played a central role in the solution of the Kervaire invariant one problem [33]. 

After localizing at 2, the norm MU ((C2n )) splits as a wedge of suspensions of BP ((C2n )) :=

N2n

2 BPR, where BPR is the Real Brown–Peterson spectrum.

The spectra MU ((C2n )) and BP ((C2n )) connect many fundamental objects and com-

putations in non-equivariant stable homotopy theory to equivariant stable homotopy 

theory. The fixed points of these norms are ring spectra, and their Hurewicz images 

detect families of elements in the stable homotopy groups of spheres [33,30,40]. The 

Lubin–Tate spectra at prime 2 with finite group actions can also be built from these 

norms and their quotients [26,8]. They produce higher height analogues of topological 

K-theory and play a fundamental role in chromatic homotopy theory.

To compute the equivariant homotopy groups of MU ((C2n )) and BP ((C2n )), Hill, Hop-

kins, and Ravenel introduced the equivariant slice spectral sequence [33]. However, due 

to the complexity of the equivariant computations, besides MUR and BPR, we still know 

relatively little about the behavior of their norms. For example, we are still far from a 

complete understanding of the equivariant homotopy groups of BP ((C4)).

Our project arose from the desire to systematically understand the equivariant ho-

motopy groups of MU ((C2n )) and BP ((C2n )). The goal of this paper is two-fold: first, we 

establish our main computational tool, the localized slice spectral sequence. This is a 

variant of the slice spectral sequence that is easier for computations while at the same 

time recovers the original slice differentials. Second, as an application of the localized 

slice spectral sequence, we focus on the C4-norm BP ((C4)). We compute its localized slice 

spectral sequence in a range and build a new connection to the Segal conjecture at C2. 

As a consequence, we establish correspondences between families of slice differentials for 

BP ((C4)) and families of differentials in the Tate spectral sequence for N2
1 HF2.

1.1. Fixed points and geometric fixed points

It is well-known in equivariant stable homotopy theory that a map between G-spectra 

is a weak equivalence if and only if for all subgroups H ⊂ G, it induces (non-equivariant) 
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weak equivalences on all H-fixed points or H-geometric fixed points. Despite this fact, 

fixed points and geometric fixed points behave very differently.

The fixed points of a G-spectrum X can be difficult to understand. For a suspen-

sion spectrum, its fixed points can be described by using the tom Dieck splitting [39, 

Section V.11], but such a splitting does not exist in general. Nevertheless, by the Wirth-

müller isomorphism, there are natural maps between fixed points of different subgroups 

of G. The induced maps on their homotopy groups can be assembled into an algebraic 

object π∗X, called a Mackey functor. Organizing information in terms of Mackey func-

tors is one of the most powerful ideas in equivariant stable homotopy theory, and this 

has produced new insights in both theory and computation (e.g. [24,33]).

As an important example, the C2-fixed points of the Real bordism spectrum MUR

are computable but complicated [36,23]. For groups beyond C2, we still don’t know 

very much about the fixed points of the norms MU ((C2n )) aside from the computations 

in [33,34,30,31]. Nevertheless, these fixed points contain very rich information about 

the stable homotopy groups of spheres (such as the Kervaire invariant elements) and 

chromatic homotopy theory [33,40,26,8].

On the other hand, the geometric fixed points are easier to understand. The geometric 

fixed points functor ΦH : SpG → Sp is compatible with the suspension spectrum functor, 

commutes with all homotopy colimits, and is symmetric monoidal.

For the Real bordism spectrum MUR, a straightforward geometric argument, based 

on the fact that the fixed points of the C2-Galois action on C are R, shows that the C2-

geometric fixed points of MUR and BPR are MO (the unoriented bordism spectrum) 

and HF2, respectively. The geometric fixed points functor also behaves well with respect 

to the norm functor [33, Proposition 2.57]. This renders the geometric fixed points of 

the norms MU ((C2n )) easy to understand.

Although the homotopy groups of the geometric fixed points for various subgroups 

do not form a Mackey functor, there are reconstruction theorems which recovers a G-

spectrum from structures on its geometric fixed points [1,21,5].

At this point, it is natural to ask the following questions:

(1) How do the fixed points and the geometric fixed points of an equivariant spectrum 

interact with each other?

(2) Computationally, how to recover the fixed points of equivariant spectra, such as 

norms of MUR, through their geometric fixed points, which are significantly easier 

to compute?

In order to attack these questions, the first observation is that it is necessary to 

consider the H-geometric fixed points not only as a non-equivariant spectrum, but as 

a WG(H)-equivariant spectrum, where WG(H) is the Weyl group. In our examples of 

interest, H will be a normal subgroup of G, so that WG(H) ∼= G/H. When the G-

spectrum is of the form NG
H X, we prove the following theorem.
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Theorem 1.1. Let H ⊂ G be a normal subgroup and X be an H-spectrum. Then we have 

an equivalence of G/H-spectra

ΦHNG
H X � NG/H

e ΦH(X).

If X is an H-commutative ring spectrum, then this equivalence is an equivalence of 

G/H-commutative ring spectra.

This theorem is by no means difficult to prove, and in fact it only marks the starting 

point of our analysis. To understand how the H-fixed points and H-geometric fixed 

points interact with each other, we introduce our main computational tool: the localized 

slice spectral sequence.

1.2. The localized slice spectral sequence

Let X be a G-spectrum and H ⊂ G a normal subgroup. As a G/H-spectrum, ΦHX

can be constructed as (ẼF [H] ∧ X)H , where ẼF [H] is the universal space of the family 

F [H] consisting of all subgroups that do not contain H. In many cases, including G

cyclic, smashing with ẼF [H] is equivalent to inverting an Euler class aV ∈ πG
−V S0

for V a certain G-representation. In particular, the residue fixed points (ΦHX)G/H are 

equivalent to the fixed points (a−1
V X)G.

To define the localized slice spectral sequence, let P •X be the regular slice tower of 

X [33][55]. The aV -localized slice spectral sequence of X is, by definition, the spectral 

sequence corresponding to the localized tower {a−1
V P •X}. It has E2-page

Es,t
2 = πt−sa−1

V P t
t X.

Theorem 1.2. Let X be a C2n-spectrum and V be an actual C2n-representation. Then the 

aV -localized slice spectral sequence converges strongly to the homotopy groups πt−sa−1
V X.

The localized slice spectral sequence serves as a bridge between the fixed points XG

and the residue fixed points (ΦHX)G/H . More precisely, even though the localized slice 

spectral sequence only computes the geometric fixed points, its E2-page is closely related 

to the original slice spectral sequence, which computes the fixed points. From now on, 

we will denote the regular slice spectral sequence and the aV -localized slice spectral 

sequence of X by SliceSS(X) and a−1
V SliceSS(X), respectively. The following theorem 

directly follows from computations of the homotopy groups of HZ [34, Section 3].

Theorem 1.3. Let X be a (−1)-connected C2n-spectrum whose slices are wedges of the 

form C2n+ ∧C
2k

Σiρk HZ, and λ be the 2-dimensional real C2n-representation that is 

rotation by π
2n−1 . Then the localizing map

SliceSS(X) −→ a−1
λ SliceSS(X)
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induces an isomorphism on the E2-page for classes whose filtration is greater than 0. On 

the 0-line, this map is surjective, with kernel consisting of elements in the image of the 

transfer TrC2n

e .

By the slice theorem [33, Theorem 6.1], the C2n -norms of MUR and BPR both satisfy 

the conditions of Theorem 1.3.

An upshot of Theorem 1.3 is that despite the fact that the fixed points are harder 

to compute than the geometric fixed points, if we already know the differentials in the 

localized slice spectral sequence, then we can use the isomorphism on the E2-page given 

by Theorem 1.3 to recover differentials in the original slice spectral sequence. This allows 

us to approach the computation of the fixed points XG from the residue fixed points 

(ΦHX)G/H .

A subtlety that arises from the localized slice spectral sequence is its compatibility 

with multiplicative structures. More precisely, let R be a connective G-commutative ring 

spectrum. Ullman [55] has shown that the slice tower of R is multiplicative. Therefore, the 

corresponding slice spectral sequence has all the desired multiplicative properties such 

as the Leibniz rule, the Frobenius relation [34, Definition 2.3], and most importantly, 

the norm [34, Corollary 4.8]. On the other hand, the localization a−1
V R can never be a 

G-commutative ring spectrum because its underlying spectrum is contractible.

To establish multiplicative properties for the localizations, we apply the theory of N∞-

operads from [10]. More precisely, in Section 2.5, we establish a criterion generalizing 

the results of [32] and [13]. As a consequence, we obtain the following theorem, which 

shows that aV -localization preserves algebra structures over a certain N∞-operad O that 

depends on the class aV .

Theorem 1.4. Let V be a G-representation. Assume that IndH
K ResG

K V is a summand of 

a multiple of ResG
H V for every K ⊂ H ⊂ G such that H/K is an admissible H-set. Then 

localization at aV preserves O-algebras.

Therefore, the homotopy of the aV -localization of an equivariant commutative ring 

spectrum such as MU ((C2n )) forms an incomplete Tambara functor [11], and the norm 

maps essential to our computation are still available. In Section 3.4, we draw conse-

quences of the behavior of norms in the localized slice spectral sequence.

Aside from the localized slice spectral sequence a−1
λ SliceSS(X), the G/H-slice spec-

tral sequence of ΦHX also computes the residue fixed points (ΦHX)G/H . Even though 

both spectral sequences compute the same homotopy groups, their behaviors can be 

very different. Surprisingly, we have the following theorem, which shows that after a 

modification of filtrations, there is map between the two spectral sequences.

Theorem 1.5. Let X be a C2n-spectrum, then there is a canonical map of spectral se-

quences

a−1
λ SliceSSC2n (X) → P ∗

C2n /C2
DSliceSSC2n /C2(ΦC2X)
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that converges to an isomorphism in homotopy groups. Here D is the doubling operation 

defined in Section 3.5, which slows down a tower by a factor of 2, and P ∗
C2n /C2

is the 

pullback functor from [29], which is recalled in Section 2.2.

In the second half of the paper, as an application of all the tools that we have devel-

oped, we will use the localized slice spectral sequence to analyze the norms of MUR.

1.3. Norms of Real bordism and the Segal conjecture

The Segal conjecture is a deep result in equivariant homotopy theory. In its original 

formulation, it was proven by Lin [41] for the group C2 and by Carlsson [16] for all finite 

groups, building on the works of May–McClure [46] and Adams–Gunawardena–Miller 

[2]. When the group is C2, the most general formulation can be found in Lunøe-Nielsen–

Rognes [42] and Nikolaus–Scholze [54]: for every bounded below spectrum X, the Tate 

diagonal map X → (N2
1 X)tC2 is a 2-adic equivalence.

We are interested in the case when X = HF2, the mod 2 Eilenberg–Mac Lane spec-

trum. This case is intriguing for at least two reasons: first, Nikolaus–Scholze [54] show 

that the general formulation follows formally from this case. Second, even though the 

Segal conjecture implies the equivalence HF2 � (N2
1 HF2)tC2 , this is still a mystery from 

a computational perspective.

More precisely, the Tate spectral sequence computing (N2
1 HF2)tC2 has E2-page 

Ĥ∗(C2; A∗), the Tate cohomology of the dual Steenrod algebra A∗ with the conjugate 

C2-action. This cohomology is highly nontrivial and we currently don’t even have a 

closed formula [15]. However, because of the equivalence HF2 � (N2
1 HF2)tC2 given by 

the Segal conjecture, every element besides 1 ∈ F2
∼= Ĥ0(C2; (A∗)0) must either support 

or receive a differential.

Understanding equivariant equivalences from a computational perspective can be 

extremely useful. For example, in the case of BPR and its norms, it is relatively straight-

forward to establish the equivalence ΦC2n BP ((C2n )) � ΦC2BPR � HF2. By working 

backwards, Hill–Hopkins–Ravenel used this equivalence to prove a family of differentials 

in the slice spectral sequence of BP ((C2n )) [33, Theorem 9.9], from which their Periodicity 

Theorem and eventually the nonexistence of the Kervaire invariant elements followed.

By Theorem 1.1, we have a C2-equivalence

ΦC2BP ((C4)) � N2
1 HF2.

For the left hand side, we can use the localized slice spectral sequence to compute the C2-

fixed points of ΦC2BP ((C4)). We demonstrate this computation in a range (Theorem 4.4). 

Note that we can actually compute much further than the range we have shown, but the 

point is to give the readers a taste of the computations involved and to draw comparisons 

to the slice spectral sequence computations in [33,34,31].

After demonstrating these computations, we use Theorem 1.5 to establish a map 

between the slice spectral sequence of BP ((C4)) and the Tate spectral sequence of N2
1 HF2. 
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We prove that this map establishes a correspondence between families of differentials in 

the two spectral sequences.

Theorem 1.6. After the E2-page, the Hill–Hopkins–Ravenel slice differentials [33, Theo-

rem 9.9] are in one-to-one correspondence to a family of differentials on the first diagonal 

of slope (−1) in the Tate spectral sequence of N2
1 HF2. This completely determines all the 

differentials in the Tate spectral sequence that originate from the first diagonal of slope 

(−1).

In the future, we wish to reverse the flow of information: to prove slice differentials 

from spectral sequences associated to N2
1 HF2. Computations along this line appear in 

[7] and will be refined in an upcoming article by the same authors. There are various 

methods to study the norms of HF2 and their modules, such as the modified Adams 

spectral sequence [49,14] and the descent spectral sequence [27]. These methods allow 

one to understand modules over norms of HF2 and BPR from different perspectives.

It is worth noting that in another direction, one can prove the C2-Segal conjecture 

by showing that N4
2 MUR is cofree and using Theorem 1.1. This approach is taken by 

Carrick in [17].

Theorem 1.6 has an unexpected consequence. Let R be an arbitrary non-equivariant 

(−1)-connected homotopy ring spectrum with π0R ∼= Z (or a localization thereof not 

containing 1
2 ). We can use the (stable) EHP spectral sequence and the Tate spectral 

sequence of N2
1 HF2 to bound the length of differentials on powers of the Tate generator 

in the Tate spectral sequence of N2
1 R.

Theorem 1.7. Let v ∈ Ĥ2(C2; π0N2
1 R) be the generator of the Tate cohomology, and lk

be the length of differential that v2k

supports in the Tate spectral sequence of N2
1 R. Then

ρ(2k+1) ≤ lk ≤ 2k+2 − 1,

where ρ(n) is the Radon–Hurwitz number.

1.4. Outline of paper

In Section 2, we recall a few basics of equivariant homotopy theory. In particular, 

we discuss the interplay between the norm functor, the geometric fixed points functor, 

and the pull back functor. We prove Theorem 1.1. We also investigate the multiplicative 

structure of localizations and give a criterion for a localization at an element to preserve 

multiplicative structures, thus proving Theorem 1.4.

In Section 3, we recall the spectra MU ((G)) and BP ((G)) and their slice spectral se-

quences. We then introduce the main computational tool for this paper, the localized 

slice spectral sequence. We prove Theorem 1.2, the strong convergence of the localized 

slice spectral sequence (Theorem 3.3). We also discuss exotic extensions and norms.
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Sections 4 and 5 are dedicated to the computation of the localized slice spectral 

sequence of a−1
λ BP ((C4)). In Section 4, we give an outline of the computation and list our 

main results (Theorem 4.1 and Theorem 4.4). The detailed computations are in Section 5. 

While computing differentials, we make full use of the Mackey functor structure of the 

spectral sequence. Certain differentials are proven using exotic extensions and norms by 

methods established in Section 3.

In Section 6, we turn our attention to the Tate spectral sequence of N2
1 HF2. We use 

the computation of the localized slice spectral sequence of BP ((C4)) to prove families of 

differentials and compute the Tate spectral sequence in a range. In particular, Theo-

rem 1.6 is proven as Theorem 6.6, which describes the first infinite family of differentials 

in the Tate spectral sequence.
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Conventions

(1) Given a finite group G, all representations will be finite-dimensional and orthogonal. 

Per default actions will be from the left.

(2) We denote by ρG the real regular representation of a finite group G and we abbreviate 

ρC2
to ρ2.

(3) We will often use the abbreviation BP ((C4)) for N4
2 BPR and more generally BP ((G))

for NG
C2

BPR.

(4) All spectral sequences use the Adams grading.

(5) We use the regular slice filtration and its corresponding tower and spectral sequence 

defined in [55] throughout the paper, often omitting “regular”.

2. Equivariant stable homotopy theory

2.1. A few basics

We work in the category of genuine G-spectra for a finite group G, and our particular 

model will be the category of orthogonal G-spectra SpG. For us these will be simply 

G-objects in orthogonal spectra as in [52], which will often be just called G-spectra. This 
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category is equivalent to the categories of orthogonal G-spectra considered in [45] and 

[33]. In particular, we are able to evaluate a G-spectrum at an arbitrary G-representation 

to obtain a G-space. We refer to the three cited sources for general background on G-

equivariant stable homotopy theory, of which we will recall some for the convenience of 

the reader.

For each G-representation V , we denote by SV its one-point compactification. Denot-

ing further by ρG the regular representation, we obtain for each subgroup H ⊂ G and 

each G-spectrum its homotopy groups

πH
n (X) = colimk[SkρG+n, X(kρG)]H .

These assemble into a Mackey functor πn(X). A map of G-spectra is an equivalence

if it induces an isomorphism on all πn. Inverting the equivalences of G-spectra in the 

1-categorical sense yields the genuine equivariant stable homotopy category Ho(SpG)

and inverting them in the ∞-categorical sense the ∞-category of G-spectra Sp∞
G . These 

constructions are well-behaved as there is a stable model structure on SpG with the weak 

equivalences we just described [45, Theorem III.4.2]. The fibrant objects are precisely the 

Ω-G-spectra. In the main body of the paper we will implicitly work in Ho(SpG) or Sp∞
G ; 

in particular, commutative squares are meant to be only commutative up to (possibly 

specified) homotopy.

By [45, Proposition V.3.4], the categorical fixed point construction SpG → Sp is a right 

Quillen functor. We call the right derived functor (−)G : Sp∞
G → Sp∞ the (genuine) fixed 

points. We can define fixed point functors for subgroups H ⊂ G by applying first the 

restriction functor SpG → SpH and then the H-fixed point functor. One easily shows 

that πnXH ∼= πH
n X. Thus, a map is an equivalence if it is an equivalence on all fixed 

points.

Note that if H ⊂ G is normal, the categorical fixed points carry a residual G/H-

action. The resulting functor SpG → SpG/H is a right Quillen functor as well [45, p. 81]

and thus H-fixed points actually define a functor Sp∞
G → Sp∞

G/H . The left adjoint of this 

is the inflation functor p∗ associated to the projection p : G → G/H.

As πH
n translates filtered homotopy colimits into colimits, we see that fixed points 

Sp∞
G → Sp∞ preserve filtered homotopy colimits. As they preserve homotopy limits as 

well (as they are induced by a Quillen right adjoint) and are a functor between stable ∞-

categories, they preserve all finite homotopy colimits [44, Proposition 1.1.4.1] and hence 

all homotopy colimits [43, Proposition 4.4.2.7]. By the associativity of fixed points, the 

same is true for (−)H : Sp∞
G → Sp∞

G/H for a normal subgroup H ⊂ G.

2.2. Geometric fixed points and pullbacks

To define other versions of fixed points, we need the notion of a universal space for 

a given family F of subgroups of G, i.e. a collection of subgroups closed under taking 

subgroups and conjugation. For every such family there exists a universal space, i.e. a 
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G-CW complex EF , which is up to G-homotopy equivalence characterized by its fixed 

points:

(EF)H �

{
∗ if H ∈ F

∅ if H /∈ F

Examples of such families include the case F = {e} of just the trivial group, where we 

denote EF by EG, and the case F = P of all proper subgroups. To each family, we can 

associate furthermore the cofiber ẼF of EF+ → S0, which is again characterized by its 

fixed points

(ẼF)H �

{
∗ if H ∈ F

S0 if H /∈ F

For each family F and every G-spectrum we have an associated isotropy separation 

diagram, whose rows are parts of cofiber sequences:

X ∧ EF+

�

X X ∧ ẼF

X ∧ EF+ XEF+ XEF+ ∧ ẼF

Upon taking fixed points, we can identify some of the entries with well-known construc-

tions. If EF = EG, then (XEF+)G is the spectrum of homotopy fixed points XhG and 

(X ∧ EF+)G is (by the Adams isomorphism) the spectrum of homotopy orbits XhG. 

Moreover, one calls in this case (XEF+ ∧ ẼF)G the Tate construction and denotes it 

by XtG. If F = P, then (X ∧ ẼP)G is called the geometric fixed points and denoted by 

ΦGX. One can show that ΦG(Σ∞X) � Σ∞XG for pointed G-spaces X.

Let H ⊂ G be normal. As mentioned above, H-fixed points define a functor Sp∞
G →

Sp∞
G/H . We want to define a similar version for geometric fixed points. Let F [H] be the 

family of all subgroups of G not containing H. We consider the functor

ΦH : Sp∞
G → Sp∞

G/H , X �→ (ẼF [H] ∧ X)H .

This agrees with our previous definition when H = G since F [G] = P. Another important 

special case is G = C2n and H = C2; then ẼF [H] = ẼG.

As the geometric fixed points functor ΦH : Sp∞
G → Sp∞

G/H is the composition of 

smashing with a space and taking fixed points, it preserves all homotopy colimits as 

well.

This property implies that ΦH must possess a right adjoint, which was constructed 

in [29, Definition 4.1] as the pullback functor
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P ∗
G/H : Sp∞

G/H → Sp∞
G , X �→ ẼF [H] ∧ p∗X,

where p∗ is the functor induced by the projection p : G → G/H, as defined in the 

previous subsection. For the adjointness see [29, Proposition 4.4], at least on the level of 

homotopy categories. Several pleasant properties of P ∗
G/H are shown in [29, Section 4.1], 

in particular that P ∗
G/H defines a fully-faithful embedding of G/H-spectra into G-spectra 

(with image agreeing with that of − ∧ẼF [H]). Equivalently, the unit map id → ΦHP ∗
G/H

is an equivalence. This also implies that P ∗
G/H is (strong) symmetric monoidal (since the 

image of P ∗
G/H is closed under ∧). Moreover, it follows that P ∗

G/HΦH is equivalent to 

− ∧ ẼF [H].

We furthermore note:

Lemma 2.1. For every G/H-spectrum X, every H ⊂ K ⊂ G and every V ∈ RO(G/H), 

there is a canonical isomorphism

πK
V (P ∗

G/HX) ∼= π
K/H
V (X).

Here we view V also as an element of RO(G) by pullback along G → G/H.

Proof. Essentially by definition, πK
V (P ∗

G/HX) ∼= [ΣV G/K+, P ∗
G/HX]G. By the contain-

ment H ⊂ K, all points in G/K are H-fixed and moreover V H = V . Hence we get 

ΦHΣV G/K+ � ΣV (G/H)/(K/H)+. By the adjointness of ΦH and P ∗
G/H we thus ob-

tain the result. �

2.3. Universal properties of G-spectra

In [20, Corollary C.7], Gepner and the first-named author established a universal 

property for symmetric monoidal colimit-preserving functors out of Sp∞
G . We will need 

a variant of this for functors just preserving filtered colimits.

Localizing the 1-category of pointed finite G-CW-complexes at G-homotopy equiv-

alences yields an ∞-category Sfin,G
∗ . This ∞-category is essentially small. For every 

essentially small ∞-category C, we can freely adjoin filtered colimits to obtain an ∞-

category Ind(C) [43, Section 5.3]. The inclusion Sfin,G
∗ → SG

∗ into the ∞-category of 

pointed G-spaces induces a functor Ind(Sfin,G
∗ ) → SG

∗ . Since Sfin,G
∗ consists of compact 

objects inside SG
∗ and generates SG

∗ under filtered colimits, the functor is an equivalence.

Let us explain to obtain G-spectra and finite G-spectra as stabilization of SG
∗ and 

Sfin,G
∗ respectively. Let U be a complete G-universe and denote by SubU the poset of 

finite-dimensional sub-representations. Following [20, Appendix C], we can consider func-

tors T and T fin from SubU to Catω
∞ (resp. Cat∞), sending each V ∈ SubU to SG

∗ (resp. 

Sfin,G
∗ ) and each inclusion V ⊂ W to smashing with SW −V . Here, Catω

∞ is the ∞-category 

of compactly generated ∞-categories with compact object preserving left adjoints as 

morphisms, and W − V is the orthogonal complement of V in W . As explained in [20, 
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Appendix C], colimSubU
T carries a canonical symmetric monoidal structure, which is as 

a symmetric monoidal ∞-category canonically equivalent to SpG
∞. Denote colimSubU

T fin

by SpG,fin
∞ . General properties of colimits in Catω

∞ ([43, Proposition 5.5.7.10]) imply that 

the functor SpG,fin
∞ → SpG

∞ extends to an equivalence Ind(SpG,fin
∞ ) � SpG

∞. This yields 

directly:

Lemma 2.2. Let D be an ∞-category with filtered colimits. The space of functors SpG
∞ →

D preserving filtered colimits is equivalent to that of functors Spfin,G
∞ → D.

Remark 2.3. With our convention that G is always finite, we could simplify the colimit 

colimSubU
T to the colimit of the directed system

SG
∗

SρG

−−−→ SG
∗

SρG

−−−→ SG
∗

SρG

−−−→ · · ·

and similarly for Sfin,G
∗ . For possible future applications, we chose however to present 

the proofs in this section in a way that applies to all compact Lie groups.

We want to discuss a universal property of Spfin,G
∞ using symmetric monoidal struc-

tures. For this, we need the following result of Robalo. Recall here that an object X in 

a symmetric monoidal ∞-category is symmetric if the cyclic permutation of X ⊗ X ⊗ X

is homotopic to the identity.

Proposition 2.4. Let C be a small symmetric monoidal ∞-category and X ∈ C symmetric. 

Then C[X−1] := colim C
X⊗
−−→ C

X⊗
−−→ · · · has a symmetric monoidal structure such that 

C → C[X−1] refines to a symmetric monoidal functor, which is initial among all those 

that send X to an invertible object.

Proof. The proof is the same as that of [50, Corollary 2.22]; all necessary previous results 

are actually proven for small ∞-categories and not just for presentable ones. �

Corollary 2.5. Let D be a symmetric monoidal ∞-category. Then taking the suspen-

sion spectrum defines an equivalence between the space of symmetric monoidal functors 

Spfin,G
∞ → D and the space of symmetric monoidal functors Sfin,G

∗ → D sending SV for 

any G-representation to an invertible object.

Proof. This can be deduced from the previous proposition as in [20, Corollary C.7] �

Corollary 2.6. Let D be a symmetric monoidal ∞-category with filtered colimits. Then any 

symmetric monoidal functor F : SpG
∞ → D which preserves filtered colimits is uniquely 

(up to equivalence) determined by its restriction FΣ∞ : Sfin,G
∗ → D (as a symmetric 

monoidal functor).
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Remark 2.7. The idea behind the preceding corollary is that we can write every G-

spectrum canonically as a filtered homotopy colimit of S−V ∧Σ∞X. We chose the above 

treatment to give a precise meaning to how canonical this colimit actually is.

2.4. Norms and pullbacks

In this section, we will identify certain localizations of norm functors with pullbacks 

of norms from quotient groups. In the case of BP ((G)) this is a central ingredient of this 

paper.

First, we will recall the norm construction. For a group G, let BG denote the category 

with one object and having G as morphisms. Given an arbitrary symmetric monoidal 

category (C, ⊗, 1), there is for a subgroup H ⊂ G a norm functor

CBH → CBG, X �→ X⊗H G

from H-objects to G-objects, where the G-action is induced by the right G-action on G. In 

the case of spaces or sets, one can identify X×HG with MapH(G, X) and for based spaces 

or sets, one can likewise identify X∧HG with Map∗
H(G, X). In the case of orthogonal 

spectra, one can by [33, Proposition B.105] left derive the functor (−)∧HG to obtain a 

functor NG
H . (Often, NG

H is also used for the corresponding underived functor, but the 

derived functor will be more important for us.) The functor NG
H commutes with filtered 

(homotopy) colimits by [33, Propositions A.53, B.89]. Note moreover that NG
H Σ∞X �

Σ∞ Map∗
H(G, X) (if X is cofibrant or at least well-pointed) as Σ∞ is symmetric monoidal.

Lemma 2.8. Let G be a finite group, K, H ⊂ G be two subgroups and X be a (based) 

topological H-space. Let H\G/K = {Hg1K, . . . , HglK}. Then there are natural (based) 

homeomorphisms

MapH(G, X)K ∼= Xg1Kg−1
1 ∩H × · · · × XglKg−1

l ∩H

and

Map∗
H(G, X)K ∼= Xg1Kg−1

1 ∩H ∧ · · · ∧ XglKg−1
l ∩H , (1)

where the K-action on the mapping spaces is induced by the right K-action on G. In 

particular, if H = K is normal, we obtain a natural G/H-equivariant homeomorphism

Map∗
H(G, X)H ∼= Map∗(G/H, XH).

Proof. The first two statements follow from the H-K-equivariant decomposition of G

into 
∐l

i=1 HgiK. For the last one observe that if H = K is normal, H\G/K = G/H

and G/H permutes the factors of the decomposition in (1). �
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To put the following theorem and its corollary into context, recall from [33, Proposition 

B.213] that ΦGNG
KX � ΦKX. We show more generally that ΦHNG

KX � N
G/H
e ΦKX if 

K ⊂ H ⊂ G and H is normal. Before we do so in Corollary 2.11, we provide a version 

that gives an equivalence on the level of G-spectra, i.e. before taking fixed points.

Theorem 2.9. Let H ⊂ G be a normal subgroup and X be an H-spectrum. Then we have 

an equivalence of G-spectra

ẼF [H] ∧ NG
H X � P ∗

G/H(NG/H
e ΦH(X)).

Proof. We have

ΦHNG
H X � NG/H

e ΦHX (2)

for all H-spectra X. Indeed: If X is a suspension spectrum, this reduces to the space-

level statement Map∗
H(G, X)H � Map∗(G/H, XH), which is part of Lemma 2.8. Both 

sides of (2) are symmetric monoidal and commute with filtered homotopy colimits. Thus 

Corollary 2.6 implies the claim.

Applying P ∗
G/H to (2), it suffices to check that P ∗

G/HΦHNG
H X is equivalent to ẼF [H] ∧

NG
H X. But the equivalence of P ∗

G/HΦH with ẼF [H] ∧ − was already noted above. �

Corollary 2.10. Let K ⊂ H ⊂ G be subgroups and assume that H ⊂ G is normal. Let 

moreover X be a K-spectrum. Then there is an equivalence of G-spectra

ẼF [H] ∧ NG
KX � P ∗

G/H(NG/H
e ΦK(X)).

Proof. This follows from Theorem 2.9 by applying it to NH
K X. Here, we use NG

KX �

NG
H NH

K X and ΦHNH
K X � ΦKX. �

Taking H-fixed points we obtain a strengthened form of Theorem 1.1:

Corollary 2.11. Let K ⊂ H ⊂ G be subgroups and assume that H ⊂ G is normal. Let 

moreover X be a K-spectrum. Then there is an equivalence of G/H-spectra

ΦHNG
KX � NG/H

e ΦK(X).

Remark 2.12. An alternative proof of this result is possible using [56, Theorem 2.7].

As we will recall below, there is a C2-spectrum BPR with geometric fixed points HF2. 

For G = C4 and H = C2, we can express ẼF [H] as S∞λ, where λ is the 2-dimension 

representation of C4 corresponding to rotation by an angle of π
2 . Denoting the norm 

NC4

C2
BPR by BP ((C4)), we obtain our main example for Theorem 2.9.
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Corollary 2.13. There is an equivalence

BP ((C4)) ∧ S∞λ � P ∗
C4/C2

N2
1 (HF2).

We end this section with a different kind of compatibility of norms and pullbacks.

Proposition 2.14. Let K ⊂ H ⊂ G be subgroups such that K is normal in G. Then there 

is a natural equivalence NG
H P ∗

H/K � P ∗
G/KN

G/K
H/K of functors Sp∞

H/K → Sp∞
G .

Proof. Since both NG
H P ∗

H/K and P ∗
G/KN

G/K
H/K commute with filtered colimits and are 

symmetric monoidal, it suffices (as in the proof of Theorem 2.9) to provide a natural 

equivalence of their restriction to suspension spectra. We compute

NG
H P ∗

H/KΣ∞X � NG
H Σ∞ẼF [H] ∧ X � Σ∞ Map∗

H(G, ẼFH [K]) ∧ Map∗
H(G, X)

and

P ∗
G/KN

G/K
H/K Σ∞X � P ∗

G/KΣ∞ Map∗
H/K(G/K, X) � Σ∞ẼFG[K] ∧ Map∗

H(G, X),

where we used a subscript at ẼF to indicate whether it is a G-space or an H-space. Using 

Lemma 2.8, one can check that Map∗
H(G, ẼFH [K])L � S0 if L ⊂ K and is contractible 

otherwise; thus indeed Map∗
H(G, ẼFH [K]) � ẼFG[K]. �

2.5. Multiplicative structures of localizations

In many cases, smashing with ẼF [H] is equivalent to localizing at a certain element 

in πG
�S (for example if G is cyclic). The goal of this section is to investigate which kind 

of multiplicative structure localization at such an element preserves. More specifically 

let us fix an N∞-operad O, i.e. an operad O in (unbased) G-spaces such that each O(n)

is a universal space for a family Fn of graph subgroups of G ×Σn, containing all H ×{e}

for subgroups H ⊂ G. This notion was introduced in [10]. In the maximal case, we speak 

of a G-E∞-operad and by [10, Theorem A.6] every algebra over such an operad can be 

strictified to a commutative G-spectrum. In the minimal case, we speak of a (naive) 

E∞-operad.

Essentially, the different versions of N∞-operads encode which norms we see in the 

homotopy groups of an O-algebra. To be more precise, call an H-set T admissible if the 

graph of the H-action on T lies in F|T |. By [3, Remark 5.15] an O-algebra R admits 

norms NH
K : πK

V R → πH
IndH

K V
R if H/K is admissible, and the groups πH

�R assemble into 

an RO(G)-graded incomplete Tambara functor.

As already observed in [47], localizations only need to preserve naive E∞-structures, 

but not G-E∞-structures. Later, [32] gave a criterion when localizations indeed preserve 
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G-E∞-structures and this was extended in [13] to N∞-algebras, albeit only for localiza-

tions of elements in degree 0. In this section, we will extend this work to elements in 

non-trivial degree and follow the proof strategy of [13, Proposition 2.30].

Let us first recall what localizing at some x ∈ πG
V S means. We say that a G-spectrum 

E is x-local if x acts invertibly on E or, equivalently, on πG
�E. Given a G-spectrum E, 

we construct its x-localization as

x−1E = hocolim
(

E
x
−→ Σ−V E

x
−→ Σ−2V E

x
−→ · · ·

)
.

Note that x−1E � E ∧ x−1
S.

Example 2.15. Given a G-representation V , let aV : S0 → SV be the Euler class. Then 

a−1
V S � S∞V and hence in general a−1

V E � S∞V ∧ E. In particular, we can reformulate 

Corollary 2.13 as

a−1
λ BP ((C4)) � P ∗

C4/C2
N2

1 (HF2).

A map f : E → F is an x-local equivalence if f ∧ x−1
S is an equivalence; by abuse 

of notation, we call for H ⊂ G a map of H-spectra an x-equivalence if it is a ResG
H(x)-

equivalence.

Definition 2.16. Localization at x preserves O-algebras if for every O-algebra R, we can 

lift the morphism R → x−1R in Ho(SpG) (up to isomorphism) to a morphism in Ho(O −

Alg).

We will use the following specialization of a criterion of [25, Corollary 7.10]:

Proposition 2.17. Localization at x preserves O-algebras if and only if

NH
K ResG

K : SpG
∞ → SpH

∞

preserves x-equivalences for every K ⊂ H ⊂ G such that H/K is admissible as an H-set.

To reformulate this criterion, we need the following lemma.

Lemma 2.18. There is an equivalence NH
K ResG

K(x−1
S) � (NH

K ResG
K(x))−1(SH) for SH

the H-equivariant sphere spectrum.

Proof. Applying NH
K ResG

K to

S
x
−→ Σ−V

S
x
−→ Σ−2V

S
x
−→ · · · ,

we obtain precisely
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SH
NH

K ResG
K (x)

−−−−−−−−→ Σ− IndH
K ResG

K V
SH

NH
K ResG

K (x)
−−−−−−−−→ Σ−2 IndH

K ResG
K V

SH
NH

K ResG
K (x)

−−−−−−−−→ · · ·

Here we have used that the norm of a representation sphere is computed by induction. 

As both NH
K and ResG

K preserve filtered homotopy colimits, the result follows. �

Proposition 2.19. Localization at x preserves O-algebras if and only if NH
K ResG

K(x) di-

vides a power of ResG
H(x) for every K ⊂ H ⊂ G such that H/K is admissible as an 

H-set.

Proof. Let K ⊂ H ⊂ G be subgroups such that H/K is admissible as an H-set. By 

Proposition 2.17, we have to show that NH
K ResG

K(x) divides a power of ResG
H(x) if and 

only if

NH
K ResG

K : SpG
∞ → SpH

∞

preserves x-equivalences.

Assume first that NH
K ResG

K preserves x-equivalences. By the preceding lemma, we 

see in particular that SH → (NH
K ResG

K(x))−1
SH is an x-equivalence, i.e. NH

K ResG
K(x)

becomes a unit after inverting ResG
H(x) and just must divide a power of it.

Assume now that NH
K ResG

K(x) divides a power of ResG
H(x). Then the map SH →

ResG
H(x)−1

SH factors over the standard map SH → (NH
K ResG

K(x))−1
SH .

Let now f : E → F be an x-equivalence of G-spectra, i.e. we assume that f ∧x−1
S is an 

equivalence. As NH
K and ResG

H are symmetric monoidal, we see that NH
K ResG

H(f∧x−1
S) is 

equivalent to NH
K ResG

H(f) ∧(NH
K ResG

K(x))−1
SH , which is thus an equivalence. Tensoring 

with ResG
H(x)−1

SH over (NH
K ResG

K(x))−1
SH yields the result. �

We specialize now to the case that x is the Euler class aV : S0 → SV . In this case we 

have NG
K ResG

H aV = aIndG
K ResG

H V . Thus to see which multiplicative structure localization 

at aV preserves, we only have to understand divisibility relations between Euler classes. 

In particular, we obtain the following corollary:

Corollary 2.20. Let V be a G-representation. Assume that IndH
K ResG

K V is a summand 

of a multiple of ResG
H V for every K ⊂ H ⊂ G such that H/K is an admissible H-set. 

Then localizing at aV preserves O-algebras.

Remark 2.21. While this corollary is everything we need, one can be more precise. For 

a H-representation V , let Ffix
V be the family of subgroups K ⊂ H such that V K 
= 0. 

Thus, a−1
V SH � S∞V � ẼFfix

V . In general, aW divides a power of aV if and only if 

a−1
W a−1

V SH � a−1
V SH , i.e. if Ffix

W ⊂ Ffix
V . (This is a weaker condition than W being 

contained in a multiple of V : for example, take G = C8 and W and V be the two-

dimensional real representation corresponding to rotation by 1
8 ·2π and 3

8 ·2π, respectively, 

which both have trivial fixed point family.)
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Specializing Proposition 2.19 thus yields: For a G-representation V , localization at aV

preserves O-algebras if and only if Ffix
IndH

K ResG
K V

⊂ Ffix
ResG

H V
for all K ⊂ H ⊂ G such that 

H/K is an admissible H-set.

Example 2.22. Let G = C2n and λ = λn be the two-dimensional representation of C2n

given by rotation by an angle of 2π
2n . We observe that Res

Cn
2

C
2k

λn = λk and Ind
Cm

2

C
2k

λk =

2m−kλm unless k = 1. Thus localizing at aλ preserves O-algebras if the following holds: 

H/K is H-admissible if and only if K 
= e. In particular, we see that for any commutative 

C2n -spectrum R, the localization a−1
λ R admits norms from π

C
2k

∗ to πC2n

∗ for 0 < k < n, 

but will not admit norms from πe
∗ unless the target is zero. The example we care most 

about is a−1
λ MU ((C2n )).

These considerations have consequences for the multiplicative behavior of the pullback 

functor P ∗
C2n /C2

. Let R be an algebra over a C2n/C2-E∞-operad O in C2n/C2-spectra. 

Denoting the projection C2n → C2n/C2 by p, we see that p∗O is an N∞-operad for which 

Γ ⊂ C2n × Σn is in Fn if and only if Γ/(C2 × e) is a graph subgroup of (C2n/C2) × Σn. 

This means that H/K is H-admissible if and only if K 
= e. Note further that

P ∗
C2n /C2

R = p∗R ∧ ẼF [C2] � p∗R[a−1
λ ]

since λK = 0 unless K is trivial. Using the paragraph above we see that P ∗
C2n /C2

R retains 

the structure of a p∗O-algebra.

Likewise we can apply our considerations to the geometric fixed point functor. With 

p∗O as above, we see that for a G-commutative ring spectrum R, the localization a−1
λ R

retains an action of p∗O and thus ΦC2R � (a−1
λ R)C2 has the structure of a O-algebra. 

Thus ΦC2R is equivalent to a G/C2-commutative ring spectrum.

3. The slice spectral sequence and the localized slice spectral sequence

3.1. The slice spectral sequence of MU ((C2n )) and BP ((C2n ))

Our main computational tool in this paper is a modification of the equivariant slice 

spectral sequence of Hill–Hopkins–Ravenel. In this subsection, we list some important 

facts about the slice filtration for norms of MUR and BPR, which we will need for the rest 

of the paper. For a detailed construction of the slice spectral sequence and its properties, 

see [33, Section 4] and [34].

Let G = C2n be the cyclic group of order 2n, with generator γ. The spectrum MU ((G))

is defined as

MU ((G)) := NG
C2

MUR.

The underlying spectrum of MU ((G)) is the smash product of 2n−1-copies of MU .
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Hill, Hopkins, and Ravenel [33, Section 5] constructed elements

ri ∈ πC2
iρ2

MU ((G))

such that

πC2
∗ρ2

MU ((G)) ∼= Z[G · r1, G · r2, . . .].

Here, G · x denotes the set {x, γx, γ2x, . . . , γ2n−1

x}, and the Weyl action is given by

γ · γjri =

{
γj+1ri 0 ≤ j ≤ 2n−1 − 2

(−1)iri j = 2n−1 − 1.

Adjoint to each map

ri : Siρ2 −→ i∗
C2

MU ((G))

is an associative algebra map from the free associative algebra

S0[ri] =
∨

j≥0

(Siρ2)∧j −→ i∗
C2

MU ((G)).

Applying the norm and using the norm-restriction adjunction, this gives a G-equivariant 

associative algebra map

S0[G · ri] = NG
C2

S0[ri] −→ MU ((G)).

Smashing these maps together produces an associative algebra map

A := S0[G · r1, G · r2, . . .] =

∞∧

i=1

S0[G · ri] −→ MU ((G)).

Note that by construction, A is a wedge of representation spheres, indexed by monomials 

in the ris. By the Slice Theorem [33, Theorem 6.1], the slice filtration of MU ((G)) is the 

filtration associated with the powers of the augmentation ideal of A. The slice associated 

graded for MU ((G)) is the graded spectrum

S0[G · r1, G · r2, . . .] ∧ HZ,

where the degree of a summand corresponding to a monomial in the ri generators and 

their conjugates is the underlying degree.

As a consequence of the slice theorem, the slice spectral sequence for the RO(G)-

graded homotopy groups of MU ((G)) has E2-term the RO(G)-graded homology of S0[G ·
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r1, G · r2, . . .] with coefficients in the constant Mackey functor Z. To compute this, note 

that S0[G · r1, G · r2, . . .] can be decomposed into a wedge sum of slice cells of the form

G+ ∧Hp
S

|p|
|Hp| ρHp ,

where p ranges over a set of representatives for the orbits of monomials in the γjri

generators, and Hp ⊂ G is the stabilizer of p (mod 2). Therefore, the E2-page of the 

integer graded slice spectral sequence can be computed completely by writing down 

explicit equivariant chain complexes for the representation spheres S
|p|

|Hp| ρHp .

The exact same story holds for norms of BPR as well. By [36, Theorems 2.25, 2.33], the 

classical Quillen idempotent MU −→ MU lifts to a multiplicative idempotent MUR →

MUR with image BPR, resulting in particular in a multiplicative C2-equivariant map

MUR −→ BPR.

Taking the norm NG
C2

(−) of this map produces a multiplicative G-equivariant map

MU ((G)) −→ BP ((G)) =: NG
C2

BPR.

The exact same technique as the one used in [33, Section 5] shows that there are gener-

ators

ti ∈ πC2

(2i−1)ρ2
BP ((G))

such that

πC2
∗ρ2

BP ((G)) ∼= Z(2)[G · t1, G · t2, . . .].

Throughout the paper, the generators ti are chosen to be the coefficients of the canon-

ical isomorphism from the formal group law of the first BPR component to the formal 

group law of the second BPR-component. In the case when G = C4, it is the canonical 

isomorphism from the formal group law FL to FR, where FL is induced by the map

BPR � BPR ∧ S0 −→ BPR ∧ BPR,

and FR is induced by the map

BPR � S0 ∧ BPR −→ BPR ∧ BPR.

Remark 3.1. Our specific choice of the formal group law and the generators ti is because 

we would like to control their geometric fixed points (see Proposition 6.2). Nevertheless, 

we would like to remark that the proofs and formulas in both [33] and [8] work for any 

choice of formal group law and the corresponding t̄i generators we get for πC2
∗ρ2

BP ((G)), 

as long as the conditions in [33, Proposition 5.45] are satisfied.
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Just like MU ((G)), we can build an equivariant refinement

S0[G · t1, G · t2, . . .] −→ BP ((G))

from which the Slice Theorem implies that the slice associated graded for BP ((G)) is the 

graded spectrum S0[G · t1, G · t2, . . .] ∧ HZ(2).

Remark 3.2. The regular slice towers of MU ((G)) and BP ((G)) are isomorphic to their slice 

towers in [33], since all the HHR-slices of them are regular slices. For a proof of the slice 

theorem in terms of the regular slice filtration, see [35, Chapter 12.4].

Since the slice filtration is an equivariant filtration, the slice spectral sequence is a 

spectral sequence of RO(G)-graded Mackey functors. Moreover, the slice spectral se-

quences for MU ((G)) and BP ((G)) are multiplicative spectral sequences and the natural 

maps between them are multiplicative as well (see [33, Section 4.7]), and the slice spec-

tral sequence for BP ((G)) is a spectral sequence of modules over the spectral sequence of 

MU ((G)) in Mackey functors.

3.2. The localized spectral sequence

In this subsection, we introduce a variant of the slice spectral sequence which we 

call the localized slice spectral sequence. This will be our main computational tool to 

compute a−1
λ BP ((C4)) in the later sections.

Let λ2n−i denote the 2-dimensional real C2n-representation corresponding to rotation 

by 
(

π
2n−i

)
and σ denote the real sign representation of C2n . Given a C2n-spectrum X, 

we have an equivalence

ẼF [C2i ] ∧ X � S∞λ2n−i ∧ X � a−1
λ2n−i

X

for all 1 ≤ i ≤ n. For example, there are equivalences

ẼF [C2n ] ∧ X � a−1
λ1

X = a−1
2σ X = a−1

σ X,

ẼF [C2n−1 ] ∧ X � a−1
λ2

X,

ẼF [C2n−2 ] ∧ X � a−1
λ4

X.

The following theorem shows that one can compute the homotopy groups of ẼF [C2i ] ∧

X = a−1
λ2n−i

X by smashing the slice tower of X with ẼF [C2i ]. The resulting localized 

slice spectral sequence will converge to the homotopy groups of a−1
λ2n−i

X.

Theorem 3.3. Let X be a C2n-spectrum, and let {P •} denote the (regular) slice tower for 

X. Consider the tower
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{Q•} := {ẼF [C2i ] ∧ P •}

obtained by smashing {P •} with ẼF [C2i ]. The spectral sequence associated to {Q•} con-

verges strongly to the homotopy groups of ẼF [C2i ] ∧ X.

Proof. Let λ := λ2n−i . Consider the tower

S∞λ ∧ X lim
←−−

(S∞λ ∧ P •X)

...

S∞λ ∧ P nX S∞λ ∧ P n
n X

S∞λ ∧ P n−1X S∞λ ∧ P n−1
n−1 X

...

We will first show that the spectral sequence converges to the limit, lim
←−−

(S∞λ ∧ P •X). 

Since smash products commute with colimits, we have the equivalence

lim
−−→

(S∞λ ∧ P •X) � ∗

and so the colimit of the tower is contractible. The slices P n
n X satisfy P n

n X ≥ n for all n. 

Furthermore, since S∞λ ≥ 0, we also have

S∞λ ∧ P n
n X ≥ n

by [33, Proposition 4.26].1 Applying Proposition 4.40 in [33] to S∞λ ∧ P n
n X shows that 

the homotopy groups

πk(S∞λ ∧ P n
n X) = 0 if

{
n ≥ 0 and k < � n

|G| �,

n < 0 and k < n.

This gives a vanishing line on the E2-page of the spectral sequence. It follows that the 

spectral sequence converges strongly to the homotopy groups of the limit, πk lim
←−−

(S∞λ ∧

P •X) [12, Section 5-6].

1 The proof of this result and of the part of [33, Proposition 4.40] we need are still valid for the regular 
slice filtration instead of the slice filtration as used in [33].



L. Meier et al. / Advances in Mathematics 412 (2023) 108804 23

To finish our proof, it suffices to show that the map

S∞λ ∧ X −→ lim
←−−

(S∞λ ∧ P •X)

is an equivalence.

Consider the cofiber sequence

Pn+1X −→ X −→ P nX

used in the definition of the slice tower. In the cofiber sequence, Pn+1X ≥ n + 1 and 

P nX ≤ n. Smashing this cofiber sequence with S∞λ produces a new cofiber sequence

S∞λ ∧ Pn+1X −→ S∞λ ∧ X −→ S∞λ ∧ P nX.

Since S∞λ ≥ 0, [33, Proposition 4.26] implies that

S∞λ ∧ Pn+1X ≥ n + 1.

Applying [33, Proposition 4.40] to S∞λ ∧ Pn+1X shows that

πk(S∞λ ∧ Pn+1X) = 0 if

{
n + 1 ≥ 0 and k < � n+1

|G| �,

n + 1 < 0 and k < n + 1.

The cofiber sequence above induces the following long exact sequence in homotopy 

groups:

πk(S∞λ∧Pn+1X) −→ πk(S∞λ∧X) −→ πk(S∞λ∧P nX) −→ πk−1(S∞λ∧Pn+1X) −→ · · ·

It follows from this long exact sequence and the discussion above that

πk(S∞λ ∧ X) ∼= πk(S∞λ ∧ P nX) if

{
n + 1 ≥ 0 and k < � n+1

|G| �,

n + 1 < 0 and k < n + 1.

This means that for any k, the kth homotopy groups of S∞λ ∧X and S∞λ ∧P nX will be 

isomorphic when n is large enough. In particular, the map S∞λ ∧P n+1X → S∞λ ∧P nX

will induce an isomorphism on πk. It is then immediate that the system πk(S∞λ ∧P •X)

satisfies the Mittag–Leffler condition and therefore

πk lim
←−−

(S∞λ ∧ P •X) ∼= lim
←−−

πk(S∞λ ∧ P •X) ∼= πk(S∞λ ∧ P nX)

for n large.

Another way to observe this is by using the localized slice spectral sequence. As we 

have shown, the spectral sequence associated to the tower {Q•} := {S∞λ∧P •} converges 

to the homotopy groups of lim
←−−

(S∞λ ∧ P •X). It takes the form
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Fig. 1. Spectral sequence associated to the tower {ẼF [C2i ] ∧ P •}.

Es,n
2 = πn−s(S∞λ ∧ P n

n X) =⇒ πn−s lim
←−−

(S∞λ ∧ P •X).

By [33, Proposition 4.40], the homotopy groups

πn−s(S∞λ ∧ P n
n X)

do not contribute to πk lim
←−−

(S∞λ ∧ P •X) when n ≥ 0 and k < � n
|G| �, or when n < 0 and 

k < n (see Fig. 1). Therefore,

πk lim
←−−

(S∞λ ∧ P •X) ∼= πk(S∞λ ∧ P nX) if

{
n ≥ 0 and k < � n

|G| �,

n < 0 and k < n.

For any k, consider the diagram

πk(S∞λ ∧ X) πk lim
←−−

(S∞λ ∧ P •X)

πk(S∞λ ∧ P nX)

∼=
∼=
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We have proven that when n is large enough (n > k), the vertical arrow and the diagonal 

arrow are isomorphisms. Therefore, the horizontal arrow induces an isomorphism

πk(S∞λ ∧ X) ∼= πk lim
←−−

(S∞λ ∧ P •X)

for all k. It follows that S∞λ ∧ X � lim
←−−

(S∞λ ∧ P •X), as desired. �

From the discussion in [55, Section I.4] it follows that the localized slice spectral se-

quences of MU ((G)) and BP ((G)) (and more generally of G-ring spectra) are multiplicative 

spectral sequences.

3.3. Exotic transfers

If the transfer of a given class in the slice spectral sequence is zero, it might still 

support a non-trivial exotic transfer in a higher filtration. Understanding these is both 

crucial for understanding the Mackey functor structure of the spectral sequence and 

helpful to deduce differentials and extensions inside the spectral sequence. While the 

concept of exotic transfers is pretty transparent for permanent cycles, it is slightly more 

subtle for exotic transfers just happening on finite pages. Following the lead of [6] (in the 

case of the Picard spectral sequence), we will give a precise definition of this phenomenon 

and show how it behaves with respect to differentials. It turns out that it is no more 

difficult to treat a more general setting, which specializes to several different known 

spectral sequences and allows also for more general operations than just transfers.

In this subsection, we will first state a general definition of exotic w-operations and 

prove some general results. Then, we will specialize to the case of cyclic 2-groups and 

prove a variant of [34, Theorem 4.4] that also work for exotic transfers and restrictions 

on finite pages.

We consider a tower

· · · → Xi+1 → Xi → Xi−1 → · · ·

of G-spectra. Recall that to this we can associate a spectral sequence as follows: Let 

Xm
n = fib(Xm → Xn−1). For V a virtual G-representation of dimension t, we set Es,V

2 =

πV −s(Xt
t ) and more generally

Es,V
r = im(πV −sX

t+(r−2)
t → πV −sXt

t−(r−2)).

The differentials dr : Es,V
r → Es+r,V +r−1

r are defined as the restrictions of the boundary 

maps δ : πV −sXt
t−(r−2) → πV −s−1Xt+r−1

t+1 (coming from the cofiber sequence X
t+(r−1)
t+1 →

X
t+(r−1)
t−(r−2) → Xt

t−(r−2)). See e.g. [44, Section 1.2.2] for some details in the setting of 

an ascending filtration. Our setting specializes in particular to the following spectral 

sequences:
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(1) Given a spectrum Z with a G-action, set Xi = (τ≤iZ)EG+ . We recover the homotopy 

fixed point spectral sequence.

(2) Given a spectrum Z with a G-action, set Xi = (τ≤iZ ∧ ẼG)EG+ . We recover the 

Tate spectral sequence.

(3) Given a G-spectrum Z, set Xi = P iZ, the slice tower. We obtain the slice spectral 

sequence.

(4) Given a C2n-spectrum Z and 1 ≤ j ≤ n, set Xi = ẼF [C2j ] ∧ P iZ. We obtain the 

localized slice spectral sequence. This will be the main example of relevance for us.

We fix an arbitrary map Σ∞G/K → Σ∞G/H and denote the resulting operation πH
n →

πK
n by w. The most important case for us will be H ⊂ K and w = TrK

H . But equally 

well w could be a restriction map, multiplication by a fixed element such as 2, or any 

combination of these.

For notational simplicity, we will restrict for our treatment of exotic w-operations to 

integer degrees. By suspending by a representation sphere, one can easily translate our 

definitions and results to the RO(G)-grading.

Definition 3.4. Let x ∈ Es,t
r (G/H), and let 0 ≤ p ≤ r − 2 and 0 ≤ q ≤ p. We may lift the 

corresponding element in πH
t−sXt

t−r+2 to an element x̃ ∈ πH
t−sXt+p

t+p−q−(r−2) since by defi-

nition, we can actually lift it to an element in πH
t−sX

t+(r−2)
t . If w(x̃) ∈ πK

t−sXt+p
t+p−q−(r−2)

lies in Es+p,t+p
r+q (G/K), we call it a w-operation of x of filtration jump p and page jump 

q.

If p > 0, we speak of an exotic w-operation, which, depending on w, might be an 

exotic transfer, exotic restriction etc.2 If the page jump is zero, we omit the mention of 

it.

This definition can be illustrated with the following diagram:

x̃ x

πH
t−s(Xt+p

t+p−q−(r−2))

w

πH
t−s(Xt

t−(r−2))

w

πK
t−s(Xt+p

t+p−q−(r−2)) πK
t−s(Xt

t−(r−2))

w(x̃)

2 If w is multiplication by an integer, then the existence of exotic w-operations corresponds essentially to 
hidden extensions. The basic issue of dependence on choices is already present in this more classical case.
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Remark 3.5.

(1) The w-operations of filtration jump 0 are just the algebraic w-operations on the Er-

page as inherited from the E2-page. This is why we call the w-operations of higher 

filtration jump exotic.

(2) The most classical case of exotic w-operations is the limiting case when r = ∞. If 

x ∈ Es,t
∞ (G/H) and X denotes limt Xt, we can actually lift x to x̃ ∈ πH

t−sX (which 

is further than to πH
t−sXt+p as required by the previous definition). If w(x̃) 
= 0, it 

must be detected in some Es+p,t+p
∞ (G/K) and the resulting element is an example 

of a w-operation of filtration jump p on x. In the case when x is just on a finite page, 

we can suitably truncate the original spectral sequence to force x to be a permanent 

cycle that survives to the E∞-page. We will do this in the proof of Lemma 3.7.

(3) Even in the classical situation of the last item, exotic w-operations are in general not 

unique; in other words, w(x̃) will depend on the choice of lift x̃. With notation as in 

the last bullet point, suppose for example that there exists z ∈ Es+i,t+i
∞ (G/H) for 

0 < i < p such that z supports a non-exotic w-operation. If we lift z to z̃ ∈ πH
t−sX, 

then w(x̃ + z̃) will be detected by w(z) ∈ Es+i,t+i
∞ (G/K), while x̃ + z̃ lifts x. In 

the extreme case, x might even be zero. In Lemma 3.7, we will prove a criterion 

that ensures the uniqueness of exotic w-operations. This criterion is often fulfilled in 

practice.

(4) A w-operation z = w(x̃) of filtration jump p and page jump 0 defines a w-operation 

of filtration jump p and page jump q if dr(z) = · · · = dr+q−1(z) = 0 by just mapping 

z ∈ πK
t−sXt+p

t+p−(r−2) down to πK
t−sXt+p

t+p−q−(r−2). All w-operations of page jump q are 

of this form.

(5) With x and x̃ fixed, a w-operation of filtration jump p can only exist if all 

w-operations of lower filtration jump vanish. Indeed, if the image of w(x̃) in 

πK
t−sXt+p

t+p−q−(r−2) lies in Es+p,t+p
r+q (G/K), it is in the image of πK

t−sX
t+p+q+(r−2)
t+p . 

The map from this group to πK
t−sXt+p−1

t+p−q−(r−2)−1 factors through πK
t−sXt+p−1

t+p = 0.

The following lemma holds by definition.

Lemma 3.6. Let x ∈ Es,t
r (G/H) be a dr-cycle and denote by x its image in Es,t

r+1(G/H). 

Let z ∈ Es+p,t+p
r+q be a w-operation on x of filtration jump p and page jump q ≥ 1. Then 

z is a w-operation on x of filtration jump p and page jump q − 1.

The following is the uniqueness result for exotic w-operations that we will use.

Lemma 3.7. Let x ∈ Es,t
r (G/H) and 0 < p ≤ r−2. Suppose every class in Es+k,t+k

2 (G/H)

for 0 < k < p is either hit by a differential of length at most r + k − 1 or supports 

a differential of length at most p − k + 1. Denoting by I the image of all (r + p)-

cycles in w(Es+p,t+p
2 (G/H)) in Es+p,t+p

r+p (G/K), then there is at most one class in 

Es+p,t+p
r+p (G/K)/I that is a w-operation of x of filtration jump p and page jump p.
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Proof. Consider the towers X
•

and X̃• with

X
i

=

{
Xt+p if i ≥ t + p

Xi else

and

X̃i =

⎧
⎪⎪⎨
⎪⎪⎩

Xt+p
t−(r−2) if i ≥ t + p

Xi
t−(r−2) if t − (r − 2) ≤ i ≤ t + p

0 else

.

The maps X• → X
•

← X̃• induce maps of spectral sequences E•,•
• → E

•,•

• ← Ẽ•,•
• . The 

first induces isomorphisms Es′,t′

2 → E
s′,t′

2 for t′ ≤ t + p and the second isomorphisms 

Ẽs′,t′

2 → E
s′,t′

2 for t′ ≥ t − (r − 2). Via the maps of spectral sequences, differentials in the 

original spectral sequence enforce corresponding differentials in the Ẽ-spectral sequence 

in the range t − (r − 2) ≤ t′ ≤ t + p. In particular, Es,t
r injects into Ẽs,t

r . Note moreover 

that the Ẽ-spectral sequence converges to π∗Xt+p
t−(r−2).

Our assumptions imply that Ẽs+k,t+k
∞ (G/H) = 0 for 0 < k < p and moreover Ẽs,t

r =

Ẽs,t
∞ . Thus, we can lift the image of x in Ẽs,t

r uniquely to πH
t−sXt+p

t−(r−2) modulo Ẽs+p,t+p
∞ . 

The latter term is a quotient of Ẽs+p,t+p
2 = Es+p,t+p

2 .

In summary, we have shown that we can lift x uniquely to x̃ ∈ πH
t−sXt+p

t−(r−2) modulo 

the image from πH
t−sXt+p

t+p . Thus, w(x̃) ∈ πK
t−sXt+p

t−(r−2) is indeed well-defined modulo the 

image of w(πH
t−sXt+p

t+p ) = w(Es+p,t+p
2 ). �

Remark 3.8. One can probably formulate a sharper criterion for the uniqueness of exotic 

w-operations, without requiring that all classes between x and its target vanish. The 

essential point is to require that there are no interleaving w-operations such as classes 

in Es+k,t+k
r with 0 < k < p that admit nonzero w-operations of filtration jump smaller 

than p −k. Moreover, one would have to enlarge I to include exotic w-operations as well. 

We refrain from making this precise.

Proposition 3.9. Let x ∈ Es,t
r (G/H) and z a class with dr(z) = x. Suppose dr+q(w(z))

is zero for q < p. Then dr+p(w(z)) is a w-operation of x of filtration jump p and page 

jump p.

Proof. We choose a lift of z ∈ πH
t−s+1Xt−r+1

t−2r+3 to z̃ ∈ πH
t−s+1Xt−1

t−r+1. As δ(z̃) in the 

diagram below is a lift of x, contemplating the fate of w(z̃) passing along the two different 

travel paths from the upper left corner to the lower right corner proves the proposition.
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πK
t−s+1Xt−1

t−r+1

δ
πK

t−sXt+r−2
t

Es−r,t−r+1
r ⊆ πK

t−s+1Xt−r+1
t−2r+3 πK

t−sXt+p
t+p−r+2 ⊇ Es+p,t+p

r

Es−r,t−r+1
r+p ⊆ πK

t−s+1Xt−r+1
t−2r+3−p

δ
πK

t−sXt+p
t−r+2 ⊇ Es+p,t+p

r+p �

While our definition and results so far are very general (and our proofs would also 

apply to other settings than equivariant homotopy theory), we will now formulate a 

result that is specific to cyclic 2-groups. For the following proposition, both the statement 

and the proof are variants of [34, Theorem 4.4], but also work for exotic transfers and 

restrictions on finite pages and circumvent a mistake in [34, Lemma 4.5].3

Proposition 3.10. Let G be a cyclic 2-group, H ⊂ G an index 2 subgroup, and V ∈

RO(G).

(i) Let y ∈ Es,V
r+1(G/G) with aσy = 0 ∈ Es+1,V +1−σ

r+1 (G/G). Then y is an (exotic) 

transfer of filtration jump (at most) r − 1.4

(ii) Let z ∈ Es,V
r+1(G/H) with Tr(z) = 0 ∈ Es,V

r+1(G/G). Then z is an (exotic restriction) 

from E
s−(r−1),V −(r−1)+(1−σ)
r+1 of filtration jump (at most) r − 1.

Proof. For the first part, by shifting the tower and applying suspension if necessary, we 

can fix the bidegree of y to be (r−1, r−1). The term Er−1,r−1
r+1 (G/G) injects into πG

0 Xr−1
0 . 

Smashing the long exact sequence associated with the cofiber sequence G/H+ → S0 aσ−→

Sσ with Xr−1
0 and taking homotopy groups, we get the long exact sequence

πG
1 Xr−1

0
aσ−→ πG

1−σXr−1
0

Res
−−→ πH

0 Xr−1
0

Tr
−→ πG

0 Xr−1
0

aσ−→ πG
−σXr−1

0 .

From this long exact sequence, we see that aσy = 0 implies y = Tr(w̃) with w̃ ∈ πH
0 Xr−1

0 . 

By definition, this defines an element w ∈ E0,0
r+1(G/H) such that y is an exotic transfer 

of w of filtration jump r − 1.

3 With notation as in the cited lemma, a counterexample is the following: Fix an object A. Take Ai,j to 
be Σ−1A, zero or A, depending on whether i + j is smaller, equal or larger than 2. The ai,j and bi,j are id
if possible, with the exception of a2,1 being an arbitrary self-equivalence of A, which is not equivalent to 
± id. Take further W = A and f3 = id. Then f1 exists (and can be taken to be id), but f1 and f2 cannot 
simultaneously exist. Strictly speaking, the cited lemma is ambiguous on whether it claims that f1 and f2

exist simultaneously if f1 exists, but this seems to be the way that it is later used in [34, Theorem 4.4].
4 The “at most” is actually unnecessary here, as the proof shows that y is an exotic transfer of filtration 

jump r − 1. We write it for emphasis though since y might be very well also an exotic transfer of smaller 
filtration jump. This is related to the non-uniqueness described in Item 3 of Remark 3.5. Thus the statement 
is best used in conjunction with a uniqueness result like Lemma 3.7.
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For the second part, we can fix the bidegree of z to be (r−1, r−1) by shifting the tower 

and applying suspension if necessary to view z as an element in πH
0 Xr−1

0 . Using the long 

exact sequence induced by G/H+ → S0 aσ−→ Sσ again, we see that z is the restriction of 

some ṽ ∈ πG
1−σXr−1

0 . By definition, this defines an element v ∈ E0,1−σ
r+1 (G/G) such that 

z is an exotic restriction of v of filtration jump r − 1. �

Let us give an example of a possible workflow working with exotic transfers, which 

we will apply in Proposition 5.19.

Workflow 3.11. Let G be a cyclic 2-group and H ⊂ G of index 2. Let y ∈

Es+r−1,t+r−1
r (G/G) and r′ > r. We assume the following:

(1) aσy is nonzero and is hit by a dr-differential;

(2) y persists to a nonzero class in the Er′+r−1-page, which we denote by the same name;

(3) every class in Es+k,t+k
2 (G/H) for 0 < k < r − 1 is either hit by a differential of 

length at most r + k − 1 or supports a differential of length at most r − k;

(4) y ∈ Es+r−1,t+r−1
2r−1 is not the image of a (2r − 1)-cycle in E2 which is the transfer of 

a class in Es+r−1,t+r−1
2 .

By (1), aσy vanishes on Er+1. Thus, by Proposition 3.10, there exists x ∈ Es,t
r+1(G/H)

such that y ∈ Es+r−1,t+r−1
r+1 (G/G) is an exotic transfer of x of filtration jump r − 1. 

Applying Lemma 3.7 in conjunction with (3) and (4), we see that x cannot be zero (as 

zero is the unique exotic transfer of zero under our assumptions); in case that there is 

only one non-zero element in the relevant bidegree, this already uniquely determines x. 

Suppose now further that:

(5) x = dr′(a);

(6) dr′+q(TrG
H a) = 0 for 0 ≤ q < r − 1.

Then Proposition 3.9 implies that dr′+r−1(TrG
H(a)) is an exotic transfer of x in the same 

degree as y ∈ Es,t
r′+r−1 and thus must be y by Lemma 3.7 again.

3.4. The behavior of norms

This section is about the behavior of norms in the (regular) slice spectral sequence 

and its localized variant. We will formulate a generalization of [55, Chapter I.5] and then 

discuss how it applies to Ullman’s original setting (the regular slice spectral sequence), 

to the localized slice spectral sequence and the homotopy fixed point spectral sequence.

We will first work in an abstract setting: Let (Xi) be a tower of G-spectra and E∗,∗
∗

be the associated spectral sequence as in the preceding subsection. Set X∞ = limi Xi

and Xn = X∞
n .
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Let H ⊂ G be a subgroup of index h. We assume that we have maps NG
HXn → Xhn

and NG
H Xn

n → Xhn
hn that are (up to homotopy) compatible with the maps Xn → Xn−1

and Xn → Xn
n . (Here we leave the restriction maps implicit.) We call this a norm 

structure. It induces norm maps NG
H : Es,V +s

2 → E
hs,IndG

H V +hs
2 .

Proposition 3.12. Let x ∈ E2(G/H) be an element representing zero in Er+2(G/H). 

Then NG
H (x) represents zero in Erh+2(G/G).

Proof. The proof is the same as that of [55, Proposition I.5.17]. �

Example 3.13. Our first example of this setting is the regular slice tower of [55], which 

coincides with the slice tower of [33] for norms of MUR and BPR – thus there should be 

no danger of confusion if we use the same notation P iX for the regular slice tower.

Ullman constructs in [55, Corollaries I.5.10 and I.5.11] for every H-spectrum X natural 

compatible maps NG
H PnX → PnhNG

H X and NG
H P n

n X → P nh
nh NG

H X. Moreover the square

NG
H PnX PhnNG

H X

NG
H Pn−1X Phn−hNG

H X

commutes, as NG
H PnX is ≥ hn by [55, Corollary I.5.8] and both maps into NG

HPnX →

Phn−hNG
H X are compatible with the respective maps to NG

H X.

Let R be a G-spectrum with a map NG
H ResG

H R → R. The composite NG
H Pn ResG

H R →

PnhNG
H ResG

H R → PnhR and its analogue for P n
n define a norm structure on the regular 

slice tower of R. This applies in particular if R is a G-commutative ring spectrum.

Example 3.14. Let R be a G-commutative ring spectrum with G = C2n . We will define 

a norm structure on the tower Xi = a−1
λ P iX defining the localized regular slice spectral 

sequence. Using the observations above for the regular slice spectral sequence, it suffices 

to produce natural maps NG
H ResG

H a−1
λ PnR → a−1

λ NG
H ResG

H PhnR and similarly for P n
n . 

As NG
H and ResG

H are monoidal, by Lemma 2.18 it thus suffices to provide a natural map

a−1
λ SG � a−1

λ NG
H SH → NG

H ResH aλ−1SG � a−1
IndG

H ResG
H λ

SG

As observed before, IndG
H ResG

H λ is a multiple of λ if H 
= e and contains a trivial 

summand if H = e. This produces the norm structure if H 
= e. In contrast for H = e, 

all norms would have to be zero.

We remark that we have not used the full strength of our considerations in Section 2.5

here, but we expect that these will be necessary for deeper considerations about norms.

Example 3.15. Lastly we define a norm structure on the homotopy fixed point spectral 

sequence. Observe first that there is for H-spectra X a natural map
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NG
H XEH+ → (NG

H XEH+)EG+
�

←− (NG
H X)EG+ ,

where the latter map is an equivalence as ResG
e NG

H X → ResG
e NG

H XEH+ is an equiva-

lence.

Recall that the tower defining the homotopy fixed point spectral sequence for a spec-

trum R is defined by Xn = (τ≤nR)EG+ . We observe that we have natural equivalences 

Xn � (PnR)EG+ and Xn
n � (P n

n R)EG+ for (P nR)n the regular slice tower. Combining 

these equivalences with the natural map from the last paragraph, the norm structure 

from Example 3.13 induces a norm structure on the homotopy fixed point spectral se-

quence.

We will use the following proposition without further comment.

Proposition 3.16. Both in the regular slice spectral sequence and in the localized regular 

slice spectral sequence of a G-commutative ring spectrum, the norms are multiplicative: 

NG
H (xy) = NG

H (x)NG
H (y).

Proof. This follows from the commutativity of

NG
H (PmX ∧ PnY ) NG

H (Pm+nX ∧ Y )

PhmNG
H X ∧ PhnNG

H Y Phm+hnNG
H (X ∧ Y )

for G-spectra X and Y . This in turn follows as there is up to homotopy just one map

NG
H (PmX ∧ PnY ) → Phm+hnNG

H (X ∧ Y )

compatible with the maps to NG
H (X ∧ Y ) as NG

H (PmX ∧ PnY ) ≥ h(m + n) by [55, 

Corollaries I.4.2 and I.5.8]. �

Given two towers (Xn) and (Y n) with norm structures, a morphism of towers (Xn) →

(Y n) is compatible with the norm structures if the diagrams

NG
H Xn Xhn

NG
H Yn Yhn

commute for all n and similarly for Xn
n and Y n

n . Such a morphism induces in particular 

a morphism of spectral sequence that is compatible with the norms on the E2-terms.
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Example 3.17. Given any spectrum X, there is a natural map from the regular slice 

tower to the tower defining the homotopy fixed point spectral sequence, namely P nX →

(P nX)EG+ . In case that X is a G-commutative ring spectrum (or more generally a 

spectrum admitting a map NG
H ResG

H X → X), this map of towers is (essentially by 

construction) compatible with the norm structures introduced in Example 3.13 and Ex-

ample 3.15.

3.5. Comparison of spectral sequences

When computing localizations of a norm, we can apply different spectral sequences. 

For instance, in the isomorphism

ẼF [H] ∧ NG
H X � P ∗

G/H(NG/H
e ΦH(X))

of Theorem 2.9, the left hand side ẼF [H] ∧NG
H X can be computed by the localized slice 

spectral sequence we just built, while the right hand side can be computed by the pullback 

of the (G/H)-equivariant slice spectral sequence of N
G/H
e ΦHX. In this section, we give 

a comparison map between these spectral sequences, which we will use in understanding 

the homotopy fixed points and the Tate spectral sequence of N
G/H
e ΦHX.

Such comparison can only be made by regrading the slice tower. In the cases of 

relevance for us this takes the shape of the following doubling process: Let P • be a 

tower, we define DP •, the doubled tower of P •, as

DP 2n+ε := P n

for ε = 0, 1. We also use D as a prefix of a spectral sequence obtained from a tower as 

the spectral sequence of the doubled tower.

In the following theorem we will use both the slice tower P • and the pullback functor 

P ∗
G/C2

from Section 2.2; the double usage of P will hopefully not cause any confusion to 

the reader.

Theorem 3.18. Let G = C2n , X ∈ SpG and Y = ΦC2X ∈ SpG/C2 . Let P •X and P •Y be 

their slice towers in the corresponding categories. Then there is a commutative diagram 

of towers

P •X P ∗
G/C2

DP •Y

ẼG ∧ P •X

such that the map ẼG ∧P •X → P ∗
G/C2

DP •Y converges to the G-equivalence ẼG ∧X →

P ∗
G/C2

Y .
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In particular, the induced map on the C2-level spectral sequences of P •X →

P ∗
G/C2

DP •Y converges to the geometric fixed points map

ΦC2 : πC2

�
X → π∗Y.

Proof. To construct the map P •X → P ∗
G/C2

DP •Y , consider the composition

X → a−1
λ X � P ∗

G/C2
Y → P ∗

G/C2
DP 2iY.

We only need to show P ∗
G/C2

DP 2iY ≤Slice 2i for each i (the analogous statement for 

DP 2i+1 follows from this). This can be checked by testing against slice cells of dimension 

more than 2i. By induction we can assume that our claim is true after restriction to any 

proper subgroup of G, so we can ignore induced slice cells. Thus it suffices to check that 

[SkρG , P ∗
G/C2

DP 2iY ]G = 0 for k|G| > 2i.

The following equivalence of G-spectra is essential to our proof:

ẼG ∧ SkρG � P ∗
G/C2

SkρG/C2 .

It comes from the fact that both sides are equivalent to the representation sphere 

S∞λ+ρG/C2 . The left hand side of the equivalence is a localization of a slice cell of 

dimension k|G| while the right hand side is a pullback of a slice cell of dimension k|G|
2 . 

This difference is the reason of doubling the tower of Y .

Using this equivalence, we have a series of equivalences of mapping sets:

[SkρG , P ∗
G/C2

DP 2iY ]G ∼= [ẼG ∧ SkρG , P ∗
G/C2

DP 2iY ]G

∼= [P ∗
G/C2

SkρG/C2 , P ∗
G/C2

DP 2iY ]G

∼= [SkρG/C2 , DP 2iY ]H

∼= [SkρG/C2 , P iY ]H

∼= 0.

The change-of-group isomorphism comes from the fact that P ∗
G/C2

is fully faithful on 

homotopy categories, and the last isomorphism is because SkρG/C2 is a slice cell of di-

mension > i in G/C2-spectra.

By construction, the map P •X → P ∗
G/C2

DP •Y converges to the map X → a−1
λ X �

P ∗
G/C2

Y . Since everything in the tower P ∗
G/C2

DP •Y is already aλ-local, the tower map 

factors through the aλ-localization ẼG ∧ P •X. �

Proposition 3.19. Let G = C2n and X ∈ SpG a G-commutative ring spectrum. Then the 

tower P ∗
G/C2

DP •ΦC2X has a norm structure in the sense of Section 3.4 and the maps

P •X → P ∗
G/C2

DP •ΦC2X and a−1
λ P •X → P ∗

G/C2
DP •ΦC2X



L. Meier et al. / Advances in Mathematics 412 (2023) 108804 35

from Theorem 3.18 are compatible with norms from subgroups containing C2.

Proof. Let H ⊂ G be a subgroup of index h such that C2 ⊂ H. Then we obtain maps

NG
H P ∗

G/C2
P2nΦC2X � P ∗

G/C2
N

G/C2

H/C2
P2nΦC2X → P ∗

G/C2
P2hnΦC2X

and

NG
H P ∗

G/C2
P 2n

2n ΦC2X � P ∗
G/C2

N
G/C2

H/C2
P 2n

2n ΦC2X → P ∗
G/C2

P 2hn
2hn ΦC2X,

which are compatible in the necessary sense. Here we use the norm structure on the 

regular slice tower from Example 3.13, the G/C2-commutative ring structure on ΦC2X

from Example 2.22 and the commutation of norms and pullbacks from Proposition 2.14.

To show that P •X → P ∗
G/C2

DP •ΦC2X is compatible with norm structures, note first 

that the diagram

NG
H X NG

H P ∗
G/C2

ΦC2X � P ∗
G/C2

N
G/C2

H/C2
ΦC2X

X P ∗
G/C2

ΦC2X

commutes since X → P ∗
G/C2

ΦC2X � a−1
λ X is a morphism of O-algebras by Defini-

tion 2.16 and Example 2.22, where O is an N∞-operad arising as the pullback of a 

G/C2-E∞-operad. Next consider the diagram

ΦC2NG
H PnX N

G/C2

H/C2
P2nΦC2X N

G/C2

H/C2
ΦC2X

ΦC2PhnX P2hnΦC2X ΦC2X

The outer rectangle is obtained from the previous diagram by applying ΦC2 (and 

using the maps PnX → X and PhnX → X) and thus commutes. Given the connec-

tivity estimate [55, Corollary I.5.8] and the universal property of P2hn, we see that 

ΦC2NG
H PnX → ΦC2X factors through P2hnΦC2 in an essentially unique way, so the 

left square also has to commute. By the adjointness of ΦC2 and P ∗
G/C2

this implies the 

commutativity of

NG
H PnX NG

H P ∗
G/C2

P2nΦC2X

PhnX P ∗
G/C2

P2hnΦC2X
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The proof of the commutativity for the corresponding square for P n
n is completely anal-

ogous. The aλ-inverted case follows again because the target is aλ-local. �

4. The localized slice spectral sequences of BP
((G)): summary of results

We now turn to analyze the localized slice spectral sequence of BP ((G)) for G = C2n . 

From now on, everything will be implicitly 2-localized. In this section, we list our main 

results and give an outline of the computation. Detailed computations of the results 

stated in this section are in Section 5.

As we discussed in Section 3, the Slice Theorem [33, Theorem 6.1] implies that the 

slice associated graded of BP ((C2n )) is

HZ[G · t1, G · t2, . . .],

where ti ∈ πC2

(2i−1)ρ2
BP ((C2n )) (see also [33, Section 2.4] for details).

For the rest of the paper, we use λ for the 2-dimensional real representation of C2n

which is rotation by 
(

π
2n−1

)
, and σ for the 1-dimensional sign representation of G. We 

use σ2 for the sign representation of the unique subgroup C2 in G. Let i < j ≤ n, we will 

use Res2j

2i , Tr2j

2i and N2j

2i for restrictions, transfers and norms between C2i and C2j as 

subgroups of G. If their subscript and superscript are omitted, they mean the restriction, 

transfer and norm between C2 and C4.

Theorem 4.1.

(1) Let G = C2n and H = C2 be the subgroup of order 2 inside G. There is a RO(G/H)-

graded spectral sequence of Mackey functors a−1
λ SliceSS(BP ((G))) that converges to 

the RO(G/H)-graded homotopy Mackey functor of N
G/H
e HF2. The E2-page of this 

spectral sequence is

a−1
λ HZ�[G · t1, G · t2, · · · ].

(2) The integral E2-page of a−1
λ SliceSS(BP ((G))) is bounded by the vanishing lines s =

(2n − 1)(t − s) and s = −(t − s) in Adams grading. In other words, at stem t − s, the 

classes with filtrations greater than (2n − 1)(t − s) or less than −(t − s) are all zero.

(3) On the integral E2-page, the aλ-localizing map

SliceSS(BP ((G))) → a−1
λ SliceSS(BP ((G)))

induces an isomorphism of classes in positive filtrations. The kernel of this map con-

sists of transfer classes in SliceSS(BP ((G))) from the trivial subgroup in filtration 0. 

These classes are all permanent cycles.
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Proof. By Theorem 3.3, a−1
λ SliceSS(BP ((G))) computes the homotopy of ẼG ∧ BP ((G)). 

By Theorem 2.9 and the fact that ΦC2(BPR) � HF2,

ẼG ∧ BP ((G)) � P ∗
G/C2

(N
G/C2

1 HF2).

Since the E2-page of the slice spectral sequence of BP ((G)) has the form

HZ�[G · t1, G · t2, . . .],

the E2-page of a−1
λ SliceSS(BP ((G))) is

a−1
λ HZ�[G · t1, G · t2, . . .]

Together with Theorem 2.9 and Theorem 3.3 this proves (1).

The top vanishing line s = (2n−1)(t −s) follows from the fact that πi(S
kρG+lλ∧HZ) =

0 for k, l ≥ 0 and i < k (see [33, Theorem 4.42]). For the second vanishing line y = −x, 

note that in stem t − s, classes in filtration less than −(t − s) are contributed by slices 

of negative dimension, but BP ((G)) has no negative slices. This proves (2).

To prove (3), by unpacking the description of the E2-page, we need to show that for 

k, l ≥ 0, the aλ-multiplication map

aλ : πG
i (SkρG+lλ ∧ HZ) �−→ πG

i (SkρG+(l+1)λ ∧ HZ)

is an isomorphism for k ≤ i < k|G| + 2l and is surjective with kernel consisting of 

transfer classes from trivial subgroup for i = k|G| + 2l. Using the cellular structures 

and their corresponding chain complexes described in [34, Section 3], we see that when 

k ≤ i ≤ k|G| + 2l, aλ induces isomorphism on the cellular chain complexes, therefore 

it induces isomorphism on homology for k ≤ i < k|G| + 2l and surjection on homology 

for i = k|G| + 2l with the kernel exactly the image of Tr2n

1 . Since the underlying tower 

of the slice tower is the Postnikov tower, all the class in the trivial subgroup and their 

transfers are permanent cycles. �

Remark 4.2. In fact, (2) and (3) of Theorem 4.1 hold in a greater generality. For instance, 

they are true for any (−1)-connected G-spectrum. We will investigate properties of the 

localized slice spectral sequences in a future paper.

By [42] and [14], all C2n norms of HF2 are cofree, therefore we will not distinguish 

between their fixed points and homotopy fixed points.

Corollary 4.3. The 0-th homotopy group of (N2n−1

1 HF2)hC2n−1 is isomorphic to Z/2n.

Proof. In a−1
λ SliceSS(BP ((G))), the only Mackey functor contributing to the 0-stem is 

π0(a−1
λ HZ), and we claim that
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πG
0 (a−1

λ HZ)(G/G) ∼= Z/2n.

Indeed, the maps πG
0 (Snλ ∧ HZ) → πG

0 (S(n+1)λ ∧ HZ) are isomorphisms for n ≥ 1 and 

πG
0 (Sλ∧HZ) is the cokernel of the transfer Tr2n

1 : πe
0HZ → πC2n

0 HZ, i.e. of multiplication 

by 2n on Z. �

For the rest of the paper, we focus on the case G = C4.

Theorem 4.4. The first 8 stems of πC4
∗ (a−1

λ BP ((C4))) ∼= πC2
∗ N2

1 HF2 are shown in the 

following chart:

i 0 1 2 3 4 5 6 7 8

πi Z/4 Z/2 Z/4 Z/2 ⊕ Z/2 Z/2 Z/2 Z/4 ⊕ Z/2 Z/2 ⊕ Z/2 ⊕ Z/2 ⊕ Z/2 Z/2 ⊕ Z/2 ⊕ Z/2

On the E∞-page of the localized spectral sequence, the black subgroups are those generated 

by non-exotic transfers from A∗ = π∗(HF2 ∧ HF2), and the red subgroups consist of 

everything else. (For interpretation of the colors in the text and figures, the reader is 

referred to the web version of this article.) For the Mackey functor structure, see Fig. 6.

Modulo transfers from A∗, the homotopy groups have the following generators:

(1) π1 is generated by η = N(t1)aλaσ, the image of the first Hopf invariant one element 

under the composition S → (BP ((C4)))C4 → (a−1
λ BP ((C4)))C4 ;

(2) π2 is generated by η2

2 = 2uλa−1
λ ;

(3) π3 is generated by ν = N(t2)a3
λa3

σ, the image of the second Hopf invariant one 

element;

(4) π6 is generated by ν2

2 = 2u3
λa−3

λ ;

(5) π7 is generated by N(t3)a7
λa7

σ and N(t2)uλu2σa2
λaσ, and one of them detects the 

third Hopf invariant one element σ.

(6) π8 is generated by Tr4
2(t

2
2t

2
1a8

σ2
) + Tr4

2(t3t1a8
σ2

) + N(t2)N(t1)u2
2σa4

λ.

In [51], Rognes shows that the unit map S0 → (N2
1 HF2)hC2 induces a splitting 

injection on mod 2 homology as an A∗-comodule thus a splitting injection on the E2-

page of the Adams spectral sequence. Therefore, the ring spectrum (N2
1 HF2)hC2 �

(a−1
λ BP ((C4)))C4 detects all Hopf invariant one elements. They all restrict to 0, since 

the underlying Adams spectral sequence of HF2 ∧ HF2 is concentrated in filtration 0. 

Therefore, they are detected by red subgroups in the corresponding degree.

The proof of Theorem 4.4 is by computing a−1
λ SliceSS(BP ((C4))) and is given in the 

next section. The most relevant differentials in the spectral sequence are listed in the 

table below.

5. Computing the localized slice spectral sequences of BP
((G))

In this section, we compute a−1
λ SliceSS(BP ((C4))) and prove Theorem 4.4. Our ap-

proach is similar to that of [34] and [31]. When going through the computations in this 
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Differential Formula Proof

d3
d3(u2σ2

) = a3
σ2

(t1 + γt1)

d3(uλ) = Tr4
2(a3

σ2
t1)

Proposition 5.8

d5 d5(u2σ) = N(t1)aλa3
σ Theorem 5.7

d5 d5(u2
λ) = N(t1)uλa2

λaσ Proposition 5.11

d7
d7(u2

2σ2
) = a7

σ2
(t2 + t3

1 + γt2)

d7(2u2
λ) = Tr4

2(a7
σ2

t3
1)

Theorem 5.4
Proposition 5.16

d7 d7(u4
λ) = Tr4

2(t3
1u2

2σ2
a7

σ2
) Proposition 5.18

d13 d13(u4
λaσ) = N(t2 + t3

1 + γ(t2))u2
2σa7

λ Proposition 5.22

d15 d15(2u4
λ) = Tr4

2(tC2
3 a15

σ2
) Proposition 5.23

section, the following guiding principles are useful to keep in mind. We hope these points 

would serve as a road map that will be helpful to the readers who are new to these types 

of computations.

(1) The E2-page of the spectral sequence can be obtained by computing the RO(C4)-

graded homotopy groups of a−1
λ HZ.

(2) The C2-level spectral sequence, a−1
σ2

SliceSS(BPR ∧ BPR), is easy to compute, as it 

is completely determined by the Hill–Hopkins–Ravenel slice differentials.

(3) In the positive cone part of a−1
λ SliceSS(BP ((C4))) (which includes the entire integer-

graded spectral sequence), the only algebra generators that are not permanent cycles 

are essentially classes of forms uV and uV aσ. Therefore, we only need to focus on 

finding differentials on these classes, and then use the Leibniz rule. This is why even 

though the integer-graded spectral sequence is the computation of interest, we often 

move to analyze certain classes in RO(C4)-degrees.

(4) Many of the differentials are proven by using the C2-level spectral sequence, and 

using the restrictions and transfers on the E2-page. More precisely, if one knows that 

dr(ResC4

C2
x) = y, then x must support a differential of length at most r. Similarly, 

if dr(x) = y, and TrC4

C2
(y) is not zero on the E2-page, then it must be killed by a 

differential of length at most r.

(5) The remaining differentials and extension are proven by using the Hill–Hopkins–

Ravenel norm and the theory of exotic restrictions and transfers.

We would like to also remark that the differentials proven in this section determine all 

the differentials in the integer-graded spectral sequence in our range of interest. There 

are other differentials in the RO(C4)-graded page (both in the positive cone and outside 

the positive cone) that don’t influence the integer-graded page of the spectral sequence.

5.1. Computing the E2-page

We will first give a complete algebraic description of the E2-page of a−1
λ

SliceSS(BP ((C4))) in terms of generators and relations. To do so, by Theorem 4.1, we 

need to describe the C2-homotopy groups π�(a−1
σ2

HZ) and the C4-homotopy groups 

π�(a−1
λ HZ).
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Proposition 5.1. We have

πC2

�
(a−1

σ2
HZ) = F2[u2σ2

, a±1
σ2

].

The Mackey functor structure is determined by the contractibility of the underlying spec-

trum.

This proposition is proved by a standard Tate cohomology computation, see [22, 

Section 2.C] for details.

Let S be the subring of

R = Z/4[aσ, u±1
2σ , uλa−1

λ ]/(2aσ, uλa−1
λ a2

σ = 2u2σ)

generated by the elements {aσ, u2σ, uλa−1
λ , 2uk

2σ, uk
2σuλa−1

λ | k < 0}, and let M =

Z/2[u±1
2σ , uλa−1

λ , a±1
σ ]/(u∞

2σ, a∞
σ ) be considered as a module over S. Here, R[x±1]/(x∞) is 

the cokernel of the map R[x] → R[x±1].

Proposition 5.2. We have

πC4

�
(a−1

λ HZ) = (S ⊕ Σ−1M)[a±1
λ ],

where S ⊕ Σ−1M is the square-zero extension of M over S of degree −1.

The Green functor structure is determined by the following facts:

(1) The C2-restriction of a−1
λ HZ is the spectrum a−1

σ2
HZ in Proposition 5.1.

(2) The C2-restrictions of the classes uλ and u2σ are u2σ2
and 1, respectively.

(3) Given V ∈ RO(C4), there is an exact sequence (see [34, Lemma 4.2])

πC2

i∗
C2

V X
Tr4

2−−→ πC4

V X
aσ−→ πC4

V −σX
Res4

2−−−→ πC2

i∗
C2

V −1X.

In other words, the kernel of aσ-multiplication is the image of the transfer from C2

to C4, and the image of aσ-multiplication is the kernel of the restriction from C4 to 

C2.

The proof of Proposition 5.2 and a more explicit presentation of the Mackey functor 

are given in [57, Proposition 6.7]. Fortunately, in most of the paper we only need the 

“positive cone” of the coefficient Green functor, that is, the part � = a + bσ + cλ for 

b ≤ 0. The Green functor structure of this part is computed in [34, Section 3]. However, 

the other part also plays an important role on the computation, see for example the 

proofs of Proposition 5.14 and Proposition 5.21.

The relation uλa−1
λ a2

σ = 2u2σ and its integral version uλa2
σ = 2u2σaλ are commonly 

called the gold relation (see [34, Lemma 3.6]).
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Fig. 2. Table of C4-Mackey functors.

Fig. 3. πa+bσ(a−1
λ HZ) for −6 ≤ a, b ≤ 6.

Fig. 2 gives the Lewis diagrams (first introduced in [38]) we use for C4-Mackey func-

tors, where restrictions ResG
H map downwards and transfers TrG

H map upwards. These 

notations are consistent with [34, Section 5].

Fig. 3 shows πa+bσ(a−1
λ HZ) in the range −6 ≤ a, b ≤ 6. In the figure, the horizontal 

coordinate is a and the vertical coordinate is b. Vertical lines are aσ-multiplications, 

where solid lines are surjections and the dashed lines represent maps of the form Z/2 ↪→

Z/4.

Although we mostly care the most about the C4-equivariant homotopy groups of 

a−1
λ BP ((C4)), there are two advantages for computing a−1

λ SliceSS(BP ((C4))) as a spectral 

sequence of Mackey functors:

(1) The Mackey functor structure can transport certain differentials on the C2-level to 

differentials on the C4-level.
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(2) The Mackey functor structure and dr-differentials can result in exotic extensions of 

filtration r − 1 (see Section 3.3).

We will see (1) in the computations of d3, d7, and d15-differentials below. (2) will be 

used to prove certain extensions forming the (Z/4)s in Theorem 4.4, see Propositions 

5.14 and 5.21.

Notation 5.3. Let V ∈ RO(H) be a virtual representation that is in the image of the 

restriction i∗
H : RO(G) → RO(H). Then for any preimage W of V , there is a transfer 

map

TrG,W
H : πH

V X → πG
W X,

as a part of the homotopy Mackey functor structure. In our computation we will omit 

writing W when it is clear from the context what W is.

5.2. The C2-spectral sequence

We start our computation with the C2-underlying spectral sequence of a−1
λ

SliceSS(BP ((C4))).

Theorem 5.4.

(1) The underlying C2-spectral sequence of a−1
λ SliceSS(BP ((C4))) is a−1

σ2
SliceSS(BPR ∧

BPR). Its E2-page is

a−1
σ2

HZ�[t1, γt1, t2, γt2, · · · ].

More precisely, the E2-page of the underlying non-equivariant spectral sequence is 

trivial, and the E2-page of the C2-spectral sequence is

F2[u2σ2
, a±1

σ2
][t1, γt1, t2, γt2, · · · ].

The elements u2σ2
, ti and γti have filtration 0, while aσ2

has filtration 1.5

(2) All the differentials in a−1
σ2

SliceSS(BPR ∧ BPR) are determined by aσ2
, ti and γti

being permanent cycles, the differentials

d2k+1−1(u2k−1

2σ2
) = a2k+1−1

σ2

k∑

i=0

t
2i

k−iγti, k ≥ 1

5 We recall the convention here that the filtration of an element in πH
V P n

n X in the slice spectral sequence 
for some X is in filtration n − dimR V . In particular the classes aV will be always in filtration dimR V .
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and the Leibniz formula (for notational convenience, we let t0 = γt0 = 1). The 

E2k+1-page has the form

F2[u2k

2σ2
, a±1

σ2
][t1, γt1, · · · ]/(v1, v2, · · · , vk)

where vk =
k∑

i=0

t
2i

k−iγti.

(3) The E∞-page of a−1
σ2

SliceSS(BPR ∧ BPR) is

F2[a±1
σ2

][t1, γt1, · · · ]/(v1, v2, · · · )

In particular, in the integral grading, all the stem-n non-trivial permanent cycles are 

located in filtration n.

Proof. For (1), note that since i∗
C2

BP ((C4)) = BPR ∧ BPR, the C2-underlying slice 

spectral sequence of SliceSS(BP ((C4))) is SliceSS(BPR ∧ BPR). Moreover, i∗
C2

aλ = a2
σ2

. 

Therefore inverting aλ in the C4-spectral sequence inverts aσ2
in the underlying C2-

spectral sequence.

For (2), we use the Hill–Hopkins–Ravenel slice differential theorem [33, Theorem 9.9]

and the formula in [8, Theorem 1.1] that expresses the v̄i-generators in terms of the ti-

generators (our vi and ti are t
C2

i and t
C4

i respectively in [8]). The Hill–Hopkins–Ravenel 

slice differential theorem states that in the slice spectral sequence of BPR, there are 

differentials

d2k+1−1(u2k−1

2σ2
) = vka2k+1−1

σ2
, k ≥ 1.

The formula in [8, Theorem 3.1] shows that under the left unit map BPR → BPR ∧BPR,

vk =
k∑

i=0

t
2i

k−iγti mod (2, v1, · · · , vk−1).

The left unit map induces a map

a−1
σ2

SliceSS(BPR) −→ a−1
σ2

SliceSS(BPR ∧ BPR)

of spectral sequences. We will use naturality and induction to obtain the differentials 

and the description of the E2k+1-page.

To start the induction process, note that the description of the E2-page is al-

ready given in (1). Now assume that we have obtained a description of the E2k -

page. For degree reasons, the next potential differential is of length exactly 2k+1 − 1. 

The differential formula for a−1
σ2

SliceSS(BPR) above shows that for any polynomial 

P ∈ F2[t1, γt1, · · · ]/(v1, v2, · · · , vk−1) and l an odd number, we have the differential
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Fig. 4. The integral E2- and E∞-pages of a−1
σ2

SliceSS(BPR ∧ BPR).

d2k+1−1(Pu2kl
2σ2

) = P vku2k−1l
2σ2

a2k+1−1
σ2

in a−1
σ2

SliceSS(BPR ∧ BPR). The source and the target of this differential are always 

non-zero on the E2k -page because the sequence (v1, v2, · · · ) is a regular sequence in the 

polynomial ring F2[t1, γt1, · · · ]. Taking the quotient of the kernel and cokernel of this 

differential, we see that the E2k+1-page has the above description.

(3) is a direct consequence of (2) by letting k → ∞. See Fig. 4 for the integral E2 and 

E∞-pages of this spectral sequence. �

Remark 5.5. In Proposition 6.2 we show that the C2-geometric fixed points of the ti

and γti generators are the ξi and ζi generators in the mod 2 dual Steenrod algebra A∗. 

Therefore, the formula

vk =

k∑

i=0

t
2i

k−iγti mod (2, v1, · · · , vk−1)

reduces to Milnor’s conjugation formula 0 =
k∑

i=0

ξ2i

k−iζi in A∗.
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5.3. The C4-spectral sequence: d3, d5 and d7-differentials

The rest of this section is dedicated to computing the first 8 stems of the C4-Mackey 

functor homotopy groups of a−1
λ BP ((C4)). The result is stated in Theorem 4.4. By Sec-

tion 3.4, we are free to use the norm structure from C2 to C4 in the localized slice spectral 

sequence.

As a consequence of the slice theorem [33, Theorem 6.1], the 0-th slice of MU ((G))

is HZ and π0MU ((G)) ∼= Z. Therefore, every Mackey functor in the (localized) slice 

spectral sequence and the homotopy of any MU ((G))-module is a module over Z. By [53, 

Theorem 16.5], we have the following proposition.

Proposition 5.6. Let K ⊂ H ⊂ G, and x be an element in the G/H-level of a Mackey 

functor either in the (localized) slice spectral sequence or the homotopy of a MU ((G))-

module, then

TrH
K(ResH

K(x)) = [H : K]x.

Before getting to the page-by-page computation, we note that all the differentials on 

the classes u2k

2σ for k ≥ 0 are already known by the work of Hill–Hopkins–Ravenel. Their 

theorem is originally formulated for the slice spectral sequence for MU ((C4)) and the exact 

same statement and proof carries over to SliceSS(BP ((C4))) and a−1
λ SliceSS(BP ((C4))).

Theorem 5.7 ([33, Theorem 9.9]). For k ≥ 0 and i < 2k+3 − 3, di(u
2k

2σ) = 0 and

d2k+3−3(u2k

2σ) = N(tk+1)a2k+1−1
λ a2k+2−1

σ .

Now we start the page-by-page computation. First, note that for degree reasons all 

the differential lengths will be odd.

Proposition 5.8.

d3(uλ) = Tr4
2(t1a3

σ2
)

Proof. By Theorem 5.4, the restriction Res4
2(uλ) = u2σ2

supports the differential

d3(u2σ2
) = (t1 + γt1)a3

σ2

in the C2-spectral sequence. By naturality and degree reasons, the class uλ must also 

support a d3-differential in the C4-spectral sequence whose target restricts to the class 

(t1 + γt1)a3
σ2

. The only class that restricts to (t1 + γt1)a3
σ2

with RO(C4)-degree 1 − λ is 

Tr4
2(t1a3

σ2
). �

In Fig. 5, this proposition gives all d3 coming out of ◦, namely uλa−1
λ at (2, −2), 

N(t1)2uλu2σaλ at (6, 2) and u3
λa−3

λ at (6, −6).
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Fig. 5. Left: d3-differentials in a−1
λ SliceSS(BP ((C4))). Right: d5- and d7-differentials in a−1

λ SliceSS(BP ((C4))).
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Corollary 5.9. Let P be a polynomial of ti, γti, aσ2
, then

d3(u2k+1
λ Tr4,V

2 (P )) = u2k
λ Tr4,V −λ+1

2 (P (t1 + γt1)a3
σ2

)

for all k ≥ 0 and any V ∈ RO(C4) restricting to the RO(C2)-degree of P .

Proof. This is a direct consequence of Proposition 5.8, the Frobenius relation [34, Defi-

nition 2.3] and the Leibniz rule. �

As displayed in Fig. 5, this corollary gives all other d3-differentials. We now explain 

them in detail.

In terms of Mackey functors, the d3-differentials give the following exact sequences:

0 → • →◦
d3−→ •̂ → • → 0

0 →•̂
d3−→ •̂ → 0

0 →•
d3−→ •̂ → � → 0.

Here are examples of d3-differentials corresponding to each exact sequence above:

d3(uλ) = Tr4
2(t1a3

σ2
)

d3(Tr4
2(t1aσ2

)uλ) = Tr4
2(t1(t1 + γt1)a4

σ2
)

d3(u2σ2
aσ2

) = (t1 + γt1)a4
σ2

.

Note that the last differential is a C2-differential, but it has an effect on the C4-level 

Mackey functor structure. By results in Section 3.3, the d3-differentials also give certain 

exotic restrictions of filtration jump at most 2 (that is, the image of the restriction is of 

filtration at most 2 higher than the source). For example, consider the element N(t1)uλaσ

at (3, 1). This class is a d3-cycle. By Proposition 5.8, the class N(t1)uλ supports the d3-

differential

d3(N(t1)uλ) = Tr4
2(t

2
1γt1a3

σ2
).

By Proposition 3.10, the class t
2
1γt1a3

σ2
receives an exotic restriction of filtration jump at 

most 2 in integral degree, and the only possible source is N(t1)uλaσ. The same argument 

applies to all 2-torsions classes with (t −s, s)-bidegrees (3 +4i +4j, 1 +4i −4j) for i, j ≥ 0. 

The exotic restrictions are represented by the vertical green dashed lines in Fig. 5.

Remark 5.10. These exotic restrictions are the first family of examples of an interesting 

phenomenon in the RO(G)-graded spectral sequence of Mackey functors. Exotic restric-

tions and transfers can imply nontrivial abelian group extensions. By Proposition 5.6, 
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the transfer of a restriction of a class must be the multiple of this class by the index of 

the subgroup. Therefore, As Mackey functors, these extensions are of the form

0 → • → ◦ → � → 0,

which represents a nontrivial extension

0 → Z/2 → Z/4 → Z/2 → 0

if one evaluates the exact sequence of Mackey functors at C4/C4. Notice that in the 

category of Mackey functors, there are essentially two nontrivial extensions between •

and �, but only the one above fits into Proposition 5.6.

For readers who are familiar with Lubin–Tate E-theories and topological modular 

forms, the family of 2-extensions above is a generalization of the type of 2-extension 

between the class ν at (3, 1) and the class 2ν at (3, 3) in the homotopy fixed points 

spectral sequences of EhC4
2 and TMF0(5) (see [6] and [9]).

In summary, the d3-differentials can be described as follows:

(1) On C2-level, it is the first differential in Theorem 5.4.

(2) The Green functor structure of the spectral sequence gives d3-differentials on the 

C4-level, by Proposition 5.8 and Corollary 5.9. After these d3-differentials, there is 

no room for further d3-differentials.

(3) Every d3-differential of the form • → •̂ gives an extension of filtration 2 by the above 

remark.

Now we will prove the d5-differentials. There are two different types of d5-differentials. 

The first type is given by Theorem 5.7:

d5(u2σ) = N(t1)aλa3
σ.

Since N(t1) and aλ are both permanent cycles, on the integral page for our range, it 

gives the following d5-differential at (4, 4):

d5(N(t1)2u2σa2
λ) = N(t1)2a3

λa3
σ,

and it repeats by multiplying by N(t1)aλaσ. In Fig. 5, these are the d5-differentials with 

sources on or above the line of slope 1.

The second type of d5-differentials is given by the following proposition.

Proposition 5.11.

d5(u2
λ) = N(t1)uλa2

λaσ,

d5(u2
λaσ) = 2N(t1)u2σa3

λ.
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Proof. The restriction Res4
2(u2

λ) = u2
2σ2

supports the d7-differential

d7(u2
2σ2

) = (t2 + γt2 + t
3
1)a7

σ2

by Theorem 5.4. By naturality, u2
λ must support a differential of length at most 7. For 

degree reasons, the length of this differential can only be 5 or 7. If the length of this 

differential is 7, the target must restrict to the class (t2 + γt2 + t
3
1)a7

σ2
. However, this 

class is not in the image of the restriction map Res4
2. Therefore, u2

λ must support a d5-

differential. The only possible target of this d5-differential is N(t1)uλa2
λaσ. This proves 

the first d5-differential.

Multiplying with aσ on both sides of the first d5-differential gives

d5(u2
λaσ) = N(t1)uλa2

λa2
σ.

Applying the gold relation uλa2
σ = 2u2σaλ gives the second d5-differential. �

In Fig. 5, the d5-differentials in Proposition 5.11 can be seen on the following classes:

(1) u2
λa−2

λ at (4, −4),

(2) N(t1)u2
λa−1

λ aσ at (5, −1),

(3) N(t1)2u2
λu2σ at (8, 0),

(4) N(t1)3u2
λu2σaλaσ and N(t2)u2

λu2σaλaσ at (9, 3).

Remark 5.12. Although u2
λ and u2

λaσ support differentials of the same length, this is not 

true in general. For example, we will see soon that u4
λ supports a d7-differential, while 

u4
λaσ supports a d13-differential.

Corollary 5.13.

d5(u3
λaσ) = 2N(t1)uλu2σa3

λ.

Proof. First, we will show that uλaσ is a nontrivial permanent cycle. Since the target 

of the d3-differential on uλ is a transfer class, it is killed by aσ, and therefore uλaσ

is a d3-cycle. The only potential non-trivial differential that uλaσ can support is the 

d5-differential

d5(uλaσ) = N(t1)a2
λa2

σ.

If this differential happens, then multiplying aσ on both sides and using the gold relation 

will produce the differential

d5(2u2σaλ) = N(t1)a2
λa3

σ.
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This is a contradiction to Theorem 5.7.

Applying the Leibniz rule on the first d5-differential in Proposition 5.11 with the class 

uλaσ produces the d5-differential

d5(u3
λaσ) = uλaσd5(u2

λ) = N(t1)u2
λa2

λa2
σ = 2N(t1)uλu2σa3

λ. �

In Fig. 5, this d5-differential implies the d5-differential on the class N(t1)u3
λa−2

λ aσ

at (7, −3). Notice that the class N(t1)uλu2σa2
λ supports a d3-differential and the class 

2N(t1)uλu2σa2
λ is killed by a d5-differential. In the integral grading, this happens to the 

Z/4 in (6, 2).

There are extensions of filtration jump 4 induced by the d5-differentials.

Proposition 5.14. There is an exotic transfer of filtration jump 4 from (2, 2) to (2, 6):

Tr4
2(t

2
1a2

σ2
) = N(t1)2a2

λa2
σ.

There is an exotic restriction of filtration jump 4, from (2, −2) to (2, 2):

Res4
2

(
2uλa−1

λ

)
= t

2
1a2

σ2
.

Proof. We use Proposition 3.10 to prove both extensions.

For the first claim, note that d5(N(t1)u2σaλ) = N(t1)2a2
λa3

σ, and N(t1)2a2
λa2

σ is a 

nontrivial d5-cycle. Therefore, N(t1)2a2
λa2

σ is the target of an exotic transfer of filtration 

jump 4 in E6, and the only possible source is t
2
1a2

σ2
.

For the second claim, first note that by Proposition 5.2 (also see Fig. 3) and the gold 

relation,

2uλa−1
λ =

(
u2

λ

u2σ
a−2

λ aσ

)
aσ.

We have the d5-differential

d5

(
u2

λ

u2σ
a−2

λ aσ

)
= Tr4

2(t
2
1a2

σ2
).

To prove this differential, consider the class 
u2

λ

u2σ
a−2

λ . This class supports a d5-differential 

because after multiplying it by u2
2σa2

λ (which is a d5-cycle), the class u2
λu2σ supports the 

d5-differential

d5(u2
λu2σ) = N(t1)uλu2σa2

λaσ

by Proposition 5.11. Therefore

d5

(
u2

λ

u2σ
a−2

λ

)
= N(t1)

uλ

u2σ
aσ.
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Multiplying both sides by aσ, we have

d5

(
u2

λ

u2σ
a−2

λ aσ

)
= N(t1)

uλ

u2σ
a2

σ = 2N(t1)aλ = Tr4
2(Res4

2(N(t1)aλ))

= Tr4
2(t1γt1a2

σ2
) = Tr4

2(t
2
1a2

σ2
)

The last equation holds because by Theorem 5.4, t1 = γt1 after the d3-differentials in 

the C2-spectral sequence.

Therefore, t
2
1a2

σ2
must receive an exotic restriction of filtration jump 4 in the integral 

degree, and the only source of the restriction is 2uλa−1
λ . �

In Fig. 6, the exotic restrictions and transfers are the green and blue dashed lines, 

respectively.

Remark 5.15. Similar to Remark 5.10, the exotic restrictions and transfers also give 

extensions of abelian groups on the C4-level. The situation is more subtle here because 

each individual exotic extension doesn’t involve non-trivial extensions of abelian groups 

at any level. When we combine the two extensions together, however, we obtain an 

abelian group extension of filtration 8 from (2, −2) to (2, 6):

0 → Z/2 → Z/4 → Z/2 → 0,

and 2(2uλa−1
λ ) = N(t1)2a2

λa2
σ in homotopy. This extension is similar to the extension in 

the 22-stem of EhC4
2 and TMF0(5). (See [6, Figure 10] and [9, Section 2].)

We will now prove the d7-differentials. While we state them in some RO(C4)-graded 

page first, we recommend that the reader multiplies with appropriate powers of aλ when-

ever possible to visualize the arguments in Fig. 5.

Proposition 5.16. We have the following d7-differentials

d7(2u2
λ) = Tr4,3−2λ

2 (a7
σ2

t
3
1),

d7(2u2
λu2σ) = Tr4,5−2λ−2σ

2 (a7
σ2

t
3
1)

(see Notation 5.3 for the transfer notations).

Proof. We will prove the first differential. The second differential is proven by the exact 

same method. On the C2-level, we have the d7-differential

d7(u2
2σ2

) = (t2 + t
3
1 + γt2)a7

σ2

by Theorem 5.4. Taking transfer on the target and using naturality, the class
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Tr4,3−2λ
2 (a7

σ2
(t2 + t

3
1 + γt2)) = Tr4,3−2λ

2 (a7
σ2

t
3
1)

must be killed by a differential of length at most 7. For degree reasons, it must be the 

d7-differential with source 2u2
λ. �

Remark 5.17. These differentials can also be proved by combining Proposition 3.9 and 

Remark 5.10. One sets the exotic w-operation to be multiplication by 2, and Remark 5.10

shows that the exotic restriction gives such an exotic multiplication.

In Fig. 5, The d7-differentials in Proposition 5.16 and the underlying C2-level d7-

differentials in Theorem 5.4 are supported by the classes at (4 + i, −4 + i) for i ≥ 0.

Proposition 5.18.

d7(u4
λ) = u2

λ Tr4
2(t

3
1a7

σ2
).

Proof. We will prove in Proposition 5.22 that there is a nontrivial d13-differential on the 

class u4
λaσ (we can already prove it at this point, but for organization reasons we prove 

it later). This implies that the class u4
λ must support a differential of length at most 13. 

For degree reasons, the claimed d7-differential is the only possibility. �

In Fig. 5, the d7-differential in Proposition 5.18 gives the d7-differential supported by 

the class u4
λa−4

λ at (8, −8).

5.4. The C4-spectral sequence: higher differentials and extensions

We will now prove the higher differentials in our range (see Fig. 6). The next possible 

differential is a d13-differential from Theorem 5.7:

d13(u2
2σ) = N(t2)a3

λa7
σ.

However, we won’t see this differential in Fig. 6. This is because its first appearance 

in the integer graded spectral sequence is on the class (10, 14), which is outside of our 

range. Note also that even though some classes at (8, 8) contain u2
2σ, they don’t support 

d13-differentials. We will give a detailed discussion of the classes at (8, 8) in Section 5.5.

Proposition 5.19.

d13(u4
λu2σ) = N(t2)uλu2

2σa6
λaσ

Proof. On the C2-level, the restriction Res4
2(u4

λu2σ) = u4
2σ2

supports a d15-differential 

hitting the class v3a15
σ2

= (t3 + t
2
2t1 + t

4
1γt2 + γt3)a15

σ2
. Since this class is not in the image 

of the restriction after the d3-differentials, by naturality the class u4
λu2σ must support a 
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Fig. 6. Left: d13- and d15-differentials in a−1
λ SliceSS(BP ((C4))). Right: E∞-page of a−1

λ SliceSS(BP ((C4)))
with all extensions.
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differential of length shorter than 15. After computing the first few pages, we see that 

for degree reasons the potential targets are the following classes:

(1) Tr4
2((t2 + t

3
1 + γt2)u2

2σ2
a7

σ2
) in filtration 7;

(2) N(t1)3uλu2
2σa6

λaσ in filtration 13;

(3) N(t2)uλu2
2σa6

λaσ in filtration 13.

We will first prove that the class Tr4
2((t2+t

3
1+γt2)u2

2σ2
a7

σ2
) supports the d11-differential

d11(Tr4
2((t2 + t

3
1 + γt2)u2

2σ2
a7

σ2
)) = N(t1)4u2

2σa8
λa2

σ.

To prove this, first note that

Tr4
2((t2 + t

3
1 + γt2)u2

2σ2
a7

σ2
) = Tr4

2(t
3
1u2

2σ2
a7

σ2
)

since the class (t2 + γt2)aσ2
transfers to 0 in the homotopy. On the C2-level, we have the 

d7-differential

d7(t
3
1u2

2σ2
a7

σ2
) = t

3
1(t2 + t

3
1 + γt2)a14

σ2
.

The transfer of the target, Tr4
2(t

3
1(t2 + t

3
1 +γt2)a14

σ2
) = Tr4

2(t
6
1a14

σ2
), is zero. This is because 

after the C2-level d3-differentials, the class t
6
1a14

σ2
is identified with the class t

3
1γt

3
1a14

σ2
, 

which transfers to 0. We will show that the class t
6
1a14

σ2
actually supports an exotic 

transfer of filtration jump 4. Let x = N(t1)3a7
λu3

2σ. We have the d5-differential from 

Theorem 5.7

d5(x) = N(t1)4u2
2σa8

λa3
σ.

By Proposition 3.10, N(t1)4u2
2σa8

λa2
σ receives an exotic transfer of jump 4, and the only 

possible source is t
6
1a14

σ . Applying Proposition 3.9 to this exotic transfer and the C2-level 

d7, we prove the claimed d11.

The class N(t1)3uλu2
2σa6

λaσ in filtration 13 is killed by a d5-differential from Proposi-

tion 5.11:

N(t1)3uλu2
2σa6

λaσ = d5(N(t1)2u2
λu2

2σa4
λ).

It follows that the class N(t2)uλu2
2σa6

λaσ is the only possible target. �

Remark 5.20. The class u4
λu2σ is a permanent cycle in the homotopy fixed points spectral 

sequence of EhC4
2 (see [6, Proposition 5.23]) because N(t2) is zero there.

Although this d13 doesn’t imply any differentials in our range, it is used in proving 

extensions.
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Proposition 5.21.

(1) There is an exotic transfer in stem 6 of filtration 12,

Tr4
2(t2γt2a6

σ2
) = N(t2)2a6

λa6
σ.

(2) There is an exotic restriction in stem 6 of filtration 12,

Res4
2(2u3

λa−3
λ ) = t2γt2a6

σ2
.

Proof. The proof is similar to that of Proposition 5.14. The exotic transfer comes from 

applying Proposition 3.10 to the d13-differential

d13

(
N(t2)u2

2σa3
λ

)
= N(t2)2a6

λa7
σ

in Theorem 5.7.

For the exotic restriction, first note that 2u3
λa−3

λ =
(

u4
λ

u2σ
a−4

λ aσ

)
aσ by the gold re-

lation. We will prove that the class 
u4

λ

u2σ
a−4

λ aσ supports a d13-differential. To do so, we 

multiply this class by u2
2σa4

λ. After multiplying the differential in Proposition 5.19 by aσ, 

we have

d13(u4
λu2σaσ) = 2N(t2)u3

2σa7
λ.

As by the gold relation u2
λ kills d13(u2

2σa4
λ), we can use the Leibniz rule to obtain the 

d13-differential

d13

(
u4

λ

u2σ
a−4

λ aσ

)
= 2N(t2)u2σa3

λ.

On the E2-page, 2N(t2)u2σa3
λ = Tr4

2(t2γt2a6
σ2

). By Proposition 3.10, t2γt2a6
σ2

must 

receive an exotic restriction of filtration jump 12, and the only possible source is 2u3
λa−3

λ

(see Fig. 6). �

In Fig. 6, they are the exotic restriction from the class (6, −6) to (6, 6) and the exotic 

transfer from (6, 6) to (6, 18). Since these extensions involve elements containing t2, we 

expect similar extensions in the homotopy fixed points spectral sequence of EhC4
4 by [8, 

Theorem 1.1].

Proposition 5.22.

d13(u4
λaσ) = N(t2 + t

2
1γt1 + γt2)u2

2σa7
λ.
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Proof. Consider the C2-differential

d7(u2
2σ2

) = t
C2

2 a7
σ2

.

Applying Proposition 3.12 to its target, we see that its norm N(t2 +t
2
1γt1 +γ(t2))a7

λ must 

be killed by a differential of length 13 or shorter. Since the restriction of this element 

is killed by d7, it must be killed by a differential of length between 7 and 13. Since u2
2σ

supports a d13, if dr(x) = N(t2 + t
2
1γt1 + γ(t2))a7

λ happens for r < 13, one can multiply 

both sides by u2
2σ. However, for degree reasons N(t2 +t

2
1γt1 +γt2)u2

2σa7
λ cannot be hit by 

a differential shorter than a d13. Thus this element and hence also N(t2 +t
2
1γt1 +γ(t2))a7

λ

must be hit by a d13 and the only possible source is u4
λaσ. �

On the integer graded page, this contributes to the d13-differential supported by the 

class N(t1)u4
λa−3

λ aσ at (9, −5).

The last differential in our range is a d15-differential.

Proposition 5.23. We have the d15-differential

d15(2u4
λ) = Tr4

2(t
C2

3 a15
σ2

).

Proof. In the C2-spectral sequence, we have the d15-differential

d15(u4
2σ2

) = t
C2

3 a15
σ2

.

Applying the transfer shows that the class Tr4
2(t

C2

3 a15
σ2

) must be killed by a differential 

of length at most 15. By naturality and degree reasons, the only possible source is the 

class 2u4
λ = Tr4

2(u4
2σ2

). �

In Fig. 6, this contributes to the d15-differential supported by the class 2u4
λa−4

λ at 

(8, −8) (the d15-differential supported by the class at (9, −7) is a C2-level differential).

These are all the differentials and extensions in the first 8 stems. Now we will discuss 

in detail the generators and relations in degree (8, 8) after each differential in order 

to illustrate the technical aspect of tracking differentials in the localized slice spectral 

sequences.

5.5. The classes at (8, 8)

Since our discussion here focuses on a single degree, we will omit the powers of aV

and uV classes on each monomial, except in formulas of differentials. That is, we omit 

u2
2σa4

λ on C4-classes and a8
σ2

on C2-classes.

On the E3-page, there are 2 ◦ and 16 •̂. The 2 ◦ are N(t1)4 and N(t2)N(t1). The 16 

•̂ are
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(1) Tr4
2(t

8
1), Tr4

2(t
7
1γt1), Tr4

2(t
6
1γt

2
1), Tr4

2(t
5
1γt

3
1);

(2) Tr4
2(t2t

5
1), Tr4

2(t2t
4
1γt1), Tr4

2(t2t
3
1γt

2
1), Tr4

2(t2t
2
1γt

3
1), Tr4

2(t2t1γt
4
1), Tr4

2(t2γt
5
1);

(3) Tr4
2(t

2
2t

2
1), Tr4

2(t
2
2t1γt1), Tr4

2(t
2
2γt

2
1);

(4) Tr4
2(t2γt2t

2
1);

(5) Tr4
2(t3t1), Tr4

2(t3γt1).

At the C2-level, the d3-differentials identifies t1 with γt1. At the C4-level, the effects 

of the d3-differentials are as follows:

(1) All the classes in (1) are identified with 2N(t1)4;

(2) all the classes in (2) are identified to be the same;

(3) all the classes in (3) are identified to be the same;

(4) the class Tr4
2(t2γt2t

2
1) is identified with 2N(t2)N(t1);

(5) all the classes in (5) are identified to be the same.

Therefore after the d3-differentials, there are 2 ◦, generated by N(t1)4 and N(t2)N(t1), 

and 3 •̂, generated by Tr4
2(t2t

5
1), Tr4

2(t
2
2t

2
1), and Tr4

2(t3t1).

On the E5-page, by Proposition 5.11, we have the following two d5-differentials:

d5(N(t1)3u2
λu2σaλaσ) = 2N(t1)4u2

2σa4
λ,

d5(N(t2)u2
λu2σaλaσ) = 2N(t2)N(t1)u2

2σa4
λ.

It follows that after the d5-differentials, the 2 ◦ become 2 �, with the same generators. 

In total, there are 2 � and 3 •̂ at (8, 8) after the d5-differentials (with the same generator 

as before).

Now we will discuss the d7-differentials. At (9, 1), there are two classes on the E7-page: 

a •̂ generated by Tr4
2(t2t

2
1) and a • generated by t

5
1 (it only exists on the C2-level). Since 

v2 = t2 + t
3
1 + γt2, the d7-differential on the class Tr4

2(t2t
2
1) hits the class

Tr4
2(t2t

2
1(t2 + t

3
1 + γt2)) = Tr4

2(t
2
2t

2
1) + Tr4

2(t2t
5
1) + Tr4

2(t2γt2t
2
1) = Tr4

2(t
2
2t

2
1) + Tr4

2(t2t
5
1).

In other words, it identifies the classes Tr4
2(t

2
2t

2
1) and Tr4

2(t2t
5
1).

The d7-differential on the class t
5
1 hits the class

t
5
1(t2 + γt2 + t

3
1) = t2t

5
1 + γt2t

5
1 + t

8
1

= Res4
2(Tr4

2(t2t
5
1)) + Res4

2(N(t1)4)

= Res4
2(Tr4

2(t
2
2t

2
1)) + Res4

2(N(t1)4).

As Mackey functors, we have

•̂•
d7−→ 2�3•̂ � •�2•̂.
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In the quotient we need to choose our generators carefully: The • is generated by 

N(t1)4 + Tr4
2(t

2
2t

2
1), because the image of • identifies the restriction of N(t1)4 with the 

restriction of Tr4
2(t

2
2t

2
1). Therefore their sum is the unique element in C4-level that has 

trivial restriction. The � is generated by N(t2)N(t1), as it still has nontrivial restriction. 

The two •̂ are generated by Tr4
2(t

2
2t

2
1) and Tr4

2(t3t1).

The next differential is a d13-differential supported by the class N(t1)u4
λa−3

λ aσ at 

(9, −5). By Proposition 5.22, the target of this differential is the class N(t1)N(t2 + t
3
1 +

γt2)u2
2σa4

λ. The restriction of this class is

t1γt1(t2 + t
3
1 + γt2)(γt2 + γt

3
1 − t2),

which, after the d3-differentials, is

t
2
2t

2
1 + γt

2
2t

2
1 + t

8
1 = Res4

2(Tr4
2(t

2
2t

2
1)) + Res4

2(N(t1)4).

As we have discussed above, this class is killed by the d7-differentials supported by the 

class t
5
1. It follows that the target of the d13-differential is the generator of •, the unique 

nontrivial element that restricts to 0.

There is another possible d13-differential supported by some classes at (8, 8) that is 

induced by the differential

d13(u2
2σ) = N(t2)a3

λa7
σ.

However, in (8, 8) every monomial containing u2
2σ also contains N(t1). By [33, Corol-

lary 9.13],

d13(N(t1)u2
2σ) = N(t1)N(t2)a3

λa7
σ = d5(N(t2)u2σa2

λa4
σ).

This makes all elements containing u2
2σ in (8, 8) d13-cycles.

In summary, after the d13-differentials, we have two •̂, generated by Tr4
2(t

2
2t

2
1) and 

Tr4
2(t3t1), and �, generated by N(t2)N(t1).

Our final differential is a d15-differential on the C2-level supported by the class at 

(9, −7):

d15(t1u4
2σ2

a−7
σ2

) = t1(t3 + t
2
2t1 + γt2t

4
1 + γt3)a8

σ2

= (t3t1 + γt3t1)a8
σ2

+ (t
2
2t

2
1 + γt2t

5
1)a8

σ2

= Tr4
2(t3t1) + (t

2
2t

2
1γt

2
2t

2
1 + t2γt2t

2
1)a8

σ2

= Tr4
2(t3t1) + Tr4

2(t
2
2t

2
1) + Tr4

2 Res4
2(N(t2)N(t1)).

The map in Mackey functors is

•
d15−−→ �2•̂ � •2•̂.
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On the E∞-page, (8, 8) is given by •2•̂. The generators for the two •̂ are Tr4
2(t

2
2t

2
1) and 

Tr4
2(t3t1). The generator for • is Tr4

2(t
2
2t

2
1) + Tr4

2(t3t1) + N(t2)N(t1).

5.6. A family of permanent cycles

We will now present families of nontrivial permanent cycles in a−1
λ SliceSS(BP ((C4))). 

These families will be used in the proof of Theorem 6.6.

Lemma 5.24. In πC4

�
a−1

σ S, the element aλ is invertible.

Proof. We have the following commutative diagram of pointed C4-spaces

S0
aλ

a2
σ

Sλ

θ

S2σ

where θ is the C4-equivariant 2-folded branched cover. Since θaλ = a2
σ is invertible, aλ

is invertible. �

Proposition 5.25. In πC4

�
a−1

λ BP ((C4)), the classes N(tk)ai
σ for k > 0 and 0 ≤ i < 2k+1 −1

are non-zero.

Proof. By Lemma 5.24 we have a map of spectral sequences

a−1
λ SliceSS(BP ((C4))) −→ a−1

σ SliceSS(BP ((C4))).

Notice that in a−1
σ SliceSS(BP ((C4))), the differentials in Theorem 5.7 completely deter-

mine the spectral sequence (see [33, Remark 9.11]). In particular, we have the following 

differentials in a−1
σ SliceSS(BP ((C4))):

d2k+2−3(u2k−1

2σ a
−(2k−1)
λ a−(2k+1−1)+i

σ ) = N(tk)ai
σ.

On E2k+2−3-page, this is the only differential happens in this degree.

By Proposition 5.2 and the gold relation, the class u2k−1

2σ a
−(2k+1−1)+i
σ is in the image 

of

πC4

�
a−1

λ HZ → πC4

�
a−1

σ HZ

only when aσ has a non-negative power, i.e. i ≥ 2k+1 − 1. Therefore by naturality, if the 

class N(tk)ai
σ, 0 ≤ i < 2k+1 − 1 is killed in a−1

λ SliceSS(BP ((C4))), the differential killing 

it must be of length longer than 2k+2 −3. However, by Proposition 5.2 and Theorem 4.1, 



60 L. Meier et al. / Advances in Mathematics 412 (2023) 108804

the potential source of such a differential must be trivial in the E2-page. Therefore the 

classes N(tk)ai
σ for k > 0 and 0 ≤ i ≤ 2k+1 − 1 are nontrivial permanent cycles. �

Remark 5.26. After inverting aλ, the element N(tk)a2k+1−1
σ is zero by Theorem 5.7.

6. The Tate spectral sequence of N2
1 HF2

The goal of this section is to advance our knowledge of the Tate spectral sequence of 

N2
1 HF2. We compute it in a range and also give all differentials originating from the first 

diagonal of slope −1. Our main method is comparison with the localized slice spectral 

sequence, a method we describe first.

There is a canonical map SliceSS(X) → HFPSS(X) which is an isomorphism on the 

underlying level [55]. When X = N2
1 HF2 � (BP ((C4)))ΦC2 , combining with Theorem 3.18, 

we obtain the following comparison map of spectral sequences

a−1
λ SliceSS(BP ((C4))) → P ∗

4/2DSliceSS(N2
1 HF2) → P ∗

4/2DHFPSS(N2
1 HF2),

where we use P ∗
4/2 as a short-hand for the pullback functor P ∗

C4/C2
from Section 2.2. Both 

maps of spectral sequences are compatible with the norm N4
2 = NC4

C2
by Example 3.17

and Proposition 3.19. On the C2-level the composition sends permanent cycles from 

SliceSS(BP ((C4))) to their C2-geometric fixed points.

We localize the map

a−1
λ SliceSS(BP ((C4))) → P ∗

4/2DHFPSS(N2
1 HF2)

further at aσ. Since σ is the pullback of the sign representation on C4/C2,

a−1
σ P ∗

4/2DHFPSS(N2
1 HF2) � P ∗

4/2a−1
σ DHFPSS(N2

1 HF2).

Notice that localizing at aσ in C4/C2-spectra is exactly smashing with ẼF [C4/C2], which 

turns the homotopy fixed points into the Tate fixed points. Therefore

P ∗
4/2a−1

σ DHFPSS(N2
1 HF2) � P ∗

4/2DTateSS(N2
1 HF2).

The above argument, along with Lemma 5.24, gives the following comparison square, 

which is central to our computation in this section.

a−1
λ SliceSS(BP ((C4))) P ∗

4/2DHFPSS(N2
1 HF2)

a−1
σ SliceSS(BP ((C4))) P ∗

4/2DTateSS(N2
1 HF2)

a−1
σ (−) a−1

σ (−) (3)
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Proposition 6.1. In the comparison square, both horizontal maps converge to isomor-

phisms in homotopy groups.

Proof. The top horizontal map is the composition

a−1
λ SliceSS(BP ((C4))) → P ∗

4/2DSliceSS(N2
1 HF2) → P ∗

4/2DHFPSS(N2
1 HF2).

The first map converges to an isomorphism by Theorem 3.18. By the Segal conjecture, 

N2
1 HF2 is cofree, that is, the map N2

1 HF2 → F (EC2+, N2
1 HF2) is an equivalence. By 

construction, the second map of the spectral sequences converges to this map on homo-

topy.

The bottom map is the aσ-localization of the top map, thus also converges to an 

isomorphism. �

The bottom map in the comparison square is particularly interesting: We completely 

understand a−1
σ SliceSS(BP ((C4))), which is determined by the fact that it computes 

π∗HF2. All differentials are derived from the slice differential theorem [33, Theorem 9.9, 

Remark 9.11]. On the other hand, the Tate spectral sequence of N2
1 HF2 is very myste-

rious: its E2-page is determined by the Tate cohomology Ĥ∗(C2; A∗), for which we do 

not know a closed formula yet. Nevertheless, the Segal conjecture shows that the Tate 

spectral sequence converges to π∗HF2, meaning almost everything kills each other by 

differentials. Using Theorem 3.18, we can apply our understanding of the slice spectral 

sequence to understand partially how differentials work in the Tate spectral sequence.

Fig. 7 consists of the integral E2-pages of the four spectral sequences in the comparison 

square. Red elements in the homotopy fixed points and the Tate spectral sequences are 

those in the image of the horizontal maps. We prove these claims in Corollary 6.5.

Using the comparison square, we establish an infinite family of differential in the Tate 

spectral sequence. We also compute all differentials in the Tate spectral sequence in 

the same range we computed a−1
λ SliceSS(BP ((C4))) in Section 5. Specifically, we show all 

differentials hitting elements from stem 0 to 8 which map non-trivially into the homotopy 

orbit spectral sequence. In the (doubled) Tate spectral sequence of Fig. 7, they are 

elements below slope 1 from stem 0 to 8.

Because of the comparison square, we make our statements and arguments entirely in 

the spectral sequences P ∗
4/2DHFPSS and P ∗

4/2DTateSS. The translation back to the C2-

homotopy fixed points and the Tate spectral sequence is straightforward. As a reference, 

TateSS(N2
1 HF2) with known differentials is shown as Fig. 9.

To start the computation, we want to understand how the maps of the compar-

ison square behave on the E2-page. By Theorem 3.18, they are determined by the 

C2-geometric fixed points of elements in πC2

�
BP ((C4)).

Proposition 6.2. Under the equivalence ΦC2BP ((C4)) � HF2 ∧ HF2, the C2-geometric 

fixed points of ti and γti in πC2

(2i−1)ρ2
BP ((C4)) are ξi and ζi, the Milnor generators and 

their conjugates in the dual Steenrod algebra, respectively.
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Fig. 7. The comparison square (3).



L. Meier et al. / Advances in Mathematics 412 (2023) 108804 63

Proof. We will show ΦC2(ti) = ξi; the formula ΦC2(γti) = ζi follows from the fact that 

the residue C4/C2-action on ΦC2BP ((C4)) becomes the conjugate action on the dual 

Steenrod algebra.

Let e : S0 → BPR be the unit map and F1 and F2 be the formal groups laws on 

πC2
∗ρ2

BPR ∧ BPR induced by the map

BPR ∧ S0 id∧e
−−−→ BPR ∧ BPR

and

S0 ∧ BPR

e∧id
−−−→ BPR ∧ BPR

respectively, and let x̃1, x̃2 be the corresponding power series generators. As in Section 3, 

the elements ti are defined as

x̃2 =
∞∑

i=0

F2
tix̃

2i

1 .

Taking ΦC2 maps x̃1 and x̃2 to the two MO-orientation on HF2 ∧ HF2. The following 

lemma completes the proof. �

Lemma 6.3. Let x1, x2 ∈ (HF2 ∧ HF2)1(RP ∞) be the MO-orientations corresponding to 

the maps

HF2 ∧ S0 id∧μ
−−−→ HF2 ∧ HF2

and

S0 ∧ HF2
μ∧id
−−−→ HF2 ∧ HF2

respectively. Then we have

x2 =
∞∑

i=0

ξix
2i

1 .

Proof. Identify (HF2 ∧ HF2)∗(RP ∞) with A∗�x1�, and write x2 =
∞∑

j=0

ajxj+1
1 . We will 

show that a2i−1 = ξi and all other aj ’s are 0. First, since the power series 
∞∑

j=0

ajxj+1
1

is an automorphism of the additive formal group law in an F2-algebra, we must have 

a0 = 1, and aj = 0 for j 
= 2i − 1.

Let I be an admissible sequence and define

θI : (HF2 ∧ HF2)∗(RP ∞) → (HF2 ∧ HF2)∗+|I|(RP ∞)
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to be the composition

RP ∞ → HF2 ∧ HF2
id∧SqI

−−−−→ Σ|I|HF2 ∧ HF2.

One can verify directly that θI has the following properties:

• θI(x2) = x2n

2 if I = (2n−1, 2n−2, ..., 2, 1), and θI(x2) = 0 otherwise.

• θI(x1) = x1 if I = (0) and θI(x1) = 0 otherwise.

• On homotopy, the map HF2 ∧ HF2
id∧SqI

−−−−→ Σ|I|HF2 ∧ HF2 induces the map

θI : A∗ −→ A∗−|I|.

For any ξ ∈ A∗, θI(ξ) is the cap product

A∗
∆
−→ A∗ ⊗ A∗

id⊗〈−,SqI 〉
−−−−−−−→ A∗

between ξ and SqI . In the case when |ξ| = |I|, θI(ξ) = 〈ξ, SqI〉, the pairing between 

the Steenrod algebra and its dual.

• When I = (i), θI satisfies the Cartan formula:

θi(ab) =

i∑

j=0

θi−j(a)θj(b).

Now, let I = (2n−1, 2n−2, ..., 2, 1), and apply θI to x2 =
∞∑

i=0

a2i−1x2i

1 . The left hand side 

becomes

x2n

2 =

(
∞∑

i=0

a2i−1x2i

1

)2n

=
∞∑

i=0

a2n

2i−1x2n+i

1 ,

and the right hand side becomes

θI

(
∞∑

i=0

a2i−1x2i

1

)
=

∞∑

j=0

θI(a2i−1)x2i

1 .

Comparing the coefficient of x2n

1 in both expressions, we see that 1 = θI(a2n−1) =

〈a2n−1, SqI〉. Now, if I is any other admissible sequence with |I| = 2n−1, then θI(x2) = 0

and thus 0 = θI(a2n−1) = 〈a2n−1, SqI〉. This is exactly the definition of ξn, see [48, 

Chapter 6, Proposition 1]. �

We pause here to clarify notations in P ∗
4/2DHFPSS(N2

1 HF2) and P ∗
4/2

DTateSS(N2
1 HF2). The C2-level of this spectral sequence is the spectral sequence of 
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the doubled Postnikov tower of HF2 ∧ HF2, treated as a C2-equivariant spectral se-

quence whose underlying level is trivial (and thus aσ2
acts invertibly). Therefore, given 

an element x ∈ A∗, there are elements in different RO(G)-grading differing by powers of 

aσ2
that deserve the name x. We name the corresponding element in the integral grading 

by x, and name all others by ai
σ2

x for some i ∈ Z. Notice that in this way, ξn has stem 

and filtration 2n − 1 since we are working in the doubled spectral sequence. Under this 

notation, the map

a−1
λ SliceSS(BP ((C4))) → P ∗

4/2DHFPSS(N2
1 HF2)

sends ti to a
−(2i−1)
σ2 ξi (on the C2-level), as follows from Theorem 3.18 and Proposition 6.2: 

since the target spectral sequence collapses on C2-level, the image of ti is determined by 

its RO(C2)-degree and its image under ΦC2 .

In the C4-level, we need to be extra careful. By taking N = N4
2 on ti �→ a

−(2i−1)
σ ξi, 

we see that

N(ti) �→ a
−(2i−1)
λ N(ξi),

where N(ξi) is in RO(C4)-degree (2i −1)(1 +σ) and filtration 2(2i −1). The complication 

comes from the fact that there are other generators of Tate cohomology than N(ξi). For 

example, the element ξ1 is invariant under the conjugate action and thus gives a generator 

of Ĥ0(C2; (A∗)1). For such generators in degree i of A∗, we will use the notation bi, and 

define that they are in the integral grading. For example, the generator of Ĥ0(C2; (A∗)1)

is named b1, and has bidegree (1, 1) in the double of the homotopy fixed points and the 

Tate spectral sequence. Since the square of b1 restricts to ξ2
1 = ξ1ζ1, we have (for degree 

reasons) a multiplicative relation

b2
1 = N(ξ1)uσ,

where uσ is a generator of the Tate cohomology of trivial module

Ĥ�(C2; F2) ∼= F2[a±
σ , u±

σ ].

The generator uσ has degree 1 − σ and aσ has degree −σ. The classical integral graded 

Tate cohomology

Ĥ∗(C2; F2) ∼= F2[x±]

with degree 1 generator x is related to the RO(C2)-graded cohomology via x = uσa−1
σ . 

Since the sign representation on C4/C2 pulls back to the sign representation on C4, we 

use the same notations uσ and aσ in the pullback of the homotopy fixed points and the 

Tate spectral sequence.
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In summary, the C2-level of P ∗
4/2DHFPSS(N2

1 HF2) has the form

F2[a±
σ2

][ξ1, ξ2, · · · ]

where ξi has both degree and filtration 2i − 1. The C4-level of P ∗
4/2DHFPSS(N2

1 HF2)

has the form

H0(C2; A∗)[a±
λ , aσ, u±

σ ]/(Tr(x)aσ, ∀x ∈ A∗),

where an element in H0(C2; (A∗)i) has both degree and filtration i if it doesn’t restrict 

to elements of the form ξkζk; if this happens, the integral graded element is named by 

N(ξk)u2i−1
σ . The class uσ is of stem 1 − σ and of filtration 0, while aσ is of stem −σ and 

filtration 1.

The C4-level of P ∗
4/2DTateSS(N2

1 HF2) has the form

Ĥ0(C2; A∗)[a±
λ , a±

σ , u±
σ ],

with names of elements in Ĥ0 from the image of the surjective map H0(C2; A∗) →

Ĥ0(C2; A∗).

Proposition 6.4. In the Tate cohomology Ĥ0(C2; A∗) the following elements are nontriv-

ial:

ξ1ζ1, ξ2ζ2, (ξ2ζ2)2, ξ3ζ3, (ξ3ζ3)2, (ξ3ζ3)3, (ξiζi)
k

for i ≥ 4 and k ≤ 4.

The proof is purely combinatorical and is irrelevant to other parts of the paper. It 

uses computations and ideas from [18].

Proof. We argue by monomial degrees in A∗ = F2[ξ1, ξ2, · · · ] and the Milnor conjugate 

formula

ζi =
i−1∑

j=0

ξ2j

i−jζj .

The conjugate formula tells us that the transfer of a monomial (i.e. the sum of the 

monomial and its conjugate) in the ξi can only increase its monomial degree. It also tells 

us that the monomial with minimal monomial degree in (ξiζi)
k is ξ2k

i . Therefore, (ξiζi)
k

being in the image of transfer can only happen when ξ2k
i appears in the transfer of a 

monomial, which has smaller monomial degree and the same topological degree.

To streamline the computation, we define that a monomial P has bidegree (a, b) if P

has monomial degree b and topological degree a − b. In this way, ξi has bidegree (2i, 1). 
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To find monomials which have smaller monomial degree and the same topological degree, 

we can look at the binary expansion of a. Let t be a positive integer, and Bin(t) be the 

number of 1s in the binary expansion of t. If a monomial has bidegree (a, b), then both a

must be even and Bin(a) ≤ b. Since ξi has bidegree (2i, 1), any monomial whose transfer 

contains ξ2k
i must be in bidegree (a, b) where a − b = 2k(2i − 1).

We will only check the highest power of ξiζi listed in the statement of the proposition, 

since if (ξiζi)
k is nontrivial in Tate cohomology, then (ξiζi)

j for j ≤ k are all nontrivial.

The class of ξ1ζ1 is obviously nontrivial in Tate cohomology, so we start our argument 

with (ξ2ζ2)2. Writing it as a polynomial in the ξi, the leading term is ξ4
2 , which has 

bidegree (16, 4). We only need to check if there is a nontrivial monomial in bidegree 

(14, 2). Since Bin(14) = 3 > 2, there is no monomial in this degree. Therefore (ξ2ζ2)2 is 

nontrivial in the Tate cohomology.

Next we consider (ξ3ζ3)3. The leading term is ξ6
3 , which has bidegree (48, 6). In (46, 4)

there is only one monomial ξ5ξ3ξ2ξ1. It is direct to check that

ξ5ξ3ξ2ξ1 + ζ5ζ3ζ2ζ1 
= (ξ3ζ3)3.

In (42, 2), there is no monomial since Bin(42) = 3 > 2.

For (ξiζi)
4 where i > 3, a similar argument applies. When i = 4 there is a monomial in 

(126, 6), namely ξ6ξ5ξ4ξ3ξ2ξ1, but it cannot transfer to (ξ4ζ4)4. And there is no monomial 

with smaller monomial degree with the same topological degree. When i > 4 there is 

simply no suitable monomial below (2i+3, 8) since Bin(2i+3 − t) for t = 2, 4, 6 are all 

greater than 8 − t. �

The proof can certainly be generalized. For example, (ξiζi)
8 are nontrivial in the Tate 

cohomology for i > 11. However, what we proved is sufficient for our computation.

Recall that the element u2σ in πC4
2−2σHZ maps to u2

σ in Tate cohomology.

Corollary 6.5. Under the map

a−1
σ SliceSS(BP ((C4))) → P ∗

4/2DTateSS(N2
1 HF2),

the classes

N(ti)
jak

λal
σum

2σ

map to

N(ξi)
ja

k−(2i−1)
λ al

σu2m
σ ,

for j ≥ 0 and k, l, m ∈ Z. The image is nontrivial if and only if (ξiζi)
j represents a 

nontrivial element in Ĥ0(C2; A∗).
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Fig. 8. P ∗
4/2DTateSS(N2

1 HF2) with differentials.

The slice differentials in [33] completely describe a−1
σ SliceSS(BP ((C4))). By under-

standing its image in P ∗
4/2DTateSS(N2

1 HF2), we can deduce many differentials in the 

Tate spectral sequence. We prove all differentials in their most natural RO(C4)-degree. 

They can be translated into the integral degree by invertible aλ and aσ multiplications. 

Fig. 8 presents P ∗
4/2DTateSS(N2

1 HF2) with differentials proved below. For reference, 

Fig. 9 presents the original Tate spectral sequence TateSS(N2
1 HF2) with the same dif-

ferentials.

Theorem 6.6. In P ∗
4/2DTateSS(N2

1 HF2), we have differentials

d2k+2−3(u2k

σ ) = N(ξk)a2k+1−1
σ .

for all k ≥ 1.
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Fig. 9. TateSS(N2
1 HF2) with differentials.

Proof. By Proposition 6.4, both the source and the target are in the image of

a−1
σ SliceSS(BP ((C4))) → P ∗

4/2DTateSS(N2
1 HF2).

There is no element below u2k

σ in the E2-page, so N(ξk)a2k+1−1
σ , which is in stem 2k −

1 − 2kσ and filtration 2k+2 − 3, can only be killed by a differential of length at most 

2k+2 −3. Therefore we only need to show that N(ξk)a2k+1−1
σ is not killed by a differential 

of length less than 2k+2 − 3. To prove this, we show that if such a shorter differential 

happens, it implies N(ξk)a2k+1−2
σ = 0 in πC2

�
N2

1 HF2. Combining with Proposition 6.2, 

it contradicts Proposition 5.25.

Assume that there is a differential dl(x) = N(ξk)a2k+1−1
σ in P ∗

4/2DTateSS(N2
1 HF2)

for l < 2k+2 − 3. To show N(ξk)a2k+1−2
σ = 0 in πC2

�
N2

1 HF2, we work with the map

P ∗
4/2DHFPSS(N2

1 HF2) → P ∗
4/2DTateSS(N2

1 HF2)

in RO(C4)-grading. By writing an arbitrary element y of stem m + nσ in P ∗
4/2

DTateSS(N2
1 HF2) in the form zuf

σag
σ with z ∈ H0(C2, π|z|N

2
1 HF2), we see that y is in 

the image from the spectral sequence P ∗
4/2DHFPSS(N2

1 HF2) if and only if g ≥ 0. This 

happens if and only if the filtration |z| +g is at least m +n = (|z| +f) +(−f −g) = |z| −g.
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The class x is of stem 2k − 2kσ and filtration 2k+2 − 3 − l; the filtration is at least 2

since l must be odd because of the doubling operator D. Thus xa−1
σ is still in the image 

from P ∗
4/2DHFPSS(N2

1 HF2) and likewise is N(ξk)a2k+1−1
σ a−1

σ = N(ξk)a2k+1−2
σ . Thus, we 

have dl(xa−1
σ ) = N(ξk)a2k+1−2

σ in P ∗
4/2DHFPSS(N2

1 HF2), unless the target is killed by 

a shorter differential. In any case, N(ξk)a2k+1−2
σ = 0 in πC2

�
N2

1 HF2. �

The exact same argument gives the following differentials.

Corollary 6.7. In P ∗
4/2DTateSS(N2

1 HF2), we have differentials:

d2k+2−3(N(ξk)ju2k

σ ) = N(ξk)j+1a2k+1−1
σ .

These differentials and their propagation are the red differentials in Fig. 9. Notice 

that N(ξk)j+1 can be zero in the E2-page of the Tate spectral sequence. For example, 

N(ξ1)2 = 0 in the Tate cohomology, since

ξ2
1ζ2

1 = ξ4
1 = ξ1(ξ2 + ζ2) = Tr(ξ1ξ2)

As a result, the target of d5(N(ξ1)u2
σ) predicted by the corollary is zero. Instead, N(ξ1)u2

σ

supports a nontrivial d9, see Proposition 6.9

As an interesting consequence, we can bound the length of differentials on elements of 

the first diagonal in the Tate spectral sequence of N2
1 R for a large family of ring spectra.

Corollary 6.8. Let R be a non-equivariant (−1)-connected homotopy ring spectrum with 

π0(X) ∼= ZS being a localization of Z such that 1
2 /∈ ZS. Let v ∈ Ĥ2(C2; π0N2

1 X) ∼=

Ĥ2(C2; ZS) be the generator of the Tate cohomology. Then v2k

supports a non-trivial 

differential of length lk with

ρ(2k+1) ≤ lk ≤ 2k+2 − 1.

Here ρ(n) is the Radon–Hurwitz number (with ρ(n) − 1 the maximal number of indepen-

dent vector fields on Sn−1): for n = k24b+c with k odd and 0 ≤ c < 4, it is defined as 

ρ(n) = 8b + 2c.6

Proof. Consider the sequence of non-equivariant ring maps

S0 → R → HF2,

where the last map is the composition of the 0-Postnikov section and the mod 2 map.

6 Beware that the lower bound is based on a classical result for which we don’t know of a published 
reference.
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Take the norm N2
1 and take the Tate spectral sequence, we have

TateSS(S0) → TateSS(N2
1 R) → TateSS(N2

1 HF2).

Note that π0N2
1 X ∼= ZS ⊗ ZS

∼= ZS . Since v maps to u2
σa−2

σ in TateSS(N2
1 HF2), Theo-

rem 6.6 gives the upper bound. The lower bound is given by the corresponding differential 

in TateSS(S0). Positive powers of v lie in the homotopy orbit spectral sequence part of 

TateSS(S0), and the homotopy orbit spectral sequence can be identified with the Atiyah–

Hirzebruch spectral sequence of RP ∞ with homology theory π∗. This spectral sequence 

is the stabilization of the EHP spectral sequence. The element corresponding to v2k

in 

the EHP spectral sequence supports differentials related to the vector fields of sphere 

problems: it supports a differential of length ρ(2k+1), with target in the image of J . (See 

[28, Lectures 20 and 21].) �

Now we discuss the rest of differentials in the range we are concerned with, which are 

differentials hitting elements in Fig. 9 below slope 1 and in stem 0 to 8. In this range, 

the ring Ĥ0(C2; A∗) is presented by the following generators:

b1 restricts to ξ1

N(ξ1)uσ restricts to ξ1ζ1

N(ξ2)u3
σ restricts to ξ2ζ2

with relations:

b2
1 + N(ξ1)uσ = 0

b3
1 = 0

b1N(ξ2)u3
σ = 0

The following differentials present the only remaining differentials in this range.

Proposition 6.9. In P ∗
4/2DTateSS(N2

1 HF2), we have differentials:

d3(uσ) = b1u−1
σ a2

σ,

d3(b1) = N(ξ1)u−1
σ a2

σ,

d9(N(ξ1)u2
σ) = N(ξ2)u−1

σ a5
σ.

Proof. For the first differential, since u2
σ supports a d5 by Theorem 6.6, uσ must support 

a shorter differential, and the d3 is the only possibility.

For the second differential, consider the class N(ξ1)uσ, which is the class in (2, 2) in 

Fig. 9. Its preimage in the homotopy fixed points spectral sequence is the only class in 

stem 2 that can support a nontrivial restriction. By Theorem 4.4, π2 of the homotopy 
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fixed points is Z/4, therefore its generator must support a nontrivial restriction (Propo-

sition 5.6). Thus N(ξ1)uσ doesn’t support a differential in the homotopy fixed points 

spectral sequence, and it must be killed by a differential in the Tate spectral sequence. 

The only possible source is b1u2
σa−2

σ and the differential is a d3. Since u2
σ supports a d5, 

we obtain d3(b1) = N(ξ1)u−1
σ a2

σ by multiplication by u−2
σ a2

σ.

For the last differential, we only need to show that the class at (6, 6) in Fig. 9, which 

has the name N(ξ2)u3
σ, is a cycle. By the same argument as above, its preimage is the only 

class in stem 6 that can support a restriction, and this indeed happens by Theorem 4.4. 

In the Tate spectral sequence, the only possible differential killing it has the form

d9(N(ξ1)u6
σa−5

σ ) = N(ξ2)u3
σ.

Multiplying both sides by u−4
σ a5

σ, we obtain the last differential. �

In Fig. 9, the first two differentials and their propagation are colored purple. The last 

differential is colored blue.

The computation of the Tate spectral sequence is largely limited by the complexity of 

the Tate cohomology Ĥ∗(C2; A∗). A better understanding of the Tate cohomology shall 

allow us to compute most differentials in the Tate spectral sequence via comparison to 

the localized slice spectral sequence, but can also feed back to the computation of the 

slice spectral sequence of BP ((C4)).
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