2100

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

Query Integrity Meets Blockchain: A
Privacy-Preserving Verification Framework
for Outsourced Encrypted Data

Shunrong Jiang
Liangmin Wang

, Jianqing Liu
, Member, IEEE, and Yong Zhou

, Jingwei Chen, Yiliang Liu™,

Abstract—Cloud outsourcing provides flexible storage and computation services for data users in a low cost, but it brings many
security threats as the cloud server may not be fully trusted. Previous secure outsourcing solutions mostly assume that the server is
honest-but-curious while the adversary model of a malicious server that may return incorrect results is rarely explored. Moreover, with
the increasing popularity of verifiable computations, existing verification schemes are yet not efficient and cannot cater to different
scenarios in practice. In this paper, we propose a blockchain-based verifiable search framework for the adversarial cloud outsourcing
context. When outsourcing the encrypted data to the cloud or Interplanetary File System (IPFS), we also store the encrypted data index
in a decentralized blockchain (i.e., Ethereum in this paper) which is public and cannot be modified. Once a user is authorized, he/she
can flexibly obtain the query results and efficiently check the query integrity via the pre-deployed smart contract, without the need of the
data owner being online. Moreover, for user’s privacy protection, we construct a stealth authorization scheme to deliver the access
authorization without any identity disclosure. Finally, theoretical analysis and performance evaluation validate the security and

efficiency of our proposed framework.

Index Terms—Outsourced encryption, blockchain, query integrity, access authorization, privacy protection

1 INTRODUCTION

OWADAYS, the development of cloud computing has revo-

lutionized the traditional computation and storage para-
digms. With great flexibility and low cost, data owners can
outsource their personal data to the cloud and rely on it to pro-
vide diverse services (e.g., storage and query). Despite the great
benefits, security and privacy concerns still exist and may dis-
courage the wide participation of users. For data confidential-
ity, data encryption is a straightforward and efficient way, in
which cloud can apply the searchable symmetric encryption
(SSE) schemes [2], [3] to perform efficient search functions on
encrypted data according to the encrypted query from data
users. Essentially, SSE ensures the query availability on the

o Shunrong Jiang, Jingwei Chen, and Yong Zhou are with the School of Com-
puter Science & Technology, China University of Mining and Technology,
Xuzhou 221116, China. E-mail: {jsywow, cjwcierj@gmail.com, yzhou@cumt.
edu.cn.

o Jianging Liu is with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27695 USA. E-mail: jliu96@ncsu.edu.

o Yiliang Liu is with the School of Cyber Science and Engineering, Xi'an Jiao-
tong University, Xi’an 710049, China. E-mail: alanliuyiliang@gmail.com.

o Liangmin Wang is with the School of Cyber Science and Engineering,
Southeast University, Nanjing 211100, China. E-mail: wanglm@ujs.edu.cn.

Manuscript received 13 April 2022; accepted 3 August 2022. Date of publica-
tion 16 August 2022, date of current version 12 June 2023.

This work was supported in part by National Key R&D Program of China
under Grant 2020YFB1005500, in part by the Fundamental Research Funds
for the Central Universities of Ministry of Education of China under Grant
2020ZDPY0306, in part by the Xuzhou Science and Technology Program
under Grant kc21044, and in part by the National Natural Science Foundation
of China under Grant 62101429. The work of Jianging Liu was supported in
part by National Science Foundation under Grant CNS-2211214.
(Corresponding author: Yong Zhou.)

Digital Object Identifier no. 10.1109/TSC.2022.3199111

ciphertext domain, and both the data privacy of data owners
and the query privacy of data users are not compromised.

To give an example, a pharmaceutical company may
encrypt a set of clinical trial records and outsource them to the
cloud server which could be in another trusted domain (e.g.,
owned by an IT company). Whenever needed, its employee
or external parties can pose queries with certain keywords [4]
to get these records for research, diagnosis and treatment.
However, as data outsourcing causes data owners to lose con-
trol of their own private data, it leaves to the mercy of the
cloud server to return legit SSE query results. Apparently, the
query results may be incorrect (incomplete or falsified) as the
cloud server may be malicious (intentionally or compromised
by attackers) and cannot be fully trusted. For reliable query
services, it is necessary to enable the data users to verify the
correctness of query results returned by the cloud.

For query integrity verification, plenty of researches have
been proposed for different types of data, including structured
attribute-valued data [5], [6] and streaming data [7], [8]. How-
ever, only a few works consider the query integrity verification
for encrypted data [9], [10]. Among these limited works, the
index and encrypted data are both outsourced to the untrusted
third party, making the query results uncontrollable. More-
over, large computation overhead is incurred and hence the
centralized cloud platforms are barely practical. To address
these issues, intuitively, we can store the index in a public
decentralized system, in which the query correctness can be
guaranteed via the trust maintained by the distributed multiple
entities. However, performing secure queries and verification
in such a decentralized system remains under-explored and
needs further investigation.

1939-1374 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

JIANG ETAL.: QUERY INTEGRITY MEETS BLOCKCHAIN: A PRIVACY-PRESERVING VERIFICATION FRAMEWORK...

Recently, with the prosperity of crypto currencies [11], [12],
[13], [14], blockchain, as its underlying technology, is featured
by decentralization and perfectly matches the requirement of
our design goal. By leveraging blockchain, without trusting
the cloud server, the query can be decoupled from cloud serv-
ers with ensured integrity. Besides, potential data unavailabil-
ity in traditional cloud outsourcing can be prevented as well.
As any data recorded on the blockchain cannot be tampered
with and the smart contract can ensure the correctness of pre-
defined functionalities, we incline to record the encrypted
index on the blockchain which can then be efficiently
retrieved with correctness guarantee by the data users.
Despite its promise, realizing the blockchain-based verifiable
query with privacy preservation and access authorization is
still challenging for its characteristics that each transaction
and data are publicly visible. Even there are several privacy-
enhanced technologies in blockchain, e.g., zk-SNARKSs [15]
and CryptoNote [16], they are not suitable in our application
scenario because of high overhead and application limitation.
Besides, although there are some blockchain-based access
control schemes [17], [18], [19], few of them consider the
access authorization problem [20] in the blockchain. This
implies that these schemes [17], [18], [19] need other secure
channels to deliver the authorized content which is neither
convenient nor flexible. Therefore, in this paper, we aim to
provide an Ethereum-based [21] verifiable query scheme with
privacy-preservation and flexible access authorization deliv-
ery, in which the data owners can be offline. Specifically, we
have the following three main contributions.

e We propose a blockchain-based verifiable search
framework!, which shifts the search index to Ether-
eum and returns the trusted hash value of matching
results. Thus, query integrity and data privacy of
both data owners and data users can be guaranteed.

e We construct a stealth authorization scheme to sup-
port privacy-aware access authorization delivery in
Ethereum. Specifically, we hide the receiver’s address
of each transaction while ensuring privacy about the
access authorization by cryptographic primitives.

e We implement our proposed framework on a locally
simulated network (Ganache) of Ethereum and an
Ethereum-based Layer 2 extension test network Mum-
bai of Polygon [22]. The results validate the practicabil-
ity of our proposed blockchain-based framework.

The rest parts are presented as follows: The system model
and preliminaries are illustrated in Section 2. Section 3
describes our framework. Sections 4 and 5 demonstrate the
security analysis and the performance evaluation, respectively.
Section 6 summarizes the related works. Finally, we conclude
our paper in Section 7.

2 SYSTEM MODEL AND PRELIMINARIES

2.1 System Model and Design Goals
As shown in Fig. 1, the system contains four entities: a data
owner DO, who outsources a large-scale collection of d

1. According to different access orders about blockchain during the
search process, the verifiable search frameworks can be categorized: search-
then-verify and wverify-then-search. The main difference is that the search
index should be stored in the outsourced cloud for search-then-verify.

2101

Fig. 1. The system model.

documents to the remote cloud server S or IPFS [23], and
stores the corresponding indices in Ethereum; the cloud
server S is the entity who provides storage and query serv-
ices; a set of data users DUs, who can access the documents
stored in the cloud with the help of Ethereum; and a public
blockchain-Ethereum which stores indices of DO and offers
automatic and trustworthy search service by the smart con-
tract (searchVerify contract). Notice that DO/DU can be an
organization or individual, and they join Ethereum as the
blockchain users. In our framework, DO does not need to
know DU in advance. When DU sends the stealth transmis-
sion to DO, she/he only needs to bind a certificate (such as
blind signature or the anonymous authentication technol-
ogy in zebralancer [24]) to prove she/he is a valid user.
Only when DU passes the validity verification, DO agrees on
the request and responds the encrypted keywords to DU
according to the access profile. For secure and efficient
information retrieval, the blockchain-based decentralized
data storage and sharing are described as follows:

e Without loss of generality, we assume DO has a
database DB=(W;, ind;), which is a set of keyword
and identifier pairs. Specifically, W; is a keyword
set and ind; is the set of document identifiers that
contain the keyword”. After DO extracts the key-
words of each document and builds a keyword
index, he/she encrypts documents as well as the
keyword index. As we can see in step @ from Fig. 1,
the encrypted files are sent to the cloud while the
keyword index is recorded in Ethereum (step @).
Besides, DO deploys searchVerify contract to exe-
cute different operations, which can be executed
automatically and efficiently.

e After performing step @ and step @) a stealth autho-
rization scheme is executed between DO and DU to
achieve the anonymous access authorization as
described in step ®. Upon recovering the authoriza-
tion information in step @, DUs take the search token
as the data part of the transaction and send it to
searchVerify contract by the address B; and get the
corresponding index results through the smart con-
tract as illustrated in step ®and ©), respectively.

e After obtaining the index results, DUs send the index
to the cloud (step @) to obtain the corresponding
encrypted documents from the cloud server. Besides,
DUs can verify the returned documents by these index
results. Finally, DUs can get the decrypted documents
with authorization information.

2. Note that ind; is the hash value of the file in some file storage sys-
tems in IPFS [23].

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

2102

2.2 Attack Model

In this paper, we assume that DO is fully trusted, while
authorized and unauthorized DUs are semi-trusted®. In other
words, DUs will strictly follow the designated protocol, but
may try to infer some sensitive information from the search
results or obtain documents without being authorized.
Ethereum is trusted, while the cloud server is not as it may
manipulate the outsourced encrypted data. Besides, we con-
sider potential entity collusions such as collusion among DUs
[7]. Thus, our framework should support public verification.
Moreover, all Ethereum users are honest to maintain the
recorded data and verify each transaction, but are curious
about the keyword indexes of DOs, the searched keywords/
results of DUs, and the authorization relationship.

2.3 Design Goals

Considering these security threats, our design is required to
achieve the design goals as follows:

e Data privacy. For DO, the data confidentiality of docu-
ments and keyword indices should be well pro-
tected. Besides, since each transaction information
transmitted and stored on the blockchain is public in
Ethereum, we should protect the privacy of the
authorization information and the encrypted indices,
and conceal any side-channel yet private information
about the documents.

o Anonymous access authorization. To ensure privacy-
aware access authorization delivery, we should
achieve unlinkability in Ethereum, i.e., for any two out-
going transactions, it is unknown whether they are
sent to the same receiver. Moreover, only the autho-
rized user can recover the authorization information.

e Query integrity. We should guarantee the query
integrity: Soundness means all the query results are
originated from the DO and satisfy the query criteria;
Completeness means no valid answer in the query
results is missing.

2.4 Preliminaries
2.4.1 Blockchain

As the first application of blockchain, Bitcoin [11] was pro-
posed as a decentralized cryptocurrency and has received
dramatic attention in the past few years. Blockchain is a dis-
tributed database that records all transactions conducted in a
peer-to-peer network. Each participant in the network holds a
copy of the database. Compared with centralized storage,
there is no central authority, and no single entity that can con-
trol the entire network. Actually, blockchain is a series of
linked data blocks which are confirmed by a consensus mech-
anism among most nodes in the network. For each block, it
contains a series of transactions and a block header (com-
posed of a pointer linked to the block header of the previous
block, the merkle hash tree root, and a timestamp). With the
block header, each block is linked together in chronological
order. The cryptographic hash function ensures that the trans-
action data in each block cannot be tampered with.

3. Semi-trusted means that a user follows protocols but will try to
learn as much information as possible, without actively “cheating”.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEE

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

TABLE 1

Notations Used in the Scheme
Notations Descriptions
Wi/ DO/DU
(@i, b;) The private secp256k1 key pair of u;
(A;, B;y) The public secp256k1 key pair of p;
(A;, B;) The Ethereum addresses pair of of y;
Hl('), Hg() Hl cE— 7/;, H2 : {O, 1}* — 74;

Enc(-)/Dec(-)
ENCk () /DECK(-)

The AES-128 encryption/decryption
The ECC encryption/decryption with K

2.4.2 Ethereum and Gas

As a novel decentralized application platform, Ethereum
supports smart contract [21]. The main advantage of Ether-
eum lies in its feature of programmability, and in support of
Turing complete applications, in which users are able to
build, deploy, and run smart contracts on Ethereum. Upon
deployment, the contracts will be identified by a special
address and automatically implemented with the agreed
logic. Similarly, further modification on the contract’s code
is not feasible even for its creator.

In the Ethereum platform, ether (ETH) is a token as its
cryptocurrency. The base unit of ether is called wei and
1Gwei = 10°wei = 10 ether [21]. For the Ethereum block-
chain, the smart contract runs based on the Ethereum Virtual
Machine (EVM), in which transactions are received, broad-
cast, verified, and executed by miners. Once the code in the
contract is triggered by a message or a transaction, EVM will
run on each miner side as part of the block validation proto-
col. The miners will authenticate every transaction contained
in the block and execute the codes in smart contract, having
the same calculations and storing the same values. Along
with each operation in the EVM, there is a specific consump-
tion which is counted by the unit gas [21]. To perform the
required data storage or computations, the sender of the
transaction needs to pay some gas in the form of ether.

3 THE PROPOSED SEARCH FRAMEWORK

In this section, we construct our verifiable search frame-
work. The notations used throughout this paper are listed
in Table 1.

3.1 Overview

In our framework, after outsourcing the encrypted docu-
ments to the cloud, DO sends the corresponding encrypted
index to Ethereum and deploys the searchVerify contract to
execute the search, addition, and deletion operations. After
that, all the operations can be carried out for data update
automatically, efficiently and trustfully. To achieve access
control and ensure the privacy of DU, we construct a stealth
authorization scheme based on the concept of stealth address
in Monero [16]. However, when the authorized user uses the
same address to access the searchVerify contract, the relation-
ship between the stealth authorized parties is revealed. To
deal with this drawback, we adopt another address of the
authorized user to access the searchVerify contract. Specifi-
cally, our framework consists of the following steps:

Xplore. Restrictions apply.

JIANG ETAL.: QUERY INTEGRITY MEETS BLOCKCHAIN: A PRIVACY-PRESERVING VERIFICATION FRAMEWORK... 2103

System initialization: £ is a ECC-secp256k1 elliptic curve [25] over a finite field GF), of prime order p with a base point G. Let 71 be a
hash function where H1 : E — Zy. F}, and F: are pseudo-random functions (PRFs) output strings in Z, and {0,1}7, respectively. A user

i (DO/DU) executes the following operations.

EDBSetup(DB)
(1) pi constructs the index (w;,ind;) according to DB;

(4) For each keyword w; € W:
« For each ind; containing w;:

t0 dmaz-
- p; adds (I, d,r) to L.

corresponding transaction id txidy;
(6) p; stores (Kg, K, Ko, Kq, w;, tridr);

contract by the address A;;

o 1; chooses a private ECC-secp256k1 key pair (a;, b;), where a;, b; € Zy;

e fi; calculates the corresponding public ECC-secp256k1 key pair (A;, B;), where A = ;G and B = b;G,
o fi; gets the corresponding addresses of Ethereum as (A;, B3;) according to (A;, B;) [21].

(2) pi randomly chooses a key K to encrypt DB as EDB by AES-128 and outsources it to the cloud;
(3) Before sending the index to Ethereum, p; chooses three keys K., Ko, Kq, and an empty list L;

o Kii = Fp(Ke, 1)|w;s), Koy = Fp(Ke, 2||w;), where “||” is denoted as the concatenation operation.

- p; randomly chooses r € {0,1}7, calculates d =ind; & F-(Ka;,7), | = F,(K14,¢), ¢+ +,where ¢ is a counter increased form 0

(5) i takes L as the data part of the transaction and sends it to the address of searchVerify contract by the address .A; and records the

(7) p; takes A;, the description of sharing data and requirements as the data part of the transaction and sends it to the address of searchVerify

D

Fig. 2. The initialization process of our framework.

e (EDB, K, tzxid;) «— EDBSetup(DB): The algorithm is
run by DO. He/she takes a database DB as input and
outputs three tuples (EDB, K txid;) where EDB is
the encrypted database, K is the corresponding
secret key, and txid; is the transaction id of the
encrypted index in Ethereum.

o Lp«+— SearCh(txidL,{Kh‘,,Kgi,Kﬁ,Kéé)Z The algo—
rithm is run by DO or DU. The algorithm can be divided
in two phases: DO/DU takes {K7y;, Ky, Kﬁ, K3} to
generate the search token [,[4. Then, he/she sets I,14
with the transaction id txid;, as the input to the search-
Verify contract. The searchVerify contract outputs a set of
identifiers L. Finally, he/she can get the correspond-
ing result according to Lz from the cloud server. Before
DUruns this algorithm, a stealth authorization scheme
should be performed between DOand DUthrough Ethereum.

e L, Add(ind;, W;): The algorithm can only be exe-
cuted by DO. He/she takes the newly added ind;
with the corresponding keyword set W; as input,
and the searchVerify contract updates L 4. Besides, DO
also updates the corresponding documents stored in
the cloud server.

e Lp «— Delete(ind;): The algorithm can only be exe-
cuted by DO. He/she takes ind; as input, the search-
Verify contract outputs Lp. Moreover, DO also deletes
the corresponding documents from the cloud server.

3.2 The Proposed Scheme
3.2.1 |Initialization

This phase mainly contains two parts: system initialization
and outsourcing content generation. As shown in Fig. 2, we
first set the system parameters. Since the private/public key
and address of Ethereum are generated by ECC-secp256k1
algorithm [26], for each user u;, he/she chooses the private
secp256k1 key pair (a;, b;), calculates the public secp256k1-
key pair (A;, B;), and gets the corresponding addresses of
Ethereum as (A;, B;). For the ease of presentation, we denote
wu; as the data owner DO and p; as the data user DU.

Before outsourcing documents, the data owner u; calcu-
lates the encrypted documents and the corresponding index
by EDBSetup(DB). Then, p; outsources the encrypted docu-
ments EDB to the cloud while the encrypted index is stored
in Ethereum. Here, we assume that the maximum number
of documents containing w; is dpg,. Thus, the maximum
value of c is d;,q,. During the search process, DU only exe-
cutes dy,q, times to compute [which can reduce the compu-
tation overhead.

3.2.2 Stealth Authorization

After the initialization phase, u; should deploy the search
smart contract in Ethereum. Then, p; can deliver the access
authorization to other users to realize data sharing through
Ethereum. To achieve privacy-preserving access authoriza-
tion delivery and prevent inferring the relationship between
the authorized parties during the search operation, we design
a privacy-preserving and stealth authorization scheme as
follows:

Stealth Transmission. As shown in Fig. 3, in order to apply
for sharing the data of u;, i, first sends the secure informa-
tion to p; according to A;:

e ; chooses a random number r| € Z;, calculates the
transaction public key R; = G, and the stealth tag
STy = Ho(Th||H1(r1A;))G, where T is the current
timestamp;

e u; encrypts (A;, B)) by A; as ¢ = ENCy,(Aj, B)) by

ECC-secp256k1;
e ;adds T1||R;||STi||c; as the transaction and broad-
casts it in Ethereum address A;.

To recover the secure information of w;, u; checks the
recent transactions in the newly generated blocks, and
extracts the stealth transmission information as shown in
Fig. 4:

e 4, calculates ST| = Ho(Th||H1(a;R1))G, and checks
whether ST| = ST} or not. If the equation holds, it
means p, is the receiver, then;

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

2104

Transaction

DATA

Tx public key ——7777{ R=1G }

17)
Stealth Tag """“ST\ "14(7-.“;-’1('14))01

Authorization o
content

Fig. 3. The stealth transmission generation.

i Sender's
random data
A Receiver's
public key

Transaction

DATA

Tx public key
E Stealth Tag

Authorization
content

Receiver's a
private key
|

Fig. 4. The stealth transmission regain.

i

e 4u; calculates DEC,;(c1) by a; to obtain the secure
information (4;, B;) of ;.
Stealth Authorization. After checking the validity of u;, u;
will execute the stealth authorization to ;. The transaction
of the stealth authorization is generated as shown in Fig. 5:

e 4, gets the public key pair (A4;, B;) of u; and ran-
domly selects data r;,7; € A;,

e 1, calculates the stealth tag as STb = H(Ta|[Hi(r24;))G,
the transaction public key R, =G, and the public
key PKga = Hi(r2A;)G + B; for encryption,where T,
is the current timestamp.

e u; calculates AccTk = r;||T,; as the access control
token of 1 ; and AccPr = Hy(B;||AccTk) as the access
control information, where T; is the expiration time.

e u; encrypts the authorization content as c; =
ENCpy,, (taidy, { Ky, Ko, K{}, K3}, AccTk).

e ; adds Th||Ry||ST3||co as the transaction and broad-
casts it in Ethereum by address .A; and updates
AccPr as the access control authorized information
of u; to searchVerify contract.

The receiver u; checks the recent transactions in the

newly generated blocks, and extracts the stealth authoriza-
tion information as shown in Fig. 6:

e ; computes STy = Hy(Ts|[H1(a;R2))G, and checks
whether ST, = ST, or not. If the equation holds, it
means u; is authorized to the receiver, then

e u, recovers the corresponding decryption key SKg4 =
Hl (aij) + bj,'

e u,; decrypts ENC 5K 4 (c2) to get the authorized infor-
mation (tzidy, { K1, Ko, K{4, K}, AccTk).

Finally, u; adds AccPr into the authorizedInfo list of

searchVerify contract in batch.

3.2.3 Search

After recovering the authorized information, p; can execute
the verifiable search operation. He/she first runs the algo-
rithm to generate the search token [, /4. Then, u; sends I, 14,

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

Transaction

DATA

Tx public key 4] T 7 = 7;, 77777
|
Stealth Tag kN

Authorization -]
content

Fig. 5. The stealth authorization generation.

B Sender's
random data
Receiver's
public key

Transaction

DATA
L Tx public key
Ll Stealth Tag

Authorization
content

Tag check

1y — H,(T, || 7,(a,R,)G

I
o R Il i

Receiver's |(@,:0,)
privatekey | N\ ______________ \
| SKy, = H(a,R) +b, !
i

One-time private key

1w SY_ = ST,

DECy, (c;

Fig. 6. The stealth authorization regain.

AccTk and txidy, to the searchVerify contract in Ethereum by
the address B; and gets the corresponding index result. The
search process is designed to verifySearch function locally
called to get the search result. As shown in Fig. 7, the
detailed search operation is performed by the searchVerify
contract. Here, wy,q, is the max number of keywords in ind;.
After getting the returned result (d,7), (d4,74), and Lp from
searchVerify contract, u; could recover ind; by further proc-
essing as shown in Fig. 7. Finally, he/she can get the corre-
sponding encrypted documents from the cloud server and
recover the plaintext. Obviously, ind; can also be regarded
as the proof for the search integrity verification.

3.2.4 Dynamic Update

Our framework also supports dynamic update operation as
shown in Figs. 8 and 9, respectively. To add the new docu-
ments, DO first executes the operation as EDBSetup(DB) to
get the corresponding (14, d4,r4). Then, we adopt the search-
Verify contract to achieve the added operation. Here, we just
build another list L4 to store new content. For the deletion
operations, we build a deletion list L to store the deleted
documents by the searchVerify contract. Both operations can
only be run by the creator of the smart contract.

3.3 Smart Contract Design

In this section, we present the detailed operation of our
smart contract. We adopt the solidity language [27] to pro-
gram the smart contract running on Ethereum. There are
several special variables and functions in the global name-
space as follows:

e msg.sender: the sender of a message or transaction.
When the smart contract is deployed, it is the
address of the contract creator. When the smart con-
tract is called, it is the address of the smart contract
caller.

o msg.value: the number of wei sent with a message.
For a subsequent user, we use msg.value to represent

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

JIANG ETAL.: QUERY INTEGRITY MEETS BLOCKCHAIN: A PRIVACY-PRESERVING VERIFICATION FRAMEWORK... 2105

Search(tzidy, { K1i, Koi, Kii, K35}, AccTk)
After p; recovers the authorization information, p; creates an empty list Lr and executes the following search operation:
o For ¢ = 0 until dpaz:
- p; calculates | = Fj (K, ¢);
o For ¢ = 0 until wpaz:
- pj calculates 14 = F,(K{3, ¢);
o i locally calls the verifySearch function of searchVerify contract with parameters (I, /4 and AccTk).

The smart contract asserts that the present time within the expiration time and corresponding AccPr is in the authorizedInfo list then:
o get (d,r) according to [in L;
o get (da,ra) according to la in La;
o return (d,r), (da,r4) and Lp to ;.

After getting (d,r) and (da,74a), 1;
o For each (d,r), pu; calculates ind; = d @ F-(Ka;,r) and adds ind; into Lg;
o For each (da,ra), p; calculates ind; = da @ FT(KQA;,T) and adds ind; into Lg;

At last, p1; checks Lp as follows:
o For each ind; in the Lg, p; calculates indge; = F(Kg4,ind;) and checks indge; € Lp or not. Finally, p1; returns ind; as the search
result Lr where indge; & Lp.

Fig. 7. The search process of our framework.

Add(ind;, W;)
For the newly added document ind; with the corresponding keyword set W, the data owner p; performs the following operations:
o 4u; uses the encryption key K to encrypt document as EDB’ and outsources it to the cloud;
o For each keyword w; € W;:
1) w; calculates K15 = F, (Ko, 1||w;), K5t = Fp(Ka, 2||w:);
2) p; randomly chooses 4 € {0,1}7, calculates d4 =ind; ® FT(KS,T), la = Fp(Kﬁ7 c), c++;
3) Add (la,da,ra)to La.
o Finally, DO sends L4 to the searchVerify contract to update L4 by address A;.

Fig. 8. The added operation of our framework.

Delete(ind;)
An empty list Lp was established at the initialized phase. When the data owner p; wants to delete the document ind;, he/she sends the
request to cloud to delete the corresponding document.
« For each ind;
- w; calculates indge; = Fr(Kg,ind;).
o Finally, p; sends indge; to the searchVerify contract to update Lp by address A;.

Fig. 9. The deletion operation of our framework.

the number of wei attached to a message and cost to searchinit(l,d,r): This function can only be executed by
represent a fixed number of we. the contract creator ;. As described in the step (5) of
Specifically, the smart contract is deployed by DO EDBSetup(DB) in Fig. 2, u; initializes the trust index by L
(e.g., n; in our framework) as the searchVerify contract as Algorithm 1. It builds an index set L according to index !
which includes five functions (searchinit, addUser, addIn- by the solidity mapping function.
dex, deleteIndex, verifySearch). In the initialization process,
we define several variables required for the searchVerify

Algorithm 1. searchlInit

contract.
Input: [, d,r
e The contract creator variable is the address type, Output: Bool
which is also the address of u;. 1: if msg.sender is not u; then

e The variable of the mapping type /, which definesa 2: throw;
collection from the encrypted keyword indices to a 3: endif
structure L set. The encrypted keyword index is 4 mapping!to (d,r), and add it to the initialization index set L;
stored as a byte type. The structure L contains three O return true.
variables as follows:

e [isthe index calculated as F,(K;, c); addUser(newAccPr): This function can only be run by the

e risarandom number; contract creator u,. After delivering the access authorization

e disused to transform ind; into ind; & F; (Ko, 7); to u;, u; should add the access control authorization infor-

The searchVerify contract mainly provides the following mation of B; into the authorizedInfo list as Algorithm 2.
five functional interfaces: Notice that, this operation should be in batch operations.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

2106

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

Algorithm 2. addUser

Algorithm 5. verifySearch

Input: AccPr

Output: bool

1: if msg.sender is not u; then
2 throw;

3: end if

4: if AccPr has existed then
5: return false;
6: else

7. authorizedInfo[AccPr| < true;
8: return true;

9: end if

addIndex(l4,da,r4): Only the contract creator p; could
call this function. As shown in Fig. 8, for the newly added
document ind; with the corresponding keyword set W;, u;
calculates the corresponding l4, d4, and r4, then he/she
stores it to the smart contract. He/she builds an add index
set L4 according to index {4 by the solidity mapping func-
tion as Algorithm 3.

Algorithm 3. addIndex

Input: l4,da, 74
Output: Bool

1: if msg.sender is not u; then
2 throw;

3: end if
4
5

: mapping 4 to (da,ra), and add it to the add index set L;
: return true.

deleteIndex(ind;): This function can only be performed
by the creator u; of the contract. When p; deletes a certain
document ind; from the cloud server, it is necessary to
add ind; to the deletion list Lp in the smart contract as
Algorithm 4.

Algorithm 4. deleteIndex

Input: ind;
Output: Bool
1: if msg.sender is not u; then
2: throw;

3: end if
4
5

. add ind; to the delete index set Lp;
: return true.

verifySearch(l,14, AccTk): This function can only be exe-
cuted by the user in the authorized set and the creator u; of
the contract. As shown in Fig. 7, after u; calculates the
search token, he/she sends [, [4, and AccTk to this function
and gets the corresponding result Lz and Lp by the address
B; as and Algorithm 5.

In our scheme, we consider the local call of the search
process. DU locally invokes the verifySearch function by
sending [, {4 and AccTk to the smart contract that will check
the access control status of the current account address
before returning the corresponding search results. Since the
local call does not change any data state, only DU gets the
call results by verifySearch function. Thus, we can ensure
access control and prevent privacy leakage.

Input: [, 14, AccTk

Output: SearchResult, Lp

: calculate AccPr = Hy(msg.sender||AccTk)

: if authorizedInfo[AccPr]==false

: or AccTk.T,; < time.now then
throw;

end if

: get L[l] array’s length len;

: if len equal O then

Lr <= NULL;

: else

Lp < L[l];

: end if

: get L4[l4] array’s length len4;

: if leny equal O then

: else

Lp< Ly [l A] ;

: end if

: return Ly, Lp.

O N Ul WN =

S U VU U U
XN TR WN R~ OV

4 SECURITY ANALYSIS

In this section, we will discuss the security and privacy of
our framework.

4.1 Data Privacy
Before outsourcing documents, DO encrypts DB as EDB by
AES-128 algorithm. Thus, the cloud can only see ciphertexts
without obtaining the plaintext of documents. After that,
only the authorized DUs can obtain ciphertexts through the
search operation. For the corresponding index, DO trans-
forms (w;, ind;) into (I, d,r) and stores them in Ethereum as
shown in Fig. 2. Each keyword w; is encrypted as K;; =
F,(K,,1||w;) and Ky = F,(K,,2||lw;) by pseudo-random
functions, while each ind; is hidden by d =ind; ® F;(K5;,r)
where r is a random number. Thus, even two documents
have the same keyword wj, attackers cannot identify them
according to (I, d,). For the similar reason, it is impossible
to distinguish whether the two newly added documents
contain the keywords in existing documents. Moreover,
only {Ky;, Ky, K{{, K;l} are sent to DU during the access
authorization delivery. This means that even the authorized
users cannot learn w; except for the authorized documents.
In Ethereum, transactions are visible by anyone, which
could result in data leakage. During the access authoriza-
tion, we construct the stealth authorization to hide the
receiver’s address while ensuring the confidentiality of
authorized information as shown in Fig. 5. During this pro-
cess, we construct a public key PKg4 to encrypt the autho-
rized information (tzidp, {Ki;, Ko, Kﬁ, K;fi}, AccTk) by
ECC-secp256k1 encryption/decryption. Thus, only the
authorized DU can recover the corresponding private key
SKgss and obtain the detailed information. Moreover, the
key pair PKg4/SKga is a one-time session key.

4.2 Anonymous Access Authorization

In our framework, the access authorization can only be deliv-
ered by DO. To achieve the untraceability and unlinkability

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

JIANG ETAL.: QUERY INTEGRITY MEETS BLOCKCHAIN: A PRIVACY-PRESERVING VERIFICATION FRAMEWORK...

during the access authorization, we adopt the stealth autho-
rization scheme to hide the receiver’s address as shown in
Figs. 3 and 5. Without the receiver’s address, 1; can recover
the application information T3 || Ry ||ST1||c1 by his/her private
key a; as shown in Fig. 4. Then, u; constructs a stealth autho-
rization as T || Rs||ST5||c2 in Ethereum as shown in Fig. 5. To
recover the corresponding authorized information, u;
should check recent transactions with his/her private key
pair (aj,b;) to generate the corresponding decryption key
SKg4 as shown in Fig. 6. Without the private key, it is an
Elliptic Curve Discrete Logarithm Problem (ECDLP) to
recover authorized information. Only after decrypting the
authorized information, u; can execute the search smart con-
tract and get the correct results.

Besides, DO adds adds AccPr into the authorizedInfo list
of searchVerify contract. Thus, when DUs call the searchVerify
contract, an identity check will be performed at first to check
the user legitimacy to ensure access control.

4.3 Query Integrity

It is obvious that our framework can ensure query integrity
as long as the security of Ethereum is guaranteed. This is
because the smart contracts can perform search operations
honestly according to predefined logic, and return the corre-
sponding results L. Besides, each node in the Ethereum net-
work can verify the correctness of operations. The consensus
mechanism of Ethereum guarantees the correct execution of
each search operation. Although the returned results by the
smart contract may contain the deleted documents, it is easy
to filter them by checking L. Thus, query integrity can be
guaranteed which means that all the query results are origi-
nated from the DO and satisfy the query criteria (soundness).
Besides, no valid answer in the query results is missing
(completeness).

5 PERFORMANCE ANALYSIS

5.1 Complexity Analysis

Let EM., EH., EE., and E.D. denote one multiplication
operation, one hash operation (H;(-)), one encryption opera-
tion, and one decryption operation in ECC-secp256k1 ellip-
tic curve, respectively. P.F. indicates one pseudo-random
function operation (F}, and F;) and H. means one hash oper-
ation (Hs(+)). |E|, |PF|, |R|, |Cz|, and |H| denotes the size of
E, the size of F},/F;, the size of r/ry, the size of ¢, and the
size of Hs(-), respectively. During the analysis, we focus on
the overhead about Ethereum.

Initialization. For each keyword w;, u; first encrypts
K,; and Ky by pseudo-random functions, then calculates
the d and ! which need two pseudo-random function
operations. Thus, the total computation is about (2w,q,+
20(Wpqg * dmqy))P.F.. After that, u; should upload (/,d,r)
to Ethereum, the corresponding communication over-
head is about O(wyay * dimaz)(2|PF| + |R|) bytes.

Stealth Transmission. In order to apply for sharing the
data, u; calculates the transaction public key I; = G, the
stealth tag ST\ = Ho(Th||H1(r14:))G, and encrypts ¢ =
ENC 4, (A, Bj) by ECC encryption. The elapsed time is E.M.,
2E.M.+E.H.+H., and E.E., respectively. After that, u; broad-
casts T1||R1||STh||c; to Ethereum. The corresponding com-
munication overhead is about 4|E|. Thus, the overall

2107

computation overhead and communication overhead are
3E.M.+E.E+E.H.+H. and 4| E|, respectively.

Then p; checks the transactions in the newly generated
block by calculating ST] = Ha(T1||H1(a;R1))G using his/
her own private key a; and R;. Let u; match N, times to
find the right transaction that makes the equation hold. The
computation overhead is about 2E.M.+E.H.+H.)N,,. Next,
w; decrypts the message c; to get the plaintext. The corre-
sponding computation overhead is E.D.. As a result, the
total computation overhead of the receiver is (2E.M.+E.H.
+H.)N,,+E.D..

Stealth Authentication. To authorize the access infor-
mation, u,; calculates STy = Hy(T5||H1(r24;))G, Ry =1:G,
PKs4 = Hi(r2A;)G + Bj, and encrypts ¢ = ENCpx, (taidy,
{Ky;, Ky, Kit, K3}, AccTk). The corresponding computation
overhead are about 2E.M.+E.H.+H., EM., 2EM.+E.H., and
E.E+H., respectively. Finally, u; sends the transaction
Ty||Rs||ST»||cs to Ethereum. The corresponding communica-
tion overhead is about 2|E| + |C;|. Thus, the overall compu-
tation overhead and communication overhead are 3E.M.
+2E.H.+E.E.+2H. and 2|E| + |C;|, respectively.

u; checks the transactions in the newly generated block
according to the transaction public key R;. u; uses his/her
own private key a; to calculate ST} = Ha(To||H1(a;R2))G.
We assume u; needs NN, times to find the right transaction
that makes the equation hold. The computation overhead is
about QE.M.+E.H.+H.)N,,. Next, he/she calculates the cor-
responding decryption key SKgi = Hi(a;R2)+b; and
decrypts ENCsi,,(c2) to get (twidp, {Ku, Ky, Kii, Kii},
AccTk). The corresponding calculation overhead are E.M.
+E.H. and E.D., respectively. As a result, the total computa-
tion overhead is about QE.M.+E.H.+H.)N,,+E.H.+E.D..

Search: In the search operation, j first calculates d,,,, and
Whqe times pseudo-random function F,, which consumes
(dmaz + Wmaz)P.F.. Then, 11; sends [and I, to the searchVerify
contract to get (d,r), (da,74), and Lp. After that, he/she
recovers ind; by calculates ind; = d ® F;(K,r) and ind; =
da @ FT(KS7 7). The elapsed time is about 20(d 40 + Wiz)P.
F.. Finally, 11; should check whether each ind; is in Lp or not
by calculating indg = F;(Ky,ind;). Thus, the overhead is
about O(d,ay + Winaz)P-F..

Dynamic Update: As shown in Fig. 8, to add a document
ind;, for each w; in indj, u; should calculate K ﬁ =
(Ko, 1 |Jw;), K3t = Fy(K,,2||w;), da =ind; ® F,(K3,7), and
l4 = F,(Ki},c). The corresponding computation overhead is
about 40 (wyq,)P.F.. Finally, he/she sends Ly to the search-
Verify contract which needs 2|PF| communication overhead
for each added document. To delete ind;, u; computes
indge; = F;(Kg4,ind;) and sends indg; to the searchVerify con-
tract to update L p, the corresponding computation and com-
munication overhead are about P.F. and |PF|, respectively.

Finally, we summarize the computation and communica-
tion overhead in Table 2.

5.2 Local Implementation

During the implementation, we instantiate 75 (-) as the SHA-
256 hash function. F}, and F; are instantiated with Keccak256
functions. We carry out ENCk(-)/DECk(-) by the ECC-
secp256k1 encryption/decryption algorithm. Enc(-)/Dec(:)
uses the AES-128 encryption/decryption algorithm. The size
of A; /B, is 20 bytes as the Ethereum address. The size of the

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

2108 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023
TABLE 2
The Overhead of our Scheme

Entity Computation Overhead! Communication Overhead (bits)
Initialization DO (me,u,.’l: + QO(w'mam * dma,;l:))P'F' O(wm(lﬂf * d"VHII')(leF‘ + |R|)

DU(DU —) 3E.M.+E.E.+E.H.+H. 4|E|

. DO (2E.M.+E.H.+H.)N,,,+E.D. N/A

Stealth Authorization DO(DO — *) 3E.M.+2E.H.+E.E.+2H. 20E| + |Gy

DU (RE.M.+E.H.+H.)N,,,+E.H.+E.D. N/A
Search DU 40(dmaz + Wiaz)P.F. O(dmaz + Wz)P.F.

DO (Addition) 40(wpqy)P.F. N/A
Update DO (Deletion) P.F. |PE|
'N,, is the attempt time to find the matched transactions for stealth authorization.

TABLE 3
Initialization Phase Performance
DB name (w;, ind;) pairs Encryption TX Our Hu
i N87P P Time Gas! Time Gas

DB, 39975 3.66 MB 195 50.68 s 91804701 8.55s 220331085
DB, 91083 8.34 MB 291 10791s 206088062 1714 s 502387638
DB; 157976 14.47 MB 392 184.24 s 355387121 28.97 s 860519184
DB, 249488 22.85 MB 496 286.11 s 559291404 4553 s 1342468640

1 gas =32 Gwei = 3.2 x 10"%wei = 3.2 x 10~ 8¢ether.

secret key a;/b; is 32 bytes and the corresponding public key
A;/B; is 65 bytes in Ethereum. Thus, SKg4 = 32 bytes and
PKgy =64 bytes, respectively. Besides, ind; =w; = 32
bytes4. To illustrate the performance, we run our framework
on the locally simulated network Ethereum (Ganache [29])
and set the gasPrice as 32Gwei where 1Gwei = 10%wei =
10 %ether.

In our implementation, DO/DU side is programmed with
Python [30] and the smart contract is written in Solidity.
Besides, both of them run our framework on a desktop with
the Intel(R) Core (TM) i5-10400F (2.9GHz) processor, 8 GB
RAM, and Ubuntu 18.04 system. We implement four differ-
ent databases with different pairs of (w;,ind;) as shown in
Table 3. We compare our scheme with Hu’s scheme [28].
Notice that during the comparison, we set the size of ind; as
32 bytes without packing operation®. The detailed perfor-
mance on Ganache in different phases is demonstrated as
follows:

To initialize the database, DO needs to perform
EDBSetup(DB) and sends L to the smart contract. Table 3
presents the detailed consumption with regard to different
databases. TX means the number of transactions required
for sending the corresponding (I,d,r) (generated by
(wy, ind;) pairs) of different databases to Ganache. To finish
the setup operation, it needs about 50.68 s for DB;, 107.91 s
for DB,, 184.24 s for DB3, and 286.11 s for DBy, respectively.
The corresponding gas consumption is about 91804701,
192296892, 355387121, and 559291404, respectively. Specifi-
cally, both setup time and gas cost linearly increase with the
increasing size of (w;, ind;) pairs. The main reason is that we

4. Notice that we can reduce the size of the keywords and the index
to improve the performance as in [28].

5.We can pack the document identifiers to improve the perfor-
mance as in [28].

need more Keccak256 operations to hide w;/ind; and thou-
sands of transactions (TX) to store L in Ganache. Thus, the
average overhead is about 259.83 ms and 470793.33 gas for
each transaction. While for Hu's scheme, the corresponding
time and gas costs are about 43.77 ms and 1129903, respec-
tively. Comparing with Hu’s framework, ours incurs more
computation overhead but much less gas. Because the hash-
lib library used by Hu’s framework is almost twice as fast
as the Keccak256 library we used in Python and the data
size of Hu’s framework is much smaller by packing opera-
tion. But we take the index as the data of a transaction and
send it to the Ethereum instead of storing the data in the
contract as by Hu's framework, which optimizes the gas
consumption.

To achieve the access authorization, a stealth authoriza-
tion scheme is implemented between DO and DU. We pres-
ent the corresponding performance in different phases over
100 independent trials as shown in Fig. 10. Notice that, we
only consider one time matching operation for the stealth
tag. Thus, it needs at least 45.22 ms and 85.94 ms to execute
the stealth transmission and stealth authorization operation,
respectively. The corresponding message size is 399 bytes
(261 bytes for ¢;) and 537 bytes (401 bytes for cy), respec-
tively. Moreover, to transmit messages via Ethereum, it
needs 34132 gas and 38608 gas, respectively. As depicted in
Fig. 10, the time overhead for stealth authorization is much
more than that for stealth transmission. This is reasonable
due to the fact that two time-consuming keys (PKg4/SKg4)
are calculated during this process. Moreover, we can
observe that both operations show a fluctuated computation
overhead over time, with an overall declining trend.
Besides, we also study the time cost for the stealth tag
matching operation. As shown in Fig. 11, we perform 100
trials and the corresponding overhead fluctuates between
19 ms and 23 ms for each matching operation. Thus, the

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: N.

JIANG ETAL.: QUERY INTEGRITY MEETS BLOCKCHAIN: A PRIVACY-PRESERVING VERIFICATION FRAMEWORK...

110 T
—=a— Stealth tran.
—o— Stealth auth.

90 °

The computation overhead (ms)

30 ! L 1 I
0 20 40 60 80 100

Trial time

Fig. 10. The overhead of stealth transmission/authorization.

23

N
N
T

N

N
o
T

The computation overhead (ms)

19 L
0 20

Attempt matching (time)

Fig. 11. The overhead of each label attempt matching.

1400

T T
—6— Our(wmax=100)
—a— Hu(wmax=100)
Our(wmax=200) T
—+— Hu(wmax=200)

1200

S
o
S
S
T
1

The search time (
(2] o]
o o
o o
\
1

400 B

200 ;///e_/,e//e/j

0
100 150 200 250 300 350 400 450 500
dmax

Fig. 12. The computation overhead of search operation.

average computation overhead for one matching is about
20.57 ms. Obviously, the total matching time will linearly
increase with the number of matching times.

To demonstrate the efficiency of the search operation, we
execute the smart contract with DB,. We repeat each opera-
tion for 10 times and get the average running time. Fig. 12
presents the time cost for DU with different numbers of d,4,
and wy,q,. Even for the time-consuming situation, it only
takes 188.07 ms to get 300 matching documents. Obviously,
the corresponding overhead linearly increased with the
number of d,,q; OF Wye,. Hu's scheme adopts the mapping
function to store the (/,d,r) in contract, which causes time
cost exponentially to increase depending on the number of
the call request. Our framework takes (I, d, r) as the transac-
tion data in batches to send them to Ethereum instead of
storing it in the contract, which greatly reduces the gas cost.
According to the progerty of Ethereum, when we read the

2109

4
4><‘10 : :

—&— Our(40 keywords)
—&— Hu(40 keywords)

Our(80 keywords)
—+— Hu(40 keywords)

S
w
3

T

w
T

= N

- (4] N (4]
‘
|

The computation overhead (ms)

I
3

o

N
o
[=2]
o
@
o

100 120 140 160 180 200
The number of added documents

Fig. 13. The computation overhead of added operation.

7
10X10 T T

—6— Our(40 keywords)
—=&— Hu(40 keywords)

8+ Our(80 keywords)
—+— Hu(80 keywords)

0 I I I I I I I
40 60 80 100 120 140 160 180 200

The number of added documents

Fig. 14. The gas consumption of added operation.

data from Ganache, we do not need to consume gas in the
call function, since this is a local call without modifying the
state of the blockchain.

We also present the performance of added operations.
Figs. 13 and 14 show the impact of the number of the added
documents on time and gas cost, respectively. In our added
operations, we assume that each document contains 40 or 80
keywords, respectively. As shown in Fig. 13, for 40 keywords
included in each document, it takes about 4620.55 ms and
23046.51 ms to add documents when there are 40 and 200
documents added, respectively. While for 80 keywords, the
corresponding delay are about 7481.58 ms and 36592.64 ms,
respectively. The average delay is about 115.50 ms for each
document with 40 keywords and 187.08 ms for each docu-
ment with 80 keywords. In contrast, the average delay in
Hu'’s scheme are about 13.66 ms and 21.52 ms, respectively.
Notice that, it consumes about 14.78 ms for each transaction
to send the data to Ganache. Hu's scheme has a less calcula-
tion cost mainly due to the performance of the chosen hash
library in Python and smaller packed data. It is obvious that
the added cost almost linearly increases with the number of
added documents. Besides, we present the corresponding
gas consumption in Fig. 14. Similarly, we capture a linear
increase in the gas cost when more documents with fixed
keywords are added. Moreover, our scheme shows much
less gas consumption compared to Hu's work, which is due
to the optimized data storage mode we used.

Finally, we list the overhead of deletion operations in
Table 4. During the implementation, each document con-
tains about 40 keywords and we pack at most 120 indy; in
one transaction. As shown in Table 4, it takes about 50.89

State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

2110
TABLE 4
Document Deletion Performance
Our Hu

g Time (ms) Gas Time (ms) Gas
40 50.89 50524 254.33 772110
80 77.14 78910 330.83 1399535
120 90.62 109506 47291 2026960
160 99.37 137889 613.38 2654385
200 113.50 166260 681.06 3281810

"Nina 1s the number of deleted documents (each contains 40 keywords).

ms and 50524 gas to delete 40 documents in our scheme. In
Hu's scheme, the corresponding overhead is about 254.33
ms and 772110 gas, respectively. Since the deletion opera-
tion linearly increases with the number of keywords in Hu’s
scheme, the overhead is much more expensive. Obviously,
the overhead of both schemes increases with the number of
deleted documents.

5.3 Testnet Implementation

To present the practicability, we deploy our scheme in Mumbai,
the test network of Polygon, a proof-of-stake Ethernet-based
Layer 2 extension network. Mumbai allows us to deploy and
interact with smart contracts at a much lower cost than the
Ethereum mainnet, which can reduce overhead while guaran-
teeing our scheme’s performance and practicability. Again, we
compare our scheme with Hu’s scheme, with contract addresses
Oxe69b537ba8 A476E36FB4d92cB759b7D7E1£c6085 and
0x95Daa08e0a49faC4a1DDb4DCCA26787C8F9712DB,
respectively.

Table 5 shows the time cost and gas consumption for the
initialization phase with different databases in Mumbai.
Compared with Table 3, the time cost for DB, of our scheme
increases from 286.11 s to 341.25 s, and the gas consumption
decreases from 559291404 to 415597904. While for Hu’'s
scheme, the corresponding time grows from 8.55 s to 85.25 s
and the gas consumption increases from 1342468640 to
1492963968. The increased time is due to the delay of Mum-
bai network and the block generation time (about 5 s per
block in Mumbai). Besides, the difference in the EVM
between Mumbai and Ganache leads to a slight decrease
and increase in the gas consumption for our and Hu's
schemes, respectively. However, it is obvious that the ini-
tialization cost in Mumbai is much lower than that of
Ganache. For our scheme, it needs about 14.54 MATIC for
DB; and the corresponding overhead is 17.89 ETH in
Ganache ($1.49/ MATIC while $3265.01/ ETH).

Fig. 15 shows the time cost of search operations in Mum-
bai. Compared with Fig. 12, we can see that the time for our

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

6000 T T

—6— Our(wmax=100)
—+8— Hu(wmax=100)
5000 - Our(wmax=200) r

—+— Hu(wmax=200)

(
N
=}
S
S

w
o
o
s}

2000

The search time (m

o
o
o

0 | | | | | | |
100 150 200 250 300 350 400 450 500
dmax

Fig. 15. The computation overhead of search operation in Mumbai.

scheme grows from 188.07 ms to 375.05 ms when d,q; is
300. The corresponding overhead still tends to linearly
increase with d,,.,. For Hu's scheme, the time overhead
increases faster and is more volatile than that of Ganache.
This is because of multiple call operations Hu’s scheme
used. Thus, our scheme achieves lower and more stable
search operation overhead in Mumbai.

The time cost and gas consumption of the add operation
in Mumbai are shown in Figs. 16 and 17, respectively. Com-
pared with Fig. 13, the average time cost increases from
115.50 ms to 187.53 ms for 40 keywords included in each
document and from 187.08 ms to 328.13 ms for 80 keywords
included in each document, respectively. Obviously, the
increased time is mainly caused by the delay of the test net-
work and the increasing number of transactions. In addi-
tion, Fig. 17 shows the gas consumption of the add
operation, which has the same linear growth trend as
Fig. 14. Besides, we find that both our scheme and Hu’s
scheme consume less gas than that of Ganache, which is
related to its EVM’s gas calculation rules in Mumbai.

Finally, we list the overhead of the deletion operation in
Table 6, where each document contains 40 keywords. The
gas consumption for deleting 200 documents is 123020 and
2530632 for our scheme and Hu’'s scheme, respectively.
Compared to Table 4, the gas consumption still maintains
an increasing trend with the number of deleted documents,
while the gas consumption is reduced by 23.32% on average
in Mumbai. The corresponding time overhead is 203.12 ms
and 2781.25 ms, which are 1.34 times and 2.74 times higher
than that of Ganache, respectively. Due to the difference in
deletion algorithms, Hu’'s scheme requires more contract
interactions, resulting in a larger increase in time overhead
as well.

Deployment results from the Polygon test network in
Mumbai show a corresponding increase in time overhead
for our scheme compared to local deployments, which

TABLE 5
Initialization Phase Performance in Mumbai
DB name (w;, ind;) pairs Encryption X Our Hu
Time Gas! Time Gas
DB, 39975 3.66 MB 195 70.07 s 74322885 24.37 s 244787790
DB, 91083 8.34 MB 291 154.59 s 159067293 36.37 s 558504369
DB; 157976 14.47 MB 392 202.12s 268362808 59.26 s 956837504
DB, 249488 22.85 MB 496 341.00 s 415597904 85.25s 1492963968

1 gas =35 Gwei = 3.5 x 10" %wei = 3.5 x 10" MATIC.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

JIANG ETAL.: QUERY INTEGRITY MEETS BLOCKCHAIN: A PRIVACY-PRESERVING VERIFICATION FRAMEWORK...

4
4.5 x10 T T
—&6— Our(40 keywords)

4r | —a— Hu(40 keywords) 7
351 Our(80 keywords)

’ —+— Hu(40 keywords)

3
25

2

The computation overhead (ms)
- &

o
o

N
s}
o}
=}
©
s}

100 120 140 160 180
The number of added documents

Fig. 16. The computation overhead of added operation in Mumbai.

realistically reflected the practical performance of our
scheme. It is because the impact of the delay of blockchain
network and block generation time on any smart contract
interaction is inevitable and dominant. With the lower token
price, the Polygon can dramatically reduce the cost of the
contract deployment and interaction-related operations,
while delivering greater transaction processing capability
than the Ethereum main network.

6 RELATED WORK

With the emergence and great potential of blockchain tech-
nology, some researchers have combined blockchain with
many existing technologies such as searchable encryption.
Different from previous work based on a centralized cloud
server, blockchain-assisted searchable encryption enables
the data owners to control their data against the untrusted
platform. In our preliminary work [1], we presented a block-
chain-based privacy-preserving framework to realize query
integrity and data privacy for outsourced encrypted data
without considering the specific access control operation. In
[31], an efficient dynamic searchable encryption scheme
was proposed by integrating blockchain. The authors estab-
lished a trustworthy keyword search scheme in the decen-
tralized storage. Do et al. [32] and Jiang et al. [33] focused
on how to implement the distributed data storage, and how
to use smart contracts to manage data. In these decentral-
ized schemes, the data owners are responsible for authoriz-
ing users a search right, which hence cannot be applied to
public task matching in crowdsourcing. Leveraging the
smart contract in Ethereum, Hu et al. [28] proposed a

8 %107 : :

—=6— Our(40 keywords)
—+&— Hu(40 keywords)

Our(80 keywords)
—+—— Hu(80 keywords)

40 60 80 100 120 140 160 180 200
The number of added documents

Fig. 17. The gas consumption of added operation in Mumbai.

2111

TABLE 6
Document Deletion Performance in Mumbai
Our Hu
g Time (ms) Gas Time (ms) Gas
40 62.50 41816 12875.00 583992
80 90.62 61748 30781.25 1070652
120 143.75 83228 63046.87 1557312
160 234.37 103136 120687.50 2043972
200 203.12 123020 213281.25 2530632

"Nina 1 the number of deleted documents (each contains 40 keywords).

searchable encryption scheme with integrity guarantee via
blockchain. However, the access authorization was not
investigated. Thus, data owners should always be online to
carry out the search operation for data users. To further
improve the efficiency, they employed the private block-
chain to enable the user to search keywords efficiently and
independently, which also makes a trade-off between secu-
rity and efficiency [34]. In [35], a novel vChain framework
was developed to provide verifiable queries over blockchain
databases. The authors proposed an accumulator-based
authenticated data structure (ADS) scheme to support
dynamic data aggregation over arbitrary query attributes.
Zhang et al. [36] studied authenticated range queries for
database stored in the hybrid-storage blockchain. A novel
gas-efficient ADS G EM?-tree was developed to significantly
reduce the storage and computation cost of the smart con-
tract. Li et al. [37] proposed a searchable encryption scheme
based on the Bitcoin system, in which the encrypted data and
encrypted indices are split and stored at a set of bitcoin trans-
actions. Nevertheless, as the data grows, a large number of
transactions need to be maintained in the blockchain, thereby
resulting in a high overhead and low efficiency. Tang [38]
proposed two Blockchain-based frameworks which could be
applied to most existing symmetric searchable encryption
schemes with fairness and privacy guarantees. Recently, a
blockchain-based decentralized data sharing framework was
presented [39] to achieve fine-grained access control. They
combined the attribute-based encryption technology and
smart contract of Ethereum. Zhang et al. [14] designed a
blockchain-based outsourcing service payment framework
named as BPay, which can enable soundness and robust fair-
ness. Moreover, an SSE scheme is introduced based on their
BPay. Jiang et al. [40] constructed a bloom filter-enabled
multi-keyword search scheme over the encrypted data on the
blockchain. To improve the efficiency, they adopted bloom
filter to determine the low-frequency keyword and filter the
encrypted data according to the keyword. Zhang et al. [41]
designed a privacy-preserving personal health information
(PHI) sharing scheme based on two kinds of blockchains
(consortium and private), which were applied to store
encrypted indices and PHI, respectively. Chen et al. [42] con-
sidered the searchable sharing application for encrypted elec-
tronic health records (EHRs) based on blockchain. In their
design, they only stored the index for EHRs in the blockchain
which consisted of complex logic expressions. Besides, Jiang
et al. [43] constructed a patients-controlled secure and pri-
vacy-preserving scheme based on consortium blockchain to
achieve electronic health records sharing among different
medical institutions.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

2112

7

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

CONCLUSION

In this paper, we study the query integrity for outsourced
encrypted data based on blockchain and propose a verifi-
able search framework in Ethereum. In our framework, we
can efficiently get the correct search result by the designed
smart contracts without the requirement of trust of the out-
sourced cloud platform. Moreover, we construct the stealth
authorization scheme to achieve privacy-preserving access
authorization delivery. The security analysis shows that our
framework can meet the security requirements. The experi-
mental performances according to local implementation
and testnet implementation demonstrate the practicability
and feasibility of our framework.

ACKNOWLEDGMENTS
A part of this work [1] was accepted by IEEE ICC 2019.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

S. Jiang, J. Liu, L. Wang, and S. Yoo, “Verifiable search meets
blockchain: A privacy-preserving framework for outsourced
encrypted data,” in Proc. IEEE Int. Conf. Commun., 2019, pp. 1-6.

S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM Conf. Comput. Commun.
Secur., 2012, pp. 965-976.

S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Outsourced symmetric private information retrieval,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2013, pp. 875-888.
M. Azraoui, K. Elkhiyaoui, M. Onen, and R. Molva, “Publicly veri-
fiable conjunctive keyword search in outsourced databases,” in
Proc. IEEE Conf. Commun. Netw. Secur., 2015, pp. 619-627.

H. Pang, J. Zhang, and K. Mouratidis, “Scalable verification for
outsourced dynamic databases,” Proc. VLDB Endowment, vol. 2,
no. 1, pp. 802-813, 2009.

F. Li, M. Hadjieleftheriou, K. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2006, pp. 121-132.

S. Nath and R. Venkatesan, “Publicly verifiable grouped aggrega-
tion queries on outsourced data streams,” in Proc. 29th Int. Conf.
Data Eng., 2013, pp. 517-528.

F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused
streams: Enabling authentication of sliding window queries on
streams,” in Proc. 33rd Int. Conf. Very large Data Bases VLDB
Endowment, 2007, pp. 147-158.

R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos,
“Verifiable set operations over outsourced databases,” in Proc. Int.
Workshop Public Key Cryptography, 2014, pp. 113-130.

S. Jiang, X. Zhu, L. Guo, and J. Liu, “Publicly verifiable boolean
query over outsourced encrypted data,” IEEE Trans. Cloud Com-
put., vol. 7, no. 3, pp. 799-813, Mar. 2019.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Bus. Rev., p. 21260, 2008.

Y. Niun, L. Wei, C. Zhang, J. Liu, and Y. Fang, “An anonymous
and accountable authentication scheme for Wi-Fi Hotspot access
with the bitcoin blockchain,” in Proc. IEEE/CIC Int. Conf. Commun.,
2017, pp. 1-6.

Y. Zhang, C. Xu, C. Nan, H. Li, H. Yang, and X. Shen, “Chronos+:
An accurate blockchain-based time-stamping scheme for cloud
storage,” IEEE Trans. Serv. Comput., vol. 13, no. 2, pp. 216-229,
Mar./Apr. 2020.

Y. Zhang, R. H. Deng, X. Liu, and D. Zheng, “Outsourcing service
fair payment based on blockchain and its applications in cloud
computing,” IEEE Trans. Serv. Comput., vol. 14, no. 4, pp. 1152-1166,
Jul./Aug. 2021.

D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification,” 2016. [Online]. Available: https://github.com/
zcash/zips/blob/master/protocol/ protocol.pdf

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]
[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

[40]

[41]

[42]

[43]

N. Saberhagen, “Cryptonote v 2.0,” 2022. [Online]. Available:
https:/ /decred.org/research/saberhagen2013.pdf

A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, “FairAccess: A
new blockchain-based access control framework for the internet of
things,” Secur. Commun. Netw., vol. 9, no. 18, pp. 5943-5964, 2016.
O.]. A. Pinno, A. Gregio, and L. C. E. Bona, “Controlchain: Block-
chain as a central enabler for access control authorizations in the
IoT,” in Proc. IEEE Glob. Commun. Conf., 2017, pp. 1-6.

D. D. Maesa, P. Mori, and L. Ricci, “A blockchain based approach
for the definition of auditable access control systems,” Comput.
Secur., vol. 84, pp. 93-119, 2019.

R. Alcarria, B. Bordel, T. Robles, D. Martin, and M. Mansocallejo,
“A blockchain-based authorization system for trustworthy
resource monitoring and trading in smart communities,” Sensors,
vol. 18, no. 10, pp. 3561-3590, 2018.

G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014,
pp. 1-32,2014.

2022. [Online]. Available: https:/ /polygon.technology/

J. Benet, “Ipfs-content addressed, versioned, P2P file system,”
2014, arXiv:1407.3561.

Y. Lu, Q. Tang, and G. Wang, “Zebralancer: Private and anony-
mous crowdsourcing system atop open blockchain,” in Proc. IEEE
38th Int. Conf. Distrib. Comput. Syst., 2018, pp. 853-865.

D. Hankerson, S. Vanstone, and A. Menezes, Guide to Elliptic Curve
Cryptography, vol. 22, Berlin, Germany: Springer, 2004, Art. no. 311.
Sec 2: Recommended elliptic curve domain parameters, version
2.0,2022. [Online]. Available: http://www.secg.org/sec2-v2.pdf
2022. [Online]. Available: https:/ /github.com/ethereum/solidity
S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable
and fair realization,” in Proc. IEEE Conf. Comput. Commun., 2018,
pp- 792-800.

2022. [Online]. Available: https://www.trufflesuite.com/ganache
M. Lutz, Programming Python. Philadelphia, PA, USA: O'Reilly
Media, Inc., 2001.

C. Cai, X. Yuan, and C. Wang, “Towards trustworthy and private
keyword search in encrypted decentralized storage,” in Proc.
IEEE Int. Conf. Commun., 2017, pp. 1-7.

H. Do and W. K. Ng, “Blockchain-based system for secure data
storage with private keyword search,” in Proc. IEEE World Congr.
Serv., 2017, pp. 90-93.

P. Jiang, F. Guo, K. Liang,]. Lai, and Q. Wen, “Searchain: Block-
chain-based private keyword search in decentralized storage,”
Future Gener. Comput. Syst., vol. 107, pp. 781-792 2017.

S. Hu et al., “Augmenting encrypted search: A decentralized ser-
vice realization with enforced execution,” IEEE Trans. Dependable
Secure Comput., vol. 18, no. 6, pp. 25692581, Nov.-Dec. 2019.

C. Xu, C. Zhang, and J. Xu, “vChain: Enabling verifiable boolean
range queries over blockchain databases,” 2018, arXiv:1812.02386.
C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “GEM”2303 2-tree: A
gas-efficient structure for authenticated range queries in block-
chain,” in Proc. IEEE 35th Int. Conf. Data Eng., 2019, pp. 842-853.
H. Li, H. Tian, F. Zhang, and J. He, “Blockchain-based searchable
symmetric encryption scheme,” Comput. Elect. Eng., vol. 73,
pp- 32-45, 2019.

Q. Tang, “Towards blockchain-enabled searchable encryption,” in
Proc. Int. Conf. Inf. Commun. Secur., 2019, pp. 482-500.

S.Wang, Y. Zhang, and Y. Zhang, “A blockchain-based framework
for data sharing with fine-grained access control in decentralized
storage systems,” IEEE Access, vol. 6, pp. 38 437-38 450, 2018.

S. Jiang et al., “Privacy-preserving and efficient multi-keyword
search over encrypted data on blockchain,” in Proc. IEEE Int. Conf.
Blockchain, 2019, pp. 1-6.

A. Zhang and X. Lin, “Towards secure and privacy-preserving
data sharing in e-health systems via consortium blockchain,” J.
Med. Syst., vol. 42, no. 8, pp. 1-18, 2018.

L. Chen, W. Lee, C. Chang, K. R. Choo, and N. Zhang, “Blockchain
based searchable encryption for electronic health record sharing,”
Future Gener. Comput. Syst., vol. 95, pp. 420429, 2019.

S. Jiang, H. Wu, and L. Wang, “Patients-controlled secure and pri-
vacy-preserving EHRs sharing scheme based on consortium
blockchain,” in Proc. IEEE Glob. Commun. Conf., 2019, pp. 1-6.

Shunrong Jiang received the BE degree in infor-
mation engineering from Chongging University,
Chongging, China, in 2008, and the PhD degree in
communication and information systems from the
School of Telecommunications Engineering, Xidian
University, Xi’an, China, 2016. He joined the School
of Computer Science & Technology, China Univer-
sity of Mining and Technology as an associate pro-
fessor in May 2019. His research interests include
security and privacy for VANETS, cloud computing,
and blockchain, etc.

Jianqing Liu received the BEng degree from the
University of Electronic Science and Technology
of China, in 2013, and the PhD degree from the
University of Florida, in 2018. He is currently an
assistant professor with the Department of Com-
puter Science, NC State University. His research
interests include wireless communications and
networking, security and privacy. He received the
U.S. National Science Foundation Career Award
in 2021.

Jingwei Chen received the BE degree in com-
puter science and technology from the China Uni-
versity of Mining and Technology, Xuzhou, in
2020. He is currently working toward the master’s
degree in software engineering with the School of
China University of Mining and Technology, Xuz-
hou, China. His research interests include security
and privacy for blockchain, etc.

JIANG ETAL.: QUERY INTEGRITY MEETS BLOCKCHAIN: A PRIVACY-PRESERVING VERIFICATION FRAMEWORK... 2113

Yiliang Liu received the BE and MSc degrees in
computer science and communication engineering
from Jiangsu University, Zhenjiang, China, in 2012
and 2015, respectively, and the PhD degree from
the School of Electronics and Information Engineer-
ing, Harbin Institute of Technology, Harbin, China, in
2020. He is currently a lecturer with the School of
Cyber Science and Engineering, Xi'an Jiaotong Uni-
versity, Xi’an, China. His research interests include
the security of wireless communications, physical
layer security, and intelligent connected vehicles.

Liangmin Wang (Member, IEEE) received the
BS degree in computational mathematics from
Jilin University, Changchun, China, in 1999, and
the PhD degree in cryptology from Xidian Univer-
sity, Xi’an, China, in 2007. He is a full professor
with the School of Cyber Science and Engineer-
ing, Southeast University, Nanjing, China. He has
been honored as a “Wan-Jiang Scholar” of Anhui
Province since Nov. 2013. His research interests
include data security and privacy. He is an associ-
ate editor of Security and Communication Net-
works, a senior member of CCF.

Yong Zhou received the BE degree in industrial
automation from Hohai University, Nanjing, China,
in 1997, and the MS and PhD degrees in control
theory and control engineering from the China
University of Mining and Technology, Xuzhou,
China, in 2003 and 2006, respectively. He is a pro-
fessor with the China University of Mining and
Technology. His research interests include artifi-
cial intelligence, deep learning, computer vision,
and blockchain, etc.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 29,2023 at 18:22:52 UTC from IEEE Xplore. Restrictions apply.

