MS-PTP: Protecting Network Timing from Byzantine Attacks

Shanghao Shi
Virginia Tech
Arlington, Virginia, USA
shanghaos@vt.edu

Md Hasan Shahriar
Virginia Tech
Arlington, Virginia, USA
hshahriar@vt.edu

Y. Thomas Hou
Virginia Tech
Blacksburg, Virginia, USA
thou@vt.edu

ABSTRACT

Time-sensitive applications, such as 5G and IoT, are imposing
increasingly stringent security and reliability requirements on net-
work time synchronization. Precision time protocol (PTP) is a de
facto solution to achieve high precision time synchronization. It is
widely adopted by many industries. Existing efforts in securing the
PTP focus on the protection of communication channels, but little
attention has been given to the threat of malicious insiders.

In this paper, we first present the security vulnerabilities of
PTP and discuss why the current defense mechanisms are unable
to counter Byzantine insiders. We demonstrate how a malicious
insider can spoof a time source to arbitrarily shift the system time of
avictimnode on an IoT testbed. We further demonstrate the harmful
consequence of the attack on a real Turtlebot3 robotic platform as
the robot fails to locate itself and follows a false trajectory. As a
countermeasure, we propose multi-source PTP, in short, MS-PTP, a
Byzantine-resilient network time synchronization mechanism that
relies on time crowdsourcing. MS-PTP changes the current PTP’s
single source hierarchy to a multi-source client-server architecture,
in which PTP clients take responses from multiple time servers and
apply a novel secure aggregation scheme to eliminate the effect
of malicious responses from unreliable sources. MS-PTP is able to
counter f Byzantine failures when the total number of time sources
n used by a client satisfies n > 3f + 1. We provide rigorous proof
for its non-parametric accuracy guarantee—achieving bounded
error regardless of the Byzantine population. We implemented
a prototype of MS-PTP on our IoT testbed and the results show
its resilience against Byzantine insiders while maintaining high
synchronization accuracy.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9859-6/23/05.
https://doi.org/10.1145/3558482.3590184

Yang Xiao
University of Kentucky
Lexington, Kentucky, USA
xiaoy@uky.edu

Ao Li
Washington University in St. Louis
St. Louis, Missouri, USA
ao@wustl.edu

Changlai Du
Virginia Tech
Arlington, Virginia, USA
cdu@vt.edu

Ning Zhang
Washington University in St. Louis
St. Louis, Missouri, USA
zhang.ning@wustl.edu

Wenjing Lou
Virginia Tech
Arlington, Virginia, USA
wjlou@vt.edu

CCS CONCEPTS

« Security and privacy — Network security; « Networks —
Time synchronization protocols.

KEYWORDS

Byzantine resilience, Network Time Synchronization, Precision
Time Protocol (PTP), Service Security and Reliability.

ACM Reference Format:

Shanghao Shi, Yang Xiao, Changlai Du, Md Hasan Shahriar, Ao Li, Ning
Zhang, Y. Thomas Hou, and Wenjing Lou. 2023. MS-PTP: Protecting Net-
work Timing from Byzantine Attacks. In Proceedings of the 16th ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks (WiSec °23),
May 29-Fune 1, 2023, Guildford, United Kingdom. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3558482.3590184

1 INTRODUCTION

Recently emerged time-sensitive applications, such as autonomous
driving and smart grids, usually require a microsecond or sub-
microsecond level synchronization between different nodes and
failure to achieve these requirements can lead to significant conse-
quences. The Precision Time Protocol (PTP), originally developed
by the IEEE 1588 working group [18], is widely regarded as the de
facto solution to provide highly precise network synchronization.
PTP achieves much higher synchronization accuracy compared to
the Network Time Protocol (NTP), the incumbent synchronization
service for the Internet. It also offers better flexibility than high-
precision GPS-based synchronization, which can only work reliably
with outdoor GPS antennas.

Real-world Applications of PTP. With the help of PTP, devices
in a local network can be synchronized with sub-microsecond ac-
curacy. Currently, PTP has been documented in many industry
standards including the 3GPP 5G standard [5], IEEE TSN standard
[4], and IEEE smart grid standard [2], and has been used by various
time-sensitive networks such as data center networks [31], and
industrial automation networks [35]. In telecommunication, PTP
is deployed in the backhaul networks to transfer timing informa-
tion from accurate time servers in the mobile core networks to

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3558482.3590184
https://doi.org/10.1145/3558482.3590184

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

the base station to achieve the 1.5 ys stringent time synchroniza-
tion requirements of 5G standards [5, 15]. In high-performance
data centers such as Meta’s data centers, PTP guarantees that data
replicas are perfectly synchronized [31] to gain performance im-
provement as much as 100 times. For CPS, PTP is also employed in
autonomous driving vehicles to synchronize ECUs and sensors in
the intra-vehicle networks [1].

Gaps in Existing Efforts on Securing PTP. The original PTP
[18], however, was designed two decades ago and did not come with
any security mechanism against an adverse network environment.
It has been shown that earlier versions of PTP are susceptible to
various attacks launched by any node in the network, such as mes-
sage spoofing and replay attacks [7, 13, 24], for its lack of proper
authentication mechanism. In response, the latest version of PTP
[3] recommends using symmetric key-based authentication mecha-
nisms to counter network adversaries. This mechanism is supported
by the latest IETF’s PTP key management standard that helps dis-
tribute and manage secret keys for PTP nodes [25]. Recent work
further argues that symmetric key-based authentication mecha-
nisms are not able to address identity spoofing attacks and need
to be replaced by an efficient elliptic-curve and public-key-based
cryptography mechanism [24].

While these authentication mechanisms can effectively protect
against network packet manipulations using secure communication
channels, they cannot defend against malicious or Byzantine insid-
ers. This is because, regardless of how well individual nodes are
protected, no system is perfectly secure. In many cases, especially
IoT devices or swarm robots, it is quite challenging to ensure all
of them are secure, especially since some of them can be physi-
cally captured and tampered with by the adversary [9]. Worse yet,
the aforementioned cryptographical mechanisms are rarely imple-
mented in popular PTP implementations such as PTPD [23] and
linuxPTP [26], introducing more opportunities for attackers.

Analyzing the Impact of Compromised Nodes in Secure Time
Synchronization Network. To develop an effective defense against
malicious insiders, it is often necessary to have insights into the
attack mechanisms. Therefore, the first half of the contribution
focuses on the security analysis of the time synchronization net-
work from the perspective of a malicious insider. We found that,
even if the communication channel is secure, it remains possible for
the adversary to arbitrarily shift the clock of any targeted victim
node within the network, using only a single malicious insider.
The key idea is to exploit the weakness in the election mechanism
for the unique grandmaster (GM) to self-elect as the master to at-
tack the rest of the nodes in the network. To validate our finding,
we demonstrated the attack on the two most popular PTP imple-
mentations, PTPD [23] and linuxPTP [26], in an 0T testbed. To
further show the potentially catastrophic sequence of the attack,
we demonstrate the consequence of our attack on a Turtlebot 3
robotic platform. Turtlebot 3 robot relies on synchronized sensor in-
puts to realize its localization and control functions. When sensors
are de-synchronized, the physical world perceptions from different
modalities also become desynchronized, leading to errors in the
localization and path planning process.

Shanghao Shi, et al.

Our Proposed Defense. Our security analysis discovers a key vul-
nerability that can be exploited by a malicious insider—existing PTP
protocols only make use of a single time source. To defend against
the attack, we propose MS-PTP, a Byzantine-resilient network time
synchronization mechanism to safeguard the dependability and
accuracy of PTP timing against a malicious insider who attempts
to dis-synchronize clocks of honest clients. MS-PTP leverages re-
dundancy (i.e., multiple time sources) to increase the PTP system’s
resiliency (i.e., its tolerance to Byzantine failures up to a certain
threshold). The redundant time sources provide each client with
additional measurements for calculating its clock drift/offset in each
synchronization round. However, naively adding time sources (such
as taking the average) does necessarily improve the accuracy, since
the impact from the malicious input is not bounded. To address
this problem, we propose a novel Byzantine-resilient measurement
aggregation scheme for the client to obtain a robust estimate of its
clock drift/offset, given that f out of the n measurements are poten-
tially Byzantine and n > 3f + 1. The estimation error of MS-PTP is
bounded by V2 times the measurement uncertainty of honest PTP
sessions.

Evaluation. We implemented a prototype MS-PTP system on our
IoT testbed. We validated its resilience against different Byzantine
attacks and evaluated its computational efficiency. The results show
that MS-PTP is able to retain microsecond level time synchroniza-
tion accuracy even in the presence of an adaptive attacker with
the full knowledge of our defense mechanism. MS-PTP maintains
this accuracy when the network size grows to 30, which covers all
the typical deployment settings of PTP networks. Moreover, we im-
plemented MS-PTP over network time protocol (NTP), GPS-based
time synchronization method, and a mixture of them to comple-
ment the PTP-only study. We observed similar Byzantine resiliency
performance of MS-PTP for all these protocols, showing the gener-
ality of decentralized design across different time synchronization
technologies of different scales. Lastly, to understand the theoret-
ical guarantee of the proposed protocol, we’ve developed proven
bounds on the time synchronization error. In summary, this paper
makes the following contributions:

e We analyze PTP’s vulnerability from an insider adversary
perspective. To show the feasibility of the attack, we demon-
strate the attack on two popular open software implemen-
tations of the PTP protocol in an IoT network testbed. We
further demonstrate this attack on a physical indoor robot.

e To thwart the threat of malicious insiders, We propose MS-
PTP, a Byzantine-resilient network time synchronization
scheme, as an extension to the existing PTP. MS-PTP features
a robust measurement aggregation scheme that leverages
time crowdsourcing to produce a robust time estimation with
a small bounded error.

e We developed a rigorous proof of the correctness of our
aggregation mechanism and showed that its accuracy is non-
parametric of the population of Byzantine time sources (i.e.,
fixed error bound). MS-PTP can scale to larger networks and
outperforms the current state-of-the-art mechanisms.

e We implemented a proof-of-concept MS-PTP system and
evaluated its performance in various network and attack
scenarios. The results show that MS-PTP achieves excellent

MS-PTP: Protecting Network Timing from Byzantine Attacks

M: Master port S:Slave port --:: PTP Session

Transparent

e g S'y'_-@ S m)
o

ey = |_/|_ 9__5_ ”:" ______________
Ordinary/ Ordinary Clocks
Grandmaster Boundary PTP (also PTP Clients)
Clock Client
Clock

Figure 1: PTP network hierarchy.

synchronization accuracy and is compatible with different
time synchronization protocols.

2 PTP: OVERVIEW AND VULNERABILITIES
2.1 PTP Overview

PTP establishes a tree-structured, master-slave network hierar-
chy, as shown in Fig. 1, to fulfill the time synchronization function.
In this architecture, one node, supposedly with the most accurate
clock, is elected to serve as the unique time server—the grandmas-
ter clock (GM). Other intermediate routers and servers are known
as boundary clocks (BCs) or transparent clocks (TCs). The clients
located in the end-leaf nodes are ordinary clocks (OCs) in PTP ter-
minology. Under normal operating conditions, the GM periodically
delivers timing information to downstream clients through the
two-way time transfer (TWTT) mechanism.

Elect the Best Time Source. Upon initialization, the PTP standard
specifies all or at least all master candidate devises to continuously
broadcast a specific type of PTP message, named the ANNOUNCE
message on UDP port 320, that contains essential clock accuracy
and stability information in its payload. When these messages are
received, PTP nodes use the best master clock algorithm (BMCA), a
clock quality comparison algorithm specified by the PTP standard
to decide pairwise master-slave relationship. The master candidate
device will stop broadcasting their ANNOUNCE messages when they
heard from a better clock in the same domain. By doing mutual
comparison recursively, the best time source who beats all the other
clocks survives to be the grand-master (GM) clock, which becomes
the only one that is still broadcasting his ANNOUNCE messages.
When new nodes join the network, they can obtain current GM’s
information through reading the GM’s ANNOUNCE messages and
if they have a better clock, can start a new round of this election
process.

Two-way Time Transfer. After the time source is elected (i.e. the
GM uniquely and stably sends ANNOUNCE messages for a certain
period), timing information will be periodically transferred from
the server to clients following the two-way time transfer protocol
flow, as fig. 2 has depicted. Within one synchronization round,
four accurate hardware timestamps, #; to t4, and two cumulative
residence times, ¢; and ¢y are accurately recorded to measure the
clock offset 6 and clock drift rate § of the slave node. t; refers to
the sending time of the SYNC message at the master port and t;
refers to its reception time at the slave port. Similarly, #3 is the time
that DELAY_REQUEST is sent by the slave port and t4 refers to
the time of its reception at the Master. ¢; and ¢, are measured by
down-link and up-link TCs with each one adding its residence time

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

Transparent Clock Slave Clock

Master Clock

t; = Now() St
- —>
CF=0 SYNC: 6, |1 CFy "3 CF = CRy+ £ - tin
SYNC: ¢, || CF, tz = Now()
t; = Now()

DEL_REQ: t, || CF, |¢F2™°

N

1

DEL_REQ: t, || CF, & ¢f2=CFa*tou tin

&

ty = Now()

DEL_RESP: ¢, || CF,

|

Now have t;,
ty, t3, tg and
CF,, CF,

DEL_RESP

Figure 2: PTP two way time transfer (TWTT) with one trans-
parent clock.

cumulatively to the correction fields of on-the-fly messages. PTP
assumes a symmetric path delay ¢ unless the asymmetry between
up-link and down-link path delay is known. The offset § and path
delay 8 can be derived as:

_(ta—ti—c)—(ta—t3—ca)

0 2
5= (tz—t1 —c1) +(ta — 13 — c2) m
2

For the clock drift rate f — 1, PTP assumes a constant clock rate
B and leverages the offset measured by the current round 6(t,,)
and I'" round later 0(tm,) to get it. [is an adjustable parameter
chosen by the clients.

_ 0(tm;) = 0(tm,)

tm; — tmy

2.2 PTP Vulnerabilities

The vanilla version of PTP was designed decades ago and has no
built-in security mechanism. Recently a revised version of PTP [3]
discusses several cryptographic authentication mechanisms, includ-
ing group key-based direct authentication and TELSA-based de-
layed authentication [32] to support message authentication. How-
ever, these security mechanisms are unable to address malicious
insiders [24] and they are not widely adopted and implemented,
making PTP almost completely open to all kinds of attacks. In this
work, we categorize the attackers into two main classes: network
adversaries, who can observe and modify PTP traffics but do not
have essential secret keys or credentials to break the cryptography
primitives; and malicious insiders, who are compromised legitimate
participants of PTP networks.

B @)

Network Adversaries. Upon initial design, PTP adopted no secu-
rity mechanism and can be easily disrupted by simple network-level
attacks such as message spoofing, interception, and modification.

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

QE Control
Desktop

GPS Satellite

... EEEEW Ethernet Ethernet
-
PTP session PTP session
Server Node Client node 2

7 Ethernet PTP session

: P |
Client node 1: Insider Attacker

Figure 3: PTP testbed.

[6, 13] introduce several practical fatal network-level time-shifting
attacks and validate their feasibility over real-life PTP networks.
The symmetric key-based authentication mechanism proposed by
the revised standard is also vulnerable to identity spoofing attacks
such as rogue grand master attacks [24]. To address all these issues,
[24] proposes an elliptic curve-based and public-key-based authen-
tication scheme to establish the authenticity of network clocks. This
mechanism can effectively rule out network adversaries by adding
small additional overhead to the system.

Malicious Insiders. We consider the malicious insiders to be com-
promised legitimate participants that possess enough secret keys to
bypass the cryptography authentication mechanisms. They may be
compromised servers that generate malicious messages from the
very beginning or compromised man-in-the-middle (MitM) attack-
ers that modify on-the-fly PTP packets. They cannot be prevented
by cryptography methods and pose a great threat to reliable PTP
operation. Under the current single-source, tree-structured archi-
tecture, it is nearly impossible to detect these attackers cause the
downstream clients give full trust to upstream servers and inter-
mediate nodes and there is no way to detect them if they become
malicious. In this work, we focus on addressing the most challeng-
ing malicious insiders.

3 ATTACK DEMONSTRATION:
COMPROMISING PTP NETWORK TIMING

3.1 Experiment Setting

In this section, we demonstrate our experiment about how to
shift the time of a victim node on a real IoT testbed. The testbed, as
shown in figure 3, contains three nodes including one server node
and two client nodes. The server node consists of one Raspberry
Pi 4 device and one plug-in GPS hat. The GPS hat can synchronize
its clock with the satellites and transfer this nano-second level
accurate timing to the Raspberry Pi board, making it a proper time
source. The two client nodes are standard Raspberry Pi 4 boards and
all three nodes are interconnected via Ethernet. For PTP software,
we choose the commonly used implementations - PTPD [23] and
LinuxPTP [26] as the victim implementations. PTPD is a classic
and well-received PTP daemon on the Linux operating system
and supports an older version of PTP standard [18]. LinuxPTP is
an implementation of newer PTP standard [3] and supports more
profiles. In this work, we launched our attack over the default,
unicast, and telecommunication profiles of LinuxPTP.

Shanghao Shi, et al.

Attack Threat Model. The attacker is assumed to compromise
one node in the time synchronization network, either the server
node or a slave node. The attacker shall be able to monitor inbound
PTP traffic, get access to the security credentials he received or
assigned, and generate and transmit malicious PTP packets. To bet-
ter understand PTP time-shifting attacks, we adopt a rather weak
attack model as the compromised device is a client node because
the compromised server and MitM attackers are too strong and it
is straightforward and trivial to launch time-shifting attacks with
such strong attackers, since these attackers can directly generate
malicious packets. We are going to investigate the following four
questions in this section: (a) Can a compromised client node jeop-
ardize the operation of others in the current PTP networks? (b) If
so, to what extent can they infect the time of the victim node? (c)
Can the current defense mechanisms counter these attackers? (d)
Will our timing attack cause consequences to a real system?

3.2 Insider Time Shifting Attack

We present an insider time-shifting attack launched by a com-
promised client (the client node 1 in the testbed). The attacker’s
general attack strategy is first to elect himself to build up a fake
network hierarchy and then craft malicious PTP packets to shift
the time of a chosen victim node. The attack can be carried out in
the following four steps:

e Phase 1: Clock Information Extraction. To know the cur-
rent GM’s clock quality, the attacker n,q4, reads the current
transmitting ANNOUNCE messages ANN}, on its UDP port
320 and extracts the current GM’s clock quality information
qp, in message payloads.

e Phase 2: Priority Inversion. The attacker generates a fake
clock quality payload g,4, that has higher clock quality than
the legitimate gy, according to the BMCA-defined clock qual-
ity comparison rules. The attacker can increase the clock pri-
ority by one or label the clock type as an ultra-high precision
atomic clock. The attacker then ensembles a malicious AN-
NOUNCE message ANN,4, according to the authentication
mechanism used in the system. The message contains a PTP
header, the fake clock quality payload q,4,, and a necessary
signature or message authentication code used to pass the
authentication process. If the system uses digital signature-
based method, ANN,4, = pkp; ||qadv||sigskni, If uses the
symmetric key -based method, ANN,4, = qadv“MACskni .

Phase 3: Injection and Confirmation. The attacker broad-
casts ANN, 4, periodically through UDP port 320 at the same
speed as a normal grand-master clock. The correct transmit-
ting interval can be obtained either through the PTP con-
figuration files or through continuous monitoring of PTP
grandmaster’s behaviors. The attacker sniffs the incoming
messages on this port at the same time and if the attacker
fails to receive any incoming ANNOUNCE message for a
certain time interval T,q,, there is a high probability that
nodes in the network have already taken ng,q, as the new
grand-master. In practice, T, 4, is not a long time period and
we usually observed it to be within 10 seconds in our experi-
ment before the attacker seized the grand-master position.

MS-PTP: Protecting Network Timing from Byzantine Attacks

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

No attack

PTPD
—— default
—— telecom
2 —— unicast

System time offsets (s)
System time offsets (s)

----- No attack -~ No attack
PTPD PTPD
—— default —_ —— default
— telecom) —— telecom
—— unicast 25 unicast
o 5
=
)
)
£
=1
&1
o
&L
w
>
[0
0

0 30 60 90 120 0 30
Attack Elapsed Time (s)

(a) d as a cumulative delay

Attack Elapsed Time (s)

(b) d as a constant delay

90 120 0 30 60 90 120
Attack Elapsed Time (s)

(c) d as arandom delay

Figure 4: Time shifting attack results over PTP implementation PTPD and LinuxPTP. The overall trend shows the effective

manipulation of the victim clock offset.

e Phase 4: Time Shifting. After the confirmation, the at-
tacker starts the PTP engine to send erroneous information.
It follows the normal PTP workflow (i.e. TWTT) but modifies
the timestamp field of the SYNC message only to its victim
by adding a delay d to t1. By protocol, the offset measured at
the victim device is shifted by d/2. This malicious SYNC, 4,
message is also attached with a proper digital signature or
message authentication code generated by the shared cre-
dentials between the attacker and the victim node.

3.3 Attack Results

We implemented our attack on the testbed with the Python Scapy
tool [33], which allows us to sniff and generate arbitrary network
packets. We assembled PTP packets according to both the PTP
standard and attack methods including crafting proper IP, UDP,
and PTP headers, as well as generating PTP payloads and appended
signatures/MACs. To evaluate the capability of the attacker, we
added the malicious delay d in three different ways—constantly
(2s), randomly (mean 1.5s, standard deviation (std) 500ms), and
cumulatively (1.8s per 120s). Figure 4 shows the clock offsets of the
victim node (client node 2) under different delay-adding methods.
We can find that the time (offset) of the victim node was significantly
shifted consistently with the way they were manipulated under
different PTP implementations and profiles. We observed that the
offsets of some LinuxPTP profiles were not immediately shifted
when the attacks were launched. There were about 5-10s of delays
before they were shifted. But the overall trend of their performance
was in line with how they were manipulated. Because the delays
we introduced were very large (seconds level) compared to the
no-attack clock offsets (microseconds level), the no-attack system
offsets became nearly invisible in the figure.

3.4 Case Study: Attack Consequence on a Real
Robotic Platform.

To further evaluate the effect of time de-synchronization on real
systems, we set up a cloud-based indoor delivery system based on
the Amazon RoboMaker [8]. The system consists of an Amazon
EC2 cloud server and a Turtlebot 3 robot [37] (as shown in Figure.
5(a)). The robot receives task missions and sensor inputs from the

cloud, allowing the robot to navigate in the physical environment
according to the commands from the server. The robot takes inputs
from multiple sensors such as a camera, inertial measurement unit,
and LiDAR. Each sensor is implemented as a separate node in the
network and delivery the data via UDP packets. The sensor data is
appended with timestamps, which are used to synchronize among
different sensors, achieving a consistent sensing result. To emulate
the consequence of our PTP timing attack, we added malicious
delays to the sensing inputs. This simulates the situation in which
inter-vehicle network synchronization is compromised and the
sensor inputs are temporally misaligned. Our goal is to investigate
whether the timing misalignments, more precisely submillisecond-
level or even subsecond-level misalignments, can cause interference
with the operation of a real robot.

Figure 5(b) shows the trajectory under normal circumstances
as well as the trajectory under attack. It can be observed that the
robot navigates well without attack. Conversely, the adversary node
can easily trick the desynchronization for up to 2 seconds, leading
the robot to fail in localizing itself and navigating to the desired
location. As shown in figure 5(b), with a falsely estimated position,
the robot arbitrarily moved around the environment and hit the
obstacles.

3.5 Attack Analysis and Discussion

With these results, we can answer the questions we have raised
before. The compromised client node can shift the time of any
victim node arbitrarily by changing the way how it adds delay
without any limitation. The reason behind this time-shifting attack
is that there lacks a proper clock quality verification mechanism
and any node can claim itself to be a high-priority clock source
and win the grand-master election process. The current central-
ized, tree-structured network hierarchy makes things worse for it
faces single-point-of-failure and one falsely elected grand master
can disrupt the operation of the whole network. While in theory,
the system can employ a customized designed public key-based
authentication and certificate management system to rule out the
spoofing and Sybil attacks [24], they are costly and not used in
practice. Furthermore, if we further consider the time servers and
MitM nodes are compromised, this defense mechanism cannot help.

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

Starting S
point

Reference Path
Normal Path
+ Path under Attack

== w/o Attack
—— with Attack

0 5 10 15 20 25 30 35
Time (s)

(a) Turtlebot3. (b) Control deviations on trajectories.

Figure 5: The consequence of de-synchronization attack on
Turtlebot3.

Our defense mechanism defends against insider attacks from
a new perspective and can be used in parallel with the current
cryptography-based authentication mechanism to further boost
PTP’s security and reliability. We turn to establish a fault-tolerant
and robust time synchronization mechanism, yet some insiders are
compromised to exhibit arbitrary behaviors, we assume the majority
of the timing devices to be honest. We adopt the fundamental idea
of using multiple sources to counter Byzantine sources from the
very famous Byzantine fault tolerance state machine replication
(BFT-SMR) scheme. This idea is in line with PTP’s developing trend
— the newest version has already dictated the use of redundant
servers to build robust synchronization services [3]. Fortunately,
the current PTP leaves room for the simultaneous existence of
multiple servers. This can be achieved by properly configuring
the PTP software’s configuration file. Each PTP client can open
up multiple PTP sessions, with each one having its own domain
number. By design, different PTP sessions in different domains do
not cause interference to others and within each domain, there can
be a unique time server. The remaining critical question is how to
select a reliable measurement from a set of potentially malicious
ones. We will discuss this problem in the next section.

4 MS-PTP: A ROBUST TIME ESTIMATION
4.1 System Model

Countering Byzantine failure is a fundamental problem in dis-
tributed networks. A lot of literature has introduced plenty of Byzan-
tine fault-tolerant (BFT) schemes. The most famous BFT schemes
may be the state machine replication (SMR) solution such as Prac-
tical BFT (PBFT) [12] and Tendermint [11]. The fundamental idea
of these schemes is to use redundant nodes to counter Byzantine
minority nodes. We adopt this fundamental idea by designing our
Byzantine resilient PTP network using multiple time sources. We
also take the threshold assumption from the BFT-SMR schemes, i.e.
the number of malicious nodes does not exceed a certain portion of
the total population. However, there are key differences in the basic
assumptions between classic BFT mechanisms and the problem we
are investigating, as we will discuss in the following parts.

Shanghao Shi, et al.

Network Model. We assume there are m synchronization sources
in the network and each client can connect to n (n < m) of them to
initiate the synchronization procedure. As a result, an individual
client is able to receive n independent measurements (dq, da, - - - , dp)
from n sources in one synchronization round T. Considering the
random measurement errors and uncertainty introduced along the
communication paths, which is unavoidable in the communication
channels, we assume the honest measurements follow the normal
distribution of d; ~ N (g, al.z), where g refers to the correct measure-
ment result under ideal conditions and crl.z refers to the uncertainty
level [17]. The key difference between our assumption and the
classic BFT-SMR schemes is that the clients in the synchronization
problem are not assumed to know the underlying correct measure-
ment g. Therefore, instead of receiving multiple identical correct
measurements and a few malicious ones, a time synchronization
client is more likely to receive a set of measurements that are differ-
ent from each other, making it a difficult and non-trivial problem
to counter Byzantine measurements among them.

Uncertainty Level. The standard deviation o; of an honest time
source is considered significantly smaller than the system’s required
accuracy level r. In fact, the probability that a measurement from

an honest source violates the requirement r is P(|d; —g| > r) =

2

ro 552 . . .
1- 21 f € 29} dx or in the form of Gaussian error function
Viro;

P(|di — g| > r) = erfe(\fzra-). This probability is considered as the

unreliability rate of the system and is considerably small, otherwise,
there will be a non-negligible probability that the requirements are
broken. For example, to achieve 5G URLLC’s 1077 error rate, r
satisfies r > 5.30;.

MS-PTP Threat Model. We consider insider attackers to exhibit
arbitrary behaviors such as delaying and manipulating messages
sent to the victim. They may also collude with each other. However,
due to the protection from the secure communication channel and
honest non-ad-hoc networks, since this scenario provides the best
reflection of existing network architecture, one malicious node
cannot alter the messages from other nodes in the network. As a
consequence, any time synchronization session involving an insider
attacker becomes a Byzantine session where a certain number of
arbitrary timing measurements are delivered to the clients. The
only limitation of the adversary’s capability is that they are the
minority of the total population and the number of them is smaller
than a threshold f. We suppose the compromised measurements
do not exceed one-third of the total population.

System Goal. The ultimate goal of our system is to ensure high-
precision time synchronization across the PTP network. Given that
more than 2/3-majority of measurements are honest (n > 3f + 1)
while others are Byzantium, PTP clients shall be guaranteed to have
the final synchronization error smaller than a certain bound that is
independent of the number of server population n and Byzantine
sessions f.

4.2 MS-PTP-Byzantine Resilient Measurement
Aggregation
Based on our assumption, a PTP client receives n measurements
in one synchronization round T and f of them are compromised

MS-PTP: Protecting Network Timing from Byzantine Attacks

Algorithm 1 MS-PTP

Input: The number of reachable servers n and the desired number
of faults to counter f (f < [§]).
Output: System time updated with robust aggregated result o.
1: procedure PERIODICAL CALIBRATION
2 function GET MEASUREMENTS

3 fori in {1,2,---,n} do

4: Get v; from server n;.

5: end for

6: return vy,02, -+ ,0p

7: end function

8: function MEASUREMENTS AGGREGATION
9 fori in {1,2,---,n} do

10: S(0i) = T jeNM(ar) |loi - ”J'HZ

11: end for

12: G=(f+1)argmine(q3... ny S(01)
13: 0=]% YweG W

14: return o

15: end function

16: function TiMING UPDATION

17: Update system time with o.

18: end function

19: end procedure

and follow arbitrary distributions. We denote these measurements
as (di,do, -+ ,d,,_f, b1, by, - ,bf), where (di,da, -+ ,dn_f) refer
to the honest measurements and (b1, by, - -+ , b f) refer to the Byzan-
tine measurements. The general representation of measurements
(without knowing its honesty or not) are v; (i = 1,2, - - - , n). We first
formally define a robustness criterion for the non-parametric accu-
racy requirement (in system goal) and introduce our aggregation
algorithm A" that satisfies this goal.

DEFINITION 1 (AGGREGATION ROBUSTNESS). We define that an
aggregation rule A is r-robust when its output result o = A(d1, da,

sAn_f.b1,ba, - by) satisfies |[E[o] —gll <s <r, wheres isa
determined bound independent of f and n. r is the system’s synchro-
nization requirement.

Byzantine-resilient Aggregation Algorithm A*. We define a
score S(0i) = Xl jeNM(ov;) ||vi - vjnz, where NM(v;) includes the
2f nearest measurements of v;. Based on this definition, our aggre-

gation algorithm A* can be expressed as:

G=(f+1) argmin S(v;)

i€{1,23,,n}

1 ®)
=— w
f+1 ;G
where (f + 1) argmin;e 1 53... 5y S(0i) refers to the set of v;
with the f + 1 smallest scores; o denotes the output. Algorithm 1
demonstrates the workflow of MS-PTP. MS-PTP takes two param-
eters including the total number of servers n and the number of
failures f as the system input. The clients do not know the exact
number of f and usually need to select their desired number of
failures to counter. To maximize the fault-tolerant capability, PTP
clients usually select f = | §].

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

4.3 Theoretical Proofs

THEOREM 1 (CORRECTNESS). The Byzantine-resilient aggregation
algorithm A* is V20 max-robust, where omax = max{oy, ... an_f},
in which i (i € {1,2,--- ,n— f}) is the standard deviation of honest
measurement d;. To prove this result, the following two lemmas are
necessary. The proof of lemma 1 is trivial and we present the proof
of lemma 2 in the appendix. We focus on the mathematical proof of
our main result: theorem 1.

LEmMA 1. Define D(d;) = Z ||di - dj”2 as the sum of the dis-
j#i
tances between d; (fori € (1,2,---,n — f)) and the other honest
measurements. It is obvious to have S(d;) < D(d;) for not all the
honest measurements are always within NM(d;).

LEMMA 2. There exists at least f +1 honest measurements, denoted
as dy € B, that satisfies E[D(dy)] < (2f + 2)020x-

[Proof of Theorem 1] For a measurement v;, we define the set of
honest measurements in its 2 f -nearest neighborhood as H(v;), with
[|H(v;)|| = O, (vi) and the set of Byzantine measurements in its 2f -
nearest neighborhood as B(v;), with ||B(v;)|| = &p(0vi), Obviously,
Op(0i) + 8p(v;) = 2f.

f+1
B0 - glI* = B[7~ }]wl -9l°
1 f+1 f+1
SIEl ol - 2B Y 4l
f+1i ‘= jeH(w)a(Wl)
f+1 1
=+ Eﬁ - > dj1l?
f+ 1 Bt Sp (wi)
f+1
(AM-OM Ineq) < —— Z [|[Ew; — Z]||2
f+ jeH(w) (W’)
1 f+1 1
(Jessen’s Ineq.) < —— Z E”Wz - Z —d]”z
f+1 i=1 JE€H (w;) On(wi)
AL 1
=— > El—— > (wi-dpl’
frigd Tonlwo) fo
1 Ak 1
(AM-QM Ineq.) < ——— Z E Z l(w; —d)”2
f+1 Op(wi) JeH(w)
(4)

If w; is an honest measurement, Em ZjeH(w) Il(wi = dj)||2

< M(;:'(—)jl)m“ = 202, Else, if w; is a Byzantine measurement,
sty ® Zyerton 10 < s BIS (). whichby Lemma

2(f+1) 0fax
55 (i) . For a

2 satisfies WEZjeH(wi) l|(wi = dj)II?
Byzantine measurement, 5y, (w;) > f+1 and WE 2jeH(w) Il(wi—

dj)”2 = 20'rznax'

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

Combine all the results together, we have:

f+1
1 1
IBo-gl* < — > =B > [li(wi—d)l
f+1 & op(wi) eFTw) ()
1
< m(f'*’ 1)20'r2nax = 2O-fmzx

In summary, we can prove that ||[E[o] — g|| < V20max, which is
considered significantly smaller than the synchronization require-
ments r.

4.4 Analysis

Byzantine Resilience. We have provided a rigorous mathematical
proof for the Byzantine resilience of our defense mechanism. The
attackers, no matter what kind of behaviors they are doing, are
not supposed to break the deterministic error bound. One poten-
tial concern the readers raise may be: Can the attackers shift the
error bound of the aggregated outputs if they know the defense
mechanism and send erroneous measurements accordingly? We
investigate the following attack case to provide an intuitive answer.

Case Study: Adaptive Attack. The attackers collude with each
other and send malicious measurements near the proved error
bound rather than typical random, constant, and cumulative values.
The attacker’s goal is to gradually break the error bound and shift
the victim’s time. The attack can be conducted in two steps:
e Phase 1: Standard Deviation Estimation. The attackers
conclude with each other and thus know all the honest mea-
surements. The attackers estimate the standard deviation of

the honest measurements as std,g, =

o Phase 2: Adding Malicious Measurements. The attackers
introduce malicious measurements trying to shift the error
bound. The malicious measurements can be V2std, g, + €,
where V2std, g, refers to the attacker’s estimation of the er-
ror bound and e refers to the attacker’s desired time shifting
direction. Note that € shall be gradually increased from a
small value for it will be easily detected and discarded if they
are too far away from the error bound.

We took a simulation to investigate and visualize the impact
of the adaptive attack and our defense mechanism. The attackers
launched the adaptive attack by having € as a gradually increasing
value (from 0 to 50max) that tries to shift the aggregated result
slowly or just having € as a constant small value (e = 2 — V20 max)
that tries to shift the distribution of the aggregated results out
of the upper or lower error bound. We took our simulation 150
times with the parameters from actual implementations of MS-
PTP (g = 13.95us and o; = 4.36ys). Figure 6 is our simulation result,
where a histogram map is plotted to show the distribution of honest,
malicious, and aggregated measurements. We can observe that the
attackers failed to do so and only a few points locate out of the error
bounds. The simulation result is consistent with our theoretical
proof, validating our mathematical results.

Scalability. MS-PTP ensures a deterministic error bound irrele-
vant to the number of participants. As a result, the theoretical
error bound of MS-PTP does not change when the network size

Shanghao Shi, et al.

Honest Honest
150 Malicious Malicious
B Aggregated 150 mmm Aggregated
5120 ©120
k] <}
£ 9 £
z z
60 60

30
0 Wr"m"g e

Measured Offsets

30
LT .
L g §)
Measured Offsets

(a) € as a constant small value. (b) Gradually increased €.

Figure 6: Adaptive attack over MS-PTP. U refers to the upper
bound and L refers to the lower bound.

becomes larger. Table 1 demonstrates MS-PTP’s performance under
the adaptive attack in our simulations. We took the state-of-the-art
Byzantine fault-tolerant gradient (data) aggregation mechanisms
adopted from the federated learning frameworks as a comparison.
We took the adaptive attack because it adds malicious measure-
ments near the theoretical bound and can be used to explore the
error bound in practice. When there is no attack, the system mea-
sures the offset as g = 13.95us and o; = 4.36us. We increased the
size of the network from n=4 to n=28 and checked MS-PTP’s per-
formance under the attack. We can observe that MS-PTP does not
achieve the best performance. But when the network size becomes
larger, MS-PTP achieves the best performance among all mecha-
nisms. The output result of MS-PTP remains to be stable and does
not increase significantly with larger network size.

Complexity. MS-PTP requires multiple (n) redundant servers in
the network. As a result, the communication overhead is increased
by nXx on the client side. On the server side, MS-PTP does not
impose a lot of extra communication overhead for each server that
operates in its own domain as a usual one. MS-PTP is a lightweight
protocol and does not introduce a lot of computation overhead.
The algorithm can be executed within several milliseconds. This is
crucial because the algorithm is conducted periodically and a large
execution time will pose a significant overhead to the system.

Backward Compatibility. MS-PTP is fully compatible with the
current PTP standard. In the cases there are not enough PTP servers
such as in the CPS systems, MS-PTP may also resort to alternative
external redundancy such as GPS sources and NTP sources. There
have already been some cross-protocol synchronization manage-
ment tools such as Chronyd [34] to help fetch from these available
sources.

5 EXPERIMENTS AND IMPLEMENTATIONS

5.1 Byzantine Resilience

We implemented MS-PTP on our PTP testbed to evaluate its
performance on a real IoT network, where the experimental set-
tings are the same as the attack experiments in Section 3. We added
an additional Raspberry Pi to the network and configured all four
nodes as server nodes to meet the network redundancy required by
MS-PTP. We selected a desktop as a PTP client and configured it to
receive measurements from different devices simultaneously. The
PTP client captured and took the IP address (in LAN) of all four

MS-PTP: Protecting Network Timing from Byzantine Attacks

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

Table 1: MS-PTP scalability performance (measured offset in microseconds) under attack.

Scheme Fault Tolerance Proved Error Bound n=4 n=10 n=16 n=22 n=28
f 2(pn—f—
Krum [10, 19] n>2f+3 \/Zn —of 4 U fﬁ;}f_;” S e 15407 1811 20537 22478 24.002
Bulyan [19, 21] n>4f +3 Same as Krum - - - - -
Median [19, 39] n>2f+1 Vi = fomax 15880 18231 19.403 20.167 20.706
Trimmed Mean [39] n > 2f +1 /%o‘max, 0<b<|Z] 16205 18454 19457 20.153 20.607
Phocas [19, 38] n>2f+1 4+ %amﬂ, 0<b<|Z] 18667 27413 36142 44827 54.447
MS-PTP n>3f+1 V20 max 15.606 16746 17.233 17.474 17.552
100 s s e RS SR — wsTRcy 12{ —— UDP port 319 07
o - — Wbt @ |~ uppport320
. 10 -~ MEAN-cu 219 5 0.6
8 -~ MEAN-cs = g
3 MEAN-rd I =05
£ -3 — No Attack g 8 g
S 20 2 E 04
£ 10 S g
2 £ 03
. o o
=07 24 E 0.2
1076 5
o > 0.1
1077
0 20 40 60 80 100 120 1 4 7 10 13 4 7 10 13 16

Elapsed Time (s)

(a) MS-PTP accuracy performance under attack (cu — cumulative delay, cs — constant
delay, rd - random delay)

(b) MS-PTP communication overhead.

Server population (n) Server population (n)

(c) MS-PTP computation overhead.

Figure 7: MS-PTP performance on real IoT testbed.

servers and configured its profile to establish four independent ses-
sions with each server. We built up MS-PTP on top of PTP engines
with Python code by taking measurements from PTP sessions and
aggregating these measurements to obtain a robust timing estima-
tion. This testbed supports hardware validation when the malicious
population f = 1 and the number of servers n = 3f +1 = 4. We con-
ducted time shifting attack on the compromised node and observed
the synchronization performance of the PTP client who employed
MS-PTP as a countermeasure.

Fig. 7 shows MS-PTP’s performance against time shifting attack,
in comparison with the MEAN aggregation method that simply
takes the average of measurements as a benchmark. In the exper-
iment, the malicious delay d was added in constant (2s), random
(mean 1.5s, standard deviation (std) 500ms), and cumulative (1.8s
per 120s) ways inconsistent with the attack settings in section 3.
Note that the y-axis is plotted in a logarithm scale to show the
results” accuracy level. We can observe that without MS-PTP, the
MEAN aggregation’s clock offset is shifted by several seconds (10°).
With MS-PTP, the system’s measured offsets are maintained at a
level of 10 s (107%), nearly the same as the results without attack.

5.2 Communication and Computation
Overhead
We configured each device to emulate multiple servers in order

to testify to the overhead introduced by MS-PTP when the net-
work size becomes larger. For each Raspberry Pi, we launched four

PTP sessions and pinned each of them on an independent CPU
core respectively. Since Raspberry Pi 4 used in our experiments
has a quad-core CPU, we were able to emulate up to 16 PTP ses-
sions/servers in this way. Fig. 7 shows the communication and
computation overhead introduced by MS-PTP. For the communi-
cation overhead, we monitored the bandwidth consumed by the
UDP ports 319 and 320 used by PTP during our experiment on the
testbed. We observed tens of kilo bytes-level bandwidth consump-
tion in our experiments. The bandwidth consumption is linearly
increasing with respect to n and we take it as a small overhead
when n is not large. For the computation overhead, we checked
MS-PTP’s execution time on one PC and Raspberry Pi. We can also
observe a linear increase in the execution time with respect to the
server population. MS-PTP’s execution time is very small (< 1 ms)
on both Raspberry Pi and PC.

5.3 Compatibility

Another important advantage of MS-PTP is that it can not only
be used by PTP, but also by the other popular time synchronization
mechanisms. We validated MS-PTP’s compatibility with NTP and
GPS synchronization methods by introducing NTP servers and GPS
servers as redundant time sources. We considered the existence
of one Byzantine insider, but with either 3 NTP servers or 2 NTP
servers plus 1 GPS server serving as the honest redundancy. In these
cases, MS-PTP is not only built upon PTP engines but also upon
NTP and GPS engines. Fortunately, all of these synchronization
mechanisms provide users with convenient interfaces. Any user

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

with sudo priority can get access to them and implement MS-PTP
on top of them. Table 2 shows the accuracy performance on our
real testbed with these settings when a constant 100 ms delay d
is added. We can observe that redundant NTP servers do provide
a fault-tolerant guarantee for the synchronization service. The
synchronization accuracy level was reduced from 10ms level after
the attack, to a normal NTP server’s < 1ms level. However, because
NTP servers’ accuracy was worse than PTP servers, the aggregation
performance was reduced to NTP accuracy. When a GPS server
was added, the aggregation accuracy became better. This indicates
that the more accurate servers we are using, the better accuracy
MS-PTP can achieve.

6 RELATED WORK
6.1 Network Timing Attack and Defense

The original version of NTP and PTP specifies no built-in secu-
rity mechanism and simple network-level attacks can disrupt them
easily. Malhotra et al. [27] introduce the attacks launched with unau-
thenticated NTP traffic, including on-path time-shifting attacks and
off-path DoS attacks. Later in [28], Malhotra et al. demonstrate the
security vulnerabilities of the NTP datagram protocol. For PTP,
[6, 13] introduce several fatal network-level time-shifting attacks
and validate their feasibility over real PTP implementations. Itkin
and Wool [24] provide a summary of PTP vulnerabilities and im-
plement the attacks on a popular PTP software PTPD. To counter
these attacks, the latest version of PTP [3] recommends using group
key-based direct authentication and TELSA-based delayed authen-
tication [32] to support message authentication and identity veri-
fication. Furthermore, [24] suggests using an elliptic curve-based
public-key signature scheme to establish the authenticity of net-
work clocks. The series of NTP authentication protocols [16, 22, 36]
build up authenticated communication channels between servers
and clients with appended digital signatures and message authen-
tication codes (MACs). Besides, some stochastic signal processing
methods such as the least square-based [29] and Kalman Filter-
based [20] estimation methods are introduced to safeguard the
timing protocols from malicious noise in the communication paths.
To detect malicious timing servers, [30] provides an anomaly detec-
tion mechanism with the help of redundant time sources. Deutsch
et al. [14] propose using redundant servers and customized data
aggregation mechanisms to counter malicious man-in-the-middle
(MitM) attackers in NTP networks. However, as we have discussed,
the security threats imposed by malicious insiders and how to
defend them are largely ignored by the current literature.

6.2 BFT Data Aggregation

Countering against Byzantine measurements among a set of
honest ones is an important problem in data mining, especially fed-
erated learning. Several Byzantine-resilient gradient aggregation
mechanisms have been proposed including Krum [10], Bulyan [21],
trimmed-mean [39], median [19] and Phocas [38]. These mech-
anisms take a similar assumption with our work as the honest
measurements are the majority and follow the same distribution,
while the Byzantine measurements, although the minority ones, can
act arbitrarily. These mechanisms can effectively rule out Byzantine
gradients uploaded from compromised clients with proven error

Shanghao Shi, et al.

Table 2: Measured offset with NTP and GPS servers

Scenarios Accuracy mean Accuracy std
Measurements without attack 13.95us 4.36ps
No redundant servers 37.86ms 2.31ms
3 PTP servers 12.80pus 1.32us
3 NTP servers 0.974ms 0.551ms
2 NTP, 1 GPS servers 0.576ms 0.578ms

bounds. However, they are not designed for the time synchroniza-
tion problem and their error bounds are not deterministic ones
irrelevant to the network population.

7 DISCUSSION

MS-PTP uses network redundancy to counter Byzantine failures.
However, some Man-in-the-middle (MitM) attackers are too strong
and can not be addressed by MS-PTP. For example, suppose the
attacker controls a choke point, where all the communication ses-
sions between the servers and clients pass through. In that case,
he can add malicious delays, and no matter how many redundant
servers MS-PTP use, still can not find him. Therefore, we recom-
mend that network administrators shall deploy servers in separate
locations with as few joint communication paths as possible to
avoid such MitM attackers. An individual client should also try
to select servers in different geological areas and node-disjoint
communication paths from different sources.

8 CONCLUSION

In this paper, we focus on addressing the Byzantine insider
attacks in time synchronization systems. We first demonstrated
through hardware experiments that the current PTP implementa-
tions are susceptible to a practical insider time-shifting attack, in
which only one malicious insider is able to bring catastrophe to the
time synchronization service. As a countermeasure, we devise a
novel Byzantine-resilient aggregation scheme to generate a high-
fidelity, error-bounded measurement under the assumption that
fewer than one-third of the measurements are Byzantine-influenced.
We provide rigorous proof and thorough analysis for the theoretical
guarantees that MS-PTP ensures. To evaluate the feasibility and
performance of our new mechanism, we implemented a proof-of-
concept MS-PTP with a combination of hardware experiments and
software implementations in various Byzantine-ridden network
scenarios. The result shows that MS-PTP achieves excellent syn-
chronization accuracy for client clocks under different practical
attacks. Timing is an important attack vector against the CPS/IoT
systems, which have and will be gradually exploited in many time
and safety-critical systems. We hope this paper provides a good
solution for these time-sensitive systems to set up robust time syn-
chronization services and can motivate more research about the
timing vulnerabilities of CPS/IoT systems.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval Re-
search under grant N00014-19-1-2621, and the US National Science
Foundation under grants 1837519, 1916902, 1916926, 2154929, and
2154930.

MS-PTP: Protecting Network Timing from Byzantine Attacks

REFERENCES

(1]

A

[10]

[11

[12

[13]

(7

[18

[19]

[20

[21

[22]

[23

[24

[25]

2015. IEEE Approved Draft Standard for Local and Metropolitan Area Networks
- Timing and Synchronization for Time-Sensitive Applications in Bridged Local
Area Networks - Corrigendum 2: Technical and Editorial Corrections. IEEE
P802.1AS_Cor2/D3.0 July 2015 (2015), 1-11.

2017. IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power
System Applications. IEEE Std C37.238-2017 (Revision of IEEE Std C37.238-2011)
(2017), 1-42. https://doi.org/10.1109/IEEESTD.2017.7953616

2020. IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems. IEEE Std 1588-2019 (Revision of IEEE
Std 1588-2008) (2020), 1-499. https://doi.org/10.1109/IEEESTD.2020.9120376
2020. IEEE Standard for Local and Metropolitan Area Networks-Timing and
Synchronization for Time-Sensitive Applications. IEEE Std 802.1AS-2020 (Revision
of IEEE Std 802.1AS-2011) (2020), 1-421. https://doi.org/10.1109/IEEESTD.2020.
9121845

3GPP. 2019. Study on enhancement of Ultra-Reliable Low-Latency Communication
(URLLC) support in the 5G Core network (5GC). Technical Report. 3GPP TR23.725
V16.2.0 (Release16).

Waleed Alghamdi and Michael Schukat. 2020. Cyber Attacks on Precision Time
Protocol Networks—A Case Study. Electronics 9, 9 (2020), 1398.

Waleed Alghamdi and Michael Schukat. 2021. Precision time protocol attack
strategies and their resistance to existing security extensions. Cybersecurity 4, 1
(2021), 1-17.

AmazonRobotics [n.d.]. AWS Robotics. https://aws.amazon.com/robomaker/.
Accessed: 2022-05-1.

Manos Antonakakis, Tim April, Michael Bailey, et al. 2017. Understanding the
mirai botnet. In 26th {USENIX} security symposium ({USENIX} Security 17).
1093-1110.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine Learning with Adversaries: Byzantine Tolerant Gradient De-
scent. In Advances in Neural Information Processing Systems, 1. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf

Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph. D. Dissertation. University of Guelph.

Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In
OsDI, Vol. 99. 173-186.

Casimer DeCusatis, Robert M Lynch, William Kluge, John Houston, Paul A
Wojciak, and Steve Guendert. 2019. Impact of cyberattacks on precision time
protocol. IEEE Transactions on Instrumentation and Measurement 69, 5 (2019),
2172-2181.

Omer Deutsch, Neta Rozen Schiff, Danny Dolev, and Michael Schapira. 2018.
Preventing (Network) Time Travel with Chronos.. In NDSS.

VP Business Development. 2019. Accurate timing in financial trad-
ing. https://www.calnexsol.com/en/timing-and-sync-blog-article-display/1386-
accurate-timing-in-financial-trading

Benjamin Dowling, Douglas Stebila, and Greg Zaverucha. 2016. Authenticated
network time synchronization. In 25th { USENIX} Security Symposium ({ USENIX}
Security 16). 823-840.

John C Eidson. 2006. IEEE 1588: an Update on the Standard and Its Application.
In Proceedings of the 38th Annual Precise Time and Time Interval Systems and
Applications Meeting. 193-211.

John C Eidson, Mike Fischer, and Joe White. 2002. IEEE-1588™ Standard for
a precision clock synchronization protocol for networked measurement and
control systems. In Proceedings of the 34th Annual Precise Time and Time Interval
Systems and Applications Meeting. 243-254.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Louis Alexandre Rouault.
2021. Distributed momentum for byzantine-resilient stochastic gradient descent.
In 9th International Conference on Learning Representations (ICLR).

Giada Giorgi and Claudio Narduzzi. 2011. Performance analysis of Kalman-
filter-based clock synchronization in IEEE 1588 networks. IEEE transactions on
instrumentation and measurement 60, 8 (2011), 2902-2909.

Rachid Guerraoui, Sébastien Rouault, et al. 2018. The hidden vulnerability of dis-
tributed learning in byzantium. In International Conference on Machine Learning.
PMLR, 3521-3530.

B Haberman, D Mills, and U Delaware. 2010. Network time protocol version 4:
Autokey specification. In RFC 5906.

IBM. 2019. PTPD Daemon Version 7.2. https://www.ibm.com/docs/en/aix/7.1?
topic=p-ptpd-daemon

Eyal Itkin and Avishai Wool. 2017. A security analysis and revised security
extension for the precision time protocol. IEEE Transactions on Dependable and
Secure Computing 17, 1 (2017), 22-34.

M. Langer and R. Bermbach. 2022. NTS4PTP - Key Management System for the
Precision Time Protocol Based on the Network Time Security Protocol. https:
/Iwww.ietf.org/id/draft-langer- ntp-nts-for- ptp-04.html

[26]

[27

[28

[29

@
=

[31

[32

[33

[34

[36

[37

[38

(39]

WiSec "23, May 29-June 1, 2023, Guildford, United Kingdom

Linux. 2011. An implementation of the Precision Time Protocol (PTP) according
to IEEE standard 1588 for Linux. https://linuxptp.sourceforge.net/

Aanchal Malhotra, Isaac E Cohen, Erik Brakke, and Sharon Goldberg. 2015.
Attacking the network time protocol. Cryptology ePrint Archive (2015).
Aanchal Malhotra, Matthew Van Gundy, Mayank Varia, Haydn Kennedy,
Jonathan Gardner, and Sharon Goldberg. 2017. The security of ntp’s datagram
protocol. In International Conference on Financial Cryptography and Data Security.
Springer, 405-423.

Miklés Maroéti, Branislav Kusy, Gyula Simon, and Akos Lédeczi. 2004. The
flooding time synchronization protocol. In Proceedings of the 2nd international
conference on Embedded networked sensor systems. 39-49.

Bassam Moussa, Marthe Kassouf, Rachid Hadjidj, Mourad Debbabi, and Chadi
Assi. 2019. An extension to the precision time protocol (PTP) to enable the
detection of cyber attacks. IEEE Transactions on Industrial Informatics 16, 1 (2019),
18-27.

Oleg Obleukhov and Ahmad Byagowi. 2022. How Precision Time Protocol is
being deployed at Meta. https://engineering.fb.com/2022/11/21/production-
engineering/precision-time-protocol-at-meta/

Adrian Perrig, Ran Canetti,] Doug Tygar, and Dawn Song. 2002. The TESLA
broadcast authentication protocol. Rsa Cryptobytes 5, 2 (2002), 2-13.
Relese:2.4.5.dev0. 2022. Scapy: Packet crafting for Python2 and Python3. https:
//scapy.readthedocs.io/en/latest/

Relese:4.2. 2022. Chronyd: a versatile implementation of the Network Time
Protocol (NTP). https://chrony.tuxfamily.org/

Ruxandra Lupas Scheiterer, Chongning Na, Dragan Obradovic, and Giinter
Steindl. 2009. Synchronization performance of the precision time protocol in
industrial automation networks. IEEE Transactions on Instrumentation and Mea-
surement 58, 6 (2009), 1849-1857.

Dieter Sibold, Stephen Roettger, and Kristof Teichel. 2016. Network time security.
Work in Progress, draft-ietf-ntp-network-time-security-14 (2016).

Turtlebot3 [n.d.]. Turtlebot3. https://emanual.robotis.com/docs/en/platform/
turtlebot3/overview/. Accessed: 2022-011-06.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2018. Phocas: dimensional
byzantine-resilient stochastic gradient descent. arXiv preprint arXiv:1805.09682
(2018).

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national Conference on Machine Learning. PMLR, 5650-5659.

APPENDIX
Proof of lemma 2

Without generality, we suppose the honest measurements are
within ascending order: d; < dy <,--+, < d,,,f. First, df+1 € B,

considering that E[D(d)] = E{ZL_ |

< E{Z{zl ||d2f+2,i - d,'”z} < 2f 02, ., (Triangular Inequality). Then
when f > 1, check the expectation of the summation of D(d;) +
D(dypia—i)i€ (L2, f).
2 2
E[D(d;) + D(dypra-1)] = B{ Y [di = dj|[* + |ldi = dopeas[°1}

=

+E{Z[”d2f+2—i —dj|*+ [z prz—i = d2f+2—j”2]}

j=1
2f+1-i
VB0 D = df + ldogani - P + 22 = dogea i
Jj=i+l
; 2f+1-i
< 2% E{Z ldafs2- — dj”2 +E{ Z [CYSRES dinz}
j=1 Jj=it+l

+2 % 202, 0¢ = (20 + 2f = 2i + 2)20% 4 = (2f +2)20%0x

Therefore, the expectation of the summation of D(d;) + D(dy 42— ;)
is smaller than (2f +2)202,,,., and either E[D(d;)] < (2f +2)062,,
or E[D(dyryp—i)] < (2f + 2)02,4x- Because there are f pairs of d;
and dyfip i, i € (1,27, f), there exists f other honest measure-
ments dy. € B.

dpy1 — diH2+||di - d2f+2—i||2]}

https://doi.org/10.1109/IEEESTD.2017.7953616
https://doi.org/10.1109/IEEESTD.2020.9120376
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://aws.amazon.com/robomaker/
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://www.calnexsol.com/en/timing-and-sync-blog-article-display/1386-accurate-timing-in-financial-trading
https://www.calnexsol.com/en/timing-and-sync-blog-article-display/1386-accurate-timing-in-financial-trading
https://www.ibm.com/docs/en/aix/7.1?topic=p-ptpd-daemon
https://www.ibm.com/docs/en/aix/7.1?topic=p-ptpd-daemon
https://www.ietf.org/id/draft-langer-ntp-nts-for-ptp-04.html
https://www.ietf.org/id/draft-langer-ntp-nts-for-ptp-04.html
https://linuxptp.sourceforge.net/
https://engineering.fb.com/2022/11/21/production-engineering/precision-time-protocol-at-meta/
https://engineering.fb.com/2022/11/21/production-engineering/precision-time-protocol-at-meta/
https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
https://chrony.tuxfamily.org/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

	Abstract
	1 Introduction
	2 PTP: Overview and Vulnerabilities
	2.1 PTP Overview
	2.2 PTP Vulnerabilities

	3 Attack Demonstration: Compromising PTP Network Timing
	3.1 Experiment Setting
	3.2 Insider Time Shifting Attack
	3.3 Attack Results
	3.4 Case Study: Attack Consequence on a Real Robotic Platform.
	3.5 Attack Analysis and Discussion

	4 MS-PTP: A robust time estimation
	4.1 System Model
	4.2 MS-PTP-Byzantine Resilient Measurement Aggregation
	4.3 Theoretical Proofs
	4.4 Analysis

	5 Experiments and Implementations
	5.1 Byzantine Resilience
	5.2 Communication and Computation Overhead
	5.3 Compatibility

	6 Related Work
	6.1 Network Timing Attack and Defense
	6.2 BFT Data Aggregation

	7 Discussion
	8 Conclusion
	References

