IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

923

Design of a Quantization-Based DNN Delta
Compression Framework for Model Snapshots
and Federated Learning

Haoyu Jin, Donglei Wu

, Shuyu Zhang, Xiangyu Zou
Qing Liao™, Member, IEEE, and Wen Xia

, Student Member, IEEE, Sian Jin, Dingwen Tao",
, Member, IEEE

Abstract—Deep neural networks (DNNs) have achieved remarkable success in many fields. However, large-scale DNNs also bring
storage costs when storing snapshots for preventing clusters’ frequent failures or incur significant communication overheads when
transmitting DNNs in the Federated Learning (FL). Recently, several approaches, such as Delta-DNN and LC-Checkpoint, aim to
reduce the size of DNNs’ snapshot storage by compressing the difference between two neighboring versions of the DNNs (a.k.a.,
delta). However, we observe that existing approaches, applying traditional global lossy quantization techniques in DNN’s delta
compression, can not fully exploit the data similarity since the parameters’ value ranges vary among layers. To fully explore the
similarity of the delta model and improve the compression ratio, we propose a quantization-based local-sensitive delta compression
approach, named QD-Compressor, by developing a layer-based local-sensitive quantization scheme and error feedback mechanism.
Specifically, the quantizers and number of quantization bits are adaptive among layers based on the value distribution and weighted
entropy of the delta’s parameters. To avoid quantization error degrading the performance of the restored model, an alternative error
feedback mechanism is designed to dynamically correct the quantization error during the training process. Experiments on multiple
popular DNNs and datasets show that QD-Compressor obtains a higher 7x-40x compression ratio in the model snapshot
compression scenario than the state-of-the-art approaches. Additionally, QD-Compressor achieves an 11x-15x compression ratio to
the residual model of the Federated Learning compression scenario.

Index Terms—Neural networks, quantization, delta compression, snapshot, distribution learning

1 INTRODUCTION

VER the past decades, Deep Neural Networks (DNNs)
have achieved significant improvements in a wide spec-
trum of application domains, such as image classification [1],
[2], [3], object detection, recognition [4], [5], semantic

Haoyu Jin, Donglei Wu, Shuyu Zhang, and Xiangyu Zou are with the
Harbin Institute of Technology, Shenzhen, Guangdong 518055, China.
E-mail: jinhy549@gmail.com, {donglei.wu, shuyu.zhang97, xiangyu.zou}
@hotmail .com.

Sian Jin and Dingwen Tao are with Indiana University Bloomington,
Pullman, WA 47405 USA. E-mail: {sianjin, ditao)@iu.edu.

Qing Liao and Wen Xia are with the Harbin Institute of Technology,
Shenzhen, Guangdong 518055, China, also with the Provincial Key Labo-
ratory of Novel Security Intelligence Technologies, Shenzhen, Guangdong
518055, China, and also with the Peng Cheng Laboratory, Shenzhen,
Guangdong 518055, China. E-mail: {liaoqing, xiawen)@hit.edu.cn.

Manuscript received 11 May 2022; revised 13 October 2022; accepted 8
December 2022. Date of publicatio 18 January 2023; date of current version 23
January 2023.

This work was supported in part by by the National Key-Research and
Development Program of China under Grant 2020YFB2104003, in part by
the National Natural Science Foundation of China under Grant 61972441,
in part by Shenzhen Science and Technology Innovation Program
under Grants RCYX20210609104510007, JCY]20200109113427092, and
GXWD20201230155427003-20200821172511002, in part by the Guang-
dong Provincial Key Laboratory of Novel Security Intelligence Technolo-
gies under Grant 2022B1212010005, and in part by U.S. National Science
Foundation under Grants OAC-2034169/2303820 and OAC-2042084/
2303064.

(Corresponding author: Wen Xia.)

Recommended for acceptance by Amelie Chi Zhou.

Digital Object Identifier no. 10.1109/TPDS.2022.3230840

<+

segmentation [6], face tracking and alignment [7], [8], etc. As
these tasks become more and more challenging, the network
becomes more and more complex by increasing the depth
and width, which results in a large number of parameters
and high computational complexity for better performance.
For example, AlexNet [1] has 61 million parameters that
need 249 MB of memory and costs 1.5 billion operations to
classify one image, VGG-19 [9] even has 144 million
parameters.

With the development of artificial intelligence research,
the intermediate models (e.g., the snapshots and the resid-
ual model) of the under-training neural networks are
required to store the local. For example, (1) more and more
studies employ model snapshots for scientific analysis [10]
and ensemble learning [11], [12] to advance the model train-
ing performance. (2) In the resource-constrained Federated
Learning clients (e.g., IoT devices, mobile phones, and
wearable devices), the Top-K sparsification-based Federated
Learning compression is efficient in reducing communica-
tion costs [13], [14]. Generally, the dropped parameters gen-
erated by the Top-K sparsification (i.e., residual model) are
required to be stashed locally to keep the model accuracy.
With the size of DNNS is increasingly larger, however, the
storage challenge of these intermediate results becomes
more severe as there is the same size of the full neural
networks.

To facilitate the applications of DNNSs, neural network
model compression have become a popular topic in the
research and industry communities. There are already several

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0358-0533
https://orcid.org/0000-0003-0358-0533
https://orcid.org/0000-0003-0358-0533
https://orcid.org/0000-0003-0358-0533
https://orcid.org/0000-0003-0358-0533
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5104-8301
https://orcid.org/0000-0001-5422-4497
https://orcid.org/0000-0001-5422-4497
https://orcid.org/0000-0001-5422-4497
https://orcid.org/0000-0001-5422-4497
https://orcid.org/0000-0001-5422-4497
https://orcid.org/0000-0003-1012-5301
https://orcid.org/0000-0003-1012-5301
https://orcid.org/0000-0003-1012-5301
https://orcid.org/0000-0003-1012-5301
https://orcid.org/0000-0003-1012-5301
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
mailto:jinhy549@gmail.com
mailto:donglei.wu@hotmail.com
mailto:shuyu.zhang97@hotmail.com
mailto:xiangyu.zou@hotmail.com
mailto:sianjin@iu.edu
mailto:ditao@iu.edu
mailto:liaoqing@hit.edu.cn
mailto:xiawen@hit.edu.cn

924 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

techniques aim at reducing the size of a single neural net-
work, including pruning [15], knowledge distillation [16],
and quantization [17], [18], [19]. Recently, the similarity in the
neighboring epochs of the trained network has been utilized
to advance the Delta compression performance [20], [21].
These methods first convert the global similarity to compressibil-
ity by imposing the global differences quantization techni-
ques on the floating delta model and then achieve a
considerable compression ratio on this quantized delta. How-
ever, we observe three limitations of these global differences in quan-
tization-based methods in this paper: (1) The global mapping of
the floating-point parameters to integers version with the
same quantizer (i.e., the global quantization) can not fully
exploit the data similarity between them for delta compres-
sion. (2) Quantizing the entire network with the same number
of bits (a.k.a., bit width) ignores the differences of parameter
distributions among layers. (3) Additionally, the post-proc-
essing operations (e.g., error-bound selection and re-training)
are required to maintain the accuracy of the decompressed
model, which means additional computation and time cost.

To further prove the existence of the above problems, we
verify multiple popular DNNs and observe that (1) parame-
ters in a layer usually are near zero, but the value range of
parameters is not always similar. Therefore, the naive quanti-
zation with a global quantizer to the Delta model will limit
the overall compression ratio since the similarity cannot
be fully exploited. (2) The quantization errors produced in the
lossy delta compression will degrade the test accuracy of the
restored model. To restore the target accuracy for the restored
model, additional pre or post-processing is required, which
incurs additional overhead.

Motivated by the above observations, we propose a novel
quantization-based delta compression framework QD-Com-
pressor involves two core schemes, Local-Sensitive Quantization
and Error Feedback Mechanism, which significantly improves the
communication ratio without degrading the model quality.
Broadly speaking, instead of first calculating the delta data (i.e.,
the difference) on the floating-point parameters and then glob-
ally quantizing the floating-point delta data of DNNs, QD-
Compressor’s local-sensitive quantization scheme significantly
improves compressibility of the delta data by first quantizes
DNNs and then calculates delta data upon the quantized inte-
ger networks. Additionally, local-sensitive quantization sets
the (1) quantizers and (2) bit width adaptive to each layer
according to the parameter’s value ranges and weighted
entropy (not globally). In this way, the local-sensitive quantiza-
tion scheme achieves a higher compression ratio by the layer-
based adaptive compression mechanism, which will be
detailed in Section 3. Further, the error feedback mechanism
can correct the quantization errors in the training process,
which helps eliminate the accuracy loss of the restored model.

In summary, QD-Compressor significantly improves the
compression ratio for the delta model by employing a weighted
entropy-based local-sensitive quantization scheme. Meanwhile,
with the support of the error feedback mechanism, the model
accuracy of the restored model can be well maintained in QD-
Compressor.

Generally, contributions of this paper are four-folds:

e We observe that: (1) The value ranges and the

weighted entropy of Earameters vary among layers,
Authorized licensed use limited to:

NIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from IEEE Xplore.

and parameters in the same layers are very close. (2)
The traditional global quantization schemes (e.g.,
Delta-DNN) quantize each layer using a unified
quantizer and bit number for each layer but cannot
fully exploit the similarity between neighboring ver-
sions of a neural network. (3) Existing quantization
approaches may lead to accuracy loss on DNNSs,
thereby incurring additional costs to fine-tune the
restored model.

e We propose a novel delta compression framework
called QD-Compressor. It develops a novel weighted
entropy-based local-sensitive quantization to adap-
tively vary Quantizers and Bit Number for different
layers in DNN:Ss. It also calculate the high compress-
ible delta after quantization to achieve a significant
compression ratio. Further, an Error Feedback mecha-
nism is designed by introducing the quantization
error into the training process to reduce the accuracy
loss of the restored model.

o We implement our proposed QD-Compressor in two
realistic scenarios: (1) Top-k sparsification Federated
Learning compression and (2) model snapshots
recovery for the model training crash. Evaluations on
six popular DNNs suggest that QD-Compressor
achieves a 7x-40x higher compression ratio while
well maintaining the model accuracy, compared with
the state-of-the-art compressors (i.e., SZ, Zstd, LC-
Checkpoint, and Delta-DNN).

The rest of the paper is organized as follows. Section 2
presents the background and related works of this paper.
Section 3 introduces the observations and motivations. Sec-
tion 4 describes the design methodologies of QD-Compres-
sor framework in detail. Section 6 discusses the evaluation
results of QD-Compressor on six well-known DNNs, com-
pared with state-of-the-art compressors and shows the eval-
uation results of QD-Compressor in the scenarios of
distribution learning compression and snapshot recovery. In
Section 7, we conclude this paper.

2 BACKGROUND AND RELATED WORKS

In this section, we present the necessary background of tradi-
tional data compression techniques and model compression
research. Then, we introduce typical application scenarios
for lossy delta compression in neural networks.

2.1 Data Compression Techniques
Data compression, aiming at reducing data scale, has been a
traditional technology for decades. Generally, data compres-
sion techniques can be categorized into three classes: general
compression, delta compression, and data deduplication.
General compression techniques [22], [23] focus on file-level
workload and compresses data at byte level by entropy cod-
ing [24], dictionary coding [25], and other techniques[26].
When facing large-scale storage, general compression is not
feasible because its speed is relatively slow, and it only can
eliminate redundancies in limited windows [27]. To address
this challenge, data deduplication [28] is proposed, which splits
data into chunks, and deduplicates identical ones. Data dedu-
plication achieves a much higher speed and can detect redun-

dancies in a large system, but it is a coarse—%rained approach
estrictions apply.

JINETAL.: DESIGN OF A QUANTIZATION-BASED DNN DELTA COMPRESSION FRAMEWORK FOR MODEL SNAPSHOTS 925

and can not fully exploit compressibility within workloads.
Therefore, delta compression [29], [30] is designed to bridge the
gap between fine-grained general compression and course-
grained data compression, which picks up not identical but
similar chunks and eliminates redundancies between them.
In summary, traditional compression, delta compression, and
data deduplication are all lossless approaches.

Besides, in HPC (high-performance computing) fields,
there is usually an amount of floating-point data produced,
which brings challenges to the storage system. For floating-
point data produced by HPC, the storage way of floating-
point numbers makes it difficult to find two storage blocks
with exactly the same storage format. Floating-point data
usually have a large information entropy and are hard to be
compressed by lossless approaches. Thus, lossy compres-
sion [31], [32], [33], [34] techniques are proposed, which
compresses floating-point data with a user-specific error
bound. Recently, an algorithm for HPC data compression
called SZ [32], [33] proposed to improve the compression
ratio of floating-point numbers. SZ takes the logarithm of
the data to convert the control range of the relative error
into the control range of the absolute error, and then com-
presses the data by using a designed predictor to represent
subsequent values. The compression ratio of SZ is not only
dependent on the distribution characteristics of the data but
also related to the performance of the predictor. There will
be errors in decompressed data in these lossy compression
approaches, but they also promise the errors will always be
smaller than the predefined error bound.

2.2 Neural Network Compression Techniques
Nowadays, there are more and more complicated tasks that
can be well solved by neural networks which caused the
super development of the neural network. But, neural net-
works become deeper and wider with the more difficult
task which needs not only high computational abilities but
also large storage space. As a result, model compression
techniques are necessary to make better use of those mas-
sive networks. Scaling up the size of Deep Neural Networks
(DNNs) (e.g., width, depth, etc.) is known to effectively
improve model accuracy. But large model size impedes
training on resource-constrained devices, thus typical
DNNs compression methods, pruning and quantization gain
increased attention in recent years.

Pruning is to remove the ‘unimportant’ parameters of
DNNs with specific rules, which effectively decreases the
complexity of the network and avoids the over-fitting issue.
Pruning-based methods consist of two categories: Non-struc-
tured pruning and structured pruning. non-structured means
the arbitrary weight in the network can be pruned [15]. Struc-
tured pruning considers the matrix format of parameters with
indices and prune the whole filter or channel [35]. However,
the problem they all face is how to determine the importance
of parameters or filters to prune. Additionally, pruning will
change the structure of the network. Liu et al. [36] point out
that the structure of the network after pruning is more impor-
tant than the weight, which means that pruning is helpful for
network structure to search to design a new model.

Quantization technique is to map the parameters of the

network from the floating-point numbers into lower bit-
Authorized licensed use limited to:

depth representations. Compared with the pruning method,
the quantization technique assumes that it does not need so
many bits to store the parameter of a network and design a
new representation with low bit-depth to save the storage
space of a parameter.

Considering the trade-off between compression ratio and
accuracy, typical quantization methods are 8-bit quantization
and binarized. Generally, 8-bit quantization converts 32-bit
floating-point number to 8-bit integer. Meanwhile, the float-
arithmetic calculation is replaced with the 8-bit integer-arith-
metic calculation. Jacob et al. [17] use linear mapping to
convert the floating-point number to 8-bit integer and train-
ing with simulated quantization to minus the accuracy loss of
quantization. Compared to the 8-bit quantization, Binar-
ized [18], [19], [37] can be regarded as a special extreme quan-
tization method that only uses 1 bit to represent the weight or
activation. The key point of binary quantization is to use bit
operations to replace multiply and add operations.

Recently, Delta-DNN [20] notices the similarity between
neighboring versions of a neural network, compresses two
neural networks by calculating their differences, and achieves
a2x-10x higher compression ratio than the traditional model
compression approaches. Specifically, Delta-DNN first calcu-
lates the differences (i.e., the delta data) of corresponding
parameters and then applies a global quantization scheme on
the delta data to expose more compressibility. Finally, the
quantized delta data will be compressed by lossless compres-
sion techniques.

3 OBSERVATION AND MOTIVATION

As introduced earlier, the similarity between versions of a
neural network has been observed and utilized for saving
resources in storage space and internet traffic [20]. Besides,
since floating-point parameters are hard to be compressed,
quantization is a widely used lossy compression tech-
nique [32], [33], [34], which converts the floating-point data
with little compressibility to the integer data with higher
compressibility. Recently, approaches [20], [21] have applied
the global quantization technique to the floating-point differ-
ences of two neighboring epochs of neural networks (.e.,
delta data), effectively improving the compression ratio than
the traditional floating-point data compression techniques.

Problems of the Quantization Strategy in Existing Methods.
Generally, determining the quantizer under a large value
leads to a high compression ratio but brings serious quanti-
zation errors for small data, while fine-grained quantization
achieves opposite results. Due to the value ranges of corre-
sponding parameters usually being large and distributed
randomly, the widely used global quantization (i.e., using
the same quantizer and bit width for the entire model) can-
not fully exploit the similarity for compression. It is hard to
select one suitable global quantization granularity and
quantization level (i.e., quantizer and bit width).

Besides, few existing approaches consider repairing the
quantization errors during the training process, which leads
to a degraded model accuracy in the restored model [20], [38].
Additional time and computational overhead are incurred to
recover the target accuracy for the restored model.

To address these challenges, we study the parameter
characteristics of DNNs and learn some observations:

NIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

————— Conv 256*128

-- Conv 128*64
— Conv 512*512

-0.1
-0.2

Value Range
o o
WO
L e
[|
L=
|
=
[I
||
[B
u
n
]
[]
=

0.20

-0.15

0.6

gi N max 0.15] E max
) 0.3 . min g 010 . min
S 01 S 005
© APt <
2502 2 -005|
g 53 > -0.10

0.41

0.5/ |

0%

-0.1 0.0 0.1 20 2 4 6 8 10 12
Value Convolution Layers

(a) Parameter distribution of con- (b) Parameter range of VGG-16

volution lavers in VGG-16

0 10 20 30 40 50 -0:207;

Convolution layers

10 20 30 40 50 60
Convolution layers

(c) Parameter range of MobileNet (d) Parameter range of GoogleNet

Fig. 1. Distribution and range of parameters among convolution layers in neural networks.

1) Fig. 1a shows that the parameter distribution is basi-
cally symmetrical about zero, and the variance of
parameters is small. That is to say, the overall value
range (i.e., magnitude) of the parameters in the neu-
ral network is relatively small. However, since the
value range of whole parameters is relatively large
(i.e., long-tailed), the use of floating-point values to
express the value range of parameters is very large.
Using a representation with a big value range to rep-
resent a narrow value range will produce informa-
tion redundancy.

2) As the examples shown in Figs. 1b, 1c, and 1d, the
value ranges of parameters in different layers vary
greatly. The whole value range of DNN’s parameters
is very large compared with the small value range in
some layers (near 20x). Directly calculating the dif-
ference (i.e., delta data) on the original floating-point
version of neighboring networks (as Delta-DNN
does) not only make it hard to determine an appro-
priate quantizer for all parameters but also limits the
compressibility of the delta data.

3) The quantization errors produced in the compression
of each version of the network will degrade the infer-
ence accuracy of the restored model. Existing works
compensate for the quantization error by designing
the pre- or post-processing operation (e.g., Error-
bound Selection, fine-tuning) [20], [38]. However,
additional operations for accuracy compensation
always lead to more time and computation overhead.

According to above observations, we get two important
motivations for this work:

Motivation 1. Observations 1 and 2 allow us to explore a
better quantization strategy for a high compression ratio.
More specifically, the parameters’ value range is very differ-
ent among layers, while the value range of delta data is also
very large. Globally quantizing the floating-point difference
(i.e., delta data) will obtain a limited compression ratio since
it needs to maintain the model inference accuracy mean-
while. To solve the above dilemma and achieve better com-
pression performance, we are motivated to develop a more
efficient layer-based local-sensitive quantization scheme by
allocating different bit width and quantizer for each layer.

Motivation 2. Observation 3 suggests that additional oper-
ations are always required to reduce the impact of model
quantization errors and maintain model accuracy. Delta-
DNN uses an additional post-processing operation called
error-bound selection to keep decompressed model’s infer-
ence accuracy, which necessitates additional calculation
and time. LC-Checkpoint recovers the model accuracy b

incurring fine-tuning process, which also means more time
and computation overhead. To this end, we combine the
compression process and training process by introducing
an error feedback scheme to dynamically correct the accuracy loss
in each training round. To do so, the restored model has less
accuracy loss as the quantization errors will be fed back into
the training process.

Based on the above observations and motivations, we pro-
pose a novel quantization-based delta compression frame-
work, QD-Compressor, to improve the compression ratio for
DNNs while well maintaining the model accuracy. QD-
Compressor uses the weighted entropy based local-sensitive
quantization to improve the compression ratio and uses
the error feedback mechanism to keep the accuracy of the
restored model.

4 DESIGN METHODOLOGIES

In this section, we describe QD-Compressor design in detail,
including quantizing the neural network to better exploit the
similarity of the neighboring neural networks, and then cal-
culating the lossless delta data based on the quantized ver-
sion of network, finally encoding the delta data with lossless
encoding schemes.

4.1 Overview of QD-Compressor Framework

The general workflow of QD-Compressor framework is
shown in Fig. 2. To compress a neural network (called target
network), we need a reference neural network, which is
usually the former version of the target network in training.
QD-Compressor will calculate and compress the delta data
of two networks for efficient space savings by using the
weighted entropy-based local sensitive quantization algorithm.
More specifically, QD-Compressor consists of four key
steps: selection of quantization bit width, network quantiz-
ing, delta quantizing, and delta compressing.

1) Bit width selecting is to allocate different quantization
bit width among layers according to the weighted
entropy for achieving greater and more flexible com-
pression. Most network layers might be quantized
with low bit width, with just a few critical layers hav-
ing more bit width.

2) Network quantizing is to quantize the floating-point
parameters of the neural network for each layer by
dynamically feeding the quantization error into the
training process by an error feedback mechanism.

3) Delta calculating is to calculate the delta data of the
quantized parameter between the neighboring neu-
ral networks (e.g., target and reference networks). It

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

JINETAL.: DESIGN OF A QUANTIZATION-BASED DNN DELTA COMPRESSION

FRAMEWORK FOR MODEL SNAPSHOTS

927
QD-Compressor //’(Application scenarios)
-~
______________ —
StepT Selecting bits 0 Application scenarios | Model Snapshots for training
| — I crash recovery
D - | Snapshots D;Zg’:g#‘tgd I < N
.o ——p| Weighted compression napshots
Frequency distribution entropy L ————— _Cim_plfsﬂ(f - jl\ Interru ption
1 l " gﬁ Step4 Delta compressing \\\\ ’ \ — - \ '
7 ”» Lossless — \\J T
% }\}E: Compressed < Compressor ‘\ Epoch 0 Recovery ~ EpochN
\ Ry Y, Binary file A Jh
7 “\ 7 N\ \\ _________________________
Step2 Network quantizin i
P 9 //g— S De/ta/cu/a \ Residual model compression in
| \\ Distributed learning
L. quantization \
\\ // Clients i
\ /
= \ //
rror | \ N |-
Feedback] ‘ \ ‘ | Fﬁ
_____ pl \
SO [207 104%— \ . -
[: . 1 | oo
quantization DeIt_a_D: \ T t Residual
network i I =) \\ Clients \\ I’rE:]r(IJS eor model
N —_6uZ) _)) Int0 _ — — ~int255) L h

J

Fig. 2. Overview of QD-Compressor framework for model snapshots and Federated Learning. Model snapshots and stored model are the objects to

be compressed. Model i represents the model in the i-th epoch of training.

converts the similarity in values into compressibility
in the storage of delta data which will be much more
compressible than directly compressing the floating-
point parameters in the neural networks.

Delta compressing is to further reduce the delta data
size by using lossless compressors.

In the remainder of this section, we will discuss these
four steps in detail to show how QD-Compressor efficiently
compresses the floating-point parameters in neural net-
works. Simultaneously, we will discuss how QD-Compres-
sor might help decrease storage overhead during the
Federated Learning training process.

4)

4.2 Selection of Quantization Bit Width
As introduced in Section 3, due to the parameters distribu-
tion differs among layers, we are driven to quantize various

| Frequency diistribution of layer i]
| mj |

| o

mi
[fmin 012 014~ 062 fmax |
| menals
HCD Count
r—= ==
=) & &
: StAg ! | Ny j\
TP =
| <ke ! et p i
T N e e
=1 T1e! et
——— =
Layer 0 Layer n bo b1 - bn-1 bn

Fig. 3. The workflow of determining the quantization bit width. m is the
number of weights in the " interval of i"* layer WE denotes the
weighted entropy. F; is the value of the weighted entropy of the i*" layer.
b; is the number of bits quantized at the i*" layer. Suppose E, and E, are
the minimum and maximum weighted entropy and assigned with the
minimum and maximum quantization bits, i.e., by is the minimum bit
width and b, is the maximum bit width, respectively.

layers using different bit width (i.e., the number of bits used
for mapping the floating-points to the integers) for achiev-
ing a greater and more flexible compression performance.
Referred to the state of the arts [39], [40], [41], Weighted
Entropy is derived from the physics notion of entropy and is
designed to take the importance of data into account [40]. In
this paper, We employ the weighted entropy as the quanti-
tative criterion to measure the significance of the layer’s
weight and decide the quantization bit width for different
layers.

As shown in the Fig. 3, assuming that the ith layer has
weight matrix W; with n; elements wt, j€1,2,...,n; The
components of W; can be considered as independent and
identically distributed independently distributed random
variables p;[41]. The weighted entropy of each layer can be
approximately calculated as: (1) we uniformly divide the
range of weights [f,in, fima:] into k bins and count the num-
ber of weights falling in each interval, where k is a prede-
fined hyper parameter, f;, and f,., are the minimum and
maximum values of weights in this layer, respectively. (2)
The frequency is regarded as the approximated probability
p; of t th bin center, ¢t €1, 2, ..., k. (3) The entropy E; of i-th
layer’s weights could be calculated as

k.
== pjlog(p})
t=1

where m] is the number of weights in the ¢ th bin. After get-
ting the significance values for all layers, they are sorted in
order of increasing magnitude. Due to more bit width carry
more information, we set long bit width for layers with
higher entropy to preserve the representational capability
of original model and set less bit width to those with lower
entropy (The detailed descriptions about how to select b4,
and by, are provided in the Section 6.2.1). Theoretically,
the bit width b; of the i-th layer can be determined to

with pi = @, (1

i

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from [EEE Xplore. Restrictions apply.

928 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

S

S

S
s

- global
- local

S

- global

lobal
= local g

= local

average|16.5 x average 9.9 x
° 9 ._average 6.4 x

Entropy of Delta

Entropy of Delta
Entropy of Delta

e 4
W, ") *a

o N & o ®
o N & o0 ®

o
£

50 100 150 200 0 50
Epochs

(a) VGG-16

100 150 200
Epochs

(c) GoogleNet

100 150 200 0 50
Epochs

(b) ResNet-18

N
S
N
3
N
S

&

=== global
- local

a
&

global
- local

average 10.0 x

s

average 8.6 x average 11.6 x

w
«
w

Entropy of Delta

Entropy of Delta

Entropy of Delta
S

o
o
°

100 150 200
Epochs

(f) ShuffleNet(Size=2)

100 150 200 0 50
Epochs

() ShuffleNet(Size=1)

50 100 150 200 0 50
Epochs

(d) MobileNet

Fig. 4. Entropy of delta data comparison between global quantization and local-sensitive quantization.

maintain the same amount of entropy loss to the maximum
entropy layer as

E; — By
b; = byin + round((bpae — bmin) X (#)) .
7 ((1) Emuz - Em,in

(2)

4.3 Network Quantizing

According to Section 4.2, the bit width B; of each layer ¢ has
been determined, we describe the detailed quantization
scheme in this subsection.

To better utilize the similarity of floating-point parame-
ters whose values are close and avoid mantissa uncertainty,
we conduct the linear quantization to map the original float-
ing-point parameter f in floating-point set /' to quantized
integer value ¢ in integer set). More specifically, the quan-
tization operation for a set is mapping the value range
[fmins fmaz) Of the floating-point set F' to quantized value
range [Qmin, @mas] Of integer set Q. Qpep and Qi are the
maximum and minimum values that can be represented
after quantization (e.g., Qmin =0, Qs = 255 for Uint8
quantization). To this end, we use S to scale the size of the
value range and then use Z to offset

q:round(é—&—Z), 3)

where the constant S is positive real number for scaling the
value range, the constant Z is the offset for translating the

value range [%,f’”%] to [Qmin, @maz), which can be calcu-
lated as below:

_ fmaz - fmm

S="——— 4)
Qma:r - Qmin
_ o fmin
Z = Qmm S (5)

The key process of quantization is to find the quantiza-
tion constants of the floating-point set /' and the quantized
value range [Qyin, Qmqz) Of integer set Q. Considering stor-
age efficiency, the quantization level we set in quantization
is 28 (B is the bit width introduced in Section 4.2). It corre-
sponds to a quantization value range [0, 25].

As discussed in Section 3, the value range differs among
layers (as shown in Fig. 1). If we regard all parameters in
the DNN as a floating-point set to determine the global
quantization constants, the quantization error will be large
and degrade the accuracy of the network. Thus, we calculate
the quantization constants S and Z for each layer, respec-
tively. More importantly, different quantization constants
of each layer facilitate generating more redundant data in

the next delta calculating step since the ﬂoating-foint
Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA.

Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore.

difference of neighboring versions of the network with dif-
ferent scales may be quantized to the same integer delta
data. To prove above conjectured explanation, we further
compare the entropy of the quantized data for these two
quantization schemes, and the result is shown in Fig. 4,
which illustrates that the local-sensitive quantization can
generate low entropy data and thus higher compressibility
can be achieved by local-sensitive quantization.

Algorithm 1. Network Quantizing With Error Feedback
Mechanism

Input: Current network: M; quantized network: @); restored
network M x; layer in network M: L;
layer in network @ which corresponding to L: Lg;
quantize constant: S, Z; quantization bit width: 5;
quantization bit width for the Lth layer: b;;
loss of inference: loss; gradient: g;
learning rate: Ir;
Output: next epoch network: M.+
for L in M do
by — select(B); / / Assign bit width for each layer
for L in M do
calculate Sy and Z; in F; / /according to by,
Lq «— quantize (L, S, Z1)
Mx* «— restore(Q)
use network M to calculate loss and gradient g;
Myess = M —lr x g; / /update on the original network M
return M,,..;;

Further more, we also study the order of quantization
and delta calculation to explore a higher compressibility.
Specifically, we evaluate the compression ratios with differ-
ent order of quantization and delta calculating in multiple
DNN:Ss. Table 1 suggests that “Quantization before Calculat-
ing Delta” always achieves a higher compression ratio than
”Quantization after Calculating Delta”. That is because sim-
ilar floating-point between two neighboring model might
be quantized to the same integers, leading to more zeros
generated. Thus QD-Compressor perform performs quanti-
zation ahead of calculating delta.

4.4 Network Updating

After above quantization algorithm, the network will con-
tinue to be trained on the datasets. However, there is inevita-
ble information loss incurred by the lossy quantization,
which degrades the model quality. Thus an error feedback
mechanism is proposed to solve this problem. More specifi-
cally, instead of directly training on the full precise model M,
the error feedback mechanism (1) restores the lossy version
M+ from quantized delta; (2) trains on the lossy version Mx

and obtains the gradient g; (3) updates the parameters on M
estrictions apply.

JINETAL.: DESIGN OF A QUANTIZATION-BASED DNN DELTA COMPRESSION FRAMEWORK FOR MODEL SNAPSHOTS 929

TABLE 1
Compression Ratio Comparison Between Global and Local-Sensitive Quantization Before and After Calculating Delta
Compressor VGG-16 ResNet-18 GoogleNet MobileNet ShuffleNet ShuffleNet
(Size=1) (Size=2)

Global Quantization 1260MB (800MB 451MB 172MB 99MB (9.61) 349MB (11.45)

8.92) (1041) (10.21) (10.05)
Local-Sensitive Quantization after Calculating 541MB 552MB 259MB 156MB 91MB (10.73) 306MB (13.34)
Delta (20.77) (15.46) (18.21) (11.41)
Local-Sensitive Quantization before 465MB 443MB 211MB 119MB 69MB (14.15) 230MB (17.82)
Calculating Delta (24.17) (19.26) (22.35) (14.96)

(note that rather than M+) using the gradient g; In doing so,
the quantization error in M * could be introduced into the nor-
mal training process in M. The advantage is that the training
process will be dynamically corrected in each training round,
thus the accuracy of restored model is well maintained.

In summary, we (1) determine the quantization bit width
according to the weighted entropy for different layer, (2)
separately select the constants S and Z according to the
range of the parameters for each different layer and perform
the linear quantization. (3) The quantization error is fed
back into the training process during the training. The
whole process is described in Algorithm 1.

4.5 Delta Calculating
We have obtained the quantized version of two neighboring
networks in the Section 4.4. Here we can take full advantage
of the similarity between these two quantized networks to
achieve a high compression ratio. Before calculating the
delta data, we quantitatively analyze the similarity between
two quantized versions of neighboring networks.

More specifically, given two numerical sequences with
the same length L; and Ly, we employ two metric to mea-
sure the similarity of L; and L,: Manhattan distance mean
(MDM) and correlation coefficient(CorrCoef), which are cal-
culated according to Equations (6) and (7)

1 n
:—Z\Ll[i]—Lz[iH ©)

n 4=
cov(Ly, Ls)

oL

MDM(Ly, L)

CorrCoef(Ly, Ly) =

i 1(L1[i]
\/27 1 Ll

1>k0'L,2

L_)(LQ[i] — L)
\/27 (Lofi] — o)

@)

MDM is calculated to measure the sum of the absolute
wheelbase of two points in the standard coordinate systems.
Therefore, we regard the parameters sequence in the net-
work as a vector to calculate the Manhattan distance and
divide it by the length to obtain the average value’s differen-
tial of each parameter (i.e., Manhattan distance mean
(MDM)). The smaller the MDM value is, the more similar
the sequences are.

CorrCoef [42] is calculated to measure the coefficient of
correlation between two variables which is widely used in
statistics. The closer the correlation coefficient vale is to 1,
the greater the similarity degree of two sequences will be.

Fig. 5 shows MDM and CorrCoef of quantized parameters’
sequences in GoogleNet and MobileNet. And there are total

199 pairs of ne §hb0ring versions in 200 training epochs.
Authorlzed license!

MDM (red curve) is the average value of the difference
between the quantized values of each parameter in the neigh-
boring versions. The value ranges of the red curve from 0 to 3
means the difference between the corresponding parameter
in neighboring versions is very small. CorrCoef (blue curve)
represents the coefficient between two quantized parameters
sequence of the neighboring versions. The value range of the
blue curve is all above 0.99 and gradually approaching 1,
which proves that the quantized parameters in neighboring
versions are very similar. These observations are the impor-
tant supports for the next compression (see Section 4.6).

We denote the quantized model parameters of the latest
version as M;, and the corresponding quantized model
parameters of the previous version as M5, the quantized delta
data D; can be calculated as M{-M;. However, in B bits quan-
tization, the value range of M: and M} is [Qumin, Qmaz), SO the
value range of delta data D; will be [Quin — Qmaz» Qmaz —
Qmin] which means the delta value needs one additional bit
storage space than the quantized parameters. Thus we regard
the quantized value range as a directional loop range.

Fig. 6 illustrates an example of calculating delta data in
QD-Compressor. When M| > M}, the delta data D; = M —
Mj. Otherwise D; = (Quazr — M) + 1+ (Mi — Quin), where
Qmazr — Qmin + 1 = 28, Therefore, D; = Mi — M. + 28 when
M; < Mi. As a whole, the value range of delta data D; is
from zero to Qae — Qmin, can be calculated as below:

D; = (M} — Mj) mod 25. ®)

Because there exists a high similarity of quantized param-
eters, the delta data will have great redundancy for further
compression.

4.6 Delta Compressing

When the quantized delta data is obtained, QD-Compressor
will compress these delta data using lossless compressors to
achieve a high compression ratio. Here we study three typi-
cal lossless compressors Zstd, LZMA, and GZip, to evaluate
the final compression ratio on the delta data.

11.0000
0.999

10.9995 \

MDM
—— CorrCoef
0.9985

MDM
—— CorrCoef
0.997

ey g

0.996

0 0.995
0 25 50 75 100 125 150 175 200

Epochs
(b) MobileNet

0.9990 2 0.998

10.9980

[\
qu% 1 0.9975
0 25 50 75 100 125 150 175 200
Epochs

(a) GoogleNet

Fig. 5. MDM and CorrCoef of GoogleNet and MobileNet.

use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

930 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

My - 152 17 44 73: 8 (21| 2
I |
I \

M, - 43‘153 66 33] 111 189 57 14 39 ‘247 109 38 76 -

35 199|153 192 69 255 ---

I \
i -168- 103‘ -55 21 160\

~255

Step2 Mod 2 f
(B : Bit numbers of
quantification)

Freg - [io3]

0 255

Fig. 6. Diagram of calculating the delta of quantized parameters in QD-
Compressor.

Fig. 7 shows the compression ratio of Zstd, LZMA, and
GZip in our framework. Through comparing the compres-
sion performance of these mainstream lossless compressors,
we can observe that LZMA achieves the highest compres-
sion ratio (as shown in Fig. 7). Thus LZMA is selected as the
lossless compressor to compress the quantized delta data
into a compressed binary file.

4.7 Model Decompressing

When we need to decompress the neural network of the cur-
rent version: (1) We decompress the compressed binary file
to the delta data with LZMA. (2) The decompressed delta
data is added to the quantized network of the previous ver-
sion. (3) We use the quantized constants S and Z of each
layer stored in local before, to restore the floating-point ver-
sion R* of the network according to Equation (9)

= S X (Qmin — Z) (9)

In order to decompress the network of a specific version
(e.g., snapshots restore), we can execute the above 3 steps
recursively until we obtain the target network version.

However, the remaining parameters have the same size
as the full model [13], [14], [43]. As a result, additional stor-
age space is required to accommodate the residual model.
For the resource-constrained edge devices, this additional
storage can not be ignored.

4.8 Complexity Analysis
As discussed before, our proposed QD-Compressor consists
of four parts: selection of quantization bits, quantizing the

w
o

s Zstd

- u o
II N II

Res/ve t1g

s Lzma . Gzip

_II.
sl

Shurp ’@Net(z)ShUfﬂe"’ef(zl)/GGI6

N
v

N
o

Compress ratio
= [
o w

(6]

o

Goog/eNet Mobl'le/vet

Fig. 7. Compression ratio of using Zstd, Lzma, and Gzip compressing
the delta data of six networks after quantization.

TABLE 2
Parameter Number and FLOPs of Popular DNNs

Network Para(M) FLOPs(G) Network Paras(M) FLOPs(G)
densnet121 7.98 2.90 VGG11 132.86 7.74
densnet169 14.15 3.44 VGG16 13836 15.61
mobilenet v2 3.50 0.33 resnetl8 11.69 1.82
inception v3 27.16 5.75 resnet34 21.80 3.68

network, calculating the delta data, and using a lossless
compressor to compress the delta data.

In the stage of selection of quantization bits, we need to
calculate the entropy of weights of each layers. The time
complexity of determining the quantized constants is O(N),
where N is the total number of parameters in the whole
neural network. In the stage of network quantizing, We
need to traverse parameters for each layer to determine
the quantized scaling constants S and offset Z. The time
complexity is the same as the previous stage. After obtain-
ing the quantization constants S and Z, the network can be
quantized and the delta data can be calculated at the same
time. The operation of this process is to quantize each
parameter by using the linear transformation in Equation (3)
and calculating the subtraction of the difference by Equa-
tion (8). The time complexity of quantizing the network and
calculate the delta data is also O(N). So, the time complexity
of these two stages is O(N). Table 2 shows the number of
parameters and operations in different network. From this
table, the number of operations is much bigger than param-
eters which means O(N) < < O(F') (F is the FLOPs of the
network). At the same time, in each training epoch, the total
time complexity is O(d * F') (d is the amount of data in the
data set). Thus, we can get: O(N) < < O(F) < < O(d* F),
which means the complexity of our quantizing method is much
smaller than the training process.

Algorithm 2. Efficient Distributed/Federated Learning
With the Residual Accumulation via QD-Compressor

Input: initial model parameters W; epochs: T; number of the
clients set C; compressed residual accumulation QR (initial to
Zero);
Output: model parameters W after training
fortin T do
for i in C parallel do
R! «— QD-Decompress(QR!);/ /Decompress R
AW} = SGD(W})-W}; //Train
AW/ — AW/ + R; //Accumulate with R;
msgt — Topk(AWl / /Filter parameters
Riﬂ — AWy -msg,; //Update Ri
QR — QD -Compress(RL, ,); / / Compress R!
uploads msg; to Server;
Server S does:
gather msgs from clients;
Wi41 < FedAverage(msgs); //Average model
sends W;,, to the chosen clients;

The last stage of lossless compression can be parallel to the
training of the neural network after calculating the delta data.
At the same time, Delta-DNN [20] also points out that the cost
of lossless compression is very small compared to the time

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

JINETAL.: DESIGN OF A QUANTIZATION-BASED DNN DELTA COMPRESSION FRAMEWORK FOR MODEL SNAPSHOTS 931

Client)

New local model

J'

Old global model

| /) |
@?Delta calculating
=y
commssed %{%%
residual file delta

L

@Decompress (O Top-K Uploaded model

%%é;%%

Residual model

L /

Fig. 8. Distributed/Federated Learning with the residual accumulation via
QD-Compressor.

spent on training and testing the network. In summary, the
computation overhead of additional operations in QD-Com-
pressor is lightweight compared to the normal training process.

5 REALISTIC APPLICATION SCENARIOS

In this section, two main applications of our proposed QD-
Compressor are described.

5.1 Top-K Sparsification-Based Federated Learning
As mentioned in Section 1, in the resource-constrained feder-
ated context (as shown in Fig. 9), the main bottlenecks are the
limited bandwidth and storage in the edge nodes (clients) (e.g.,
smartphones, IoT devices). To reduce the communication cost
between client and server, the Top-K Sparsification technique is
always used compress the transmitted model parameters.
Broadly speaking, when one client participates in the learning
at round ¢, it selects and sends top-k elements of the update
with largest magnitude to the server. To maintain the model
quality, the remainder of unselected elements (a.k.a., residual
model) will be “stashed” in the local disk [44]. In general, the
technique of storing the residual model locally, known as Resid-
ual Accumulation, provides the important advantage of mini-
mizing update information loss in FL. (it may only become
outdated or “stale”) [13], [14], [44]. When this client participates
in FL at round t+7, the remaining parameters will be added
back to the relevant trained local updates (as illustrated in Algo-
rithm 2).

As shown in Fig. 8, due to residual model can be regarded
as a delta of two neighboring local models, which is appropri-
ate to be compressed by our proposed QD-Compressor as fol-
lows: (Dthe client trains the local model and obtains the
updates in the round ¢. (2) A small part of the elements of the
update will be selected by the Top-K sparsification and
uploaded to the server. (3) The residual model is compressed
by QD-Compressor (note that this step can run simultaneously

i) Download Model
(2) Train Model

(3) Upload Model
4) Average Model (1

— || 2

Client N Q

@ Client 1 D 2

Fig. 9. The general workflow of Federated Learning. The server is
responsible for sending and aggregating the clients’ models, and the cli-
ent trains the model based on its own local data.

with the communication process, thus doesn’t incur additional time
cost to Federated Learning). (4) When the same client partici-
pates in the round t+ 1, we decompress the compressed
binary file of the residual model. (5) After the local training,
the decompressed residual model is added back to the new
updates, and conduct the sparsification again.

Our evaluation results suggest that our proposed QD-
Compressor can achieve 11x-15x compression ratio for the
residual model without degrading the model training per-
formance, which will be illustrated in Section 6.3.

5.2 Snapshots Recovery for the Training Crash
During the DNNSs training, the infrastructure and process
failures are widespread in large data clusters, with an
MTBF of 4-22 hourss [45], [46], [47], [48], [49], [50]. In a
Microsoft cluster, the facility failures, node breakdowns,
and software faults take an average of 45 minutes to occur
throughout the neural network training. Thus the snapshots
of historical versions are important intermediate results. On
another hand, the snapshots also give detailed information
about intermediate states, which can be used to improve the
scientific analysis and ensemble learning [10].

However, because the size of the snapshot is the same as
the full model, the storage costs of multiple snapshots
becomes a storage bottleneck for resource-constrained devi-
ces. Fortunately, due to the magnitude of the parameter
change is relatively small between the neighboring version of
the two snapshots, the difference between two neighboring
models (i.e., delta) is small. As a result, we can use QD-Com-
pressor to achieve a high compression ratio on this delta data.
In doing so, the storage costs of multiple snapshots are signif-
icantly reduced by only storing one full model of 1st round,
and the compressed delta models of all subsequent rounds.

In the snapshot recovery stage, we can recover the model
of ¢ —th round by iteratively decompressing the com-
pressed delta and adding back to the full model of 1st
round. Due to QD-Compressor being a lossy compression
approach, we need to take a few rounds of fine-tuning for
the recovered model to reach the target accuracy (i.e., the
original accuracy of ¢ — th model before the training crash).

In the permanent storing of neural work, snapshots must
be saved. However, because to the vast size of the neural
network, the storage overhead of preserving the historical
version takes a significant amount of space. The goal of
decreasing storage overhead may be accomplished in this
scenario by just preserving the delta data of each version (as
shown in Fi

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30, §023 at 02:49:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

932
Normal QDelta
- -
Version N T QDelta N
Train
..+ checkpoint | E
Version 1 cleila
Train
.=+ checkpoint |1»
Initial model T Initial model
—_— S —

Initial model

Fig. 10. Process for saving model snapshots. QDelta is the compressed
delta data of each version.

6 PERFORMANCE EVALUATION

In this section, we (1) study the metrics of test accuracy
and compression ratio on different configuration of QD-
Compressor’s hyper-parameter (i.e., quantization bits); (2)
compare QD-Compressor, and Zstd, SZ, Delta-DNN, LC-
Checkpoint compression approaches on the metric of com-
pression ratio on multiple typical DNNs; (3) evaluate the
performance of QD-Compressor in the two mainstream
application: (i) snapshot recovery from the training crash
and (i) local accumulation compression in Federated
Learning.

6.1 Experimental Setup

We conduct our experiments on an Ubuntu server with an Intel
Xeon 6154 (with 32GB of memory) and two RTX3090. Our
experiments involve two parts: Basic performance evaluation
and realistic application evaluation. The basic performance
evaluations include ablation experiments and compression ratio
comparisons. The realistic application evaluations include snap-
shot recovery from training crash from and Federated Learning
residual compression.

(i) For the Basic performance evaluation and sunapshot
recovery from training crash experiments, the model training
is performed on the PyTorch deep learning framework [51]
with six typical DNNs: VGG-16 [9], ResNet-18 [52], Google-
Net [2], MobileNet [53], ShuffleNet [54]. We train each
DNNs on CIFAR-10 dataset [55] with 200 epochs. The opti-
mizer used in model training are SGD with learning
rate=0.01, momentum=0.9, and weight decay=5e-4.

(ii) For the Federated Learning residual compression experi-
ments, the model training and communication are performed
by the PyTorch deep learning framework and the python

socket communication framework. The Federated Learning
is performed on ten clients and one server at the cloud envi-
ronment with 1Gbps bandwidth. Each each client first trains
the local model on VGG-16 and Cifar10 for 1 epoch, and then
compresses the updates using Top-K sparsification. The
selected elements will be uploaded to the server, and the
remaining unselected residuals will be compressed by differ-
ent compressor. The optimizer used in model training are
Adam with learning rate=0.001.

6.2 Basic Performance Evaluation
6.2.1 Selection of Quantization Bits

In our proposed QD-Compressor framework, the hyper-
parameters are the maximum bit width b,,,, and the mini-
mum bit width b,,;, for each layer of the floating-point
network. Considering the storage efficiency, the bit width
are set to multiple or a fraction of a byte which corresponds
to three options: 4-bit, 8-bit, and 16-bit.

In our algorithm, a necessary premise is that the restored
model inference accuracy can not be significantly degraded
after quantization. Under this premise, we select the hyper-
parameters by achieving a high compression ratio while
well maintaining the model’s inference accuracy. Therefore,
we training the network by QD-Compressor on different
configurations of fixed B bit (e.g., 4-bit, 8-bit), and observe
the inference accuracy.

As shown in Table 3, the convergence of the model is sig-
nificantly affected when using 4-bit as the quantized bits of
the whole network. 'N/A’ of ShuffleNet (size=2) in Table 3
means network can not converge. Although the accuracy of
VGG-16 and GoogleNet decreases a lot and the training pro-
cess is unstable, the smaller network model like MobileNet
and ShuffleNet (size=1) has less accuracy loss. As a result,4-
bit satisfies with our premise and we don’t choose a lower
number of bits than 4-bit as the minimum bit width b,,,;,,.

Meanwhile, when we increase the bit size to 8-bit and 16-
bit, respectively, there is a nearly overlapped accuracy
curve with full-precision baseline as shown in Table 3. Thus
we can conclude that there is no significant accuracy degra-
dation when the quantization bits number is greater than or
equal to 8-bit. However, the experimental result in Table 4
shows that the compression ratio of 16-bit is far lower than
that of 8-bit. Thus, 8-bit is set to the maximum bit width
binae for QD-Compressor to maximize the compression ratio.

6.2.2 Evaluation of Error Feedback Mechanism

In this Subsection, we evaluate the impact of implementing
an error feedback mechanism on the model accuracy, the
non-compression full-precision model training is employed
as the baseline.

TABLE 3
Inference Accuracy of Full-Precision With 4-Bit and 8-Bit

VGG-16 ResNet18 GoogleNet MobileNet ShuffleNet(size=1) ShuffleNet(size=2)
full-precision accuracy 92.00% 93.65% 93.68% 92.38% 90.44% 91.34%
4-bit accuracy 87.76% (—4.24%) 92.35% (-1.30%) 80.92% (-12.76%) 91.67% (-0.71%) 89.76% (-0.68%) N/A

8-bit accuracy

91.92% (-0.08%) 93.89% (+0.24%) 93.72% (+ 0.04%) 92.36% (-0.02%) 90.34% (-0.10%)

91.53% (+0.19%)

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

JINETAL.: DESIGN OF A QUANTIZATION-BASED DNN DELTA COMPRESSION FRAMEWORK FOR MODEL SNAPSHOTS 933

TABLE 4
Compression Ratio Comparison Between 8-Bit and 16-Bit Quan-
tization-Based Delta Compression in MobileNet and VGG-16

TABLE 6
The Test Accuracy (%) With Full-Precision, Updating on M and
Updating on M* QD-Compressor (QD) for Different DNNs

Network Origin ~ 8-bit 16-bit Network Full Precision QD (on M*) QD (on M)
MobileNet Total size 1.738G 106M 510M VGG-16 92.00 91.49(-0.51) 91.92(-0.08)
Compressionratio N/A 16.79 3.49 geSNletl-\lISt gggg ggg??g%g; gg;%?ggi;
. 51(-0. .72(+0.
VGG-16 Total size 10.974G 387M 277754M o8 o 938 92.05(0.33) 92.36(.0.02)
Compressionratio N/A 2904 405 ShuffleNet(Size=1) 9044 89.93(-0.51) 90.37(-0.07)
ShuffleNet(Size=2) 91.34 91.21(-0.13) 91.53(+0.19)
» e shows that QD-Compressor’s error feedback can achieve
% ST skl the comparable test accuracy with full-precision baseline in
I M different popular networks and better than updating on M x .
Reop M 92.1 RPNV, VS For each network, the difference between the final test accu-
§75 / 918 \,-\’,(’ e racy (i.e., convergence accuracy) is even smaller than the
S70| | zi'; fluctuation in the normal training process of the network,
g 65 }' 90.9 -—= full-bit which proves the efficiency and universality of our proposed
60 90' : —7- update on M error feedback mechanism.
:) update on M*
31 903150 175 200)])
S0 35 50 75 160 D5 180 195 200 6.2.3 Evaluation of Compression Ratio
Epoch In this subsection, we evaluate the total storage overheads

Fig. 11. VGG-16 inference accuracy with full-precision, updating on M
and updating on M* quantization.

As described in Section 4.4, the essence of error feedback
is to introduce the quantization error into the training pro-
cess by updating the raw model A/ using the gradients cal-
culated on the lossy model M (as described in Algorithm 1).
To prove the advantage of error feedback mechanism, we
compare the error feedback mechanism with the other
updating method: updating the lossy model M using the
gradients calculated on the A *, and using the Mx as the
new model to train. As shown in Fig. 11, the accuracy of
baseline and the method of updating on M are nearly over-
lapped, which suggests that they have almost the same con-
vergence performance. However, the highest accuracy
curve of the method of updating on M is reduced by nearly
0.5%, which is lower than the method of updating on the
raw model M. This proves that our error feedback mecha-
nism (i.e., updating on the inverse quantized model M) can
effectively feed the quantization error to the normal DNNs
training process.

To further prove the efficiency and universality of our error
feedback mechanism. We quantize six popular DNNs with
8 bits and compare the test accuracy under above two
updating methods (i.e., updating on M or Mx). Table 6

on six popular DNNs for different compression methods.
Note that the total storage overheads are calculated by the
sum of compressed network sizes of all rounds. Table 5
shows that QD-Compressor achieves the highest compres-
sion ratio among all compared methods.

In order to further study the compression efficiency of QD-
Compressor in the process of DNNs training in detail, we fur-
ther studies the compression ratio of the six networks under
four compression methods at different training epochs in Fig. 12.
This is because they target the network itself but not the con-
nection between the versions during the training process. The
compression ratio of Zstd is just near 1.1 because floating-
point numbers are hard to be compressed directly due to their
mantissa uncertainty. In the Delta-DNN method, the com-
pression ratio will gradually increase with the network train-
ing process as the network parameters change smaller and
smaller in the end. In our method, the compression ratio at
the beginning of training exceeds that of other methods.
Additionally, the compression ratio is increasing during the
training as the similarity between the neighboring versions
increases. Furthermore, the weight entropy-based quantiza-
tion strategy achieves higher compression ratio than the fixed
8-bit quantization without degrading the test accuracy. In the
next experiments, the default configuration of bit-width of
QD-Compressor is set to QD (4-8).

TABLE 5
Compression Ratio of Zstd, SZ, Delta-DNN, LC-Checkpoint, QD-Compressor (Fixed 8 Bit) and QD-Compressor (Varied Bit Width
From 4 to 8)

Network Model SizeTotal Size Compress Size (Compression Ratio)
Zstd SZ Delta-DNN LC QD (8bits) QD (4-8bits)
VGG-16 56.19MB 10.974GB10.17GB(1.079) 2.264GB(4.643) 1.231GB(8.92) 1.35GB(8.10) 387MB(29.04)281MB(39.99)
Resent-18 42.66MB 8.333GB 7.69GB(1.084) 1.750GB(4.763) 800.9MB(10.41) 1.01GB(8.24) 398MB(21.51)305MB(27.98)
GoogleNet 23.58MB 4.606GB 4.26GB(1.082) 973.5MB(4.731)451.2MB(10.21)550.97MB(8.56) 187MB(25.22) 142MB(33.22)
MobileNet 89MB 1.738GB 1.61GB(1.080) 375.2MB(4.631)172.9MB(10.05)223.07MB(7.98) 106MB(16.79) 82MB(21.70)

ShuffleNet(Size=1) 4.88MB 0.977GB 0.908GB(1.076)213.4MB(4.469) 99.2MB(9.61) 128.28MB(7.61) 63MB(15.50) 48MB(20.30)
ShuffleNet(Size=2) 20.49MB 4.002GB 3.70GB(1.083) 871.9MB(4.590)349.5MB(11.45) 529.1MB(7.75) 208MB(19.70)162MB(25.29)

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

120 " w w w 125 w w w w 150

SZ SZ ' ‘ 'Sz
© 96 Delta-DNN 2100 Delta-DNN 2120 Delta-DNN
I LC-Checkpoint === S LC-Checkpoint === T LC-Checkpoint ===
@ 75| QD-Compressor @ 25| QD-Compressor @ 9ol QD-Compressor
c c c
kel kel kel
@ 48 ? & 60
o o o
a g o}
g 24 £ g 30
<} <} <}
(&] 0 \ O ol a0 M (@] fo) Mamlic M \
Epoch 1 Epoch 50 Epoch 100 Epoch 150 Epoch 1 Epoch 50 Epoch 100 Epoch 150 Epoch 1 Epoch 50 Epoch 100 Epoch 150
Epoch Epoch Epoch
(a) VGG-16 (b) ResNet-18 (c) GoogleNet
80 S7 " " 50 " 57 " " 100 " 57 "
o 64t Delta-DNN 240} Delta-DNN o 80} Delta-DNN
k5 LC-Checkpoint === T LC-Checkpoint === T LC-Checkpoint ===
@ 4| QD-Compressor C 39| QD-Compressor & gol QD-Compressor
C C c
kel kel kel
232 2 3
o o o
S S %
£16 g10 £
<} <} <}
O 9 \ N1)) O 9 A A o olz \ [} \
Epoch 1 Epoch 50 Epoch 100 Epoch 150 Epoch 1 Epoch 50 Epoch 100 Epoch 150 Epoch 1 Epoch 50 Epoch100 Epoch150
Epoch Epoch Epoch
(d) MobileNet (e) ShuffleNet (Size=1) (f) ShuffleNet (Size=2)

Fig. 12. Compression ratio in different epochs of training process using SZ, Delta-DNN, LC-Checkpoint and QD-Compressor.

6.3 Realistic Application Evaluations 6.3.1 Residual Compression for Federated Learning
In this subsection, we compare the performances (e.g., com- Ag introduced in Section 6.1, we jointly train the typical

pression ratio, model quality, and compression costs) with the VGG-16 and ResNet on CIFAR-10 by the Federated Learn-
state-of-the-art snapshot compressor LC-Checkpoint on two jng context (ten clients and one server are communicated
realistic application scenarios: Residual compression for Feder- 1, iih 1Gbps bandwidth). To reduce the communication
ated Learning and Snapshot recovery from the training crash. costs, the client only uploads a small part of updates to the

©
o
©
o
©
o

R B e B el it T
80 /g\-—f"{‘/: e 80 ,Qxf;—“}fé:‘?b“‘"“*’“‘c" oY T e =
s Sl = ,-f,) ~80 2l LT g v
.\,)70 F 370 S —-— SBC w/o residuals =X Y
> 4] ’ > 7 SBC > i
g iy . g 7 —— SBC+LC g & i
2 60 I —-— SKC w/o residuals 3 60 .///- + 370 i’ —-— DR w/o residuals
g i sKC S ,Ii' —-— SBC+QD g i DR
sol ! —-— SKC+LC s0{ b i —— DR+LC
! —.— SKC+QD i 601§ —.— DR+QD
a0l a0F !
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Epochs Epochs Epochs
(a) VGG-16+SKC (b) VGG-16+SBC (c) VGG-16+DR
85 85 85
80 = 80 s 80
. RS §/; -.,,\\: . < \‘\T/\\‘;‘/(/v‘ ://r .
e P A R I A AT T T £r
370 e T 370 i 870
3 P - —-— SKC w/o residuals 2 »’;j/ —-— SBC w/o residuals 2
ges ///I SKC 265 I//'/‘ SBC £65
o0 f’j —-— SKC+LC o0 ,,/' —-— SBC+LC 0
—-— SKC+QD —-— SBC+QD
55 / 55 [55
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Epochs Epochs Epochs
(d) ResNet-18+SKC (e) ResNet-18+SBC (f) ResNet-18+DR
85 85 85
80 o2 G ‘_l -N&f;’,“/":’-“:/ 80 e e \f"”T/f :’\ =i 80 /g._,;?::;'/f’:& /37.\4\,-(;
s D T\ S B R N < <Z A e o VNS L =75 AR i X4 ANAR
< 7N AR AY < a SATRAYAY VAR 77 \
® 70 /r! =1 v 370 4 \i 1 1 v 370 /,//
E] 3 —-—y SKC w/o residuals 3 £ —.— SBC w/o residuals 2 —-— DR w/o residuals
2657 7 —-— SKC 265 —-— SBC 265 —-— DR
o fL —1i— SKC+LC o —/— SBC+LC & —— DR+LC
—-— SKC+QD —-— SBC+QD —-— DR+QD
5 10 20 30 40 5% 10 20 30 40 55 10 20 30 40
Epochs Epochs Epochs
(g) ResNet-34+SKC (h) ResNet-34+SBC (i) ResNet-34+DR

Fig. 13. Test accuracy on different DNNs with different methods in Federated Learning.
Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

JINETAL.: DESIGN OF A QUANTIZATION-BASED DNN DELTA COMPRESSION FRAMEWORK FOR MODEL SNAPSHOTS 935

TABLE 7
Model Size and Compression Ratio of LC-Checkpoint and QD-
Compressor in Federated Learning

Network Model Size Compressd Size
(Compression Ratio)
LC-Checkpoint ~ QD-Compressor
VGG-16 59MB 5.83MB(9.64) 5.54MB(10.65)
ResNet-18 44MB 3.06MB(14.38) 2.71MB(16.22)
ResNet-34 84MB 6.72MB(12.49) 5.61MB(14.96)

server (e.g., Top-0.01 sparsification means upload 1% of
parameters) for each Federated Learning round. To keep
the model quality, the remaining of updates will be stored
locally and added back to in the next round (i.e., residual
accumulation). In this subsection, we use QD-Compressor
to reduce the storage cost for the residual model.

More specifically, we deploy QD-Compressor on three
recent Top-K sparsification-based Federated Learning com-
pression algorithms (i.e., SBC[43], SKC[56], and DeepReduce
[57]). We evaluate the test accuracy or residual compression
ratio on three settings: (1) without residual accumulation, (2)
with residual accumulation, (3) with residual accumulation
compressed by QD-Compressor. Fig. 13 shows that when we
don’t use the residual accumulation (i.e., dropping the ele-
ments not uploaded to the server) in the Federated Learning,
the training performance (i.e., test accuracy of the resulting
model) will be degraded significantly, which proves that the
residual accumulation is essential to keep the Federated
Learning model quality. In order to reduce the storage cost of
the residual model, we employ QD-Compressor to compress
the local accumulation, the model accuracy curve is almost
identical to that without quantization, and even better. It is
because that moderate noise doesn’t harm the convergence
and even improves the generalization. Furthermore, Table 7
shows the average model size (MB) after compression and the
corresponding compression ratio of the local residual param-
eters during the target communication rounds. The experi-
mental results show that our proposed QD-Compressor
efficiently reduces the size of residual accumulation by the
factor of 11x-15x. Additionally, since the only cost of QD-
Compressor introduced in the Federated Learning process is
the decompressing time, we also evaluate the decompressing
time and the local training time (in seconds) in Table 8. We
learn that the cost of QD-Compressor only takes a very small
proportion of the whole Federated Learning process.

Summarily, our proposed QD-Compressor efficiently
reduces the storage cost of Federated Learning client with-
out degrading the model quality.

TABLE 8
Compression Time (CT) and Decompression Time (DT) of LC-
Checkpoint and QD-Compressor in Federated Learning

Network Training Time LC-) QD-
Checkpoint Compressor
CT DT CT DT
VGG-16 24.37s 8.60s 14.43s 0.21s 0.22s
ResNet-18 24.67s 6.11s 8.01s 0.21s 0.21s
ResNet-34 32.46s 13.55s 17.14s 0.23s 0.25s

TABLE 9
Recovery Epochs in Different Periods

Network Recovery epochs
1-50 51-100 101-150 151-200 1-100 101-200

VGG-16 1/3 2/2 5/2 3/2 1/17 1/6
ResNet-18 1/2 1/3 3/3 1/2 2/32 1/14
GoogleNet 2/3 4/7 1/6 2/3 1/27 1/15
MobileNet 3/8 1/5 1/4 1/1 2/16 1/12
ShuffleNet (Size=1) 2/5 2/4 2/5 2/2 3/16 1/10
ShuffleNet (Size=2) 2/3 2/12 2/4 2/6 4/9 2/7

6.3.2 Snapshot Recovery From the Training Crash

In this subsection, we compare QD-Compressor to a concurrent
snapshot compressor LC-Checkpoint in the training crash two
aspects: (1) the fine-tuning rounds from the specific crash nodes
to compare the accuracy of the compressed snapshot. (2) the size
of all compressed snapshots to compare the compression ratio.

Table 9 suggests that our proposed QD-Compressor spends
less fine-tuning rounds to recover restored model to the target
accuracy before the training crash, this superiority is more
obvious when the large period. Essentially, since the quantiza-
tion error will be feedback to the training process in QD-Com-
pressor, the gap between a compressed snapshot and the
original model is narrow, and fewer quantization errors are
accumulated. Additionally, Table 5 shows that the storage costs
of QD-Compressor for the snapshot are less than LC-Check-
point. That is because the delta data in QD-Compressor has
higher compressibility, leading to a high compression ratio.

Finally, the time costs (in seconds) breakdown of QD-
Compressor are provided. Table 10 suggests that the quanti-
zation operation of the error feedback process and snapshot
decompression operations only take a small share of time
cost during the whole training, which means our proposed
QD-Compressor possesses the lightweight property in the
application of snapshot recovery from training crash.

In summary, compared with the state of the arts, QD-
Compressor achieves a higher compression ratio and faster
snapshot recovery from the training crash with small costs.

7 CONCLUSION

In this paper, aiming at the phenomenon that a lot of redun-
dancy information exists in neighboring versions of DNNs
during the training, we propose a novel quantization-based
delta compressor called QD-Compressor. The weighted

TABLE 10
The Time Costs Breakdown of QD-Compressor in the Snapshot
Recovery From Training Crash Scenario

Networks TrainingStoreQuan LZMA LZMA Restore
Comp. Decomp.

VGG-16 9.15s 0.14s0.02s 10.66s 0.17s 0.03s
ResNet-18 15.56s 0.15s0.03s 5.37s 0.43s 0.03s
GoogleNet 62.01s 0.13s0.06s 2.35s 0.23s 0.08s
MobileNet 18.51s 0.06s0.05s 0.70s 0.09s 0.06s
ShuffleNet 12.2s 0.06s0.05s 0.33s 0.07s 0.05s
(Size=1)

ShuffleNet 18.92s 0.07s0.04s 1.82s 0.19s 0.05s
(Size=2)

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

936

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

entropy-based local-sensitive quantization technique with
error feedback mechanism of QD-Compressor significantly
reduce the storage cost for DNNs without degrading the
model quality. Experimental results on two realistic applica-
tions and multiple popular DNNSs suggest that compared
with the state of the arts, QD-Compressor not only achieves
7x-40x higher compression ratio in the model snapshots
compression, but also obtains the 11x-15x storage costs for
the Top-K sparsification-based Federated Learning clients.

REFERENCES

[1]

[2]
[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” Commun. ACM,
vol. 60, no. 6, pp. 84-90, 2017.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

Y. Wang, W. Gan, J. Yang, W. Wu, and J. Yan, “Dynamic curricu-
lum learning for imbalanced data classification,” in Proc. IEEE Int.
Conf. Comput. Vis., 2019, pp. 5016-5025.

R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580-587.

S. Ren et al., “Faster R-CNN: Towards real-time object detection
with region proposal networks,” in Proc. Int. Conf. Neural Inf. Pro-
cess. Syst., 2015, pp. 91-99.

B. Zhuang, C. Shen, M. Tan, L. Liu, and L. Reid, “Structured binary
neural networks for accurate image classification and semantic
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 413-422.

Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cas-
cade for facial point detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2013, pp. 3476-3483.

X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, “Face alignment across
large poses: A 3D solution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 146-155.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015, pp. 1117-1126.

B. Nicolae, J. Li, J. M. Wozniak, G. Bosilca, M. Dorier, and F. Cap-
pello, “DeepFreeze: Towards scalable asynchronous checkpoint-
ing of deep learning models,” in Proc. IEEE/ACM 20th Int. Symp.
Cluster Cloud Internet Comput., 2020, pp. 172-181.

G. Huang et al., “Snapshot ensembles: Train 1, get M for free,”
2017, arXiv:1704.00109.

W. Zhang et al., “Snapshot boosting: A fast ensemble framework
for deep neural networks,” Sci. China Inf. Sci., vol. 63, no. 1,
pp- 1-12, 2020.

F. Sattler, S. Wiedemann, K.-R. Miller, and W. Samek, “Robust
and communication-efficient federated learning from non-iid
data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9,
pp- 3400-3413, Sep. 2020.

Y. Lin et al., “Deep gradient compression: Reducing the communi-
cation bandwidth for distributed training,” in Proc. Int. Conf.
Learn. Representations, 2018, pp. 155-162.

Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for effi-
cient DNNs,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2016,
pp. 1379-1387.

G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” 2015, arXiv:1503.02531.

B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 2704-2713.

M. Courbariaux and Y. Bengio, “BinaryNet: Training deep neural
networks with weights and activations constrained to +1 or -1,”
2016, arXiv:1602.02830.

M. Rastegari et al., “XNOR-Net: ImageNet classification using
binary convolutional neural networks,” in Proc. Eur. Conf. Comput.
Vis., 2016, pp. 525-542.

Z. Hu et al,, “Delta-DNN: Efficiently compressing deep neural
networks via exploiting floats similarity,” in Proc. 49th Int. Conf.
Parallel Process., 2020, pp. 40:1-40:12.

Y. Chen et al., “On efficient constructions of checkpoints,” in Proc.
Int. Conf. Mach. Learn., 2020, pp. 1627-1636.

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

P. Deutsch, “GZIP file format specification version 4.3,” RFC, vol.
1952, pp. 1-12, 1996.

F. Zhang et al., “TADOC: Text analytics directly on compression,”
VLDB]., vol. 30, no. 2, pp. 163-188, 2021.

D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proc. IRE, vol. 40, no. 9, pp. 1098-1101, 1952.
J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337-343,
May 1977.

F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: A high-
performance framework for enabling near orthogonal processing
on compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2,
pp- 459-475, Feb. 2022.

X. Zou et al., “Performance optimization for relative-error-bounded
lossy compression on scientific data,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 7, pp. 1665-1680, Jul. 2020.

M. Dutch, “Understanding data deduplication ratios,” Proc. SNIA
Data Manage. Forum, vol. 7, pp. 1120-1129, 2008.

T. Suel et al, “Algorithms for delta compression and remote file
synchronization,” in Lossless Compression Handbook. Amsterdam,
The Netherlands: Elsevier, 2002.

W. Xia et al., “A comprehensive study of the past, present, and future
of data deduplication,” Proc. IEEE, vol. 104, no. 9, pp. 1681-1710,
Sep. 2016.

P. Dong et al., “RTMobile: Beyond real-time mobile acceleration of
RNNs for speech recognition,” in Proc. IEEE[ACM/EDAC 57th Des.
Automat. Conf., 2020, pp. 1-6.

S. Di and F. Cappello, “Fast error-bounded lossy HPC data com-
pression with SZ,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
2016, pp. 730-739.

X. Liang et al., “Error-controlled lossy compression optimized for
high compression ratios of scientific datasets,” in Proc. IEEE Int.
Conf. Big Data, 2018, pp. 438-447.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving
lossy compression for scientific data sets based on multidimen-
sional prediction and error-controlled quantization,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., 2017, pp. 1129-1139.

J-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning
method for deep neural network compression,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 5068-5076.

Z. Liu et al., “Rethinking the value of network pruning,” in Proc.
Int. Conf. Learn. Representations, 2019, pp. 1054-1062.

H. Qin et al., “Forward and backward information retention for
accurate binary neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 2247-2256.

S. Jin et al., “DeepSZ: A novel framework to compress deep neural
networks by using error-bounded lossy compression,” in Proc. 28th
Int. Symp. High-Perform. Parallel Distrib. Comput., 2019, pp. 159-170.
S. Guiasu, “Weighted entropy,” Rep. Math. Phys., vol. 2, no. 3,
pp. 165-179, 1971.

E. Park,]J. Ahn, and S. Yoo, “Weighted-entropy-based quantiza-
tion for deep neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 5456-5464.

X. Zhu, W. Zhou, and H. Li, “Adaptive layerwise quantization for
deep neural network compression,” in Proc. IEEE Int. Conf. Multi-
media Expo, 2018, pp. 1-6.

J.L.Rodgers and W. A. Nicewander, “Thirteen ways to look at the cor-
relation coefficient,” Amer. Statistician, vol. 42, no. 1, pp. 59-66, 1988.

F. Sattler et al., “Sparse binary compression: Towards distributed
deep learning with minimal communication,” in Proc. Int. Joint
Conf. Neural Netw., 2019, pp. 1-8.

S. U. Stich, J. Cordonnier, and M. Jaggi, “Sparsified SGD with mem-
ory,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2018, pp. 4452-4463.
S. Gupta et al., “Failures in large scale systems: Long-term mea-
surement, analysis, and implications,” in Proc. Int. Conf. High Per-
form. Comput. Netw. Storage Anal., 2017, pp. 44:1-44:12.

C. D. Martino, Z. T. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system fail-
ures at Petascale: The case of blue waters,” in Proc. IEEE/IFIP 44th
Annu. Int. Conf. Dependable Syst. Netw., 2014, pp. 610-621.

F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen, “Understanding co-
running behaviors on integrated CPU/GPU architectures,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 905-918, Mar. 2017.

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74-80, 2013.

A. Verma et al., “Large-scale cluster management at Google with
Borg,” in Proc. Eur. Conf. Comput. Syst., 2015, pp. 18:1-18:17.

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

JINETAL.: DESIGN OF A QUANTIZATION-BASED DNN DELTA COMPRESSION FRAMEWORK FOR MODEL SNAPSHOTS 937

[50] S.Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of
traces from a production MapReduce cluster,” in Proc. IEEE[ACM
10th Int. Conf. Cluster Cloud Grid Comput., 2010, pp. 94-103.

A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2019, pp. 8024-8035.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 770-778.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510-4520.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6848-6856.
A. Krizhevsky et al, “Learning multiple layers of features from
tiny images,” Master’s thesis, Univ. Tront, Toronto, Canada, 2009.
J. Jiang et al., “SKCompress: Compressing sparse and nonuniform
gradient in distributed machine learning,” VLDB]., vol. 29, no. 5,
pp. 945-972, 2020.

H. Xu et al., “DeepReduce: A sparse-tensor communication frame-
work for federated deep learning,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2021, pp. 21 150-21 163.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Haoyu Jin is currently working toward the MS
degree majoring in computer science with the
Harbin Institute of Technology, Shenzhen, China.
His research interests include federated learning,
model compression. He has published several
papers in major journals and international confer-
ences including AAAI and ICCD.

Donglei Wu is currently working toward the PhD
degree majoring in computer science with the
Harbin Institute of Technology, Shenzhen, China.
His research interests include federated learning,
model compression. He has published several
papers in major journals and international confer-
ences including AAAI and ICCD.

Shuyu Zhang received the master’'s degree in
computer science from the Harbin Institute of
Technology, Shenzhen, China. His research inter-
ests include federated learning, model compres-
sion. He has published several papers in major
journals and international conferences including
AAAIl and ICCD.

Xiangyu Zou (Student Member, IEEE) is currently
working toward the PhD degree majoring in com-
puter science with the Harbin Institute of Technol-
ogy, Shenzhen, China. His research interests
include data deduplication, storage systems, lossy
compression, etc. He has published more than 20
papers in major journals and international confer-
ences including the IEEE Transactions on Parallel
and Distributed Systems, ACM Transactions on
Storage, FAST, USENIX ATC, ICDE, AAAI, etc.

Sian Jin is currently working toward the PhD
degree majoring in computer science with Indiana
University. His research interests include high per-
formance computing, compression algorithms, arti-
ficial neural networks, and parallel computing. He
has published several papers in major journals and
international conferences including PPoPR, HPDC,
IPDPS, ICDE, etc.

Dingwen Tao is an associate professor with Indiana
University, where he leads the High-Performance
Data Analytics and Computing (HiPDAC) Lab. He is
the recipient of various awards including NSF
CAREER Award (2023), Amazon Research Award
(2022), Meta Research Award (2022), R&D100
awards Winner (2021), IEEE Computer Society
- ; TCHPC Early Career Researchers Award for Excel-
4 lence in HPC (2020), NSF CRII Award (2020), IEEE
. /‘ CLUSTER Best Paper Award (2018). He is serving
on the technical review board of the IEEE Transac-
tions on Parallel and Distributed Systems. He served as the program co-chair
of 2021 IEEE International Conference on Scalable Computing and Commu-
nications and International Workshops on Big Data Reduction. He is also a
reviewer, program committee member, or session chair of major HPC venues,
such as SC, HPDC, ICS, IPDPS, CLUSTER, ICPPF, CCGirid, HiPC, NPC. He
has published in the top-tier HPC and Big Data conferences and journals,
including SC, ICS, HPDC, PPoPP, DAC, PACT, IPDPS, CLUSTER, ICPP, Big
Data, IEEE Transactions on Computers, IEEE Transactions on Parallel and
Distributed Systems, etc.

Qing Liao (Member, IEEE) received the PhD
degree from the Hong Kong University of Science
and Technology, Hong Kong, in 2016. She is cur-
rently a professor with the Department of Com-
puter Science and Technology, Harbin Institute of
Technology (Shenzhen), Shenzhen, China, and
also with the Department of New Networks, Peng
Cheng Laboratory, Shenzhen. Her research inter-
ests include data mining, artificial intelligence,
and information security.

Wen Xia (Member, IEEE) received the PhD degree in
computer science from the Huazhong University of
Science and Technology (HUST), Wuhan, China, in
2014. He is currently an associate professor with the
School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen. His research inter-
ests include data reduction, storage systems, cloud
storage, etc. He has published more than 70 papers
in major journals and conferences including the IEEE
Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers, Proceedings of
the IEEE, FAST, USENIX ATC, ICDE, AAAI, HotStorage, MSST, DCC, IPDPS,
ICPR ICCD, CLUSTER, etc.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on July 30,2023 at 02:49:37 UTC from |IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

