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Abstract—Quantum computing is gaining momentum in rev-
olutionizing the way we approach complex problem-solving.
However, the practical implementation of quantum algorithms
remains a significant challenge due to the error-prone and
hardware limits of near-term quantum devices. For instance,
physical qubit connections are limited, which necessitates the
use of quantum SWAP gates to dynamically transform the logical
topology during execution. In addition, to optimize fidelity, it is
essential to ensure that 1) the allocated hardware has a low error
rate and 2) the number of SWAP gates injected into the circuit
is minimized. To address these challenges, we propose a suite
of algorithms: the Fidelity-aware Graph Extraction Algorithm
(FGEA) is used to identify the hardware region with the lowest
probability of error, the Frequency-based Mapping Algorithm
(FMA) allocates logical-physical qubits that reduce the potential
distance of topological transformation, and the Heuristic Routing
Algorithm (HRA) searches for an optimal swapping injection
strategy. We evaluate the proposed algorithms on the IBM-
provided Noisy Intermediate-Scale Quantum (NISQ) computer,
using a dataset consisting of 17 different quantum circuits of
various sizes. The circuits are executed on the IBM Toronto
Falcon processor. The three proposed algorithms outperform the
existing SABRE algorithm in reducing the number of SWAP gates
required. Therefore, our proposed algorithms hold significant
promise in enhancing the fidelity and reducing the number of
SWAP gates required in implementing quantum algorithms.

Index Terms—Quantum computing, qubit mapping, SWAP
reduction, calibration data, circuit fidelity, gate execution time.

I. INTRODUCTION

Quantum computer. By harnessing the power of quantum
mechanics [1], it is proven that quantum computers, in certain
cases of computation, will be able to perform exponentially
better than their classical counterparts in the foreseeable future.
One theoretical demonstration of this prospect is the infamous
paper written by Shor [2], in which he proposes a quantum
prime factorization algorithm that executes in polynomial time.
However, the current generation of quantum computers is
still extremely limited in terms of (1) noise and decoherence
susceptibility, which causes error in computation [3], and
(2) scalability, where the insufficient qubits and connections
hinder the execution of quantum algorithms [4]. Therefore,
massive devotion is still needed on science and engineering
fronts before the vision of quantum computation is realized.

We thank the anonymous reviewers for their suggestions and feedback. This
research was in part supported by US NSF under Grants: AMPS-2229073,
AMPS-2229075, and CNS-2103405. Corresponding author: Tu N. Nguyen.
The source code is released at: https://github.com/NextCNS/QubitMapping.

qQ: —o—— q0

: IQI qo : q1
q1 ' —p— q1: q0 q1: 490

(@) (®) (©
Fig. 1. Quantum circuit representation of (a) CNOT gate (b) SWAP gate, and
(c) the composition of CNOT gates to build a SWAP gate.

Qubits and connections. Possessing two critical proper-
ties of a quantum particle: superposition and entanglement,
the qubit is the heartbeat of all related studies regarding
quantum algorithm design and execution [5]-[7]. While su-
perposition allows the qubits to exist in multiple classical
states simultaneously, an entanglement between two qubits
correlates them in such a way that the state of one inher-
ently depends on the other. To establish an entanglement
in a quantum processor, there must be a physical con-
nection between the two qubits [8], [9], and an effective
quantum algorithm typically requires a series of entangle-
ment pairing of a variety of qubits combinations. How-
ever, early-stage engineering of the quantum computer pro-
vides very limited topologies of physical qubits connection
[10]. This highlights the necessity of designing quantum
circuits in a manner that can tolerate potential errors and
account for the fopological limits of a quantum computer.

Entanglement and swap. The quantum circuit describes
an ordered set of quantum operators (called gate) to be
performed on a set of qubits in order to execute a quan-
tum algorithm [9]. Within which, the entanglement operator
is represented by the CNOT gate, illustrated in Fig. 1(a).
In order to work around the fopological limitation of the
quantum processor, the SWAP gate, illustrated in Fig. 1(b),
is employed. The SWAP gate has the ability to swap the
states of the two target qubits [I1], hence, it can be used
to virtually rearrange the physical qubits while in execution.
In simple term, it can “move” one logical qubit to a physical
position that is adjacent to another logical qubit on the circuit.

Swapping in action. For instance, let’s examine the first two
CNOT gates depicted in Fig. 2(a). Suppose that the quantum
processor is only equipped with limited connections, namely
qo—4q1, 1 —q2, g2 —q3. Thanks to their adjacency, the first en-
tanglement operator between ¢y —q; can be performed directly.
However, this can not be the case for the second operator of
CNOT(qo, g2) since qo and ¢; are not connected. Instead, as
illustrated in Fig. 2(b), after the first CNOT, the SWAP(qo, q1)
gate is applied to “move qo downward and q; upward”. The
CNOT(q1, q2) gate applied afterwards shall then be equivalent
to the originally intended CNOT(qo, ¢2) gate.



https://github.com/NextCNS/QubitMapping

Why qubit mapping? Even state-of-the-art quantum com-
puters are highly susceptible to noise and decoherence, mean-
ing that the addition of more gates to the circuit execution
can result in increasingly error-prone outcomes. Furthermore,
each SWAP gate is composed of three CNOT gates [9],
[12], as illustrated in Fig. 1(c). Therefore, it is not only
essential to find the optimal swapping strategy, but also to
arrange the qubits in a manner that facilitates this strat-
egy. In this work, we address the problem of designing a
logical-to-physical qubits mapping scheme that is geared to-
wards optimizing the overall fidelity of a quantum circuit exe-
cution on Noisy Intermediate-Scale Quantum (NISQ) systems.

Motivation. Although there exist algorithms for qubit map-
ping and swapping, only a few of studies take the fidelity of
the logical circuit into account. Comprehensive overview of
current literature is presented below.

o The authors in [|3] propose an exact synthesis matching
flow aimed to realize circuits for quantum architecture for
LNN. Along the same lines, the authors in [14] address
the problem of efficient movement of SWAP gates and
proposed a NN optimization. However, these methods of
constructing NN- compliant quantum circuits are proven to
be NP-complete in [15] and hence these methods are not
suitable when dealing with circuits of large instances.

o In the studies [10], [16], [17], authors propose heuristic,
exact algorithms for qubit allocation by considering the
physical topology of the IBM quantum processor. These
methods are, however, not scalable for complex frameworks.

o In [18], [19], the authors propose a strategy to incorporate
SWAP gates into the circuit. While the heuristic approach
quickly searches for and identifies local SWAPs, the algo-
rithm doesn’t consider the initial mapping of the circuit. P.
Zhu et al. [20] have incorporated the look-ahead” strategy
into the heuristic cost function for additional optimization.
But, this method misses the best SWAP operation needed
for connectivity constraints in many instances.

« Stephen et al. [21] propose a method based on graph parti-
tioning that can be used to identify optimal qubit topology
and mapping flows for interaction graphs that are specific
to the problem at hand. On the other hand, in [22] proposes
a multi-tier approach for solving qubit mapping problems
by considering the topology and gate fidelity constraints.
If gate fidelity is non-uniform or errors are correlated, it
becomes crucial to map the quantum program onto qubits
in the architecture that exhibit high fidelity.

Our Contribution. The aim of “Towards Fidelity-Optimal
Qubit Mapping on NISQ Computers” is to enhance the
efficiency of mapping and allocating quantum circuits onto
a physical quantum computer. This can reduce the number
of qubits and computational resources required, which can
improve the overall performance of the quantum computer.
In short, the research focuses on reducing qubit swaps to
enhance the efficiency of quantum circuits during mapping and
allocation. We summarize key innovation and contribution of
this work as follows:
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Fig. 2. (a) Logical circuit with five CNOT gates and (b) Logical circuit with
nearest neighbor compliance.

o To guarantee reduced errors and to enhance the overall
performance of the circuit we propose a fidelity-aware graph
extraction algorithm (FGEA).

o After choosing the graph, a frequency-based mapping al-
gorithm (FMA) is proposed to provide an efficient initial
mapping or allocation of logical qubits to physical qubits
that reduces the addition of SWAP gates to a great extent.

o Thereafter, a heuristic routing algorithm (HRA) is put forth
to minimize the number of SWAP gates added on the go.
This results in reduced swap operations and fast execution
times when compared to previous swap-based algorithms.

« We evaluate our results based on IBM’s calibration data. We
compare our results with existing algorithms based on the
metrics CNOT gate count, fidelity, and execution times.

Organization. The rest of this paper is organized as follows.
In section §II, we provide a background of NISQ systems,
quantum circuits, how quantum mapping problems are solved.
Section §III begins with a detailed discussion of the formula-
tion of the Qubit mapping problem. We analyze the problem in
section §III-B. In section §IV, we demonstrate algorithms used
in our approach and analyze the complexity of the proposed
solution in section §IV-D. Following that, we provide the
evaluation of the results of experiments in section §V. Section
§VI concludes this article.

II. PRELIMINARIES

In the following sections, we provide a brief overview of
NISQ systems, quantum circuits in section §II-A, and quantum
mapping problems and provide the background of quantum
gates and how it can be applied in solving the optimization
of a mapping problem in section §II-B. In section §II-C we
discuss the previous research attempts to solve the quantum
mapping and allocation on the NISQ architectures.

A. NISQ, Quantum Circuits and IBMQ.

Noisy Intermediate-Scale Quantum. NISQ devices are
quantum computers consisting of 20 to a few hundred qubits
[23]. Quantum device applies the superposition and entan-
glement to the qubits to perform logical circuit operations.
As quantum states are noise-sensitive, these systems are
prone to quantum decoherence. Because of the qubit limit
constraint, reaching fault-tolerance requires qubits to perform
error corrections during the operation [18]. Two methods are
described to decrease the number of qubits required in NISQ
devices. One approach uses complete active space techniques,



which involve partitioning the molecular space into active
and inactive regions [24]. Another is to employ optimized
techniques for allocating qubits [10]. A critical problem with
NISQ is the low connectivity of its coupling maps which the
precise allocation of qubits can mitigate for better connectivity.

The importance of quantum circuit. Quantum circuits
perform computations more quickly than classical circuits in
certain cases [4]. Quantum circuits have potential applications
in cryptography, material science, and drug discovery through
new ways to solve problems that are currently intractable using
classical computers [23]. The quantum circuit replicates the
ideology of classical computers by leveraging the principles
of quantum theory. This allows the quantum system to execute
a sequence of processes to perform quantum computations
like initialization of qubits, measurement, and quantum gates.
Quantum gates are the basic building blocks of a quantum
circuit and are used to manipulate qubits.

IBM-NISQ. Via cloud computing technology, IBM is able
to provide access to quantum computation to the general pop-
ulation. Their commercialized NISQ system is called IBMQ,
and it is widely adopted by researchers and companies across
many fields of research to explore the potential of quantum
computing and develop new applications and algorithms. IBM-
NISQ is used as a platform for executing medium-sized
quantum circuits which also serves as a testbed for showcasing
advancements in performance and scalability before these
improvements are implemented on larger quantum devices
[23]. IBM’s primary goal is to advance fault-tolerance quan-
tum devices before commercializing. In this paper, we focus
on the IBMQ Falcon processor for our research motivation
because of the improved gate fidelity and reduced error rates
compared to its previous generation topologies [25]. It has
a relatively large number of qubits compared to some other
NISQ devices, which makes it suitable for running certain
quantum algorithms and simulations. In terms of performance,
it shows promising performance in some benchmarking tests,
indicating that it may be capable of outperforming other NISQ
devices in certain scenarios.

Fig. 3 refers to the IBMQ Toronto processor. In general,
IBMQ machines undergo calibration twice a day, with daily
public postings of experimental measurements of key proper-
ties such as qubit relaxation time (77), coherence time (7T%),
gate errors, readout errors. Only short programs can execute
reliably on the machine, with programs exceeding 16 CNOT
operations having less than 50% chance of executing correctly
due to fluctuation in the above-mentioned properties [26].

B. Quantum Mapping and Allocation Problem.

Entanglement in quantum circuit. In the quantum circuit,
a quantum logic gate is a basic quantum circuit operating
on fewer qubits. The CNOT gate is essential for performing
entangling operations between qubits and is a fundamental
building block of many quantum algorithms, such as Shor’s
algorithm for factoring large numbers [2]. CNOT gate is
a key resource in many quantum algorithms and protocols,
including quantum teleportation, and quantum error correction
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Fig. 3. IBM-Toronto Topology. The color of each qubit and connection
reflects the degree of error. The lighter the color, the higher the error rate.

[27]. However, entanglement is also a delicate resource that
can be easily destroyed by noise and other sources of error in
the quantum hardware. Because of this, it poses a challenge
for developing practical quantum computers.

Quantum connectivity limitation. In NISQ architectures,
the qubits need to be isolated from the environment in order
to maintain their coherence and prevent decoherence. Hence a
limited number of qubits are physically connected to preserve
their coherence. In addition to this limitation, the availability
of physical space to place the qubits is another limitation.
As the number of qubits in the quantum computer increases,
the amount of physical space needed to place them also
increases. This can be a practical challenge for building large-
scale quantum computers. There are a variety of techniques
for physically connecting qubits in its processors, depending
on the specific architecture and technology being used. The
qubits are connected by a series of superconducting wires,
known as resonators, which allow for the transfer of quantum
information between qubits. The resonators are designed to be
highly tuned and matched to the qubits, in order to minimize
noise and errors. Fig. 3 represents IBM Falcon processor
which uses a heavy-hexagonal qubit while this reduces qubit
connectivity slightly, it also minimizes frequency collisions
and spectator qubit errors that can negatively impact the
performance of quantum applications [26].

Mapping and swapping. To overcome the connectivity
limitations of the quantum computer, quantum circuit mapping
methods are put forward. (i) Initial mapping, when designing
a quantum algorithm, logical qubits and gates are typically
represented in an abstract way, without specifying physical
qubits that will be used to implement them. However, when
it comes to running the algorithm on a specific quantum
processor, logical qubits must be mapped to physical qubits
available on that processor. The objective of this process is to
minimize the number of physical qubits required to implement
logical qubits and gates of the algorithm, while also taking into
account the connectivity constraints of the quantum processor
[10]. (i) Swapping allows operations to be performed on
qubits that are not directly connected. However, swapping can
also introduce additional errors and increase the complexity of
quantum circuits, so it is important to use it judiciously [18].



C. Previous works and experiments.

In this subsection, we will review and discuss the relevant
literature and experiments that have been conducted in the
problem field. This will provide a foundation for understanding
the current state of research and the context for our work.

1) Reducing C-Not count: Mapping quantum circuit onto
a physical layer in a quantum computer has constraints.
One solution is optimal mapping to reduce resources. CNOT
gates typically use two logical qubits for processing. Vlad
Gheorghiu and others address the problem by using Clifford+T
gates, improving qubit mapping performance compared to
other algorithms [12]. Results improve when coupled with
methods for optimal initial mapping of qubits. A heuris-
tic approach considers optimal mapping to reduce resources
(CNOT) and the method is processed as pre-processing.

2) SAT approach for commuting gate: SWAP gates are
needed in quantum circuits due to limited qubit connectivity.
A pre-determined SWAP gate is effective for connecting
two qubits, and an SAT-based approach [28] can find initial
mappings for circuits with commuting gates to minimize
SWAP gates. This approach is shown to reduce gate count and
swap layers by 65% and 25% respectively, on a random 500-
node three-regular graph. Swap strategies can also efficiently
transpile circuits with blocks of commuting two-qubit gates
to hardware, resulting in low-depth circuits. A good initial
mapping can further reduce the required number of swap gates
for program graphs that are not complete.

3) Exploiting Qubit Reuse through Mid-circuit Measure-
ment and Reset: In this research paper [29], the authors
discuss reducing qubit swaps in quantum circuit mapping
that can improve efficiency by reducing errors and execution
time. Mid-circuit measurement allows for qubit reuse and can
significantly reduce the number of qubits and swaps needed,
improving efficiency and fidelity. This technique is shown to
reduce circuit resource usage by 60% and improve fidelity by
15%. By reducing the number of required qubits, the number
of swap operations can be decreased, which in turn reduces
execution time and improves reliability.

III. PROBLEM FORMULATION

In this section, we provide the problem formulation for
the qubit mapping problem, constraints, and their definitions.
Following problem formulation we provide problem analysis
along with examples that leads us to the proposed solution.

A. Problem formulation.

The objective of qubit mapping problem denoted by a
function Z : £ — P, is to find a mapping Z between a set
of logical qubits £ to physical qubits P that minimizes the
total distance between connected qubits, taking into account
their logical connection strength. Solving this formulation can
provide an optimal or near-optimal mapping of logical qubits
to physical qubits, which can then be used to implement the
quantum circuit with fewer SWAP gates. The definitions given
below need to understand before formulating the problem.

Definition 1 (Qubit interaction graph). Given a logical circuit
with k qubits, a qubit interaction graph is defined as a graph
whose edge weights represent the interaction count between
the qubits. For easy understanding, this can also be shown in
matrix form C(k x k), where C;; denotes the interaction rate
between qubits q;, q;.

Definition 2 (Coupling matrix). Given a topological graph
with k qubits, the coupling matrix D(k X k) denotes the
minimum swaps required for a qubit to interact with another
qubit in the topology graph. The distance can be calculated
using the Floyd-Warshall algorithm [10].

Formally, the problem of qubit mapping can be formulated
as an integer linear program (ILP) as follows:
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The variable x is a binary decision variable where

1, logical qubit &k is mapped to physical qubit ¢
Tik = .
k 0, otherwise.
subject to:
n—1
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where D;; represents the minimum number of two-qubit
swaps required to exchange the states of physical qubits ¢
and j. Equation (2) states that each logical qubit ¢ must be
mapped to exactly one physical qubit k. The equation (3)
states that each physical qubit & must be mapped to exactly
one logical qubit 7. Equation (4) means that for any two
adjacent qubits ¢,j and k,[ in the interaction matrix C, at
most one of the two pairs of physical qubits can be mapped
to 1 but not both simultaneously. This constraint ensures that
only adjacent logical qubits are mapped to adjacent physical
qubits, as specified by the interaction matrix, which helps to
reduce the overall cost of the mapping.

B. Problem Analysis.

In the context of considering the fidelity of quantum gates,
previous research utilizes an Linear Nearest Neighbour circuit
as a foundational framework (as seen in reference [22], [30]).
Fig. 2(a) shows a quantum circuit composed of 5 CNOT gates
with qubits {qo, ¢q1,¢2,q3}. It is mapped to IBM quantum
processor ibmq_toronto, shown in Fig. 3. Based on the qubit
count in logical circuit and physical topology, the initial step
should involve choosing the subgraph onto which we wish to
map the circuit and ensuring that the circuit is NN compliant.
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Fig. 4. (a) T topology graph and, (b) Linear topology graph, (c) Naive
assignment of qubits in T topology (d) Dynamic assignment of qubits in
Linear topology, (¢) Dynamic assignment of qubits in T topology with SWAP
gate added on (qo, g2) (f) Dynamic assignment of qubits in T' topology with
SWAP gate added on (g1, qo)-

Graph selection. As per the topological graph in Fig.
3, the possible non-isomorphic subgraphs are as shown in
Fig. 4(a), 4(b). The logical circuit is executed on any one
of these subgraphs. But, due to the different topologies of
the subgraphs, each subgraph has different nearest-neighbour
constraints. When the logical circuit is executed on these
subgraphs, each topology results in a unique final circuit as
shown in Fig. 4(c), 2(b) on the basis of swap gates added.

For example, Consider T topology as shown in Fig. 4(a),
and initial configuration on given logical circuit Fig. 2(a) as
{00 = 0,1 — 1,q2 — 2,q3 — 3}. The NN compliant
circuit obtained through this configuration is shown in Fig.
4(c). Similarly, for Linear topology as shown in Fig. 4(b),
and initial configuration on given logical circuit Fig. 2(a) as
{0 = 0,q1 — 1,q2 — 2,q3 — 3}. The NN compliant
circuit obtained through this configuration is shown in Fig.
2(b). Therefore, it is clear that the T topology subgraph needs
fewer swap gates to execute the entire circuit than the linear
topology subgraph. So we choose the T topology subgraph.

Fidelity-aware graph extraction. After choosing topology
graph, examining accuracy of the gates used in logical circuits
leads to varying levels of circuit fidelity. Each qubit in physical
topology graph exhibits different error rates as shown in Tab.
I. In general, single-qubit gate errors are one order lower than
multi-qubit gate errors. Hence, choose qubits with better error
rates to execute the logical circuit. T topology subgraph as
shown in Fig. 4(a) can be extracted from ibm_toronto topology
graph as shown in Fig. 3 in many ways i.e., the topology
subgraph can be {0,1,2,4} or {22,24,25,26}. These two
topologies are similar but their fidelities are different.

Mapping. After selecting a higher fidelity subgraph, we
have to map the logical qubits onto the physical qubits.
Consider again the logical circuit in Fig. 2(a) and the T
topology as shown in Fig. 4(a). This time instead of choosing

the configuration as {qo — 0,q1 — 1,2 — 2,q3 — 4},
choose a different initial configuration. Suppose the initial
configuration is {g1 — 0,g0 — 1,¢2 — 2, g3 — 4} the logical
circuit after mapping is shown in Fig. 4(e). In the same way,
consider linear topology as shown in Fig. 4(b), and the initial
mapping as {¢2 — 8,¢0 — 11,1 — 14,3 — 16} the logical
circuit after mapping is shown in Fig. 4(d). It is evident from
the figures that the SWAP gate count is decreased to a great
extent. Hence, choosing a good initial mapping can impact the
overall performance of the circuit.

IV. PROPOSED SOLUTION

In this section, we discuss in detail the algorithms proposed.
We propose (i) Fidelity-aware graph extraction algorithm
(FGEA) with an objective to select a subgraph with better error
rates to map logical qubits. Following this, we put forth (ii)
Frequency-based mapping algorithm (FMA) with an objective
to reduce the total distance between connected qubits, as
well as (iii) Heuristic routing algorithm (HRA) that aims to
minimize the SWAP gate count in the circuit.
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Fig. 5. Algorithm flow-map for optimal mapping.

The flowchart shown in Fig. 5 gives a basic idea of the
proposed solution. The flow starts with the logical circuit and
the IBM Falcon topology. The logical circuit provides IBM
Falcon topology with the number of qubits required to extract
a sub-topology from it while considering the qubit and gate
status to mitigate the overall error rate circuit execution. From
now on, we refer to sub-topology as a subgraph. With an
aim to minimize the swap distance between connected qubits,
an optimal initial mapping based on distance and interaction
count of physical qubits to logical qubits is employed. To
decrease the overload of SWAP gates in the circuit and to
satisfy the connectivity constraint, cost-based swapping is used
that takes into account the number of two-qubit gates.

A. Fidelity-aware graph extraction (FGEA)

The subgraph can be extracted based on criteria of better
error rates and count of logical qubits. This is particularly
important as physical qubits are prone to errors, and min-
imizing error rates is critical for the reliability of quantum
computing systems. The pseudo-code of subgraph extraction
with minimum error rates is given in Alg. 1 (FGEA).



Algorithm 1: Fidelity-aware graph extraction (FGEA)

Algorithm 2: Frequency-based mapping (FMA)

Input: IBM qubits topology G, number of logical
qubits &
Output: The subgraph of lowest error rate Sq € G

1 Let S be set of possible subgraphs of G;

2 Let error(S) be the function to evaluate the overall
error rate of the subgraph S € G based on the status
of individual gates and qubits;

3 Initialize the final result: Sq < (;

4 for S €S do

5 | if Sq =0 or error(S) < error(Sg) then
6 ‘ Sq « S;

7 end

8 end

9 return S

Brute-forcing sub-topologies. The primary objective of
FGEA is to extract a reliable subgraph. This can ultimately
improve the overall performance of the circuit. Consider the
topology graph G, the number of qubits % in the logical circuit
as inputs. Get the list of possible subgraphs with k& nodes from
the function subgraph() into the variable S. This method is
used to create a new graph that contains only a subset of the
nodes and edges from an existing graph and returns a new
graph object that contains only the nodes and edges from the
original graph that are in the subset specified by nodes.

Error estimation. The qubit error on each node and gate
errors on each edge is estimated based on IBM’s calibration
data [26], using the method error(). For more details on the
calibration data, refer to Tab. 1. This function takes a subgraph
as a parameter from the available subgraph list and aggregates
the error of the subgraph. The obtained error rate is compared
with the error rate of the remaining subgraphs available in S
and updates the lowest error rate subgraph in the variable Sq.

B. Frequency-based mapping (FMA)

By considering the mapping of logical qubits to physical
qubits as an assignment problem, with the goal of minimizing
the total distance between connected qubits. The problem
formulation and pseudo-code for mapping are described in
section §III and Alg. 2 (FMA), respectively.

High interaction — low distance. The main idea of FMA
is that the logical qubits with highest number of interactions on
the circuit are prioritized to be placed on the physical qubits
that have a lower overall distance to other qubits. This can
significantly minimize the overall addition of SWAP gates into
the circuit and henceforth make the circuit reliable. FMA input
contains the subgraph topology Sq, obtained from FGEA and
the logical circuit /C, it outputs the initial map Z.

Logical/physical evaluation. The interaction count of each
logical qubit in a variable C; is updated from line 2 — 6
by leveraging the qubit _interaction() function in the IBM
Quantum circuit library which is used to check the interactions
between two qubits in a quantum circuit. The method takes

Input: Subgraph topology from Alg. 1 as Sq, logical
circuit as IC
Output: Initial mapping result Z

1 Let n be the number of qubits to be mapped
2fori+0Oton—1do

3 Let C; be the number of interaction of qubit ¢
needs to make when executing circuit K:

4 for j«—i+1ton—1do

5 Let ¢(; ;) be the number CNOT gate between

qubit ¢ and j in KC;

6 Ci«+C; + Ci 5)s

7 end

8 Let D; be the shortest distance from physical qubit
i to all vertices in the subgraph Sq calculated via
the Floyd-Warshall algorithm;

9 end

10 Let £ be the set of logical qubits sorted by C;

11 Let P be the set of physical qubits sorted by D;

127+« 0;5+«0;

13 for i <~ n — 1 downto 0 do

14 Map the logical qubit £; with highest number of
interactions to physical qubit P; with lowest
Floyd-Warshall distance:
I(*IU{ﬁl'P]}&j%j+1,

15 end

16 return 7

two integer parameters, qubit? and qubit2, which represent the
qubit indices in the circuit and returns a gate object if the
interaction between the two qubits is found. On the other hand,
the variable D; is updated by calculating the distance between
each physical qubit to all the other qubits of the topology
graph using Floyd-Warshall algorithm [31], that provides the
shortest path between all pairs of vertices.

Sorting & mapping. Based on the values obtained from C;,
D;, sorting is performed on the logical and physical qubits,
and the sorted list is stored in variables L, P, respectively.
Then, map the logical qubit that has more interactions with
other logical qubits to the physical qubit in the coupling map
which has the least distance. Z holds the updated mapping
data. This can lead to more efficient and reliable quantum
circuits. In particular, mapping logical qubits that have more
interactions with other qubits to physical qubits that have the
least distance can help reduce the overall circuit depth and
improve the circuit’s error rate.

We describe an example of the logical circuit in Fig. 2(a)
and the physical graph obtained by FGEA as shown in Fig.
4(a). The algorithm executes as follows. (i) Total number of
interactions of logical qubits gy given by Cy, is 3. Similarly,
C1, Co, C3 for qubits q1, go, g3 are 3, 2, 2 respectively. The total
distance Dy, D1, D, D3 of physical qubits Qq, @1, @2, Q3 to



other qubits is 2,1, 1,2 respectively. Sort the logical qubits
in the descending order of their interaction count, the re-
sult would be £ <+ {qo,q1,92,q3}, the physical qubits in
the ascending order of their distance, the result would be
P <+ {Q1,Q2,Q0,Q3}. At the end, map the qubits Z <«
{a2: Q0,90 : Q1,91 : Q2,93 : Q3}.

Analysis. We analyze the readout assignment error rate
dataset of ibm_toronto to find the qubits with lower error rates
and map them to the physical qubits. The algorithm aims
to minimize the sum of swap distances between neighboring
physical qubits in the final mapping, which is a measure of the
total number of two-qubit swaps required to execute quantum
circuits on the mapped logical qubits. After extracting a
subgraph from the main topology graph, there may be multiple
ways to assign the qubits to the vertices of the subgraph. This
is referred to as a “’configuration” and is defined in the section
GIII. Our approach involves determining the mapping of the
NN-compliant circuit to the qubits in the quantum computer,
taking into account both the qubit and gate error rates in order
to minimize the overall error rate.

C. Heuristic routing (HRA)

In this section, we discuss heuristic routing Alg. 3 (HRA).
The central idea of HRA is to transform a quantum circuit
that can only be executed on a limited set of qubits, into a
quantum circuit that can be executed on every set of qubits by
inserting swap gates judiciously. HRA takes initial mapping Z
obtained from FMA, subgraph topology from FGEA S and
logical circuit X as inputs, and outputs final CNOT count c.

Potential swap pairs. HRA traverses through all gates
available in logical circuit O; ;. In each iteration, check
whether the gate is executable using method is_executable().
We leverage this method from IBM API and it returns true
if the gate is executable, false otherwise. If the gate in the
0;,; is executable, it proceeds with next gate. If the gate is not
executable, then insert swap gates as given in line 8. Variable
X contains the list of all possible swaps between qubits. the
function swap() finds the swaps associated with the qubits in
O;.;,Z and list them as candidate swaps.

Heuristic cost evaluation. The cost of each possible swap
pair is calculated based on minimum sum of distances between
two qubits dependent on initial mapping and number of swap
gates inside the circuit using method cost(). The cost of
all swap pairs is compared and the variable X is updated
with lease cost swap. The CNOT gate count provides useful
performance metrics for evaluating the effectiveness of the
algorithm. By efficiently calculating the optimal sequence of
swap gates and minimizing the number of CNOT gates, the
algorithm can help reduce the cost and improve the perfor-
mance of quantum circuits executed on physical hardware. We
provide an instance of a logical circuit as shown in Fig. 2(a), a
physical graph as shown in Fig. 4(a), and initial configuration
7 obtained from FMA {q2 : Qo,q0 : Q1,q1 : Q2,93 : Qs}.
The circuit obtained after initial mapping would be as shown
in Fig. 4(e). We need to add one swap gate to make the
entire circuit executable on a quantum computer. Obtain the

Algorithm 3: Heuristic routing (HRA)
Input: Logical circuit as /C, initial mapping as Z,
subgraph topology S from Alg. 1
Output: Final CNOT gate count ¢

—

Initialize ¢ < O;

Let X be the set of possible swap operations that can
be performed on two qubits;

Let O(i,7) € K be a CNOT gate in the logical circuit
that requires the interaction between qubits ¢ and j;

Let A, be the swap operation with minimum cost;
Xo @;

(5]

w

FN

5 for O(i,j) € K do

6 if (i,7) are not adjacent in Sq, then

7 X0 & X+ XU swap(O,T)

8 for X € X do

9 if Xo =0 or cost(X) < cost(Xq) then
10 | Xo <+ X;

11 end

12 end

13 end

14 end

15 Calculate the number of CNOT gates in the circuits;
16 ¢ < cost(Xq) + |O|
17 return c

list of gates to be executed from the logical circuit. Gates
CNOT(qo, q1), CNOT(qo, g2), CNOT(qo, g3) executes directly
as the two qubits satisfy the nearest neighbor compliance.
Gather the list of possible swap operations and put them in the
list variable X. Possible swap operations to execute the gate
CNOT(q1, g2) are SWAP(qo, g2), SWAP(q1, qo). Calculate the
cost associated with each SWAP. Consider adding the SWAP
gate between qubits (qg, g2). The cost is 6 since 2 SWAP gates
are added in the circuit (Fig. 4(e)). The next possible SWAP
gate is (g1, qo). The cost of this swap is 3 (Fig. 4(D)).

D. Complexity of algorithms.

Here we discuss the complexity of initial mapping and
swapping algorithms. Understanding the complexity is crucial
for designing efficient quantum circuits and optimizing their
execution on quantum hardware.

Lemma 1. Given the same number of logical qubits and
physical qubits, the time complexity of FMA is O(|L|?).

Proof. Computing the logical qubit interactions has a com-
plexity of O(|£|?), and computing the distance between
physical qubits has a time complexity of O(|P|) where n
is the number of qubits in the logical circuit as well as in
physical topology. Sorting the logical qubits, and physical
qubits has a time complexity of O(ClogC), O(DlogD)
respectively. Creating the initial mapping takes O(|£|) time.
The total time complexity of the qubit mapping problem is
O(|L|?+|P|+Clog C+Dlog D+|L|), which can be simplified
to O(|£|?) since |L|, |P| are the same in our algorithm. []



Lemma 2. The computational complexity of HRA is O(|O|*+
| X] + [ Xa).

Proof. Computing the available two-qubit gates has a com-
plexity of O(|O|?). To obtain the possible swap operations, the
time complexity is O(]X|). Calculating the cost of each swap
operation requires the time complexity of O(|Xq|). The overall
time complexity of the algorithm is O(|O|* + |X|+|Xq|). O

V. EXPERIMENT AND EVALUATION

In this section, we assess the performance of the FGEA
based on the number of CNOT gates of a collection of bench-
marks taken from previous works [10], [18] using the most
recently reported hardware model ibm_toronto that employs
superconducting circuit technology. We choose SABRE [18]
as the baseline algorithm to evaluate our results.

Parameter Range
Qubit 27
Qubit error rate 7.700e-3 to 2.192¢-1
CNOT error rate 5.986e-3 to 4.922e-2
Gate execution time (ns) 214.778 to 860.444

TABLE 1
IBM TORONTO CALIBRATION DATA. THE DATA HAS BEEN TAKEN ON
4-4-2023 AND THE DATA CHANGES OVER A PERIOD OF TIME

The given table provides calibration data of ibm_toronto,
which shows falcon qubit topology with their respective qubit
error rates, CNOT error rates, and gate execution time. Cali-
bration data of IBM processors refers to the set of parameters
that are determined through calibration experiments and used
to optimize the performance of the quantum processor. These
parameters include values for gate durations, amplitudes, and
frequencies, as well as crosstalk coefficients and other error
mitigation techniques. This data has been used in our proposed
solution to analyze the fidelity of the entire circuit.

It is important to note that the calibration data is not static,
and may need to be updated periodically as the behavior
of the processor changes over time. This may be due to
changes in the environment, such as temperature fluctuations
or electromagnetic interference, or to changes in the hardware
itself, such as the introduction of new qubits or gate types.
Therefore, continuous monitoring and calibration of the quan-
tum processor is necessary to maintain optimal performance.
The qubit error rate represents the probability that a qubit will
experience an error during computation. The IBM Quantum
Experience APIs [26] are utilized for conducting experiments
on IBMQI16. Through these APIs, we can access the daily
calibration data of the machine, which includes information
such as the time required for single qubit gates, the coherence
time of qubits (T2 time), CNOT gate durations, and error rates
for single-qubit gates, CNOT gates, and measurement.

We evaluate our algorithm on a set of benchmark circuits
with up to 20 logical qubits. Our results show that our
algorithm achieves higher fidelity than the baseline algorithms
in most cases, while also being scalable to larger circuits.
For our experiment, the algorithms FGEA, FMA, HRA are

implemented in Python and Qiskit version 0.16.3. The hard-
ware configuration is AMD Ryzen 7 5825U with Radeon
Graphics 2.00 GHz, 16GB memory. We use the 27-qubit NISQ
architecture IBM Toronto as the target quantum platform. To
evaluate the algorithms, we selected 10 benchmark quantum
circuits of various qubits (from 4 to 15).

Error rates and execution time rates of
different mapping to physical topology

executing same circuit Benchmark Circuits vs.
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Fig. 6. (a) Error rate to Subgraph plot, (b) Percentage increase in CNOT
count, (c) Percentage increase in fidelity, (d) Execution times of benchmarks

Table II clearly shows that our algorithm performs better for
reducing CNOT gate count in the final circuit when compared
with the SABRE algorithm. The %age gate reduction column
demonstrates that on average the optimal mapping algorithm
computes the circuit with 10.52% reduced CNOT gates than
SABRE. Initial mapping using FMA is well-calculated, which
reduces SWAP gate overload on the circuit. In contrast,
SABRE uses a random initial mapping, which requires running
the algorithm multiple times to obtain the optimal solution,
consuming more time. However, our optimal mapping algo-
rithm is deterministic with the same output consistently.

As it is evident from Fig. 6(c), by incorporating our error-
aware qubit mapping technique, it is possible to generate an
initial mapping that utilizes the most dependable qubits with
the lowest cost. By adapting noises in the system, the fidelity
of the overall circuit is increased by an average of 1.25 times
and up to 1.33 times higher than the baseline algorithm.

The CNOT error rate represents the probability that a
CNOT gate will experience an error during computation. Gate
execution times mean the time a quantum gate takes to perform
its operation. Both CNOT error rate and execution times are
useful in evaluating the performance of quantum computing
systems. This table gives an abstract for our understanding of
how this information can be used to implement our approach to
find the best suitable physical topology for the logical circuit.

Fig. 6(a) visually represents the error rates and execution
times for different mappings to physical topology executing
the 17 different benchmark quantum circuits. The lower the



TABLE II
EXPERIMENTS EVALUATION DATA TABLE

S.No Benchmarks n Gates SABRE gates OM gates %age gate reduction f_min f_max
1 bv_4 4 3 6 6 0 0.635 0.931
2 bv_6 6 5 20 14 30 0.686 0.896
3 bv_8 8 7 31 19 38.7 0.655 0.846
4 qft_10 10 90 429 399 6.99 0.67 0.796
5 sqn_258 10 4459 11044 10506 4.87 0.67 0.789
6 sym9_148 10 9408 25722 24344 5.36 0.669 0.791
7 sym9_193 11 15232 26531 25355 443 0.659 0.783
8 wim_266 11 427 1603 1306 18.52 0.652 0.772
9 74_268 11 1343 4278 3859 9.78 0.651 0.769
10 cyclel0_2_110 12 2648 6543 6167 5.75 0.66 0.774
11 rd84_253 12 5960 14719 14536 1.24 0.654 0.754
12 sym9_146 12 148 512 499 2.53 0.641 0.733
13 radd_250 13 1405 3122 2893 7.33 0.631 0.729
14 coll4_215 15 7840 19181 17968 6.32 0.626 0.719
15 misex1_241 15 2100 6343 5004 21.11 0.621 0.717
16 square_root7 15 3089 8492 8138 4.16 0.622 0.71
17 ising_model_16 16 150 269 234 13.01 0.611 0.702

S.No: Serial number of the benchmark. Benchmarks: the name of the benchmark circuit. n: number of qubits in the benchmark. Gates: the number of CNOT
gates in the benchmark. SABRE gates: the total number of gates in the final circuit obtained using the SABRE algorithm. OM gates: the total number of
gates in the final circuit obtained using the Optimal mapping algorithm. %age gate reduction: the percentage reduction of gates using the Optimal mapping
algorithm when compared with SABRE. f_min: the fidelity of the circuit without using the Optimal mapping algorithm. f_max: the fidelity of the circuit using

the Optimal mapping algorithm.

error rates and execution times are, the better the overall
performance of the circuit. Fig. 6(b) shows the percentage
increase in CNOT gate count for each benchmark circuit with
our qubit mapping and routing algorithms FMA, HRA. As
shown in the graph, the average percentage increase in the
CNOT gate count was observed to be around 40% with the
lowest increase in the CNOT gates being 33% observed in the
square_root7 benchmark circuit making it the best performing
one using our algorithm.

Fig. 6(c) shows the fidelity improvement achieved by using
our qubit mapping algorithm against the SABRE algorithm.
The fidelity of the output state differs in each benchmark
circuit surpassing the SABRE method, as observed. Here, we
used the state tomography data obtained by IBM to evaluate
the output state, which is later used for verifying a quantum
system in the desired state and detecting errors during quantum
state preparation and manipulation. The graph demonstrates
that the algorithm substantially reduced the potential error
rate of all benchmark circuits, with an average improvement
of 25%. The square_root7 circuit had the most significant
improvement, with an increase of over 33%.

Fig. 6(d) displays the execution duration achieved by our
algorithm against the SABRE, which was calculated based on
the gate execution time data. Although using actual durations
of the gates could lead to more precise execution durations for
each benchmark, it would increase the number of constraints
in the optimization problem and prolong the compilation
time. Even though using the real durations, each benchmark
only requires a few seconds of compilation time. The graph
indicates that the execution time varies for each benchmark
depending on the number of gates to execute. On average, our
method HRA took 2.42 times less time to execute the circuit

compared to the general method. The benchmark sym9_ 193,
with the largest number of gates at 15232, took 1.49s to
execute using HRA.

VI. CONCLUSION AND FUTURE WORK

In summary, this paper introduces a suite of algorithms
such as FGEA, FMA, and HRA for qubit mapping and
allocation through static optimization in quantum computing.
As quantum systems are prone to errors caused by noise,
these algorithms address this major challenge by efficiently
mapping logical qubits to physical qubits, which reduces the
number of operations and communication needed. Utilizing
optimization theory and calibration data for error-rate calcula-
tions, these algorithms enhance circuit fidelity by minimizing
the number of SWAP gates required [32]. This increases circuit
scalability while reducing the need for costly error corrections.
Our experimental results demonstrate that the algorithms are
effective in real-world hardware, making them a practical
and efficient solution to the problem of qubit allocation and
mapping compared to the SABRE method.

However, a more challenging dynamic approach can im-
prove the circuit depth by swapping qubits on every cir-
cuit interaction though this may affect fidelity optimization.
Overall, this work represents a significant advancement in
quantum computing, and in the future, we plan to improve
our comparisons with the latest mapping optimization algo-
rithms and IBMQ compiler optimization processes with more
complex computations and increased datasets. We believe that
this research will pave the way for further developments in
unlocking the full potential of quantum computing for solving
complex problems.
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