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ABSTRACT

Concurrent data structures play a critical role in the overall per-
formance of GPGPU applications. Stack is one of the basic data
structures and finds numerous applications where data is processed
in a Last In First Out (LIFO) fashion. Although concurrent stack is
well researched for multi-core CPUs, there is little research pointing
to the conversion of CPU stacks into a GPU-friendly form. In this pa-
per, we propose a concurrent search-based GPU stack named Scan
Stack. The proposed stack is designed to take advantage of GPU
memory access patterns, memory coalescence, and thread struc-
tures (i.e., warps) to increase throughput. Our experiments on an
NVIDIA RTX 3090 show that our proposed scan stack significantly
improves the throughput and scalability for all benchmarks when
reducing the search area. However, the greatest improvements are
shown when elimination is possible, and this improvement reaches
nearly 39 times what a non-optimized structure is capable of.
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1 INTRODUCTION

Data parallelism has grown to become a very significant topic in
the field of computer science. As more data is gathered, it becomes
harder to process in a serial manner while retaining efficiency.
Considering the topic of data structures, CPUs resolve the desired
increase in work and efficiency by delegating the work across their
cores for concurrent progress. However, CPUs have an inherent
limitation due to the number of cores. GPUs, on the other hand, are
built specifically to process large amounts of data across thousands
of dedicated cores and threads.
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For this reason, the application of GPU programming becomes
more prevalent as big data expands. This has led previously CPU-
based programs and structures to expand by facilitating a GPU
implementation. While GPUs have become more popular with
their capabilities of massively parallelized operations, much of the
research for concurrent data structures, especially the stack, has
been performed with CPUs in mind. This leads to an intrinsic part
of this paper.

The stack is one of the simplest data structures. It has a high
degree of potential when pairing a stack’s design with the GPU’s
compatibility with simple and repetitive tasks. A GPU stack would
still suffer from the prevalent issue of thread contention as now
thousands if not tens or hundreds of thousands of threads are
attempting to access the stack and complete. This is only a single
example of design problems which must be addressed.

In this paper, we propose a lock-free concurrent search-based
stack for GPU. This proposed stack brings a design and optimiza-
tions tailored to take advantage of the GPU friendly memory access
patterns of the array structure. The techniques presented address
major concerns like thread contention and memory access patterns.

First, we discuss the stack’s general structure and the search area
reduction technique called <lowest-area>. The array representing a
significantly large stack led to the optimization of searching for the
stack’s top. This improves the efficiency of operations no longer
having to search over mostly invalid space. We also observe this
property benefiting from coalesced memory accesses as a group of
operations will be searching the same space.

Secondly, we present GPU-friendly iterative push and pop op-
erations that exploit the array’s memory structure on GPU. This
results in an efficient searching technique that does not require the
usage of a high contention global top reference.

Lastly, we design an elimination structure to take advantage of
the thread arrangement on GPU. We reduce contention by using a
thread-block-level elimination design that does not require global
synchronization.

Our experiments show that our proposed scan stack has a high
throughput which scales with elimination. Comparing its design
to a baseline with none of the proposed optimizations, the elimina-
tion method results in nearly 39 times the throughput than if no
optimizations were performed.

2 RELATED WORK

Hendler et al. [3, 4] propose the usage of a back-off elimination
stack for CPU to create a scalable lock-free algorithm. They then
go on to propose two methods for the back-off mechanism - elimi-
nation back-off and adaptive elimination back-off. The first results
in a failed attempt to perform an action on the stack being added
to the elimination array and cycling through until a successive
operation. The second allows for individual threads in the collision
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to “independently chooses a sub-range of the collision layer it will
map into” and local counters, influenced by collisions, to determine
the thread’s collision lifespan. Colvin et al. [2] would later visit the
prior algorithm both simplifying data structure and elimination
aspects and rectifying an error they determined in the elimination
of like operations. In the end, the overall goal of this back-off elimi-
nation implementation is to reduce the overall contention over the
head of the stack.

Shafiei [13] presents a non-blocking stack algorithm for an array
based stack. The operations are straightforward taking in an outer
object “top” which will be updated by either a pop or push through
compare and swap (CAS). As CAS is used for the update of the
top’s contents, the contention of the threads at a given top with a
single successful return while all other threads will require another
iteration of the loop. This implementation retains the contention
where all threads will fight over who succeeds first, but it has the
benefit of not using a linked list which requires pointers between
the nodes.

Michael and Scott [8, 9] present a blocking and non-blocking
concurrent queue algorithm. Their blocking technique serialized
the head and tail pointers to reduce the operations that could occur
to 1 at each position. While their algorithm uses a lock on both
head and tail positions, they argue that it is non-blocking due to
the nature of failing to perform the action. By this, a failed action
instead performs a loop to instead of waiting for the lock to be
unlocked. Michael and Scott [7] later go on to create a lock-free
deque, no longer using locks to create a non-blocking structure.

Misra et al. [10] present a listing of 4 concurrent data structures
on GPU using the CUDA programming language. They review the
nature of CUDA GPU programming homing in on prime issues
which are not as prevalent on the CPU. One of the most prevalent
is the way in which the Streaming Multiprocessors (SM) handle
the threads and thread blocks which they are given. To start, an
individual SM has a register, L1 cache, and read-only memory; L2
cache is connected to all SMs then it is connected to what amounts
to global memory for a GPU. As such the memory blocks assigned
to a specific SM are entirely disjoint from one another and cannot
be accessed unless the L2 cache or global memory is used. Thus, a
penalty of slow access to global memory must be paid in order to
do so, such as in the event of creating a pointer from one memory
address locally to another memory address on another SM and
attempting to access the latter.

Massalin and Pu [6] presented a multiprocessor OS kernel that
uses compare-and-swap for synchronization. They go on to detail
several parts of their kernel, and the most significant here was their
description of how a LIFO stack was implemented. By using a global
reference, their LIFO stack uses a top reference to get the position,
and it then gets the adjacent positions for validation. By evaluating
if nearby positions have been altered, the operations are able to
discern if the state of the stack has changed.

Peng [12] presented an array-based stack. Using a global variable
T for top, operations would fetch-and-add or read and attempt to
compare-and-swap their values into the array. Peng introduces a
method of creating “invalid” cells that are the result of the target
cell of pop containing a specific value or CAS success signifying an
empty cell. This paper puts forth the main benchmarks that will be
used withing Section 4 later within this paper.
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Figure 1: Example of Scan Stack Using Integers
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Park and Lin [11] present a GPU stack for IoT (Internet of Things),
and mobile devices. Targeted towards machine learning and secu-
rity, they discuss the challenges and problems related to a GPU
stack. Many Problems in this instance refer to their usage of the
CPU in tandem with the GPU for mobile application’s machine
learning.

Abhinav and Nasre [5] present a garbage collection program for
reclaiming memory that cannot be reached by a running program.
In this, they show a hybrid stack tailored for GPU that uses a global
top variable. This stack is hybrid in the case that it is used in both
local and global memory, and it swaps between them depending
on local memory’s fullness. As they use a reference based stack
array for referring to graphs, the array also operates as a linked list
between the nodes of the graph.

Borisenko et al. [1] present a GPU solution to the branch-and-
bound problem. The method for solving uses a degree of serializa-
tion to determine the sub-trees of each thread. Their granularity
determines the depth of the tree that they begin parallelization
on. Granularity is then noted to heavily affect the productivity of
the solution. They show that their recursive method was generally
faster.

Troendle et al. [15] present a specialized concurrent queue, and
they detail key features of concurrent data structures and manage-
ment techniques. Noting that thread divergence, caused by threads
in wavefront not sharing the same code path (i.e., thread a has an if
condition-true while others do not), can heavily affect performance.
They put forth the idea of using a proxy thread, mentioned in Sec-
tion 3.4, to perform the tasks of other threads within a wavefront.

3 DESIGN AND IMPLEMENTATION

In this section, we describe the details of the base structure, op-
erations, and optimizations of our proposed stack, named Scan
stack [14].

3.1 Base Structure

The proposed Scan stack has a simple base structure that is based
on a one dimensional array. Figure 1 shows a simplified example of
the Scan stack that holds integer values. This array structure offers
a benefit of GPU friendly memory access patterns from a group of
threads when GPU executes threads in a Single Instruction Multiple
Threads (SIMT) fashion.

The scanning refers to the process of searching for the top of
the stack which can be located anywhere in the array. The require-
ments to perform a stack operation will be discussed in the relevant
subsections in Section 3.2. The proposed scanning technique helps
avoid an ABA problem. The ABA problem refers to when a location
is read twice, has the same value for both reads, and another thread
has changed the value and performed work between the two reads
before resetting to the original value. Compared to using a global
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variable for the top, this scanning approach helps decrease thread
contention due to the threads independently searching for the top.
As a thread scans each cell of the stack array, most of the process
involves reading from memory unless the operation conditions are
met. Contention occurs mostly when multiple threads reach the
top and attempt to perform their action. This behavior is discussed
further in Section 3.3.

Due to the array structure that makes up the Scan stack, scan-
ning through the array to find the top becomes much more efficient
on GPUs. This is due to a high likelihood of threads performing
the same operations within the same warp accessing sequential or
identical positions. This behavior of the Scan stack allows exploita-
tion of the memory coalescing property implemented on modern
GPUs.

To limit the number of unnecessary scans from the operations,
threads implement a proposed lowest necessary area optimization
shown in Figure 2 when performing operations. Implementing
this results in operations beginning much closer to where the top
could be, and lowest-area then significantly decreases time wasted
scanning when the stack is mostly full (push) or empty (pop). By
scanning at relatively large intervals (i.e., intervals of X = 25,000)
to find a new starting position, an operation will need less time
to find the top than if it were to start at indices 0 or n-1. The new
starting position is determined to be 1 interval before (for push) or
after (for pop) the first empty cell discovered this way. However,
no thread knows exactly where the top is located in the stack.
thp
+
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Figure 2: Lowest Necessary Area Optimization Example

Lowest-area comes with a fundamental problem alongside the
reduction of redundant scans. After a starting point has been de-
termined, the point could have had its state altered by another
operation. For instance, there exists the case where push’s start has
been evaluated to be 1 less than the actual top due to that point’s
scan seeing a valid value. This would create a problem if active pop’s
then cause the top to now be below this starting point. The push
would then scan the cell as being empty and immediately attempt
to push its value even though there are non-filled values below the
starting cell. This occurring with a pop operation is unlikely as
there will always be at least 1 interval between top and pop when
the pop start is initially evaluated. However, an invalidation-cell is
discussed in Section 3.2’s pop operation that mitigates this resulting
in an invalid stack state.

3.2 Stack Operations

Two main operations supported are push and pop, both of which
incorporate the scanning.
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Figure 3: Push Operation Example

The push operation inserts an integer value into the stack (pseudo
code is shown in Algorithm 1). This is done by scanning from the
lowest point (i.e., index 0) in the stack and moving upwards until
the empty cell (i.e., —1) is found. Then, an atomic compare-and-
swap (CAS) operation is attempted upon that point as in Figure 3.
If successful, the operation will cease and return the value that was
inserted to the top of the stack as a sign of success. If CAS fails
(shown in Figure 4), the push operation will take a step away from
its previously found top, in the direction of index 0. Afterwards,
the thread will continue to take steps toward index 0 in search of a
non-empty cell before beginning to scan toward index n-1 (deeper
analysis of this handling is covered in Section 3.3). Due to the finite
nature of an array, it is possible that the push operation will result
in a “failure” due to a full stack, and this case is handled by returning
a value indicating such a failure.
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Figure 4: Push Operation Under Contention Example
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Figure 5: Pop Operation Example

The pop operation removes the top value from stack (pseudo
code is shown in Algorithm 2). Similar to push, a pop operation

12



Scan Stack: A Search-based Concurrent Stack for GPU
N. South, B. Jang

Algorithm 1: Scan Stack Push()

1: n « Stacksize; 28: while stack[i] < 0&&i > 1do

2: gran <« LAGranularity; 29: i—i-1;

3: temp — —2; 30: end while

4: val « InsertValue; 31: if i = 1 then

5: star <« 0; 32: i—i—1;

6: track «— false; 33: end if

70— 1; 34: track « true;

8: while i * gran < n do 35: blip « stackl[i];

9: if stack[i* gran] = —1 then 36: end if

10: star « (i — 1) = gran; 37:

11: break; 38: if i =n—1then

12: else if (i +1) = gran > n then 39: if track = true then

13: star « i gran; 40: if blip # —1 then

14: break; 41: temp — —2;

15: end if 42: break;

16: i—i+1; 43: end if

17: end while 44: temp «— —3;

18: 45: break;

19: for i « star > n—1do 46: end if

20: blip « stack|i]; 47: if track = false then

21: if stack[i] = —1 then 48: temp «— —2;

22: if atomicCAS(&stack|i], —1,val) = —1 then 49: break;

23: temp = val; 50: end if

24: break; 51: end if

25: end if 52: end for

26: temp «— —3; 53: return temp;

27: i—i—1;
b‘i‘f’m Top However, a pop operation also scans for an invalid cell, represented

P e e e by X = -2, to be found.

am =0 < Sean dex T After identification of a non-empty cell, a CAS is performed at-

botiom Top  Another fiishes frt tempting to extract and replace the value with an invalidated value
*_ . (i.e., -2). If successful, the operation will cease and return the value

b N that was extracted as shown by Figure 5. If a CAS failure occurs,
Index 0 o ndex n-1 the pop operation will take a step away from its previously found
hofom s f top — 1, in the direction of n-1, as shown in Figure 6. Afterwards,

AR RIS the thread will continue to take more steps towards index n-1, until
\ndexo «— sean Tndex -1 an empty cell is discovered, before beginning to scan toward index
bottom Top Re-validate -2 0 (deeper analysis of this handling is covered in Section 3.3). This

.. e e e e is to account for if the stack has increased in size since the last

b observation of the stack. As it is possible that a pop will result in
Index 0 Index n-1 . . R .
bottom nothing due to an empty stack, a return (i.e., -2) is designated for

+ such an event.

o T TR rrr o In the case of an invalid cell being identified, the cell is evalu-
Index 0 —— sen index -1 ated to have an empty cell above itself in the stack. If so, a CAS
b‘imm is performed attempting to re-validate the cell by replacing the

e e e e e s invalidated value (i.e., -2) with an empty value (i.e., -1). Whether

fm o0 - TR successful or not, the pop operation will repeat the process as if a

Figure 6: Pop Operation Under Contention Example

scans from the highest point (i.e., index n-1) in the stack moving

downwards until a non-empty value, represented by X > -1 is found.

CAS on a non-empty cell had failed. This behavior is to account for
the cell above the invalid cell possibly having a value pushed to it
during the process.

3.3 Contention Handling

The concurrent access of the stack ensures that cases described
within Figures 4 and 6 are likely to occur. Thus, the top position
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Algorithm 2: Scan Stack Pop()

1: n « Stacksize;
2: gran <« LAGranularity;

3. star «<—n—1;

4: track « false;

500« 1;

6: while i * gran < n — (gran+1) do
7 if stack[i* gran] = 0 then

8 star « (i+1) = gran;

9 if (i+1) x gran > n then

10: star «—n —1;
11: end if

12: break;

13: end if

14: i—i+1;

15: end while

16:

17: for i « star — 0 do
18: if i <n—-1&&stack|i] = -2 && stack[i+ 1] = —1 then

19: if atomicCAS (&stack[i],-2,—1) = —2 then
20: end if

21: ie—i+1;

22: while stack[i]!=-1&& i <n—-2do

23: i—i+1;

24: end while

25: if i =n — 2 then

26: P i+l

27: end if

28: end if

29: blip « stackl[i];
30: if stack[i] > —1 then
31: temp = stack|[i];

32: if atomicCAS(&stack[i], temp, —2) = temp then
33: break;

34: end if

35: temp — —3;

36: i—i+1;

37: while stack[i] > -1&&i<n-2do
38: i—i+1;

39: end while

40: if i =n — 2 then

41: i—i+1;

42: end if

43: blip « stack][i];

44: track « true;

45: end if

46:

47: if i = 0 then

48: if track = true then
49: if blip = —1 then
50: temp «— —2;
51: break;

52: end if

53: temp «— —3;

54: break;

55: end if

56: if track = false then
57: temp «— —2;

58: break;

59: end if

60: end if

61: end for

62: return temp;

Algorithm 3: Push Contention Handler

i—i—-1

: while stack[i] < 0&& i > 1do
i—i—-1

: end while

. if i = 1 then

ie—i—-1;

: end if

NG woN e

which represents the most concerning cell of opposing operation
contention should be handled carefully. To take a snippet of code
from Algorithm 1 shown in Algorithm 3.

If the current cell of the stack is scanned and seen to contain
an empty value (i.e., -1) or invalid value (i.e., -2) while performing
a push operation, this means that the stack has shrunk from a
successful pop operation. The thread must now re-scan to a point
which pushing would be a valid action to perform. Notice on line
1, that even if the push failed due to another push succeeding, the
failed operation will always step back at least one step purely due
to failing. In doing so, threads that have failed a push will step to
1 cell below the highest non-empty cell, and failed pops will have
stepped to 1 cell above the first empty cell. Pop operations use an

inverse of the Algorithm 3 shown above. Threads will then be setup
to re-scan the local top area in the event of alterations.

Figure 7 shows an example case of multiple operation types
contending for their viewed top of the stack. What can be seen is
that 4 operations (2 pushes and 2 pops) are all attempting their own
operation. The first push succeeds exchanging the empty cell with
the new value (i.e., 16). Following this, the next push now attempts
its atomicCAS() yet the value appearing at the old top is no longer
empty. As the second insertion fails, the thread must now regress
below the current cell. However, the pop’s had begun to scan the
cell and saw an empty cell thus scanned below the Top finding a
non-empty cell. Both pop operations will save the current value and
attempt to atomicCAS() and create an invalid cell (i.e., -2). However,
only one will succeed returning the cell’s value while the other
must ascend to find an empty cell.

The case previously described is very well structured. However,
the operations occurring in push followed by pop is not always
guaranteed. Figure 8 explores a different case of this problem. Say
that the order of completion occurs in a push, pop, pop, and push
fashion. Then, the first push now scans an empty cell, and it at-
tempts its atomicCAS(). The following pop’s scan shows a empty
cell resulting the operation moving on to the cell below, and it will
pop the value below top creating an invalid cell. The second pop
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Figure 8: Multiple Operation Type Contention Example 2

will have also observed an empty cell and moved below, but it will
fail then ascend the stack due to the cell being invalid. Finally, the
last push sees that the cell is now non-empty and regresses down
the stack before ascending once more.

This functionality works due to an atomic operation such as
atomicCAS() forcing other threads performing an atomic operation
on a cell to wait until the winner thread has updated the cell’s
memory address. This benefits from the lowest necessary area (LA)
discussed in Section 3.1’s Figure 2 as the operations will have a
degree of space due to being spread out, so threads are less likely
to be contending with one another.

The space provided by LA does not completely rectify the po-
tential race condition if the invalid cells were not present. This can
be seen in the case of Figure 8 when the opposing operations step
passed one another due to their search conditions being evaluated
as true. If the pop operation did not invalidate the previous top,
then the stack would now be in an invalid format. This functionality
also serves as a way to cause pop operations which have stepped
over to ascend the stack once more to pop the concurrently pushed
new top. The previous top was the proper top to target, for the first
pop operation to view it, as there was no value above it at the time
that the operation scanned that cell. By invalidating, the stack will
remain in the proper format rather than creating possible gaps of
empty cells.

3.4 Elimination

Elimination is performed by implementing an organization struc-
ture called a proxy thread into the warps. In CUDA, a warp is
(typically) the smallest unit of organization representing 32 threads.
The next degree of organization is thread block which can contain a
user defined number of threads and can be broken down into warps,
but it typically has a power of 2 number of threads designated. Next
comes the Grid, but this structure is not significant to this process
of elimination used.

As blocks and warps are loaded into local memory for the cores,
an access to local memory can be performed that is much faster than
attempting to constantly reference a global memory object. As such,
a __shared__ array referred to as LIMP (Local IMPacts) is created
for each block which will contain the list of operations and their

data that the block in question will be performing. This reduces
the need to ascend the memory structure and possibly increasing
overhead by putting off higher accesses until truly necessary.

By using the warp and block layout through LIMP, an elimina-
tion structure that rarely relies on accessing non-local data can be
formed. To start, the proxy thread of each warp will scan through
its warp attempting to find a pair of push and pop operations that
can successfully eliminate. If a pair is found, the push value is
handed directly to the pop, but it is possible for nothing to occur
if no eliminations are found in the warp. After warp-elimination
has completed, elimination ascends to the block level where a non-
eliminated operation is first invalidated before it scans looking
for its opposite. This invalidation behavior is to prevent another
proxy-thread within the block from eliminating an operation that
is currently looking for a partner. If no partners are found for an
operation, the proxy thread will make the operation valid again
while exiting the attempt as it is unlikely that any further pair will
be found. A sufficiently large block would be given ample chance to
eliminate the majority of its operations. After elimination has run
its course, the remaining operations that have not been eliminated
will begin accessing the stack to add their data.

Total grid-based elimination was not implemented. The reason-
ing for this is due to the requirement of accessing a global array
holding all operations to be done, the time necessary for scanning
such a space, and the cost if there are no pairs remaining. At a
certain total operation count, it is believed that the cost of scanning
the totality of operations presented for a pair would far outweigh
the benefit.

Another attempt at optimization is the expansion of a proxy
thread’s duties through serializing the remaining operations after
elimination. In doing so, the number of threads which will actively
enter contention onto the stack are decreased. However, instilling a
sense of order into this structure comes at the price of performance
when elimination is not possible, and this is further discussed later
within Section 4.

4 EXPERIMENTAL RESULTS

In this section, we outline the benchmarks, performance metrics,
and tests that are used to gauge the efficacy of the proposed Scan
stack. An Nvidia RTX 3090 was used for all benchmark evaluations
presented in this section. The operating system for the test machine
was Ubuntu 20.04.2 LTS with a Linux 5.15.0-46-generic kernel, and
CUDA version installed is release V11.4.

We used a similar benchmark as Peng did. They are described
below.

e RandomMix - a random mix of operations where there is
about 50% chance of either a push or pop operation being
performed.

e Push Only - a set number of only push operations being
performed.

e Pop Only - a set number of only pop operations being per-
formed.

All benchmarks are performed and stressed by increasing the
number of operations. By starting from a relatively small operations
of 1000 and scaling to 10 million total operations, the data produced
aides in measuring the scalability and efficiency of the proposed
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design. The benchmarks mentioned above are tested and compared
under 3 different optimization designs: No-Optimizations, Lowest-
Area, EL+LA (Elimination + Lowest Area), and EL+LA+PX (Elimi-
nation + Lowest Area + Proxy Thread). To note, all designs after
lowest-area include the optimization of lowest-area. The bench-
marks of RandomMix and Push Only will be performed on a com-
pletely empty stack, but Pop Only will use the stack produced by
Push Only to perform its benchmark.

Scan Stack - RandomMiix - Throughput
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60000000
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Figure 9: Throughput and Execution Time of RandomMix
Benchmark

The primary performance metric we used to evaluate the effec-
tiveness of the proposed stack is throughput (i.e., Operations per
Second), but execution time (milliseconds) to complete the bench-
mark is also measured for plotting and reference. By generating
a graph based on the data collected from scaling the operation
count, a plateau on the program’s throughput may be discovered
leading to further opportunities for enhancement. Following data
presented by the benchmark tests described, a promising behav-
ior emerges when more than one type of operation is performed
within the thread blocks and the proxy threads usage limited only
to elimination.

By comparing the data represented by Figures 9-11 at its highest
load, throughput observations of the RandomMix benchmark that
uses EL+LA+PX method shows roughly 648% the capability of
the no-optimization method. However, the lowest-area method by
itself boasts roughly 1003% no-optimizations capability when the
EL+LA+PX implements this feature. Meanwhile, by limiting the

proxy thread activity to EL+LA (Method shown in Figures 9-11)
yields a significant increase in efficiency to roughly 3896% of no-
optimizations. This shows that the EL+LA is not only over 6 times
greater than EL+LA+PX but also nearly 39 times more efficient than
no-optimizations.

Another significant boon to limiting the proxy thread’s activity
was observed when only a single type of operation is performed.
While the throughput of the EL+LA Method was observed to be
roughly 376% of the non-optimized’s capability for pushing, the
EL+LA+PX form performs only 97% of the same metric. The lowest-
area on the other hand was shown to be 414% of no-opt. Finally,
the pop-only behavior is evaluated to be the worst performing
across the board. EL+LA+PX operates at roughly fifth of its push-
ing performance at 19%, lowest-area though is the effectively tied
in efficiency with no-optimizations with 99%, and EL+LA is very
similar to lowest-area as it has 100% of non-optimized.

Scan Stack - AllPush - Throughput

8000000

No Opt
7000000
LA
T 6000000
2 e EL+LA
S 5000000
o e EL+LA+PX
= 4000000
Q
% 3000000
p=3
o
2 2000000
£ S~ —
1000000
0
1000 10000 100000 1000000 2000000 3000000 4000000 5000000
Operations Total
Scan Stack - AllPush - Execution Time (ms)
3000
No Opt
2500 LA
EL+LA
= 2000
£ EL+LA+PX
g 1500
£
@ 1000
<

500

1000

10000

100000 1000000 2000000 3000000 4000000 5000000
Operations Total

Figure 10: Throughput and Time for Push-Only Benchmark

An analysis of the EL+LA+PX method vs. EL+LA provides insight
to why the EL+LA+PX throughput is worse than no-optimizations.
The key difference between the two is only within the final struc-
ture after elimination has completed. EL+LA, after synchronizing
a thread block, will allow each remaining valid operation of that
block to access the stack. All threads that still have a valid operation
will be the same operation within that block, so a block that has
more push operations than pops will have only pushes remaining.
This leads to the beneficial memory coalescence property discussed
in Section 3. However, the EL+LA+PX, after synchronizing a thread
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Table 1: Data Representing Operations/Second Shown in Figure 9

Total Operation Count’s throughput (RandomMix)

EL+LA
EL+LA+PX

55,253,767.66
8,604,756.021

55,265,768.48
9,560,992.68

Method 5% 10° 6 % 10° 7 % 10° 8 % 10° 9 % 10° 10 * 10°
No-Optimizations | 1,439,356.776 | 1,444,920.521 | 1,449,340.998 | 1,454,797.223 | 1,460,019.483 | 1,462,312.536
LowestArea-Only | 11,840,408.35 | 13,215394.26 | 13,199,229.99 | 14,144,443.29 | 14,673,944.94 | 14,676,680.08

56,151,819.55
9,113,620.944

56,170,150.62
9,065,912.927

58,541,509.83
9,452,892.822

56,974,191.83
9,475,859.868
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Figure 11: Throughput and Time for Pop-Only Benchmark

block, uses 2 proxy threads for organizing same operation’s entry
into the stack. This results in the case where a single push and pop
can be done at a time for each warp. While this lowers contention
by limiting the stack access, the data of Figure 9 supports the claim
that doing such results in a significant loss in efficiency. This is the
case as well when observing Figure 10 as EL+LA+PX’s throughput
actually appears to decrease rather than increase or plateau. Mean-
while, EL+LA shares a very similar structure to no-optimizations
after the elimination process. As such, the efficiency loss between
the two when performing only a single operation type is due to the
elimination process attempting to find canceling pairs, and this also
results in a method that heavily benefits from a mix of operations
being performed.

It is shown in Figure 11 that the throughput of all methods pre-
sented plummet at the 1 million operation mark for pop. The exami-
nation of this is due to the invalidation process that is implemented
to ensure the stack is in the form of a stack. Once invalidations

begin to occur, the number of atomic operations that a pop op-
eration has to perform is potentially doubled. This is due to the
method in which invalidations are cleared, as only pop operations
create and clear them. By guaranteeing the safety of stack top’s race
condition mentioned briefly in Section 3.3, the overall efficiency
of all methods is affected negatively. Analyzing both Figures 10
and 11, it is noted that, even though all-pop initially plummets,
both all-push and all-pop result in a scalable increase in through-
put for the LA and EL+LA implementations. In the case of all-pop,
the no-optimization method operates equivalently to the LA and
EL+LA methods showing that they are no worse in this event. How-
ever, All-push results in the LA and EL+LA methods to outpace
the efficiency of the no-optimization and EL+LA+PX methods that
appear to create a flat line. All-push does not see the same dive in
throughput as all-pop due to its lack of interaction with invalidated
cells. For a push operation, these invalid cells are simply ignored.

This data shows that by having mixed batches of operations, the
proposed EL+LA method creates an efficient increase in the scan
stack throughput. It also benefits from being roughly equivalent,
if not better, to that of the no-optimizations form when a single
operation type is performed.

4.1 Correctness

Correctness was determined by evaluating that there were no empty
gaps within the stack, and all operations completed in some capacity
by either missing or having a non-empty value for its success.
The exact ordering of completion is ignored as the non-blocking
approach and high concurrency of GPUs is unlikely to create the
same stack between tests. However, a problem of the proposed
implementation was determined during correctness testing.

The proposed scan method does not guarantee absolute cor-
rectness. This is due to the invalidation process not completely
resolving the step-over problem discussed in Section 3.3. As shown
with Table 2, the invalidation process appears to benefit the method
where elimination is included the most. It is also to be noted how
volatile the invalidity is even when evaluated at a large number of
iterations at all intervals. There is also how the LA Interval size
itself affects the invalidity rate with no other alterations made, and
this is primarily shown as a lower average execution time with a
higher invalid amount at lower intervals. However, the invalidation
of cells within the stack is shown to be highly detrimental when
elimination is not involved as there is a significant increase in the
invalid stack structure count in Table 2, but the opposite is seen for
the method including elimination.

Analyzing this behavior, the lack of out-of-bounds protection
for LA becomes much more prevalent at lower intervals due to
operations beginning their work at closer spaces. This leads to the
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Table 2: RandomMix Invalid Stacks with Varying Intervals

Average Amount of Invalid Stacks (X out of 1000)
LA Interval: | N/A | 2500 5000 7500 | 10000 | 12500 | 15000 | 17500 | 20000 | 22500 | 25000
LA 0 93 2 0.67 0.33 0 0 0 0 0 0
EL+LA 1.67 482 320.33 174 90 39 36 34 24 47 22.33
Inval+LA 0 470.33 | 155.67 | 120.67 | 33.33 | 15.33 4.33 0.33 0.67 0 0
Inval+EL+LA 3 126.67 | 68.33 11.33 3 0.33 0.33 0 0.67 0 0
Table 3: RandomMix Average Execution Time with Varying Intervals
Average Execution time (Sec) of 1000 iterations
LA Interval: N/A 2500 5000 7500 10000 | 12500 | 15000 | 17500 | 20000 | 22500 | 25000
LA 572.15 | 79.02 85.69 90.52 94.11 98.69 | 103.49 | 108.11 | 113.52 | 118.13 | 122.96
EL+LA 165.28 4.39 5.89 7.41 9.17 10.96 12.53 14.35 16.28 17.86 19.67
Inval+LA 699.32 | 145.62 | 147.89 | 154.75 | 164.40 | 173.85 | 183.11 | 189.26 | 197.51 | 205.59 | 213.92
Inval+EL+LA | 212.70 5.61 7.81 10.66 13.33 15.96 18.71 21.07 22.05 24.23 26.60
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Figure 12: Throughput and Time for Pop-Only Benchmark,
No Invalidation

higher possibility where a push has already exceeded where pop is
starting or vice versa. However, completely removing LA does not
resolve this even with Invalidation implemented as well. This means
that there are cases where pops are re-validating a cell which push
has just passed and began attempting to push after. For the E1+LA
and its invalidation counterpart where LA is N/A Table 2, the invalid
stack structure still occurs even though the LA and Inval+LA do not

appear to share this behavior. It is speculated that this is because the
number of active threads within a block has possibly been reduced,
so there are blocks loaded onto the cores with a number of threads
attempting to perform work that may be significantly less than the
block size. While the elimination proposed leads to less contention
and quicker action for the block overall, it is possible that there
are greatly varying workloads between blocks that can lead to a
similar situation as LA scoping not being protected. While much
rarer than a low interval of 2500, the invalid structure still occurs
meaning that the stack does not behave as it should.

While not guaranteeing complete correctness, the invalidation
of cells does appear to be highly beneficial to the EL+LA method.
However, this comes at the cost of efficiency. The observed execu-
tion time for a low interval EL+LA method yields high throughput
for the 1000 sets of 1 million operations, even with the performance
detriment of writing to a global array to be transferred for vali-
dation. As reference, the 2500 LA interval in Table 3’s execution
time reveals that 1 billion total operations took 4.39 seconds on
average, and this calculates that throughput for this EL+LA reaches
227.79 million operations/second. The invalidation counterpart of
EL+LA performs the same in 5.61 seconds with a throughput of
178.25, and it has an overall higher success rate compared to without
invalidation. For target purposes that do not require absolute cor-
rectness such as graphics processing, the EL+LA method provides
an efficient storage structure for data.

By referencing Figure 11 and its difference to Figures 10 and
12, the invalidation method used is shown to severely degrade
performance of the pop operation. By removing the invalidation
altogether, the worst-case scenario of all-pop operations does not
suffer as greatly from the contention shown in Figure 6 and will
function more similar to the failure of push in the amount of actions
Figure 4. This leads to an overall increase in the pop performance
to become more scalable and like the push operation’s graph. How-
ever, Figure 2 shows that the RandomMix benchmark at a high
amount of iterations has relatively close execution times for EL+LA
and Inval+EL+LA, but LA is significantly more efficient than its
invalidation counterpart at all intervals. The difference observed
within the LA and Inval+LA is most likely due to the time spent
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clearing invalidated cells by pop, and the efficiency of LA further
highlights the benefits of removing invalidation when correctness
is not a concern.

5 CONCLUSION

As data continues to grow and needs more efficient processing,
the desire for GPU friendly data structures grows as well. In this
paper, we presented an efficient and scalable search-based stack
for GPUs, tested using a NVidia RTX 3090. We determine that the
scanning implementation’s performance improves greatly applying
the elimination and lowest-area methods proposed. However, while
highly productive, it relies heavily on elimination process when
it comes to the greatest performance increases. Also, the one-to-
one thread mapping also showed consistently better improvements
compared to EL+LA+PX’s one or two threads performing the tasks
of others.
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