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Adiós Slow and Sensitive SDPs!
Ditching Lyapunov-Based Formulations of Robust

Control/Estimation Problems in Power Systems
MirSaleh Bahavarnia — Muhammad Nadeem — Ahmad F. Taha

Abstract—Many mainstream robust control and estimation
algorithms for power networks are designed using Lyapunov
theory. This theory provides performance guarantees for linear
or nonlinear models of uncertain power networks but comes at
the expense of scalability and sensitivity. In particular, Lyapunov-
based approaches rely on forming semi-definite programs (SDPs)
with linear matrix inequalities (LMIs) that are (i) not scalable
for large-scale networks and (ii) extremely sensitive to the choice
of the bounding scalar that ensures the strict feasibility of the
LMIs. This paper addresses these two issues via a non-Lyapunov
approach (NLA). In lieu of linearized models of power grids, we
focus on (the more representative) nonlinear differential algebraic
equation (DAE) models and showcase the simplicity, scalability,
and parameter-resiliency of NLA. For some power systems, the
approach is nearly fifty times faster than solving SDPs/LMIs via
standard solvers with little to no impact on the performance. The
case studies also demonstrate that NLA can be applied to more
realistic scenarios in which (a) only partial state data is available
and (b) sparsity structures are imposed on the feedback gain.
The paper also showcases that virtually no degradation in state
estimation quality is experienced when applying NLA. Finally,
our approach can be applied to hundreds of other feedback
control and estimation problems in power systems.

Index Terms—Robust control, power systems, differential alge-
braic equations, decentralized control, dynamic state estimation,
linear matrix inequalities, Lyapunov theory.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

IN current and future power systems, many feedback control
and state estimation algorithms will jointly be deployed

to perform network-driven, real-time feedback control. In
principle, feedback control algorithms aim to robustly stabilize
the frequency oscillations and improve the transient stability
in the presence of unknown uncertainties [1]–[6]. And state
estimation algorithms enable system operators to estimate the
unmeasurable dynamic and algebraic states in the presence of
unknown uncertainties and abrupt changes [7]–[10].

Many studies including the aforementioned robust con-
trol/estimation algorithms, have used Lyapunov theory, re-
sulting in convex SDP/LMI formulations. Lyapunov-based
approaches are significantly powerful and have extensively
been applied to design various robust controllers and esti-
mators for diverse engineering applications [11]. One of the
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main Lyapunov-based approaches has been built upon a well-
known lemma, namely, Kalman-Popov-Yakubovich (KYP)
Lemma (alternatively known as the Bounded Real Lemma)
[11], [12], to cast H∞ control/estimation problems as convex
SDPs via incorporating the LMIs. In power systems, such
convex SDP/LMI formulations have widely been utilized to
design robust H∞ control and state estimation algorithms. The
central idea behind the H∞ control/estimation [13] is that
by minimizing the H∞ norm, one minimizes the effects of
the unknown uncertainties and abrupt changes on the desired
performance of the control/estimation algorithm.

In [6], [9], [10], [14], [15], casting the control/estimation
problems for DAE-modeled power systems as convex
SDPs/LMI formulations via KYP Lemma, the authors propose
dense robust H∞ controllers and estimators, respectively.
However, the Lyapunov-based control/estimation algorithms in
the aforementioned research works are highly costly in terms
of computational time. For instance, computing the Lyapunov-
based dense H∞ controller in [14] via MOSEK [16] SDP
solver implemented in YALMIP [17] can take more than 4
hours (on a personal computer). In the presence of abrupt
model changes/uncertainties, it is not practically acceptable
to utilize such highly time-consuming H∞ syntheses.

Although the Lyapunov-based approaches provide a solid
theoretical framework to analyze the control/estimation prob-
lems in terms of stability and performance, similar to any other
LMI-based approaches, they face two main issues, namely
computational scalability and computational sensitivity. The
former issue occurs when a Lyapunov-based approach casts a
control/estimation problem as a convex SDP via incorporating
the LMIs. It is evident that dealing with large-scale LMIs
and solving the corresponding SDPs are generally challenging
tasks in terms of scalability [18]. The authors in [18] have
surveyed some alternative scalable (yet possibly inaccurate)
SDP solvers like SDPNAL+ [19], [20] which is particu-
larly developed based on a majorized semi-smooth Newton-
CG augmented Lagrangian method. Although SDPNAL+ has
significantly improved the scalability in a class of robust
traffic density estimation problems [21], it has unfortunately
been unable to even propose a feasible solution for the H∞
control/estimation problem of medium-size power systems.

The latter issue occurs due to the fine-tuning of ϵI-shifting
(where ϵ is the bounding scalar that ensures the strict feasi-
bility of the LMIs and I is the identity matrix) in LMIs as
there is no systematic way in the literature to appropriately
choose/tune ϵ in general. Note that the appropriate choice
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of ϵ positively affects the feasibility and sub-optimality of
the solution at the cost of excessive computational time. The
ϵI-shifting idea is commonly utilized to implement the strict
LMIs as the non-strict LMIs because SDP solvers cannot deal
with the strict LMIs.

One might think that utilizing the generalized algebraic
Riccati equations (GAREs) could be effective to overcome
the aforementioned issues. Unfortunately, although casting
the control/estimation problems for a DAE-modeled power
system as GAREs is theoretically possible (thus increasing
the scalability significantly) [22]–[24], solving the cast GAREs
practically faces numerical issues/difficulties due to checking
a rank equality constraint and an indefinite matrix coeffi-
cient appearing in an algebraic quadratic equation (AQE).
In fact, such an AQE is efficiently solvable if that matrix
coefficient is not indefinite which is not the case for a DAE-
modeled power system in general. Then, the idea of casting
the H∞ control/estimation problems as GAREs to bypass
the aforementioned scalability and sensitivity issues in the
case of DAE-modeled power systems, unfortunately, becomes
impractical.

To that end, in light of the aforementioned limitations and to
effectively overcome the arising issues by the Lyapunov-based
approaches (i.e., computational scalability and computational
sensitivity), considering the NDAE state-space model of a
power system, we derive the equivalent nonlinear ordinary dif-
ferential equation (ENODE) state-space model without impos-
ing any simplifying specific form on the controller/estimator.
It is noteworthy that the continuous-time algebraic Riccati
equation (CARE)-based approaches are not be applicable to
the derived ENODE state-space model as the dependency
of the state-space matrices on the controller/estimator gain
is not be affine (e.g., A + BK or A + LC) unlike the
simplified state-space model derived in [14]. To design H∞
controllers and estimators for given NDAE state-space models,
motivated by the aforementioned twofold issues, we take a
non-Lyapunov approach (NLA) [25] and utilize off-the-shelf
computational tools along with the derived ENODE state-
space model to bypass the computational scalability and com-
putational sensitivity issues arising in Lyapunov-based H∞
controller/estimator designs for DAE-modeled power systems.
The proposed NLA-based H∞ synthesis in [25] is mainly built
upon non-convex non-smooth optimization techniques taking
advantage of the Clarke sub-differential [26] computation of
the H∞ norm. Such a structured H∞ synthesis has found
extensive control applications including but not limited to
proportional-integral-derivative (PID) control and combination
of proportional-integral (PI) and SOF control of distillation
column, aircraft autopilot, and helicopter as highlighted by
[27]–[29].

It is noteworthy that NLA can alternatively be applied to
any H∞ controller/estimator design problem that can poten-
tially be cast as a convex SDP/LMI formulation, e.g., [1]–
[4], [6]–[10], [14], [15], [30]–[35]. Moreover, compared to
such Lyapunov-based syntheses in the literature, we take into
account a more general problem setup consisting of structured
controllers/estimators instead of solely dense counterparts. In
other words, thanks to the specialized features of NLA, we

are able to propose structured H∞ controllers and estimators.
The paper’s contributions are as follows:

• We design structured H∞ controllers and estimators for
DAE-modeled power systems via NLA. Specifically, for
the controller design, the proposed controller is applicable
to a general scenario in which we have partially-accessed
states and noisy measurement outputs. Moreover, for the
estimator design, the proposed estimator can deal with
load demand and renewable disturbances, non-Gaussian
measurement noise, and unknown control inputs.

• The proposed NLA is noticeably faster than the
Lyapunov-based counterpart while attaining the same
H∞ performance (computational scalability). Moreover,
there is no need to deal with the fine-tuning of the
bounding scalar that ensures the strict feasibility of the
LMIs anymore as we have successfully bypassed it (com-
putational sensitivity).

• We investigate the conditions that can potentially affect
the superiority of NLA over its Lyapunov-based coun-
terpart in terms of computational scalability. It turns out
that having a relatively large number of inputs (for the
controller design) and outputs (for the estimator design)
can negatively affect such a superiority. Beyond a specific
level, such superiority can even be reversed.

• Utilizing a notion of block-sparsity, we study the impact
of various sparsity structures on the H∞ performance
of the proposed controller design. Also, we empirically
explore the potential effects of output matrix selection on
the H∞ performance and how we can take advantage of
such empirical information to select an optimal output
matrix. Specifically, we can detect the states that have a
central role in the stabilization of the system.

Notations. Uppercase and lowercase letters denote matrices
and vectors, respectively. We denote the set of real-valued r
by c matrices by Rr×c. Also, we denote the r by c identity
and all-ones matrices with Ir×c and 1r×c, respectively. To
represent an n-dimensional identity matrix, we utilize In. For
a matrix M , symbols MT , M⊥, σ̄[M ], and ∥M∥0 denote its
transpose, orthogonal complement, largest singular value, and
number of non-zero elements, respectively. We denote positive
semi-definiteness and positive/negative definiteness by ⪰ 0
and ≻ 0/≺ 0, respectively. For a square matrix M , we define
He(M) := M+MT , and symbol sa(M) denotes the spectral
abscissa of M , i.e., the maximum real part of the eigenvalues
of M . Symbol ∗ represents the corresponding symmetric
components of a symmetric matrix. We use j and ℜ(s) to
showcase the

√
−1 and the real part of complex-valued scalar

s, respectively. We denote the matrix element-wise Hadamard
product and the matrix Kronecker product with ⊙ and ⊗,
respectively. For a vector v, symbol ∥v∥ denotes the Euclidean
norm of v. Given a vector h(t) defined for t ∈ [0,∞), its
L2-norm is defined as

√∫∞
0

∥h(t)∥2dt. To save space, we
omit the dependency on time, i.e., (t) in denoting the time-
dependent quantities. The set of subgradients of a function f
at the point x is defined as the subdifferential of f at x and
is denoted by ∂f(x). We represent the function composition
operator by ◦. The standard basis vector ei represents a column



3

vector with 1 at the ith position and 0 at the rest of the
positions.

The rest of the paper is organized as follows: Section II
consisting of preliminaries are three-fold: (i) Section II-A
details the NDAE state-space model of the power system, (ii)
Section II-B elaborates on the problem statement, and (iii)
Section II-C briefly reviews dense H∞ controller and estimator
designs built upon the Lyapunov-based approach for DAE-
modeled power systems. Section III contains the central result
of the paper which is the implementation of NLA to design
structured H∞ controllers and estimators for DAE-modeled
power systems. Section IV via various benchmarks thoroughly
verifies the effectiveness of the proposed NLA in comparison
with its Lyapunov-based counterpart. Finally, Section V ends
the paper with a few concluding remarks.

II. PRELIMINARIES

In Section II-A, we include the details of the NDAE state-
space model of the power system. We formally state the
structured H∞ controller problem for DAE-modeled power
systems in Section II-B. The H∞ estimator problem can
also be stated in a similar fashion. Section II-C briefly sheds
light on the Lyapunov-based approach to design dense H∞
controllers and estimators for DAE-modeled power systems.

A. Power system NDAE state-space model

Here, we include the fourth-order dynamics of the modeled
synchronous generators. To do so, we borrow the notations
from [36]. Let us consider a power system comprised of Nb

buses, modeled by a graph (N , E) where N and E respectively
denote the set of nodes and edges. The nodes are of three main
types: (i) traditional synchronous generators, (ii) renewable
energy resources (RERs), and (iii) load buses. Note that N =
G∪R∪L∪U holds where G, R, L, and U respectively collect
G generator buses, the buses containing R renewables, L load
buses, and U non-unit buses.

A fourth-order dynamics of synchronous generators can be
modeled as [36]–[38]

δ̇i = ωi − ω0, (1a)
Miω̇i = TMi − PGi −Di(ωi − ω0), (1b)

T ′
d0iĖ

′
i = −xdi

x′
di
E′

i +
xdi−x′

di

x′
di

vi cos(δi − θi) + Efdi, (1c)

TCHiṪMi = −TMi − 1
RDi

(ωi − ω0) + Tri, (1d)

where (δi, ωi, E
′
i, TMi) and (Efdi, Tri) respectively represent

the generator’s internal states and the generator’s inputs. The
generator’s internal states (δi, ωi, E

′
i, TMi), its supplied power

(PGi, QGi), and terminal voltage vi are related to each other
via the following two algebraic equations [36], [37]:

PGi =
sin(δi−θi)

x′
di

(E′
ivi −

(xqi−x′
di)v

2
i cos(δi−θi)

xqi
), (2a)

QGi =
E′

ivi cos(δi−θi)−v2
i cos2(δi−θi)

x′
di

− v2
i sin2(δi−θi)

xqi
. (2b)

The power flow (PF)/balance equations governing the power
transfer among generators, RERs, and loads are as follows
[36], [38]:

PGi + PRi + PLi=

Nb∑
j=1

vivj(Gij cos θij+Bij sin θij) , (3a)

QGi +QRi +QLi=

Nb∑
j=1

vivj(Gij sin θij−Bij cos θij) , (3b)

where θij := θi− θj . The pair (Gij , Bij) respectively denotes
the conductance and susceptance between buses i and j. Also,
the pairs (PRi, QRi) and (PLi, QLi) respectively represent the
active and reactive powers generated by the renewables and the
active and reactive powers consumed by the loads.

Let us consider the following NDAE state-space model:

Eẋ = Ax+Bu+Bww + h(x, u, w), (4a)
u = Fy, y = Cyx+Dyw, (4b)

where E denotes a singular matrix encoding the algebraic
equations with all-zeros rows, x =

[
xT
d xT

a

]T ∈ Rnx , xd ∈
Rnd , xa ∈ Rna , u ∈ Rnu , w ∈ Rnw , and y ∈ Rny respectively
represent the state, dynamic state, algebraic state, control
input, disturbance input, and measurement output vectors, F
denotes the static output feedback (SOF) controller matrix, and
A, B, and Bw are extracted via Jacobian-based linearization
while h(x, u, w) encompasses the linearization error vector
associated with the nonlinearities. Here, we emphasize the
point that we have not utilized a purely linearized model by
overlooking the linearization error vector associated with the
nonlinearities.

To construct the NDAE state-space representation of the
power system for the controller design, let us define

xd =
[
δT ωT E′T TT

M

]T
, xa =

[
aT ṽT

]T
,

a :=
[
PT
G QT

G,
]T

, ṽ :=
[
vT θT

]T
,

u =
[
ET

fd TT
r

]T
, w =

[
PT
R QT

R PT
L QT

L

]T
,

where

δ := {δi}i∈G , ω := {ωi}i∈G , E′ := {E′
i}i∈G ,

TM := {TMi}i∈G , PG := {PGi}i∈G , QG := {QGi}i∈G ,

v := {vi}i∈N , θ := {θi}i∈N , Efd := {Efdi}i∈G ,

Tr := {Tri}i∈G , PR := {PRi}i∈R, QR := {QRi}i∈R,

PL := {PLi}i∈L, QL := {QLi}i∈L.

Based on the above vector representation and (1), (2), and (3),
the NDAE state-space model (4a) for the power system can
be constructed.

B. Problem statement

Assuming the L2-norm boundedness of h(x, u, w) and
considering it as Bhwh, the NDAE state-space model (4)
reduces to the following linear DAE (LDAE) form:

Eẋ = (A+BFCy)x+ B̂ww̃, w̃ :=
[
wT wT

h

]T
, (5)

B̂w :=
[
Bw +BFDy Bh

]
.
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With that in mind, to design an SOF H∞ controller, we define
the following performance output vector:

z = Cx+Du+ D̂ww̃, D̂w :=
[
Dw 0

]
. (6)

The main idea is to design an SOF H∞ controller F in
(4b) such that it satisfies H∞ performance criterion, namely
∥z∥2L2

< µ2∥w̃∥2L2
[39] (µ: the H∞ value). In the sequel,

we elaborate on structurally-constrained H∞ SOF controller
design which frequently appears in more realistic scenarios.
Further details about the design of such an SOF controller F
are later given in Section III.

The sparsity structure of the SOF controller F is of high
significance to decrease the communication burden among
generators. To name a few common sparsity structures, we list
the following two crucial sparsity structures: (i) decentralized,
and (ii) distributed. In the context of power systems, each
generator has access only to its own state information for
a decentralized sparsity structure while in the case of a
distributed sparsity structure, each generator has access to the
state information of a few numbers of the other generators.
To encode the sparsity structures, we simply use the matrix
element-wise Hadamard product as follows:

F = F ⊙ S, (7)

where S ∈ {0, 1}nu×ny represents an imposed binary sparsity
structure. To that end, to design the structured SOF (SSOF)
H∞ controller for the NDAE state-space model (4), we define
the following problem statement:

Problem 1: Given the NDAE state-space model (4) and its
extracted LDAE form (5) along with the performance output
vector (6) and an imposed controller sparsity structure (7),
design an SSOF H∞ controller.

C. Lyapunov-based approach

This section briefly details the Lyapunov-based approach
utilized by [10], [14] to design dense H∞ controllers and
estimators for DAE-modeled power systems.

1) Dense H-infinity controller design: Considering (6) and
LDAE state-space model (5) with Cy = Inx

, Dy = 0, a dense
static state feedback (DSSF) H∞ controller is proposed in
[14] for which a convex SDP is cast and solved (as shown
in Appendix A). To derive the LMIs of the cast convex SDP
therein, the H∞ inequality (8) (based on KYP Lemma [12])
is utilized as a cornerstone

V̇ (x) + zT z − λw̃T w̃ < 0, (8)

where V (x) = xTETPx denotes a quadratic Lyapunov
candidate function for which ETP = PTE ⪰ 0 holds. Note
that to implement the LMIs with strict definiteness, one has
to utilize ϵI-shifting and appropriately choose/tune ϵ to get a
well-performing controller design which is a time-consuming
process.

2) Dense H-infinity estimator design: Considering the fol-
lowing NDAE state-space error dynamics model [10]:

Eė = (A+ LCy)e+Bww +∆f, (9)

where e := ∆x = x − x̂ represents the error between the
estimated x̂ and the true x values of state variables, L denotes
the estimator, and ∥∆f∥ is assumed to be Lipschitz bounded
by α∥∆x∥ (α: the Lipschitz constant), a dense H∞ estimator
is proposed in [10] for which a convex SDP is cast and solved
(as shown in Appendix B). To derive the LMIs of the cast
convex SDP therein, the H∞ inequality (10) (similarly, based
on KYP Lemma) and the S-procedure lemma [40] are utilized
as cornerstones

V̇ (e) + eT e− λwTw < 0, (10)

where V (e) = eTETPe denotes a quadratic Lyapunov candi-
date function for which ETP = PTE ⪰ 0 holds. Likewise,
the fine-tuning of ϵI-shifting in LMIs is inevitable.

In the next section, we present the proposed methodology
to design dense and structured H∞ controllers and estimators
that ensure the power system is stable in the sense of H∞.

III. STRUCTURED H-INFINITY DESIGNS FOR
DAE-MODELED POWER SYSTEMS VIA NLA

In Section III-A, we limit our attention to the derivation of
preliminary casting for structured H∞ controllers for DAE-
modeled power systems. Similar derivation for the structured
H∞ estimator design can be obtained as presented in Section
III-C. Section III-B is allocated to elaborate on the utilized
non-Lyapunov approach (NLA) and the thorough details of
its implementation for the controller design. In Section III-C,
NLA is similarly implemented to obtain the estimator design.
Procedures 1 and 2 in Sections III-B and III-C, contain the
systematic NLA of designing structured H∞ controllers and
estimators specialized for the DAE-modeled power systems,
respectively. Note that as a notation rule, the subscripts d and a
refer to the corresponding dynamic and algebraic components,
respectively. Also, for the sake of simplicity in derivations,

without loss of generality, we assume that E =

[
Ind

0
0 0

]
holds.

A. Preliminary casting for the controller design

Let us consider

A =

[
Add Ada

Aad Aaa

]
, B =

[
Bd

Ba

]
, Cy =

[
Cyd Cya

]
,

Aij(F ) := Aij +BiFCyj , i, j ∈ {d, a},

Bw =
[
BT

wd BT
wa

]T
, h =

[
hT
d hT

a

]T
,

Bi
w(F ) := Bwi +BiFDy, i ∈ {d, a}.

According to the algebraic equations of the NDAE state-
space model (4), we have

Aaa(F )xa =− (Aad(F )xd +Ba
w(F )w + ha). (11)

Assuming the invertibility of Aaa(F ) (less restrictive than
the invertibility of Aaa assumed in [14]) and utilizing (11), we
can eliminate xa from the NDAE state-space model (4) and
get the following ENODE state-space model of the NDAE
state-space model (4):

ẋd = Ã(F )xd + B̄w(F )w + h̃(F ), (12a)
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Ã(F ) := Add(F )−Ada(F )Aaa(F )−1Aad(F ), (12b)

B̄w(F ) := Bd
w(F )−Ada(F )Aaa(F )−1Ba

w(F ), (12c)

h̃(F ) := hd −Ada(F )Aaa(F )−1ha. (12d)

Assuming the L2-norm boundedness of h(x, u, w) and con-
sidering h(x, u, w) as Bhwh, the ENODE state-space model
(12) boils down to the following linear ODE (LODE) form:

ẋd = Ã(F )xd + B̃w(F )w̃, (13a)

B̃w(F ) :=
[
B̄w(F ) B̄h(F )

]
, (13b)

B̄h(F ) := Bhd −Ada(F )Aaa(F )−1Bha, (13c)

Bh =
[
BT

hd BT
ha

]T
, (13d)

and defining

Č(F ) := C +DFCy, Ďw(F ) := Dw +DFDy,

the performance output vector (6) boils down to

z = C̃(F )xd + D̃w(F )w̃, (14a)

C̃(F ) := Č(F )

[
Ind

−Aaa(F )−1Aad(F )

]
, (14b)

D̃w(F ) :=
[
D̄w(F ) D̄h(F )

]
, (14c)

D̄w(F ) := Ďw(F ) + Č(F )

[
0

−Aaa(F )−1Ba
w(F )

]
, (14d)

D̄h(F ) := Č(F )

[
0

−Aaa(F )−1Bha

]
. (14e)

For LODE (13) and the reduced performance output vector
(14), we define the transfer function Tzw̃(s) from the distur-
bance input vector w̃ to the performance output vector z in
(14) as follows:

Tzw̃(s) := C̃(F )(sInd
− Ã(F ))−1B̃w(F ) + D̃w(F ),

and denote its H∞ norm by ∥Tzw̃(s)∥H∞ which is defined as
follows [13]:

∥Tzw̃(s)∥H∞ := sup
ℜ(s)>0

σ̄[Tzw̃(s)]

for a stable Tzw̃(s)
= ∥Tzw̃(s)∥L∞ = sup

ω∈R
σ̄[Tzw̃(jω)].

Note that for an unstable Tzw̃(s) (the closed-loop system
with a destabilizing controller F , i.e., sa(Ã(F )) ≮ 0)
∥Tzw̃(s)∥H∞ = ∞ holds. To compute ∥Tzw̃(s)∥H∞ , we
utilize the following MATLAB built-in functions:

sys = ss(Ã(F ), B̃w(F ), C̃(F ), D̃w(F )), (15a)

∥Tzw̃(s)∥H∞ = hinfnorm(sys). (15b)

B. NLA and its implementation for the controller design

In this section, we propose a solution to Problem 1 on
the basis of NLA. Given the NDAE state-space model (4),
assuming the L2-norm boundedness of the linearization error
vector associated with the nonlinearities, we extract the LODE
state-space model (13) along with the reduced performance
output vector (14) and utilize NLA to design an SSOF H∞

controller subject to an imposed sparsity structure encoded by
(7).

As NLA, we utilize the MATLAB built-in function
hinfstruct which has been developed based on a struc-
tured H∞ synthesis originally proposed by [25]. The pro-
posed synthesis in [25] is mainly built upon non-convex
non-smooth optimization techniques taking advantage of the
Clarke sub-differential [26] computation of the H∞ norm.
Such a structured H∞ synthesis has found extensive control
applications including but not limited to proportional-integral-
derivative (PID) control and combination of proportional-
integral (PI) and SOF control of distillation column, aircraft
autopilot, and helicopter as highlighted by [27]–[29]. Note
that hinfstruct computes the H∞ norm based on efficient
algorithms developed by [41]–[43].

Procedure 1 summarizes NLA to design an SSOF H∞
controller. In Procedure 1, F0 denotes the initialization for
F and the MATLAB built-in function realp(F, ‘F0’) cre-
ates a real-valued free parameter initialized by F0. To en-
code the imposed sparsity structure S in (7), we utilize
F.Free(i,j) = false for all zero elements of S. It is
remarkable that extra design specifications can be incorporated
via options embedded in hinfstruct. For example, the
maximum closed-loop natural frequency and the minimum
decay rate for closed-loop poles can be incorporated via
options.MaxFrequency and options.MinDecay in
hinfstruct, respectively. Also, to avoid high-gain con-
troller designs or unwanted fast dynamics, one may set
options.MaxFrequency to a finite value.

Procedure 1: SSOF H∞ Controller Design
1 input: A, B, Bw, Bh, Cy , Dy , C, D, Dw, S.
2 set F0 = 0.
3 set F = realp(F ,‘F0’).
4 for i = 1 : nu do
5 for j = 1 : ny do
6 if S(i, j) = 0 then
7 F.Free(i, j) = false.

8 construct Ã(F ), B̃w(F ), C̃(F ), D̃w(F ) in (13) and
(14).

9 construct sys via (15).
10 utilize hinfstruct(sys) to obtain F ∗.
11 output: F ∗.

Remark 1 (On hinfstruct): Borrowing from [27], we
present a high-level description of the structured H∞ solver
implemented as a building block of hinfstruct. The de-
tailed explanation of the theoretical aspects of hinfstruct
can be found in [25], [27].
Structured H∞ synthesis deals with the following semi-
infinite, non-convex, and non-smooth optimization problem:

min
K

∥Tzw̃(s)∥H∞ ⇐⇒ min
κ

max
ω∈[0,∞]

σ̄[Tzw̃(jω)], (16)

where K denotes the structured controller/estimator and κ
represents all the low-level tunable free parameters. It is note-
worthy that the function in the right-hand-side of (16) is the
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composition of the convex non-smooth function maxω ◦ σ̄(.)
with the non-convex differentiable mapping κ −→ Tzw̃(jω).
Fortunately, such composite functions are Clarke regular [26]
meaning that a complete description of the Clarke subdiffer-
ential is available. For the sake of simplicity in representation,
(16) can be rewritten as

min
κ

[f∞(κ) := max
ω∈[0,∞]

f(ω, κ)]. (17)

Clarke regularity ensures that critical point κ∗ (usually local
minima) are characterized via 0 ∈ ∂f(κ).
To solve (17), the developers of hinfstruct [25], [27]
construct a tangent model around the current iterate κ that
constitutes quadratic first-order local approximation of the
original problem. An adequate descent direction η is then com-
puted by solving the following convex quadratic optimization
problem:

min
η

f̂∞(κ+ η), (18)

f̂∞(κ+ η) := [max
ω∈Ωf

f(ω, κ)]− f∞(κ) + ϕT
ωη +

1

2
ηTQη,

where Ωf denotes some finite set of frequencies, and ϕω ∈
∂f(ω, κ) represents a subgradient of f(ω, κ). A minimal
requirement to implement this scheme is that Ωf contains the
active frequencies ωactive achieving the peak value in (17)

f∞(κ) = f(ωactive, κ).

Such a simple requirement is sufficient for the convergence
of the algorithm. Nevertheless, by adding a few extra well-
chosen frequencies, one can often improve the quality of the
tangent model (18) and take longer steps at each iteration.
It is noteworthy that the algorithm implemented in
hinfstruct [25], starting from an initial guess Kig searches
for a stabilizing starting point K0 via minimizing the a-shifted
H∞ norm [44] of the closed-loop control system where the
shift a > 0 is usually kept fixed at the initial a0 > 0 for which
the a-shifted H∞ norm of the closed-loop control system with
Kig is finite. The authors in [25] highlight that the reason for
not utilizing the spectral abscissa sa minimization (to obtain
K0) is that minimizing the a-shifted H∞ norm is relatively
more compatible with their proposed structured H∞ synthesis.

C. Casting and NLA implementation for the estimator design

To design structured H∞ estimators for DAE-modeled
power systems, a problem similar to as stated in Problem
1 can accordingly be stated. NLA to propose a structured
H∞ estimator is quite the same as the one proposed for an
SSOF H∞ controller. In the sequel, we present a brief set of
similar key formulas. To that end, let us consider the following
Luenberger-type estimator dynamics:

E ˙̂x = Ax̂+ L (y − ŷ) +Bu+Bww0 + h(x̂, u, w), (19a)

ŷ = Cx̂, (19b)

where x̂ and ŷ denote the estimated states and outputs,
respectively and w0 represents the steady-state value of w
which contains load demands and renewable generations. Now,
defining the error as e := x − x̂, then, the model of error

dynamics can be computed as given in (9). The main idea
is designing L such that the error model (9) asymptotically
converges to zero. To that end, considering

e =
[
eTd eTa

]T
, Aij(L) := Aij + LiCyj , i, j ∈ {d, a},

∆f =
[
∆fT

d ∆fT
a

]T
, L =

[
LT
d LT

a

]T
,

Cy =
[
Cyd Cya

]
,

and assuming the invertibility of Aaa(L) to eliminate ea from
the NDAE state-space model (9) via

Aaa(L)ea = −(Aad(L)ed +Bwaw +∆fa),

we get the following ENODE state-space model of the NDAE
state-space model (9):

ėd = Ã(L)ed + B̄w(L)w +∆f̃(L), (20a)

Ã(L) := Add(L)−Ada(L)Aaa(L)
−1Aad(L), (20b)

B̄w(L) := Bwd −Ada(L)Aaa(L)
−1Bwa, (20c)

∆f̃(L) := ∆fd −Ada(L)Aaa(L)
−1∆fa. (20d)

Assuming the L2-norm boundedness of ∆f and considering
it as B∆fw∆f , the ENODE state-space model (20) reduces to
the following LODE form:

ėd = Ã(L)ed + B̃w(L)w̃, (21a)

B̃w(L) :=
[
B̄w(L) B̄∆f (L)

]
, (21b)

B̄∆f (L) := B∆fd −Ada(L)Aaa(L)
−1B∆fa, (21c)

B∆f =
[
BT

∆fd BT
∆fa

]T
, (21d)

and the performance output vector z = e reduces to

z = C̃(L)ed + D̃w(L)w̃, (22a)

C̃(L) :=

[
Ind

−Aaa(L)
−1Aad(L)

]
, (22b)

D̃w(L) :=
[
D̄w(L) D̄∆f (L)

]
, (22c)

D̄w(L) :=

[
0

−Aaa(L)
−1Bwa

]
, (22d)

D̄∆f (L) :=

[
0

−Aaa(L)
−1B∆fa

]
. (22e)

For LODE (21) and the reduced performance output vector
(22), we have

sys = ss(Ã(L), B̃w(L), C̃(L), D̃w(L)), (23a)

∥Tzw̃(s)∥H∞ = hinfnorm(sys).

Note that we can impose a sparsity structure to the estimator L
via L = L⊙S similar to as in (7). With a slight modification
to Procedure 1, we obtain a similar Procedure to design
a structured H∞ estimator, namely Procedure 2, where L0

denotes the initialization for L.

IV. NUMERICAL SIMULATIONS

In this section, we assess the effectiveness of the proposed
NLA in designing structured controllers and estimators for
the DAE-modeled power systems. We design various types
of controllers and estimators with different sparsity structures
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Procedure 2: Structured H∞ Estimator Design
1 input: A, Cy , Bw, B∆f , S.
2 set L0 = 0.
3 set L = realp(L,‘L0’).
4 for i = 1 : nx do
5 for j = 1 : ny do
6 if S(i, j) = 0 then
7 L.Free(i, j) = false.

8 construct Ã(L), B̃w(L), C̃(L), D̃w(L) in (13) and
(14).

9 construct sys via (23).
10 utilize hinfstruct(sys) to obtain L∗.
11 output: L∗.

such as centralized (dense), decentralized, and distributed
architectures. Notice that in the proposed methodology, this
can easily be achieved by appropriately selecting the sparsity
structure S. With that in mind, we assess the performance of
the proposed methodology on four IEEE test systems: (i) IEEE
9-bus with (nx, nd, na, nu, nw) = (36, 12, 24, 6, 18), (ii) IEEE
14-bus with (nx, nd, na, nu, nw) = (58, 20, 38, 10, 28), (ii)
IEEE 39-bus with (nx, nd, na, nu, nw) = (138, 40, 98, 20, 78),
and (ii) IEEE 57-bus with (nx, nd, na, nu, nw) =
(156, 28, 128, 14, 114). To compute the proposed structured
H∞ controllers and estimators, we run Procedure 1 and
Procedure 2, respectively. All the numerical experiments have
been run in MATLAB R2022b on a MacBook Pro with a
3.1 GHz Intel Core i5 and memory 8 GB 2133 MHz. For
solving the convex SDPs, we have utilized CVX [45] to
implement the LMIs in MOSEK [16] SDP solver. We simply
set Dw = 0 for all the numerical experiments.

Through the comprehensive case studies in this section, we
seek answers to the following questions:

• Q1: How efficient is NLA in comparison with the
Lyapunov-based approach in terms of computation scal-
ability and computation sensitivity?

• Q2: Under what conditions NLA can potentially face
a scalability issue leading to even underperformance
compared to the Lyapunov-based approach?

• Q3: Can NLA be utilized to propose H∞ controller de-
signs subject to the imposed structural/sparsity constraints
with partially-accessed states in the presence of noisy
measurement outputs?

• Q4: How can output matrix selection affect the H∞
performance and the computational time corresponding
to the SSOF controller design built upon NLA?

• Q5: What advantages can be achieved via the proposed
structured H∞ estimator design built upon NLA?

A. Dense controller design with fully-accessed states and
noiseless measurement states

In this section, we design a full-state DSSF H∞ controller
with no noise in the measurement states. This can be achieved
by setting S = 1nu×ny

, Cy = Inx
, and Dy = 0. Furthermore,
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Figure 1. (Section IV-A) The generator frequencies for 9-bus (top-left), 14-
bus (top-right), 39-bus (bottom-left), and 57-bus (bottom-right) test systems,
for moderate disturbance in load demand and renewable power generation.

0 10 20 30

59.9

59.95

60

0 10 20 30

2.2

2.4

2.6

2.8

3

0 10 20 30

59.98

59.985

59.99

59.995

60

0 10 20 30

4.2

4.3

4.4

4.5

Figure 2. (Section IV-A) Generator 3 frequency and power for 9-bus (top)
and 57-bus (bottom) test systems, under large disturbance in load demand
and renewable power generation.

we consider Bh = 0.1Inx
. To showcase the superiority of the

proposed methodology, we compare the performance of the
proposed methodology with the conventional LQR-type con-
troller presented in [46] and the Lyapunov-based controllers
given in [14], [36] for the various IEEE test systems.

As compared to [14], we observe from Tab. I that as the size
of the system increases, the computational time for calculating
the controller matrix F using [14] increases significantly while
for the proposed NLA, the computational time is much less
and is more than 47 ( 5361.67−111.31

111.31 ≈ 47.17) times faster on
the largest IEEE test system, i.e., IEEE 57-bus. We can also
see that the proposed methodology yields exactly the same
H∞ performance value as compared to [14]. This means that
the performance of the proposed controller is not degraded
and hence provides the same stability improvement on power
systems after disturbances.

Also, we observe that, unlike the Lyapunov-based approach
in [14], the proposed NLA controller is not a high-gain con-
troller which makes it more suitable for practical purposes. It
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is noteworthy that the corresponding values of the Lyapunov-
based approach [14] reported in Tab. I are obtained after
fine-tuning of ϵI-shifting of the corresponding LMIs (setting
ϵ = 10−3.3) which is a time-consuming process by itself.
Nevertheless, we have not taken into account the time of fine-
tuning in computational times reflected in Tab. I. Moreover,
through the numerical experiments, we observe that although
the approach proposed in [14] is capable of designing the
dense H∞ controllers with the same H∞ performance level
as the presented NLA, there is a noticeable gap between the
value of λ := µ2 in the corresponding convex SDP and
the true H∞-squared value i.e., ∥Tzw̃(s)∥2H∞

evaluated by
hinfnorm. Therefore, we have reported the corresponding
true H∞ values in Tab. I.

That being said, we now assess the performance of the
proposed NLA controller in stabilizing the power system under
transient conditions. To that end, large disturbances in load and
renewable (which are modeled as negative loads) have been
added and the simulations are performed as follows: Initially,
the system load demand and power generation are exactly
equal, and thus the system rests in equilibrium conditions.
Then, immediately after t > 0, there is an abrupt change in
load demand and renewable power generation, and their new
values are given as follows:

P ′
L +Q′

L = (1 +∆L)(P
0
L +Q0

L),

P ′
R +Q′

R = (1 +∆R)(P
0
L +Q0

L),

where P 0
L, Q0

L, P 0
R, and Q0

R denote the initial values of ac-
tive/reactive load demand and renewable generation, while P ′

L,
Q′

L, P ′
R, and Q′

R denote their values after the disturbances,
and ∆L and ∆R denote the severity of the disturbances in
load and renewable power generation, respectively. We apply
different severity of disturbances by choosing different values
of ∆L, and ∆R. To that end, we run two simulation studies
for all the IEEE test systems. For 9-bus test system, we
choose (∆L,∆R) = (0.5,−0.3) for the first case study and
(∆L,∆R) = (0.9,−0.5) for the second case study. Similarly,
for 14-bus and 39-bus test systems, we respectively select
(∆L,∆R) = (0.05,−0.03) and (∆L,∆R) = (0.15,−0.15),
while for 57-bus system, we use (∆L,∆R) = (0.01,−0.01)
for the first case study and (∆L,∆R) = (0.05,−0.05) for the
second case study.

The results are presented in Figs. 1 and 2. Notice that in
all the visualizations, we refer to the controller proposed in
[36] as LRFC (load and renewable following control) and to
the one proposed in [14] as Lyapunov-based (abbreviated as
Lyap) while to the controller proposed in the current paper as
NLA (non-Lyap). From Fig. 1, we observe that for a moderate
disturbance in load and renewable, the LQR-type controller
proposed in [46] is unable to stabilize the system while the
Lyapunov-based controllers [14], [36] (note that LRFC is also
classified as a Lyapunov-based controller) and the proposed
NLA controller can successfully keep the system stable and
synchronized.

Furthermore, from Fig. 2, we observe that as the severity
of the disturbances in load and renewable increases, only the
controller proposed in [14] and the presented controller in

Table I
(SECTION IV-A) THE H∞ VALUES AND COMPUTATIONAL TIMES FOR THE
LYAPUNOV-BASED APPROACH AND NLA CORRESPONDING TO DSSF H∞

CONTROLLER WITH S = 1nu×ny , Cy = Inx , Dy = 0, AND
Bh = 0.1Inx FOR THE IEEE TEST SYSTEMS.

Approach ∥Tzw̃(s)∥H∞ Computational Time (nu, ny)
non-Lyap 9-bus 3.1856 2.09 s (6, 36)

Lyap 9-bus 3.1857 2.72 s (6, 36)
non-Lyap 14-bus 7.4260 6.05 s (10, 58)

Lyap 14-bus 7.4274 19.41 s (10, 58)
non-Lyap 39-bus 9.2018 259.56 s (20, 138)

Lyap 39-bus 9.1701 1611.45 s (20, 138)
non-Lyap 57-bus 23.5716 111.31 s (14, 156)

Lyap 57-bus 23.5731 5361.67 s (14, 156)

this paper are able to keep the system synchronized. This
corroborates the result presented in Tab. I from which, we see
that the Lyapunov-based approach and presented NLA H∞
attain almost the same H∞ value, thus, providing almost the
same performance. However, the main benefit of the presented
approach over [14] is that it is far less computationally
cumbersome. This holds because unlike [14] no convex SDP
needs to be cast and solved to compute the controller matrix F .
Moreover, the reason behind the fact that controllers in [36],
[46] are unable to keep the power system synchronized, is
that the disturbance in load and renewable are not modeled
in the controller architecture. In both of these studies, the
disturbances are assumed to be zero in the controller design
and thus making them less robust.

B. Structured controller design with partially-accessed states
and noisy measurement outputs

In the previous section, we designed a full-state feedback
controller, meaning that the control action taken by each gener-
ator also depends on all the rest of the generators and network
states. However, this could be unrealistic and require a dense
and reliable communication network. To that end, here, we
design an SSOF H∞ controller and simultaneously consider
the scenario in which, we have noisy measurement outputs. In
the proposed methodology, various sparsity structures (such
as decentralized and distributed) on the controller matrix F
can be imposed using S as discussed in Procedure 1. Here,
we design two types of controller architecture: (i) completely
decentralized design, meaning that each generator utilizes only
its own state information, and (ii) distributed design in which
the control action taken by each generator depends on a few
other state information. Furthermore, to consider noisy output
measurements, we set Dy = 0.1Iny,nw

.
Tab. II represents the H∞ values and computational times

for NLA corresponding to SSOF H∞ controllers for different
sparsity structures for the IEEE test systems. Such different
sparsity structures are three-fold as follows:

• Centralized: in this case, we set S as the following dense
sparsity structure:

S = 1nu×ny
.

• Distributed: in this case, we set S as the following
randomly generated zero-one sparsity structure:

S = randi(
[
0 1

]
, nu, ny).
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Table II
(SECTION IV-B) THE H∞ VALUES AND COMPUTATIONAL TIMES FOR

NLA CORRESPONDING TO SSOF H∞ CONTROLLERS WITH DIFFERENT
CHOICES OF S: CENTRALIZED (CEN.), DISTRIBUTED (DIS.), AND

DECENTRALIZED (DEC.), Cy = Iny,nx , Dy = 0.1Iny,nw , ny = nd ,
AND Bh = 0.1Inx FOR THE IEEE TEST SYSTEMS.

Sparsity Structure ∥Tzw̃(s)∥H∞ Computational Time (nu, ny)
Cen. 9-bus 3.2314 1.69 s (6, 12)
Dis. 9-bus 3.3007 4.86 s (6, 12)
Dec. 9-bus 3.2784 4.11 s (6, 12)

Cen. 14-bus 7.3964 2.04 s (10, 20)
Dis. 14-bus 7.4446 5.40 s (10, 20)
Dec. 14-bus 7.4274 1.78 s (10, 20)
Cen. 39-bus 9.2120 42.59 s (20, 40)
Dis. 39-bus 9.9968 145.53 s (20, 40)
Dec. 39-bus 9.8467 82.38 s (20, 40)
Cen. 57-bus 23.6002 35.33 s (14, 28)
Dis. 57-bus 23.6168 51.04 s (14, 28)
Dec. 57-bus 23.6180 56.93 s (14, 28)

where randi(
[
0 1

]
, nu, ny) is a MATLAB built-in

function that generates a nu by ny matrix consisting of
uniformly distributed pseudorandom zero-one values.

• Decentralized: in this case, noting that (nu, nd) =
(2N, 4N) holds, we choose Cy =

[
Ind

0
]

and set S
as the following decentralized sparsity structure:

S =

[
IN IN IN IN
IN IN IN IN

]
= 12×4 ⊗ IN .

Notice that the smaller the H∞ value is, the better the
controller performance is. We see from Tab. II that as sparsity
of the controller is promoted the corresponding H∞ value
increases which makes sense because the controller loses some
state information. In other words, there exists a fundamental
trade-off between the H∞ performance and the controller spar-
sity. Fig. 3 depicts the randomly generated zero-one sparsity
structure of the Distributed 39-bus F reported in Tab. II.

Figure 3. (Section IV-B) The randomly generated zero-one sparsity structure
of the Distributed 39-bus F reported in Tab. II. The blue dots represent the
nonzero values of F .

The dynamic performance of the system is assessed under
load and renewable disturbance as discussed in the previous
section. Note that the Lyapunov-based approaches proposed
in [14], [46], [47] are not capable of designing an SSOF
H∞ controller, thus their results are not included here. The
frequencies of all the generators are presented in Fig. 4. We
see that after a large abrupt disturbance in load and renewable,
the proposed NLA controller can successfully keep the system
transiently stable and synchronized. We can also see that the
non-Lyap controller can also bring the system back to its
nominal frequency after the large disturbance.

Remark 2: Note that unlike the [14], we take into account
a more general form for the nonlinearity h by choosing Bh ∝
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Figure 4. (Section IV-B) The dynamic performance of the proposed SSOF
H∞ controller under large disturbance in load demand and renewable power
generation and noisy measurement states; Generator 1 frequency and rotor
angle for 9-bus (top) and 57-bus (bottom) test systems.

Inx instead of Bh ∝ Bw as in the former one, the number
of columns of Bh is nx while in the latter one, the number
of columns of Bh is nw < nx. Then, such a more general
choice of Bh makes the Lyapunov-based approach even more
inefficient in terms of scalability as it makes the LMI in the
convex SDP even larger by adding extra rows and columns.

Defining the following block matrix notations for i, j ∈
{1, . . . , N}:

û =
[
ûT
1 · · · ûT

N

]T
, ûi =

[
ui ui+N

]T
,

x̂ =
[
x̂T
1 · · · x̂T

N

]T
,

x̂j =
[
xj xj+N xj+2N xj+3N

]T
,

F̂i,j =

[
Fi,j Fi,j+N Fi,j+2N Fi,j+3N

Fi+N,j Fi+N,j+N Fi+N,j+2N Fi+N,j+3N

]
,

we get û = F̂ x̂. Then, we can define the block-sparsity
structure of F̂ as follows:

Ŝi,j =

{
0, if F̂i,j = 0,

1 if F̂i,j ̸= 0.

Based on the definition of this block-sparsity structure, the
decentralized sparsity structure S = 12×4 ⊗ IN would attain
the block-sparsity structure Ŝ = IN . It is noteworthy that
since Ŝi,i = 1 requires F̂i,i ̸= 0, then a total number
of (22×4 − 1)N = 255N sparsity structures S can lead
to the block-sparsity structure Ŝ = IN . In this sense, the
sparsity structure S = 12×4 ⊗ IN is the densest decentralized
sparsity structure. Moreover, there exist a total number of
(2× 4)N = 8N sparsest decentralized sparsity structures (for
each i ∈ {1, . . . , N}, F̂i,i has only 1 non-zero element). Al-
though investigating the 255N possibilities leading to Ŝ = IN
is computationally impossible, we may consider the following
subset of those sparsity structures:

S = S̃ ⊗ IN , (24)

where S̃ ∈ {0, 1}2×4\{0}. Note that in this specific subset,
the sparsity structure of F̂ would be IN ⊗ S̃. Fig. 5 illustrates
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the H∞ values for all 255 possible selections of S̃. As Fig. 5
shows, for the IEEE test systems, the corresponding optimal
selections of S̃ are as follows:

S̃opt
9−bus =

[
0 1 1 1
1 1 1 1

]
, S̃opt

14−bus =

[
0 1 1 1
1 1 0 1

]
,

S̃opt
39−bus =

[
1 0 1 0
0 1 1 1

]
, S̃opt

57−bus =

[
1 1 1 1
1 1 1 1

]
.

with the H∞ values of 3.2729, 7.4251, 9.6947, and 23.6180,
respectively. Comparing these values with the corresponding
values reflected in Tab. II, we observe that except for the 57-
bus test system, imposing the sparsity structure on F can help
the non-Lyapunov solver to obtain a better solution in terms of
H∞ optimality. Note that ideally the best solution should be
associated with the densest sparsity structure, i.e., S̃ = 12×4,
however, due to the sub-optimal nature of the solutions of
non-Lyapunov solver in practice (highlighted by Remark 1),
it may not be the case. Nevertheless, it suggests that exploring
the sparsity-constrained solutions may be beneficial to us in
practice via potentially detecting better optimal solutions in
terms of H∞ optimality. Fig. 6 visualizes the relationship
between the sparsity level of S̃ and the average computational
time (s). We observe that by increasing the size of the test sys-
tem, computing the sparsest solutions take less time compared
to the densest solutions. We may interpret it as the positive
effect of imposing the sparsity structure on computational time
improvement for the larger test systems in which we deal with
a larger search space for solutions. In other words, imposing
the sparsity structure significantly reduces the search space in
the case of large test systems.
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Figure 5. (Section IV-B) The H∞ values for all 255 possible selections
of S̃ for 9-bus (top-left), 14-bus (top-right), 39-bus (bottom-left), and 57-bus
(bottom-right) test systems. The selections leading to the instability have been
excluded.

C. Output matrix selection

1) The additionally-accessed algebraic states: In the pre-
vious section, we chose the output matrix Cy as Cy =[
Ind

0
]
. In other words, we assumed that we only have
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Figure 6. (Section IV-B) The average computational time (ACT) (s) versus
∥S̃∥0 for all 255 possible selections of S̃ for 9-bus (top-left), 14-bus (top-
right), 39-bus (bottom-left), and 57-bus (bottom-right) test systems.

Table III
(SECTION IV-C) THE H∞ VALUES AND COMPUTATIONAL TIMES FOR

NLA CORRESPONDING TO SSOF H∞ CONTROLLERS WITH DIFFERENT
CHOICES OF DECENTRALIZED (DEC.) S: (nu, ny) = (2N, 4N) AND

(nu, ny) = (2N, 6N), Cy = Iny,nx , Dy = 0.1Iny,nw , AND
Bh = 0.1Inx FOR THE IEEE TEST SYSTEMS.

Sparsity Structure ∥Tzw̃(s)∥H∞ Computational Time (nu, ny)
Dec. 9-bus 3.2784 4.11 s (6, 12)
Dec. 9-bus 3.1946 2.68 s (6, 18)

Dec. 14-bus 7.4274 1.78 s (10, 20)
Dec. 14-bus 7.4273 1.65 s (10, 30)
Dec. 39-bus 9.8467 82.38 s (20, 40)
Dec. 39-bus 9.4424 32.17 s (20, 60)
Dec. 57-bus 23.6180 56.93 s (14, 28)
Dec. 57-bus 23.5797 21.21 s (14, 42)

access to the information of dynamic states, i.e., xd =[
δT ωT E′T TT

M

]T
which includes the generators’ inter-

nal states. Here, we select a relatively general output matrix
Cy as Cy =

[
I6N 0

]
by additionally taking into account the

2N first elements of algebraic states, i.e., a =
[
PT
G QT

G

]T
which includes the generators’ supplied power states.

Considering the following decentralized sparsity structure:

S =

[
IN IN IN IN IN IN
IN IN IN IN IN IN

]
= 12×6 ⊗ IN ,

we obtain the results reflected in Tab. III.
Tab. III demonstrates that utilizing the information of gen-

erators’ supplied power states, i.e., 2N extra state measure-
ments, both H∞ norm values and computational times can
significantly be improved.

2) The partially-accessed dynamic states: We can consider
the scenario in which, we want to optimally select and place
ny = p states out of nd = 4N dynamic states in the H∞
sense. To do so, there exist nd!

ny !(nd−ny)!
possibilities in the

case of S = 1nu×ny . Note that according to the existence of
permutation matrix transformations detailed later on, we do
not take into account the ny! permutations of each selection
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when S = 1nu×ny
holds. Then, denoting the positions of

non-zero elements of Cy as (1, j1) to (ny, jny ) at which each
element of Cy is set to 1, without loss of generality, we can
assume that the ascending order j1 < · · · < jny

holds for the
case of S = 1nu×ny

. Assuming that F and Fπ denote the so-
lutions corresponding to (j1, . . . , jny

) and (jπ(1), . . . , jπ(ny)),
respectively where π : {1, . . . , ny} −→ {1, . . . , ny} represents
a permutation mapping, we have

Fπ = FPT
π ,

PT
π =

[
eπ(1) · · · eπ(ny)

]
.

However, for the case of S = Inu×ny , we need to take
into account all the permutations as the decentralized spar-
sity structure on the controller is not preserved under the
permutation matrix transformation. Then, the total number
of possible selections in such a scenario would be nd!

(nd−ny)!
.

Since investigating all nd!
(nd−ny)!

possibilities is highly time-
consuming, similar to the case of S = 1nu×ny

, we only
investigate the nd!

ny !(nd−ny)!
possibilities in ascending order.

Setting ny = p = 2N , Fig. 7 depicts the H∞ values
for all nd!

ny !(nd−ny)!
possible selections of Cy for 9-bus test

system including both centralized S = 1nu×ny and decen-
tralized S = Inu×ny scenarios. As Fig. 7 demonstrates, the
optimal selection for the centralized scenario is associated
with i = 453, i.e., (j1, . . . , j6) = (1, 6, 8, 9, 10, 12) and the
corresponding H∞ value is 3.2579. Also, the optimal selection
for the decentralized scenario is associated with i = 19,
i.e., (j1, . . . , j6) = (1, 2, 3, 4, 8, 9) and the corresponding H∞
value is 5.6785. Fig. 7 interestingly shows that the selections
after i = 840, i.e., the selections with j1 > 3 cannot stabilize
the system. In other words, if none of (x1, x2, x3) is selected,
there is no stabilizing F . The physical interpretation of such
an observation is that the state information of δ of at least one
of the generators is required to stabilize the system.

In Fig. 8, for 9-bus test system and S = Inu×ny
, we explore

the ny! permutations of the optimal selection among the
nd!

ny !(nd−ny)!
possibilities in ascending order. Also, we explore

all nd!
ny !(nd−ny)!

possible selections of Cy subject to the per-
mutation order associated with the optimal selection. Interest-
ingly, both explorations suggest (j1, . . . , j6) = (3, 8, 9, 4, 2, 1)
with H∞ value of 4.1145 as the optimal placement for Cy .
Then, we realize that exploring the ny! permutations of the
optimal selection for Cy , i.e., 720 possibilities associated
with 6 optimally selected states {1, 2, 3, 4, 8, 9}, significantly
improves the H∞ value from 5.6785 to 4.1145.

D. Dense estimator design

In this section, we design a dense H∞ estimator via setting
S = 1nx×ny

. Considering the IEEE test systems, we utilize a
convex SDP similar to the one proposed in [10] and Procedure
2 to obtain the Lyapunov-based and NLA dense H∞ estima-
tors, respectively. In order to make a fair comparison between
the Lyapunov-based approach and NLA, we slightly modify
the convex SDP proposed by [10] provided that ∆f is L2-
norm bounded (instead of Lipschitz boundedness assumption
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Figure 7. (Section IV-C) The H∞ values for all nd!
ny !(nd−ny)!

possible
selections of Cy for 9-bus test system: Centralized, S = 1nu×ny (left), and
Decentralized, S = Inu×ny (right). The selections leading to the instability
have been excluded.
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Figure 8. (Section IV-C) The H∞ values for the ny ! permutations of the
optimal selection of Cy among the nd!

ny !(nd−ny)!
possibilities in ascending

order for 9-bus test system, Decentralized, S = Inu×ny (left), the H∞
values for all nd!

ny !(nd−ny)!
possible selections of Cy subject to the per-

mutation order associated with the optimal selection for 9-bus test system,
Decentralized, S = Inu×ny (right (the selections leading to the instability
have been excluded)).

utilized in [10]). Then, we utilize a modified version of (10)
as follows:

V̇ (e) + eT e− λw̃T w̃ < 0.

Tab. IV lists the H∞ values and computational times for
the Lyapunov-based approach and NLA corresponding to the
dense H∞ estimator with S = 1nx×ny

and B∆f = 0.1Inx
for

the IEEE test systems. As Tab. IV indicates, NLA proposes
better solutions in terms of H∞ values compared to its
Lyapunov counterpart. However, due to the extremely large
number of variables in NLA (e.g., 12480 for the 57-bus test
system) and the simpler (sparser) structure of the LMIs in the
Lyapunov-based approach, NLA is highly time-consuming, in
the case of estimator design, unlike the controller design case.

Tab. V represents the H∞ values and computational times
for the Lyapunov-based approach and NLA corresponding to
the dense H∞ estimator with S = 1nx×ny

, B∆f = 0.1Inx
,

Cy = Iny,nx , and ny = 2N for the IEEE test systems.
Comparing the results of Tab. V with the results of Tab. IV
reveals the fact that the scalability of NLA can significantly
be improved for the case of having less number of output
measurements (notice that the scalability superiority of the
Lyapunov-based approach compared to NLA gets reversed).
For instance, for the 57-bus test system, reducing the ny from
80 to 14, the computational time reduces from more than 8
hours to less than 1 minute. Then, minimizing the number
of output measurements can play a significant role in terms
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Table IV
(SECTION IV-D) THE H∞ VALUES AND COMPUTATIONAL TIMES FOR THE
LYAPUNOV-BASED APPROACH AND NLA CORRESPONDING TO THE DENSE
H∞ ESTIMATOR WITH S = 1nx×ny AND B∆f = 0.1Inx FOR THE IEEE

TEST SYSTEMS.

Approach ∥Tzw̃(s)∥H∞ Computational Time (nx, ny)
non-Lyap 9-bus 1.5100 4.76 s (36,14)

Lyap 9-bus 1.5100 2.26 s (36, 14)
non-Lyap 14-bus 1.4140 44.30 s (58, 28)

Lyap 14-bus 2.6656 7.58 s (58, 28)
non-Lyap 39-bus 3.1129 6841.34 s (138, 58)

Lyap 39-bus 4.7038 943.74 s (138, 58)
non-Lyap 57-bus 2.1155 29639.22 s (156, 80)

Lyap 57-bus 3.6180 4113.78 s (156, 80)

Table V
(SECTION IV-D) THE H∞ VALUES AND COMPUTATIONAL TIMES FOR THE
LYAPUNOV-BASED APPROACH AND NLA CORRESPONDING TO THE DENSE
H∞ ESTIMATOR WITH S = 1nx×ny , B∆f = 0.1Inx , Cy = Iny,nx , AND

ny = 2N FOR THE IEEE TEST SYSTEMS.

Approach ∥Tzw̃(s)∥H∞ Computational Time (nx, ny)
non-Lyap 9-bus 3.0921 0.85 s (36,6)

Lyap 9-bus 3.0921 6.06 s (36, 6)
non-Lyap 14-bus 3.2893 1.95 s (58, 10)

Lyap 14-bus 4.3332 7.25 s (58, 10)
non-Lyap 39-bus 2.6402 45.25 s (138, 20)

Lyap 39-bus 2.6402 556.77 s (138, 20)
non-Lyap 57-bus 17.5631 17.28 s (156, 14)

Lyap 57-bus 17.5631 1337.05 s (156, 14)

of scalability improvement while attaining a reasonable H∞
performance degradation. As another observation, we realize
that the H∞ performance of the Lyapunov-based approach can
significantly be improved for the case of having less number
of output measurements. For instance, except for the 14-bus
test system, the Lyapunov-based approach attains the same
H∞ performance as NLA. Although the computational time is
also improved, it is not significant compared to the scalability
improvement in the case of NLA.

E. Structured estimator design

In this section, we design a structured H∞ estimator via
imposing the sparsity structure S on the estimator. Considering
the IEEE test systems, we utilize Procedure 2 to obtain NLA
structured H∞ estimators.

Tab. VI summarizes the H∞ values and computational
times for NLA corresponding to the dense H∞ estimator with
S = 1nx×ny

and the structured H∞ estimator with S = Inx,ny

under B∆f = 0.1Inx
for the IEEE test systems. It shows that

imposing the sparsity structure on L can significantly expedite
the estimator computation at the cost of H∞ performance
degradation. Such an observation is due to the fact that
imposing the sparsity structure on L significantly reduces the
number of variables (e.g., the reduction from 12480 to 80 for
the 57-bus test system leading to the reduction from more
than 8 hours to 5 minutes). Comparing the results of Tab.
VI with the results of Tab. IV, suggests that for the large-
scale power systems, utilizing the structured H∞ estimator
design (obtained by NLA) can significantly save computational
time compared to the dense H∞ estimator design (obtained
by the Lyapunov-based approach) while degrading the H∞

Table VI
(SECTION IV-E) THE H∞ VALUES AND COMPUTATIONAL TIMES FOR

NLA CORRESPONDING TO STRUCTURED H∞ ESTIMATORS WITH
DIFFERENT CHOICES OF S: DENSE (S = 1nx×ny ) AND STRUCTURED
(S = Inx,ny ) UNDER B∆f = 0.1Inx FOR THE IEEE TEST SYSTEMS.

Sparsity Structure ∥Tzw̃(s)∥H∞ Computational Time (nx, ny)
Dense 9-bus 1.5100 4.76 s (36, 14)

Structured 9-bus 3.4120 4.63 s (36, 14)
Dense 14-bus 1.4140 44.30 s (58, 28)

Structured 14-bus 8.7075 11.63 s (58, 28)
Dense 39-bus 3.1129 6841.34 s (138, 58)

Structured 39-bus 13.3505 223.11 s (138, 58)
Dense 57-bus 2.1155 29639.22 s (156, 80)

Structured 57-bus 5.5907 299.10 s (156, 80)

by some extent. Moreover, such performance degradation can
potentially be minimized by optimally choosing the output
matrix Cy .

F. Estimator performance under transient conditions

In this section, we discuss the performance of the estimator
in estimating all the states of the power system under various
transient conditions and noisy measurements. Notice that for
all the case studies here, we assume that phasor measurement
units (PMUs) are already placed optimally in the power system
and thus, making it completely observable as given in [9],
[48], [49]. It is noteworthy that the proposed estimator has the
following key advantages as compared to the current literature
on power system dynamic state estimation (DSE):

• The proposed estimator in this study can simultaneously
estimate both dynamic states (states of generators) and
algebraic states (states of the network such as voltages
and currents). In the current literature on power system
DSE, they are usually estimated separately [50], [51]
because of the complexity of handling the complete
power system NDAE models. Few studies have been
carried out to estimate them simultaneously [10], [52].
However, they use Lyapunov-based approaches which
are much more difficult to solve for a large-scale power
system model as discussed in this paper.

• The proposed estimator does not require any statistical
properties of the disturbance/noise and can provide accu-
rate estimation results as long as the disturbance is norm-
bounded. It can also seamlessly handle the situation when
the real-time control inputs are not known to the estimator
and only steady-state values are given.

• The presented estimator also only requires a few measure-
ments from PMUs placed optimally such that the whole
system is observable as compared to the literature where
it is commonly required that all the generator buses need
to be equipped with PMUs [53].

For all the case studies, the estimator dynamics (19) are ini-
tialized from random initial conditions having 20% maximum
deviation from the steady-state values of the power system.
With that in mind, we consider the following various scenarios:

1) Estimation under disturbance in load demand and re-
newable: Here, we consider that the minute or hour ahead
prediction (or steady-state values) of load PL, QL and renew-
able generation PR, QR are known (this is realistic as system
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operators obtain and publish these quantities regularly—see
[54]) while the disturbance/uncertainty in them is not known
to the estimator. To that end, we add disturbance in load and
renewable as discussed in Section IV-A, and then we estimate
the state of the power system using both dense and structured
estimators (with only steady-state values of load and renewable
known to them) as designed in the previous sections. The
results are shown in Fig. 9 where we see that the proposed
estimator can successfully estimate all the states of the power
system with appropriate accuracy. This can be verified from
the error norm also given in Fig. 10 where we observe that it
asymptotically converges to zero for all test networks.
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Figure 9. (Section IV-F) Estimation results for 57-bus test system under load
and renewable disturbance; Generator 1 transient voltage and rotor angle and
Bus 7 voltage and angle.
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Figure 10. (Section IV-F) Estimation error norm for 9-bus, 14-bus, 39-bus,
and 57-bus test systems under disturbance in load demand and renewable
power generation.

2) Estimation under non-Gaussian measurement noise:
Here, we consider the scenario when the measurement y
received by the estimator contains some non-Gaussian noise.
Notice that it is important to check the performance of the
estimator under non-Gaussian noise because the measurement

noise is usually non-Gaussian and assuming it to be Gaussian
is a serious simplification as discussed in [55]. We want to
mention that the vintage Kalman-based estimators (such as
EKF, UKF, etc) that are commonly used in power system
DSE cannot handle non-Gaussian noise as they require some
statistical properties of the noise to work. This is one of the
main advantages of the proposed estimator as it can handle
any type of bounded noise because of the robust H∞-notion
used to design it. To that end, Cauchy noise has been generated
as wmi = a + b(π(R − 0.5)), where a = 0, b = 1 × 10−5

and R is a random variable inside (0, 1) and has been added
to the PMU measurements. The estimation results are shown
in Fig. 11 where we see that the proposed estimator can still
accurately estimate all the states of the power system.
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Figure 11. (Section IV-F) Estimation error norm for 9-bus (top-left), 14-bus
(top-right), 39-bus (bottom-left), and 57-bus (bottom-right) test systems under
non-Gaussian measurement noise.

3) Estimation under unknown control inputs: Here, we
consider the scenario when the real-time control input u(t)
is not available to the estimator and only steady-state values
of control input u are known. Notice that this is important
to consider because, in the brushless excitation system of
synchronous generators, it is difficult to measure field current
and voltage in real-time [56]. Thus, assuming that the real-
time information of control inputs is known to the estimator
is unrealistic. To that end only steady-state values of u(t) are
supplied to the estimator dynamics (19) and state estimation is
performed. The results are shown in Fig. 12 where we observe
that the proposed estimator can still provide appropriate esti-
mation results. This can also be verified from Fig. 13 where
we see that the trajectory of error norm between actual x and
estimated states x̂ successfully converges to zero.

V. CONCLUDING REMARKS

In this paper, we propose a non-Lyapunov approach (NLA)
to design scaled-up structured H∞ controllers and estimators.
Through extensive numerical experiments on the IEEE test
systems, we empirically validate that such NLA significantly
improves the scalability and sensitivity simultaneously com-
pared to its Lyapunov-based counterparts. Moreover, in the
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Figure 12. (Section IV-F) Estimation results for 57-bus test system under
unknown inputs; Generator 4 speed, rotor angle, generated power, and terminal
bus voltage.
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Figure 13. (Section IV-F) Estimation error norm for 14-bus and 57-bus test
systems under unknown control inputs.

case of controller design, it can handle the cases in which
we deal with partially-accessed states and noisy measure-
ment outputs which are more realistic in comparison with
the fully-accessed states and noiseless measurement states
considered by the Lyapunov-based approach. Also, in the
case of estimator design, the proposed estimator can deal
with load demand and renewable disturbances, non-Gaussian
measurement noise, and unknown control inputs. The pro-
posed NLA in this paper can readily be applied to a variety
of robust controller/estimator algorithms in power systems
to significantly overcome the computational scalability and
computational sensitivity issues arising from the Lyapunov-
based LMI formulations.

The answers to the itemized questions in Section IV (Q1–
Q4) are as follows:

• A1: The extensive numerical simulations (Tabs. I and V)
reveal that the structured H∞ designs can be computed
via NLA in an extremely reduced computation time com-
pared to the Lyapunov-based approach while attaining
the same H∞ performance. For instance, for the 57-bus
test system, the NLA controller and estimator are 47.17
times and 76.38 times faster than the Lyapunov-based
counterparts.

• A2: For the dense controller design, as nu

nx
becomes larger,

the scalability quality of NLA deteriorates. Similarly, as
ny

nx
increases, the scalability quality of NLA degrades (as

illustrated by Tab. IV). As Tab. IV shows, the superiority

of NLA over the Lyapunov-based counterpart has been
reversed due to the large value of ny

nx
. In Tab. V, the

small value of ny

nx
ensures the superiority of NLA over the

Lyapunov-based counterpart. An intuitive justification for
such an observation could be that the smaller the number
of variables, the smaller the search space for the solutions.

• A3: Unlike the Lyapunov-based approach, NLA can be
utilized to propose H∞ controller designs subject to the
imposed structural/sparsity constraints (e.g., distributed
and decentralized) with partially-accessed states in the
presence of noisy measurement outputs (Tab. II and Fig.
4). Tab. II reflects a fundamental trade-off between the
H∞ performance and the controller sparsity. Defining
the block-sparsity structure and comparing the results
demonstrated by Fig. 5 and Tab. II, we realize that
imposing the more sparse structures may enable us to
obtain the more sparse structured designs with better
H∞ performance. A possible justification behind such
a counterintuitive observation could be that the smaller
the number of nonzero elements (variables), the smaller
the search space for the solutions. Similarly, NLA can be
utilized to propose structured H∞ estimator designs. Tab.
VI demonstrates that by imposing the sparsity structure
to the estimator, computational time can significantly be
improved at the cost of extra H∞ performance degrada-
tion.

• A4: Tab. III depicts that by taking advantage of the
information of additional algebraic states (generators’
supplied power states) in addition to the dynamics states
(generators’ internal states), both H∞ performance and
computational time can significantly be improved. Also,
Figs. 7 and 8 visualize the process of optimal selec-
tion/placement of ny = p states out of nd = 4N dynamic
states in the H∞ sense. As an interesting observation, we
realize that the state information of δ of at least one of
the generators is required to stabilize the system.

• A5: Figs. 9, 10, 11, 12, and 13 highlight that NLA can
be utilized to propose estimators capable of effectively
dealing with load demand and renewable disturbances,
non-Gaussian measurement noise, and unknown con-
trol inputs. The proposed estimator in this study can
simultaneously estimate both dynamic states (states of
generators) and algebraic states (states of the network
such as voltages and currents). In the current literature on
power system DSE, they are usually estimated separately
because of the complexity of handling the complete
power system NDAE models. The proposed estimator
does not require any statistical properties of the distur-
bance/noise and can provide accurate estimation results as
long as the disturbance is norm-bounded. The presented
estimator also only requires a few measurements from
PMUs placed optimally such that the whole system is
observable as compared to the literature where it is
commonly required that all the generator buses need to
be equipped with PMUs.
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APPENDIX A
THE LYAPUNOV-BASED APPROACH TO DESIGN DENSE

CONTROLLERS

The dense static state feedback (DSSF) H∞ controller
proposed by [14] is obtained as follows:

F = H(XET + E⊥W )−1 , (25)

for which the following convex SDP is solved accordingly:

min
λ,H,X,W

λ

s.t. X ≻ 0, λ > 0,He(A(XET + E⊥W ) +BH) ∗ ∗
B̂T

w −λI ∗
C(XET + E⊥W ) +DH D̂w −I

 ≺ 0.

APPENDIX B
THE LYAPUNOV-BASED APPROACH TO DESIGN DENSE

ESTIMATORS

The dense H∞ estimator proposed by [10] is obtained as
follows:

L = (N(XE + ET⊥Y )−1)T , (26)

for which the following convex SDP is solved accordingly:

min
ϵ,λ,N,X,Y

λ

s.t. X ≻ 0, ϵ > 0, λ > 0, Ω ∗ ∗
XE + ET⊥Y −ϵI ∗

BT
w(XE + ET⊥Y ) 0 −λI

 ≺ 0.

where

Ω = He(AT (XE + ET⊥Y ) + CT
y N) + ϵα2I.
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