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Abstract

CRISPR gene drives could revolutionize the control of infectious diseases by accelerating
the spread of engineered traits that limit parasite transmission in wild populations. Gene
drive technology in mollusks has received little attention despite the role of freshwater snails
as hosts of parasitic flukes causing 200 million annual cases of schistosomiasis. A success-
ful drive in snails must overcome self-fertilization, a common feature of host snails which
could prevents a drive’s spread. Here we developed a novel population genetic model
accounting for snails’ mixed mating and population dynamics, susceptibility to parasite
infection regulated by multiple alleles, fitness differences between genotypes, and a range
of drive characteristics. We integrated this model with an epidemiological model of schisto-
somiasis transmission to show that a snail population modification drive targeting immunity
to infection can be hindered by a variety of biological and ecological factors; yet under a
range of conditions, disease reduction achieved by chemotherapy treatment of the human
population can be maintained with a drive. Alone a drive modifying snail immunity could
achieve significant disease reduction in humans several years after release. These results
indicate that gene drives, in coordination with existing public health measures, may become
a useful tool to reduce schistosomiasis burden in selected transmission settings with effec-
tive CRISPR construct design and evaluation of the genetic and ecological landscape.

Author summary

CRISPR gene drives can propagate engineered traits in vectors, like mosquitoes, to curb
transmission of infectious diseases. Here we explore whether gene drive technology can
also be used in molluscs to control schistosomiasis, a debilitating neglected tropical dis-
ease requiring freshwater snails as intermediate hosts. Unlike mosquitoes, these snail spe-
cies can reproduce by self-fertilization, which could disable gene drive inheritance.
Despite this limitation, our mathematical model identifies conditions in which drive

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010894  October 31, 2022

1/18


https://orcid.org/0000-0002-6432-1423
https://orcid.org/0000-0002-4186-3369
https://doi.org/10.1371/journal.pntd.0010894
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010894&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010894&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010894&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010894&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010894&domain=pdf&date_stamp=2022-11-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010894&domain=pdf&date_stamp=2022-11-10
https://doi.org/10.1371/journal.pntd.0010894
https://doi.org/10.1371/journal.pntd.0010894
https://doi.org/10.1371/journal.pntd.0010894
http://creativecommons.org/licenses/by/4.0/

PLOS NEGLECTED TROPICAL DISEASES

CRISPR gene drive for schistosomiasis

simulations is available at https://github.com/
grewelle/ModelGeneDriveSchisto.

Funding: REG was funded by the Stanford
Graduate Fellowship and ARCS Fellowship; https:/
ed.stanford.edu/academics/doctoral-handbook/
financialsupport/stanfordfellowships, https:/vpge.
stanford.edu/fellowships-funding/achievement-
rewardscollege/details; and the Stanford-EPFL
exchange fellowship, https://neuroscience.
stanford.edu/research/programs/epfl-stanford-
exchange-program. GADL and REG were partially
supported by the National Science Foundation’s
grants DEB-2011179 and ICER-2024383. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing interests: | have read the journal’s
policy and the authors of this manuscript have the
following competing interests: JT and EKON were
seed funded by the Merck Innovation Cup 2016 for
research on schistosomiasis, and previously
employed as external consultants to the Global
Health Institute of Merck (KGaA) which produces
treatments for schistosomiasis.

immunity in snails can spread and, when complemented with mass Praziquantel treat-
ment, achieves sustained disease reduction. Modeling that integrates genetic designs with
ecological conditions and public health interventions is critical to safely leverage a power-
ful technology like gene drive.

Introduction

Gene drive technology is rapidly expanding since the discovery of CRISPR-Cas9 [1-3]. Its
potential uses include controling diseases, invasive species, and pests by spreading targeted
genes through a population faster than traditional Mendelian inheritance allows [4]. For exam-
ple, there are currently large efforts to harness genetic technology targeting mosquito species
that are vectors of malaria and other vector-borne diseases [5-9]. Similar efforts could be on
the horizon for schistosomiasis, a debilitating disease of poverty caused by blood flukes of the
genus Schistosoma [10].

The battle to eliminate schistosomiasis has been waged for more than a century, and despite
local successes, the disease remains widespread [11]. Globally over 200 million individuals are
actively infected. With 800 million people at risk of infection, schistosomiasis is second only to
malaria in the breadth of its health and economic impact as an infectious tropical disease [12,
13]. The disease manifests as a complex suite of symptoms stemming primarily from the
inflammatory processes the body mounts in response to the schistosome eggs that embed in
tissue [14]. Abdominal pain, release of blood in urine or stool, fever, enlargement of liver or
spleen, and accumulation of fluid in the peritoneal cavity are acute symptoms, while fibrosis
and lesions of vital organs, infertility, and bladder and colorectal cancer are lasting conse-
quences of infection [15, 16].

Transmission of schistosomes to intermediate, obligate snail hosts occurs when eggs shed
in urine or feces from infected people contact freshwater and emerge as free-swimming mira-
cidia. Once established within the snail, the parasite reproduces asexually and cercariae are
released 3-5 weeks after the onset of infection. In this stage, the parasites castrate the freshwa-
ter snails, severely reducing reproduction [17]. Released cercariae can penetrate the skin of
humans in contact with infested water bodies and cause infection (Fig 1) [18].

Rapid advancements in genomics for the intermediate snail host species provides a mecha-
nistic understanding of innate, genetically-based snail immunity to schistosome infection [19].
Genes responsible for immunity could be candidates for gene drive mediated spread through
snail host populations. Promisingly, selection experiments reveal rapid evolution of immune
phenotypes, demonstrating high immunity can be achieved under laboratory conditions
within a few snail generations [20-22] (Fig 2). Overall, there is good reason to expect that a
population modification CRISPR gene drive designed to provide greater immunity in the snail
population could soon be developed. However, whether such a gene drive could provide the
sustained reduction in transmission necessary to eliminate schistosomiasis in realistic settings
laden with barriers to the spread of a drive remains unknown.

Previous theoretical work using classical population genetic models has explored how fit-
ness, homing efficiency, selfing, resistance allele formation, gene flow, and other forms of pop-
ulation structure influence invasion success and peak frequency of a drive in general contexts
[23-27]. Stochastic Moran models or discrete deterministic models with non-overlapping gen-
erations do not incorporate population dynamics on which the tempo of evolution is highly
dependent. Snail populations are iteroparous, reproducing several times within a lifetime, and
exhibit density dependent recruitment. This form of reproduction is not modeled in the
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Fig 1. Conceptual diagram of the integrated epidemiological and population genetic model describing the
evolution of immunity to schistosome infection in the snail population. (a) High worm burden in the human
population increases the force of infection on the snail population, which positively selects for immune snail
genotypes. (b) Miricidial infection of susceptible snails is density-dependent. (c) Evolution of immunity in the snail
population reduces cercarial transmission to humans, thereby regulating parasite densities at an endemic equilibrium.
GDMI is inherited more rapidly than natural immunity only when outcrossing occurs. (d) Infection of humans is
proportional to cercarial output, and a negative binomial distribution of adult worms in the human population
influences mating success and egg production (Table B in S1 Text). Existing literature does not consistently support
the role of variable human immunity in epidemiological models in endemic regions, therefore immunity in the human
population is assumed constant. (e) Mortality of adult worms occurs via constant natural mortality and MDA
treatment. Three snail genotypes are modeled: susceptible to infection, innately immune (wild type), and gene drive
mediated immune. Iteroparitive reproduction and mortality of these genotypes is modeled with explicit fecundity and
viability components of fitness (see S1 Text).

https://doi.org/10.1371/journal.pntd.0010894.9001

simplified evolutionary models developed for gene drives to date. Accuracy of gene drive mod-
els hinges on realistic assumptions of the target population.

The success of gene drive mediated immunity (GDMI) in natural snail populations is deter-
mined by features intrinsic to the design of the drive construct and its deployment—homing
efficiency, fitness cost of the payload, evolution of resistance to the drive, and number of
releases—and by extrinsic properties of the environment in which GDMI is deployed, such as
the size of the focal snail population, transmission rates, and gene flow and standing genetic
variation for immunity in snail populations. Importantly, all snail species that serve as inter-
mediate hosts to schistosomes, except for Oncomelania spp., are simultaneous hermaphrodites
capable of self-fertilization (selfing). In contrast to mosquito and fruit fly models for which
gene drives have been designed, selfing snail species may be incapable of propagating a drive
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construct. Gene drive relies on an encoded endonuclease, such as Cas9, which introduces a
double strand break in the homologous chromosome that is repaired using the gene drive
allele as a template, thereby copying the gene drive allele to the homologous chromosome [4,
5]. Sexual reproduction (outcrossing) is necessary for gene drive to spread a target allele in a
population through pairing and reassortment of gene drive and wild type alleles, facilitating
gene conversion. Because the propensity to self-fertilize varies by species and environmental
conditions [28], it is imperative to understand how selfing interacts with the variety of intrinsic
and extrinsic factors that may influence the establishment of GDMI in natural snail
populations.

The impact of GDMI is determined by public health outcomes and not by establishment
alone. Local success in schistosomiasis reduction can be achieved through sustained non-phar-
maceutical intervention, but such approaches are often resource intensive (e.g. sanitation) or
cause collateral damage to the environment (e.g. molluscicides) [29, 30]. Praziquantel (PZQ)
emerged in the 1980s as the drug of choice for mass drug administration (MDA) [31, 32], and
while cheap and effective in removing mature parasites from infected people and temporarily
reducing morbidity, PZQ does not prevent reinfection, and extensive MDA campaigns have
been unable to locally eliminate the disease in high transmission regions [33, 34]. For this rea-
son, in recent years there has been a renewed interest in complementing MDA with environ-
mental interventions aimed at targeting the environmental reservoirs of the disease [35-38].
GDMI has the potential to augment environmental interventions as a means toward cost-
effective and sustainable schistosomiasis elimination, especially when paired with existing
anthelmintic treatment of humans.

We investigate the role of selfing and its interaction with other factors influencing GDMI
establishment to infer the challenges and opportunities for GDMI in a natural context. We
hypothesised that a high selfing rate would incapacitate a gene drive, but a lower selfing rate
could be compatible with a drive in certain conditions. To test these ideas we developed a bio-
logically realistic mathematical model incorporating both genetic and environmental factors.
This model is integrated in an epidemiological framework to evaluate the reduction of disease
burden in humans with and without coincident MDA treatment. This study can be used as an
informative first step for scientists, stakeholders, and policy makers looking to address the
large human health crisis of schistosomiasis in conjunction with the principles for responsible
use of gene drives proposed by the National Academies of Science, Engineering, and Medicine
(NASEM) [39].

Methods
Model summary

We present a model of mixed mating strategy and explore a range of observed selfing rates to
understand how reproduction strategy influences success of gene drive technology in a natu-
ral population. The gene drive model developed embeds a non-stationary Markov process
that accounts for natural inheritance patterns as well as gene drive inheritance and fitness dif-
ferences among genotypes. In contrast to previous gene drive models, which consider a wild-
type allele and gene drive allele, we consider an expanded model with two wildtype alleles:
susceptible (A) and immune (B). A third allele, B, represents engineered immunity to infec-
tion in the form of a gene drive construct. The set of six genotypes formed by these three
alleles is Q = {AA, AB, BB, AB,, BB, B,B,}. Let P; be the frequency of each genotype where i €
Q. Let P; be the row vector composed of genotype frequencies at time (in generations) . We
describe the mixed mating system of genetic inheritance with two transition matrices, S (self-
tertilization) and T (out-crossing), to describe the transitional probabilities from generation ¢
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Homing efficiency H takes values between 0 (Mendelian inheritance) and 1 (complete fidel-
ity of gene drive mechanism). A matrix Q can be formed to represent the mixed mating system
with self-fertilization rate and cost of inbreeding given by o, £ € [0, 1], respectively.

Q=0(1-8S+(1—0)T (3)

In the absence of population dynamics and fitness differences between genotypes, Eq 4 would
suffice to describe genotype frequency changes over time.

P, = P.Q (4)

These evolving genotypes represent the converted germline rather than embryonic geno-
types; however, our default model simulates complete dominance of immunity and therefore
the immunity of drive heterozygotes is identical to that of drive homozygotes.

To accurately represent the evolution of traits in the snail-schistosome system, we relax
some simplifying assumptions by incorporating fitness differences in response to viability and
fecundity selection. We also introduce overlapping generations with density dependent
recruitment in the snail population (Equns 8-52 in SI Text). A simplified model of death,
migration, and recruitment is given below in Eq 5:

Mi(t)

Nt +1) = N[ =700 + m,(6)] + 370560 = N[ =7,() + m, ()] (5)
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Each genotype is indexed by 7, N represents the population size, ¥ is the finite death rate, m
is the finite migration rate, A is the finite growth rate, and G is the logistic growth equation.
Model simulations recapitulate laboratory results under the same conditions (Fig 2). We derive
analytical solutions at long term equilibrium (Equns 53-62 in S1 Text) and analyze the evolu-
tion of resistance to the gene drive mechanism (Equns 63-65 in S1 Text). The model is
expanded to simulate the effects of ‘daisy chain’ drive (Fig B and Equns 66-75 in S1 Text), and
invasion analysis is performed for key variables, while a stochastic model is used to observe
extinction conditions (Fig H and Equns 76-78 in S1 Text).

The genetic model is integrated with an epidemiological model of schistosomiasis through
the fraction of immunity in the snail population, p.

dw

W - 6
koA 04 (6)

DNy p) @
dt
o and f are transmission rates governing the conversion of snail infection prevalence, y, to
adult worms, w, in humans and vice versa. B is a function of the shape of the negative binomial
distribution of adult worms in the human population (Table A in S1 Text). Gurarie et al. out-
lined the transmission from humans to snails is saturating with increasing worm burden [40].
The asymptote is the pre-treatment force of infection, A*. y and v are the death rates of adult
worms and infected snails, respectively.

Eqs 6 and 7 are integrated in 3 month intervals, corresponding to the expected generation
time of the snail population. The probability of a new infection per susceptible snail in a gener-
ation determines the strength of selection for immunity in the genetic model.

T+l
Priyt) ~ / A1 — e Pt (8)
t=t

Parameter values and initial endemic conditions are detailed in Tables A and B in S1 Text.
Calculations for equilibrium values and reproduction numbers are made in Equns 72-91 in S1
Text. The epidemiological model was not used to simulate Figs 3 and 4. Instead, the probability
of new infections was held constant at the equilibrium value calculated for endemic conditions
with the integrated genetic and epidemiological model (Fig J in S1 Text). Fig 5 incorporates
both dynamic models to evaluate single and paired treatment. MDA is modeled as instanta-
neous annual treatment. Percent reduction in worm burden during each treatment was 60%
and is the product of coverage and efficacy.

Python code for simulations is available at www.github.com/grewelle/ModelGene
DriveSchisto.

Model validation with empirical data

Tennessen et al. 2015 [19] performed selection experiments using two infection conditions: 10
and 30 miracidia per snail. These snails were 10 generations from natural Biomphalaria glab-
rata breeding populations and were kept together to breed during each generation of selection.
After challenging each group of snails with miracidia, infected snails were removed from the
breeding population. Selection for immunity was evident and genetically based as given by
experimental evidence of decline in infection through the 6 generations of challenges. We
modify our model to replicate these experimental conditions, first by assuming that removal
from the breeding pool only occurs via infection (mortality = 0). We assumed a high
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Fig 2. Comparison of model results to empirical data from published selection experiments by Tennessen et al.
2015. Two selection experiments were conducted, the first challenging each snail with 10 miracidia (top, R* = 0.944),
and the second challenging each snail with 30 miracidia (bottom, R = 0.937). 95% confidence bars are displayed for
each empirical measurement. Given initial conditions similar to experimental conditions, both models perform well in
recapitulating selection for immunity to infection.

https://doi.org/10.1371/journal.pntd.0010894.9g002

probability of infection of 80% for susceptible snails in the 30 miracidia experimental condi-
tion. Because the snails are kept in close proximity, and B. glabrata are known to outcross fre-
quently, we assume that outcrossing was the exclusive mode of reproduction (i.e. selfing = 0).
Initial allele frequencies were calculated on the basis of the frequency of observed infections
(approx. 57%) in the 30 miracidia experimental condition for a probability of infection of 80%
for susceptible snails. GDMI was absent and set to a frequency of 0. Otherwise, parameters
were unaltered from simulation conditions presented throughout the paper. Initial allele and
genotype frequencies were assumed the same between the two experimental treatments, and
the probability of infection of susceptible snails was calculated given the frequency of observed
infections in the first challenge (48%). The probability of infection for the 10 miracidia treat-
ment is 70%. The curves produced by the model in Fig 2 of expected infection frequencies
given these two calculated probabilities (70% and 80%) reflect the observed data well despite
some assumptions (e.g. no self-fertilization) and experimental variability. We consider this fit
qualitatively similar because some unknown experimental conditions are assumed, and there-
fore represent one of the possible model outcomes. However, empirical evidence suggesting
that immunity is a dominant trait and that it is regulated by a gene complex, which is tightly
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linked, corroborates our use of a one locus, complete dominance (h = 1) model. Model param-
eters used in the simulations are able to generate similar evolutionary dynamics to experimen-
tally achieved evolution, and therefore, their values are further supported by our results in
addition to support from literature. The values of some genetic model parameters may differ
for other snail species or genes conferring immunity than those so far studied for B. glabrata.

Results

We developed a population genetic model that accounts separately for fecundity and viability
components of fitness as well as for density dependent dynamics of the snail host population.
We expand the wild type—gene drive, 2 allele model to separate the naturally occurring alleles
into immune and susceptible types. The resulting six genotypes are formed from three alleles
(susceptible, innately immune, gene drive mediated immune) and incorporated into a Markov
model modified to include overlapping generations and population dynamics of susceptible
and infected snails. Finally, we integrated the population genetic and ecological model with an
epidemiological model to describe the dynamics of infection in the human population. Param-
eter values for the genetic model are derived from literature (Table A in SI Text) or otherwise
explored in sensitivity analyses in the resulting Figs 3 and 4, and under default conditions, sim-
ulated evolution recapitulates challenge experiments (Fig 2). We examine the impact that the
self-fertilization (selfing) rate of a focus population has on the establishment of gene drive in
10 years.

To represent the two species clusters, we depict results from both ends of the range of
observed selfing rates among snail hosts. At high rates (o = 0.8), self-fertilization undermines
the gene drive and prevents establishment. However, GDMI is able to overcome low rates of
self-fertilization (o = 0.2) and establish at high frequencies (Fig 3A). Self-fertilization is largely
species dependent and may vary with local conditions with higher propensities to self-fertilize
observed at low population densities [41]. To simulate this range of conditions, we perform a
sensitivity analysis at the 10 year endpoint, so chosen as the likely window in which the efficacy
of targeted treatments are evaluated in human populations. Especially for predominantly out-
crossing species, reduced offspring viability is associated with self-fertilization [41]. We pro-
vide a confidence interval around the endpoint sensitivity analysis based on a range of
inbreeding costs to fecundity. Gene drive success in 10 years is highly dependent on low selfing
rate, though slower establishment is possible at moderate selfing rates. The inflection point
near o = 0.6 gives the value over which gene drive success is improbable in a 10 year window
(Fig 3B). These results indicate that for species with a lower rate of selfing, including Oncome-
lania hupensis, Biomphalaria glabrata, and Bulinus globosus, gene drive could establish rapidly
in focus populations [42]. Conversely, for species like Biomphalaria pfeifferi or Bulinus trunca-
tus, which have been observed to self-fertilize at rates higher than 0.6, gene drive will likely be
ineffective in increasing immunity in the snail population [43].

Drive success depends on features in the snail-human-schistosome system beyond selfing.
Features intrinsic to the design and deployment of the drive like homing efficiency, fitness cost
of the payload, resistance evolution, and the number of releases of GDMI individuals are more
easily modified than extrinsic factors which are dependent on the ecological and environmen-
tal conditions—size of the snail population, force of infection from the human population,
gene flow, and standing genetic variation. Yet the success of GDMI may be sensitive to any of
these factors. We explore via endpoint sensitivity analyses how variation in these factors alters
the frequency of GDMI after 10 years.

Like results from previous modeling and laboratory studies, we find that homing efficiency
has a dramatic impact on the outcome of the gene drive release in a focus population. Under
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Fig 3. Self-fertilization rate strongly affects establishment of gene drive in a 10 year window. (A) Simulation of
gene drive invasion under default conditions when self-fertilization rate is low at 0.2 and high at 0.8. (B) Endpoint
sensitivity analysis depicting the gene drive frequency in the population after 10 years under variable self-fertilization
rates (o) from 0 to 1. Bootstrapped 95% confidence intervals are reported on the range of results when the fecundity
cost of inbreeding varies on the uniform distribution [0,0.6]. The vertical dotted line designates o = 0.5, which is the
value used in future simulations to represent an intermediate selfing rate from those observed. Shaded bars colored by
genus display ranges (mean + 1 s.d.) of observed selfing rates for each host snail species for which empirical measures
exist [41]. Vertical positioning of the bars is ordered by minimum selfing rate according to the displayed ranges.

https://doi.org/10.1371/journal.pntd.0010894.9g003

the range of selfing scenarios, low homing efficiency leads to minimal gene drive establish-
ment. Laboratory work in mosquitoes and mice shows homing efficiency above 0.4 is achiev-
able and often exceeds 0.9 [5, 44]. In this range, diminishing returns are observed when

H > 0.5 (Fig 4A). The fitness cost of the genetic payload is not often empirically measured,
though for this modeled system, gene drive success is highly sensitive to this parameter: GDMI
can establish only when the cost is below 0.4 per gene drive copy in the genome (Fig 4B).
Results improve nearly linearly below a fitness cost of 0.3 per copy. In natural and laboratory
populations, resistance to the gene drive mechanism can evolve quickly without the presence
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0.5.

https://doi.org/10.1371/journal.pntd.0010894.9g004

of multiple gRNA or selection against resistance formation [45]. Resistance can evolve more
quickly when associated fitness costs of the gene drive phenotype are high. The reported mech-
anisms of resistance are spontaneous mutation and non-homologous end joining which ren-
der the Cas9 cleavage site unrecognisable [46]. We combine these associated mechanisms and
display the scenarios for the likely range of summed rates of both processes. In a 10-year time
frame, a rate of resistance formation greater than 0.2 per meiotic event makes GDMI establish-
ment infeasible (see also Fig F in S1 Text). With the exception of the deployment strategy, in
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Fig 5. Combining gene drive with mass drug administration. (A) 35% reduction in mean worm burden (MWB) is
observed in 10 years with gene drive alone. (B) Targeted administration of MDA at 60% annual reduction
(efficacy*coverage) in MWB results in more rapid but temporary reduction than the use of gene drive. Sustained
reductions are achieved with coincident MDA and gene drive treatment.

https://doi.org/10.1371/journal.pntd.0010894.g005
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which the number of releases does not significantly alter establishment drive success, intrinsic
factors to the design of the gene drive construct bear heavily on the outcome of GDMI in 10
years.

We also investigated four extrinsic determinants of GDMI establishment: seed gene drive
frequency, force of infection, gene flow, and the standing innate immunity in the snail popula-
tion. Seed frequency is critical to gene drive spread when only low seed frequencies are possi-
ble (Fig 4E). Seeding greater than 1% gives strong diminishing returns. As focus snail
populations can vary between hundreds and hundreds of thousands of individuals, this implies
that anywhere from one to thousands of snails will need to be raised for a successful introduc-
tion, and the size of the focus population will determine the feasibility of release. Similarly,
diminishing returns are seen as the probability of infection in a generation increases past 0.2
(Fig 4F). This indicator of endemicity provides the positive selection necessary to propagate
the drive in the snail population, as susceptibility to infection is disadvantageous. These results
suggest that success is similar for localities experiencing moderate or high burden of disease.
Loss of drive alleles from the focus population due to migration inhibits establishment of the
drive (Fig 4G). Levels of gene flow greater than 40% (i.e. 40% of focus population alleles are
replaced by alleles from a non-evolving background population each generation) bring the
drive alleles to undetectable levels assuming immigrants to the focus population lack gene
drive immunity. Importantly, GDMI to schistosome infection acts by elevating the level of nat-
urally occurring innate immunity in the snail population. This co-occurring immunity is posi-
tively selected under the same conditions as GDMI. Susceptibility is positively selected with
weak force of infection due to the fitness costs via reduced egg viability associated with immu-
nity, and immunity is positively selected with moderate to high force of infection due to fitness
costs via parasitic castration and reduced lifespan in infected snails [47-49]. High levels of nat-
ural immunity will slow the growth of gene drive through direct competition, and therefore,
higher susceptibility to infection in a population favors gene drive establishment (Fig 4H). Nat-
ural immunity is inherited more slowly, though fecundity for naturally immune snails is
assumed higher than GDMI due to added costs of maintaining the genetic payload of the
drive.

Although mass drug administration (MDA) is capable of temporary reduction in morbid-
ity, MDA alone is incapable of local elimination at high transmission sites. In these conditions,
gene drive offers a potentially promising avenue for coincident MDA and environmental treat-
ment of schistosomiasis. We evaluate the consequences of applying GDMI snails to a commu-
nity with concurrent annual MDA treatment. We compare the observed reduction in mean
worm burden (MWB) between three treatment regimes: gene drive immunity, MDA, and con-
current application of both (Fig 5). Simulations are conducted under the same default condi-
tions evaluated above with the difference that human-to-snail force of infection is a variable
that is determined by the number of mated worm pairs in the human population (Table B in
S1 Text). The pre-treatment prevalence of infection in humans is assumed to be 80%. The
snail-to-human force of infection is a function of the number of infected snails at a water
access site, a quantity that diminishes as immunity to infection increases in the snail
population.

With gene drive treatment alone a 35% reduction in MWB is observed due to the reduced
establishment of new worms in humans and natural mortality of existing adult worms with
average lifespan of nearly 5 years [50]. Elimination could be achieved with successful gene
drive treatment alone, though the lifespan of adult schistosomes precludes rapid elimination
(30 years required for 99% reduction, Fig M in S1 Text). This is true for previously MDA
treated and untreated populations (Fig M in S1 Text). With annual reduction of MWB of 60%
through targeted MDA, alleviation is possible, but elimination is infeasible due to the
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persistence of infected snails in nearby water access sites. Moreover, immunity in snails wanes
due to decreased force of infection on the snail population, resulting in an upward trend in
MWB from year five onward. Concurrent treatment targeting both snail and human hosts
leads to sustained elimination provided resistance formation is low. This is true even when
MDA is ended after 10 years because GDMI has reached fixation in the focus snail population
(Figs K-M in S1 Text).

Discussion

Our results demonstrate that successful establishment of immunity within a 10 year evaluation
period is possible for species of snails with low to moderate selfing rates. Snails species like B.
pfeifferi and B. truncatus, which are known to self-fertilize at high rates, are likely not desirable
targets for GDMI. Many other snail species self-fertilize at lower rates, providing more oppor-
tunity for GDMI control of schistosomiasis [28]. Likewise, propensity to self-fertilize can also
vary by environmental condition. Panmictic and stable snail populations favor out-crossing,
which increases the rate of inheritance of GDMI. This work indicates that the potential for suc-
cess of GDMI could be evaluated prior to programme implementation through genetic studies
quantifying selfing rates (e.g. with F-statistics) in intervention areas. In areas with sympatric
snail species with differing selfing rates, quantifying the relative abundance of each species and
their respective contributions to schistosomiasis burden will inform the potential for success
of GDMI locally. Schistosoma japonicum may be treated most effectively with GDMI because
O. hupensis is not known to self-fertilize, whereas S. mansoni and S. haematobium are trans-
mitted by snail species with high and low selfing rates, making ecological surveys and feasibil-
ity modeling crucial in advance of intervention for these parasite species.

GDMI establishment is sensitive to genetic design and less sensitive to standing genetic var-
iation for immunity. Low payload fitness costs and homing efficiency greater than 50% are
essential. Reducing the evolution of resistance to the drive with multiple gRNAs [45] or
through other techniques can moderately improve success in a 10 year window and has stron-
ger implications for success after 10 years. Alternative designs incorporating ‘daisy chain’
inheritance or other drive decay mechanisms can provide safeguards to gene drive release in
natural ecosystems, and peak GDMI frequency would be contingent on the strength of this
decay, which occurs more quickly with fewer loci in the chain [24]. Selfing requires more loci
in a daisy chain to achieve high peak frequencies of GDMI prior to decay, therefore this tech-
nology also will perform best for preferentially outcrossing species but will be ineffective for
large snail populations (Fig B in S1 Text). Although CRISPR represents the most likely tech-
nology for developing GDMI constructs, it may not be the only successful gene editing
method; our results cover a wide range of scenarios that also apply to non-CRISPR drives.
Other genetic features like dominance, penetrance, and epistatic interactions are significant
considerations for choosing appropriate gene targets (Figs C-E in S1 Text). Although optimiz-
ing genetic designs is not trivial [51], because modifying snail habitat on a large scale is more
challenging, efforts to improve drive construct designs will yield higher returns in successful
establishment of GDMI.

Ecological factors that dilute the frequency of gene drive in a focus population (e.g. ata
water access site), such as high gene flow due to snail migration or a large snail population size,
inhibit timely establishment of gene drive mediated immunity (see also Fig G in S1 Text).
These results indicate that success is most easily achieved in isolated water bodies with smaller
snail populations. Because selfing is encouraged for isolated snail populations, a trade-off
between selfing rate and size of an interbreeding snail population may prove challenging to
optimize GDMI introduction. Snail population sizes in many areas fluctuate dramatically by
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season [52], therefore introduction of GDMI snails may be best timed when population sizes
are at their lowest and have maximum growth potential. Otherwise, GDMI will establish
slowly in populations experiencing high seasonality (Fig I in S1 Text). Populations with shorter
generation times will achieve greater GDMI frequencies within 10 years (Fig F in S1 Text).
Future studies should build on this foundational simulation by considering snail migration
and water flow between locations to assess whether GDMI snails would be effective in a wider
range of scenarios.

There are some caveats and complexities that we have not addressed here. This model was
built on the assumption that the gene drive works, i.e. that the gene drive is effective in produc-
ing snails that are immune to schistosome infection. While immune alleles associated with the
PTCIand II gene clusters in B. glabrata can be rapidly selected in experimental conditions,
these alleles have not yet been successfully deployed in a gene drive construct. Unidentified
loci could be responsible for immune phenotypes so far examined [53]. Further genetic work
is required to discover gene drive targets in other snail host species. Due to the flexibility of the
modeling framework, model results can be updated to reflect qualities of constructs in devel-
opment and the species targeted. In addition, we have not considered potential interactions
with other trematode species, as snails can be the intermediate hosts to species other than
schistosomes [54]. Interactions between schistosomes, other trematode species, and immunity
can shape the fitness landscape in which GDMI operates, and therefore require further investi-
gation to gauge whether the efficacy of this gene drive approach is sensitive to these interac-
tions. This equally applies to interactions that involve schistosome subtypes that may evade a
single GDMI design. Field work to identify sympatric schistosome subtypes will be necessary
to evaluate local deployment of GDMI. Our analyses primarily explored variation in GDMI
success due to genetic parameters, but epidemiological parameters, such as the shape of the
distribution of adult worms in the human population or the lifespan of the snails in a local
environment, can also influence these results. Although we evaluate the outcomes of GDMI
over a range of sensitive conditions, the strength of this model is its flexibility to incorporate
emerging data to simulate local conditions.

These results indicate that the use of GDMI together with MDA could contribute to a lon-
ger-lasting reduction of worm burden than either GDMI or MDA alone. This emphasises that
gene drive is one potential tool among several that are currently available, and optimal use
would likely be in conjunction with current control methods. GDMI is much more targeted
than molluscicides, as it does not destroy the populations of snails and other aquatic life, and
thus may be preferred by many stakeholders. Moving forward, it will be necessary to model
how gene drives could interact with the variety of other control methods, to assess the optimal
combination of methods and timing that would result in sustained elimination.

Modeling is crucial to understand the feasibility of implementing a new technology like
gene drive, particularly in a natural system. Although this technology represents a new fron-
tier for controling disease, pests, and invasive species, the spread of designed genes in a natu-
ral setting can carry serious ethical and practical implications [39, 55]. It is therefore prudent
to begin any considerations with in silico and in vitro studies, before proceeding to in vivo,
with earlier steps informing the next. Further, modeling can ground critical deliberations
amongst stakeholders by providing realistic predictions for the effects of a gene drive project
and provide a useful ability to rapidly perform new simulations to address questions that
stakeholders might have for gene drive developers [56]. This model is an advancement
towards a biologically realistic simulation which integrates population genetics, epidemiol-
ogy, and population dynamics, and can serve as a template for future work in gene drive fea-
sibility analysis.
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Supporting information

S1 Text. Detailed methods, including analytical derivations of genetic and epidemiologi-
cal models. Additional genetic results, including the evolution of resistance to a drive, daisy
chain drives of 1-5 loci, and the sensitivity of GDMI to a variety of genetic variables. Addi-
tional epidemiological results, including invasion and extinction analyses as well as the sensi-
tivity of GDMI to a variety of epidemiological variables. Fig A. Forward simulations under
fixed epidemiological conditions of the spread of GDMI with various resistance production
rates per homing event. (A) No resistant alleles are produced. (B) Resistant alleles are pro-
duced with 20% of homing events. GDMI achieves only low frequency in the population due
to rapid evolution of resistance to the drive mechanism. (C) Resistant alleles are produced
with 10% of homing events. GDMI rises slowly, achieving half the frequency in the popula-
tion compared to conditions where resistance does not evolve. (D) Resistant alleles are pro-
duced with 10% of homing events as in panel C. In 20 years it is evident that the frequency of
resistant alleles outpaces the homing efficiency benefits in inheritance of GDMI, and GDMI
declines after reaching intermediate frequency (eventually to negligible frequency). Fig B.
Forward simulations of daisy drive systems for the inheritance of GDMI designed with 1-5
daisy chain loci. Decay of the drive occurs after n generations, therefore more loci produce a
longer lasting drive. However, because GDMI spreads slowly in the population compared to
a fully outcrossed population, peak frequency of GDMI is low. Nearly 30 daisy chain loci are
required to reach peak frequency of 50%, rendering daisy drive infeasible for implementation
in this system. Fig C. The relationship between the immune and susceptible alleles described
by the dominance coefficient governs the trajectory of evolution for naturally-occurring
immunity. Lower dominance of the immune allele leads to slower evolution of immunity,
which could change the speed at which GDMI increases in frequency in a population. Fig D.
High dominance (top panel, h = 1) representing PTC 1 and low dominance (bottom panel,

h = 0.4) representing PTC 2 do not yield measurably different results under default simula-
tion conditions after 10 years. Fig E. The effect of default penetrance (z = 0.8) compared to
higher penetrance (¢ = 0.9) in the establishment of GDMI. Higher penetrance produces the
blue GDMI and red susceptible lines, while lower penetrance produces the orange GDMI
and light blue susceptible lines. Fig F. Simulations of susceptible and GDMI frequencies
under variable life history strategies, namely mean generation time and death rate. Increas-
ing death rate results in more population turnover each generation and more rapid fixation
of GDMI. Panel A shows results for 4 = 0.25 while panel B shows results for 4 = 0.75. Simi-
larly, shorter generations yields more rapid fixation of GDMI in 10 years because more gen-
erations occur within the time window. Panels C and D give show results for a mean
generation time of 1.5 months (80 generations in 10 years) in contrast to 3 months (40 gener-
ations in 10 years). Panel C maintains y = 0.25, and panel D maintains ¢ = 0.75. Fig G. Inva-
sion analyses for variables that influence the probability of invasion. Other parameters are
held at their default value according to Table A in S1 Text, while the reproduction number is
calculated as selfing rate varies. Lighter areas indicate higher reproduction numbers, and
white lines represent the isocline at threshold conditions (R, = 1). The ratio reported in equa-
tion 77 and R, share a value of 1 under threshold conditions but are otherwise not precisely
equal due to the nature of overlapping generations in the model. Fig H. The probability of
extinction within 40 generations according to absolute fitness and the number of seeded
GDMI individuals. Darker values represent low likelihood of extinction. Fig I. The spread of
GDMI in a population with fluctuating carrying capacity due to seasonal rainfall and habitat
variation. High seasonality assumes at 4 fold change in carrying capacity in 2 generations,
with a full cycle occurring in 4 generations (equal to 1 year with default generation time):
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200%, 100%, 50%, 100% carrying capacity cycle. Low seasonality assumes no fluctuation in
carrying capacity. Fig J. Simulation of the emergence of a schistosomiasis epidemic under
default conditions. GDMI is not present, and long-term behavior of the model is observed to
overshoot endemic equilibrium conditions and return to equilibrium over the course of
many years. Susceptibility in snails is advantageous at low levels of infection early in the epi-
demic and is disadvantageous above equilibrium conditions. Fig K. Comparative results
among three treatment regimes under high and low transmission conditions. b is half of
default conditions (left) and Ry = 2.3, producing slower rebounds after annual MDA treat-
ment. More rapid rebounds are observed when b is twice default conditions and Ry = 4.5
(right). Fig L. Comparative results among three treatment regimes under high and low inten-
sity MDA application in the human population. 40% annual reduction in MWB (left) pro-
duces slower elimination across all treatment regimes compared to 80% annual reduction
(right). Rebounds are concave down and relatively smaller for lower intensity MDA and con-
cave up for high intensity MDA. This reflects slower loss of immunity, and for joint treat-
ment the faster gain of GDM]I, in the snail population due to higher selection pressure in
favor of immunity in higher transmission conditions. Fig M. Simulations of the three treat-
ment regimes for 40 years. Regimes are continued annually for the duration of the simulation
(left). MDA is stopped after 10 years of treatment (middle). GDMI is added five years after
existing MDA treatment (right).
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