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The tuning parameter selection strategy for penalized estimation is crucial to identify 
a model that is both interpretable and predictive. However, popular strategies (e.g., 
minimizing average squared prediction error via cross-validation) tend to select models 
with more predictors than necessary. A simple yet powerful cross validation strategy is 
proposed which is based on maximizing the squared correlation between the observed 
and predicted values, rather than minimizing squared error loss for the purposes of 
support recovery. The strategy can be applied to all penalized least-squares estimators and, 
under certain conditions, the metric implicitly performs a bias adjustment named the α-

modification. When applied to the Lasso estimator, the α-modification is closely related 
to the relaxed Lasso estimator. The approach is demonstrated on a functional variable 
selection problem to identify optimal placement of surface electromyogram sensors to 
control a robotic hand prosthesis.

 2023 Elsevier B.V. All rights reserved.

1. Introduction

Many statistical problems aim to build a predictive model from a large set of potential predictor variables.1 Variable 
selection is often performed to select a predictive model that depends on as few predictor variables as possible. For exam-

ple, Stallrich et al. (2020) discussed an important functional variable selection problem to develop a prosethesis controller 
(PC) for a robotic hand. Electromyogram (EMG) signals from surface sensors placed on the residual forearm muscles of an 
amputee were input into a PC and translated into movement of the robotic hand. For able-bodied subjects, it is known that 
certain movements are caused by contractions of only a few muscles, implying a predictive PC requires a few strategically-
placed EMG sensors.

This paper concerns problems that are well approximated by a sparse linear model:

yn×1 = Xn×pβ
∗
p×1 + εn×1 , (1)

where E(ε) = 0, V (ε) = �, β∗T = (β∗
1 , ..., β∗

p∗ , 0, ..., 0), and p∗ is the number of important variables. Without loss of gener-

ality, assume y and predictor variables, X, are centered and the diagonals of XTX equal n. Let M∗ = { j : β∗
j
�= 0} denote the 

support of β∗ . A predictive model’s estimate for β∗ , denoted β̂ , will ideally also have support M∗ and will be close to β∗

in some other sense, such as ||β̂ − β∗||22 =
∑

j(β̂ j − β∗
j
)2 .

* Corresponding author.
E-mail address: jwstalli@ncsu.edu (J.W. Stallrich).

1 Note that more detailed proofs for all results, additional simulation results, the EMG data from the application, and all R code for this paper have been 
made available in the Supplementary Material.
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Fig. 1. In-sample observations (yi ) versus predictions ( ŷi ) for Lasso estimator at four values of λ for a data set with n = 100, p = 100, and p∗ = 5. We also 
report average prediction error (APE) under 10-fold CV, in-sample squared prediction correlation (R2), and the number of false positives (FP). The minimum 
APE plus-or-minus one standard error is 0.2844 ± 0.0262 and all estimates have M∗ ⊆ Mλ .

For high-dimensional data like that in Stallrich et al. (2020), simultaneous support recovery and parameter estimation 
can be performed via penalized estimation. A penalized estimator is represented generally by β̂λ = argmin L(β) + Pλ(β)

where L(β) is a loss function comparing y to its predicted values Xβ , and Pλ(β) is a penalty function that depends on 
tuning parameter(s) λ ≥ 0. Henceforth we let L(β) = (2n)−1||y − Xβ||22 . Penalty functions can take myriad forms but we 
are interested in those that increase as β moves away from 0. The Lasso (Tibshirani, 1996) penalty, Pλ(β) = λ||β||1 =
λ 

∑p

j=1
|β j |, is one such penalty that can force estimates to equal 0, thereby performing simultaneous variable selection and 

estimation. For such sparsity-inducing estimators, we are interested in comparing the estimated support, Mλ = { j : β̂λ, j �=
0}, to M∗ .

The chosen λ balances the importance of minimizing Pλ(β) relative to L(β), so it is recommended to explore the 
tuning parameter space to identify an “optimal” value. Potential criteria for an optimal value include identifying a β̂λ

that minimizes ||β̂λ − β∗||22 , minimizes ||Xβ̂λ − Xβ∗||22 , or has Mλ = M∗ . The latter criterion is referred to as support 
recovery and is the primary focus of this paper. Even if a λ exists where Mλ = M∗ , there is no guarantee that we will be 
able to correctly identify it. Popular approaches, such as minimizing information criteria (Akaike, 1974; Schwarz, 1978) or 
minimizing average squared prediction error from K -fold cross validation often choose a λ that overselects the number of 
important variables (Feng and Yu, 2013; Hastie et al., 2017), i.e., M∗ ⊂ Mλ . Post-selection inference techniques (Lockhart 
et al., 2014; Zhang and Zhang, 2014) and multi-stage modifications (Zou, 2006; Meinshausen, 2007) can correct for this 
overselection, albeit with added computations and assumptions.

This paper proposes a new K -fold cross validation strategy that assesses the predictive quality of β̂λ by maximizing 
average squared prediction correlation rather than minimizing average squared prediction error. The scale invariance of 
correlation reduces the impact of the potential shrinkage when estimating large |β∗

j
| that would burgeon squared prediction 

error. To demonstrate, we simulated a dataset {y, X} with n = p = 100, p∗ = 5, and normally-distributed errors with � = I, 
and generated the entire solution path of the Lasso. The elements of X were independently sampled from a standard Normal 
distribution and then appropriately centered and scaled. The active coefficients in β∗ were {2.13, 1.81, −2.46, −1.89, −2.51}. 
Many λ values had Mλ = M∗ , so a wide range were optimal for support recovery. Fig. 1 plots y against their in-sample 
predictions, ŷλ , under four different λ values, and summarizes the models’ number of false positives (FP), average squared 
prediction error (APE) from 10-fold cross validation, and in-sample squared prediction correlation (R2). Fig. 1(a) corresponds 
to the λ determined by a cross validation one-standard-error rule (CV 1SE) and Fig. 1(b) corresponds to the λ that minimizes 
||Xβ∗ − Xβ̂λ||2 (Min PB). Among the λ having Mλ = M∗ , we consider the largest and smallest in Figs. 1(c) and 1(d), 
respectively.

All models shown in Fig. 1 include the 5 important variables. Both the CV 1SE and Min PB models have small APE and 
large R2 , but many false positives. The model in Fig. 1(c) has no false positives, but has relatively large APE. The model 
under Fig. 1(d) also has no false positives and its in-sample R2 approximately equals that of the Min PB estimate. This 
motivates a tuning parameter selection strategy based on an R2 metric rather than APE to compromise between prediction 
error and variable selection.

After justifying the R2 metric, we highlight and investigate an equivalence between the metric and a multiplicative 
adjustment on β̂λ , referred to here as the α-modification. We argue that for β̂λ with certain statistical properties, the 
adjustment can reduce the bias of β̂λ thereby improving its predictive potential. We go on to study the α-modification for 
the Lasso, highlighting its similarities to the Nonnegative Garrote (Breiman, 1995) and relaxed Lasso (Meinshausen, 2007). 
Unlike these two methods, the α-modification can be applied to any penalized least-squares estimator, including non-convex 
penalties, without additional computational complexity.

This paper is organized as follows. In Section 2 we review classes of penalized estimators, popular tuning parameter se-
lection strategies, and post-selection inference methods. Section 3 justifies the value in the R2 metric and provides statistical 
properties for a general class of penalized estimators. Finite-sample properties are then derived for the α-modification for 
the Lasso in Section 4. Section 5 presents a simulation study of the new approaches and Section 6 applies our new methods 
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to the EMG data of Stallrich et al. (2020). Section 7 provides a discussion on the implications of our new framework for 
evaluating model fit and propose avenues of future research.

2. Background

2.1. Classes of penalized estimators

Consider the class of penalties Pλ(β) = ||β||qq =
∑

j |β j |q , q > 0, corresponding to the so-called bridge estimators (Frank 
and Friedman, 1993). It has been shown (Knight and Fu, 2000) that for q ≤ 1 and large enough λ, the penalized estimate 
will have some β̂λ, j = 0, yielding a continuous approach to the intractable exploration of all submodels. Under appropriate 
regularity conditions, the limiting distributions of such β̂λ, j whose corresponding β∗

j
= 0 can have positive probability mass 

at 0 when p is fixed, meaning that the estimators are capable of support recovery. The result has been shown to hold as 
p and n grow to infinity, under certain growth rate conditions (Huang et al., 2008). However, the large λ necessary for this 
to occur may cause |β̂λ, j | << |β∗

j
| for j ∈M∗ , thereby inflating criteria commonly used for tuning parameter selection. A λ

yielding support recovery may then be ignored by popular tuning parameter selection strategies.
To address this shrinkage problem, the Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001) and the 

Minimax Concave penalty (MCP) give continuous, nearly unbiased methods of penalized estimation (Zhang, 2010). The SCAD 
estimator has been shown to be support recovery consistent (i.e., P (Mλn = M∗) → 1 as n → ∞) for appropriately chosen 
λ (Fan and Li, 2001). MCP shares a similar result but again under certain conditions on λ (Zhang, 2010). These penalties are 
less likely to have |β̂λ, j | << |β∗

j
| but their tuning parameter selection problem is further complicated by having to explore 

a multidimensional space.
Another approach to prevent |β̂λ, j | << |β∗

j
| is to adjust bridge penalties. The Ridge penalty (q = 2) cannot shrink any 

coefficient estimate to exactly zero, so Wu (2021) recently proposed Pλ(β) =
∑p

j=1 λ jβ
2
j , to allow for this behavior. The 

adaptive Lasso (Zou, 2006) is a similar adjustment but for the Lasso penalty. It follows a two-stage process: first β̂—a 
consistent estimator for β∗ such as Ordinary Least Squares (OLS)—is calculated. Then, with γ > 0, adaptive Lasso estimates 
are found using the penalty Pλ(β) = λ 

∑p

j=1
|β̂ j |−γ |β j |. When γ = 1 and β̂ = β̂O LS , the objective function reduces to the 

Nonnegative Garotte (Breiman, 1995). This approach is support recovery consistent when λn/
√
n → 0 and λnn

(γ −1)/2 → ∞
as n → ∞. The adaptive Lasso is easily generalized to non-Lasso penalties, however the selection of γ and consistent 
estimation of β∗ for high dimensional data can be difficult to establish.

The relaxed Lasso (Meinshausen, 2007) minimizes the objective function:

1

2n
||y− X(β ◦ 1Mλ

)||22 + λφ||β||1 . (2)

where φ ∈ (0, 1] and β ◦ 1Mλ
is the Hadamard product of β with the support vector under Mλ . In simulations, the relaxed 

Lasso returns sparse models with low bias. Moreover, the expected value of the loss function of the relaxed Lasso converges 
to 0 faster than the Lasso when p increases quickly relative to n, meaning that relaxed Lasso estimates tend to be closer to 
β∗ for smaller n than the traditional Lasso. This result is again achieved assuming that λ is sufficiently large. The relaxed 
Lasso is computationally efficient to calculate but its extensions to more complicated penalties can be computationally 
intensive, and to our knowledge have not been well-studied.

The group Lasso (Yuan and Lin, 2006) penalty assumes E(yi) =
∑p

j=1 x
T
i jβ j where each xi j is a d j × 1 vector correspond-

ing with the ith observation of the jth covariate group and shrinks coefficients at the group level. This class of models 
includes general additive models (GAMs) and functional linear models. GAMs (Hastie and Tibshirani, 1986) have the form 
yi =

∑p

i=1
f j(xi j) + εi where the f j ’s are functions of one or more covariates. Each f (·) is commonly approximated by a 

pre-specified basis expansion, such as B-splines, so that estimation of f (·) is equivalent to estimating the corresponding 
group of basis coefficients. The functional linear model (Ramsay and Silverman, 2005), an example of which may be found 
in Section 6, has functional covariates xi j(t) on domain T and models yi =

∑p

i=1

´

xi j(t)β j(t)dt + εi . The model is often ap-
proximated by imposing a basis expansion of the β j(·). The group Lasso penalty for such models is Pλ(β) =

∑p

j=1
λ j ||β j ||K j

where ‖z‖K = (zTKz)
1
2 and K1, ..., K J are known positive definite matrices. The group of coefficient estimates, β̂λ, j , are then 

either all zero or all nonzero. For the linear model, and under some regularity conditions, Nardi and Rinaldo (2008) proved 
that the group Lasso is support recovery consistent as long as 

√
nλ j → ∞ for all j /∈M∗ .

2.2. Tuning parameter selection strategies

Desirable statistical properties of penalized estimators hold under certain λ values, making tuning parameter selection 
a pivotal step in the analysis. One popular approach is to choose the λ that minimizes an information criterion IC(λ) =
−2 log L(β̂λ)+h(kλ) where L(β̂λ) is the likelihood of the data under β̂λ and h(·) is a penalty to prevent overselection based 
on the kλ = |Mλ|. Two well-known criteria are AIC (Akaike, 1974), where h(kλ) = 2kλ , and BIC (Schwarz, 1978), where 
h(kλ) = kλlog(n). AIC often overselects, particularly for small sample sizes, so a corrected AIC (AICc), where h(kλ) = 2kλ +
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2k2λ+2kλ

n−kλ−1
is recommended (Hurvich and Tsai, 1989). BIC, unlike AIC, is support recovery consistent when εi

iid∼ N(0, σ 2) (Nishii, 

1984). For Gaussian errors, L(β̂λ) involves σ 2 and for unknown σ 2 , −2 log L(β̂λ) ∝ nlog
(

σ̂ 2
λ

)

where σ̂ 2
λ is the estimated 

model variance at λ. This can lead to overselection when σ̂ 2
λ < 1 (Buhlmann and van de Geer, 2011). When possible, σ 2

is substituted with σ̂ 2 from a presumed low bias model (Hastie et al., 2017), but this may be challenging to identify for 
high-dimensional data. The Extended Regularized Information Criterion (ERIC), where h(kλ) = 2νkλlog(nσ̂

2
λ /λ) and ν > 0, 

was proposed by Hui et al. (2015) specifically for tuning parameter selection of penalized estimators. ERIC outperformed 
popular tuning parameter selection approaches in their simulations for the adaptive Lasso, but the choice of ν is subjective 
and determines the balance between fit and sparsity.

Cross validation (CV), is the process of splitting data into training and validation sets, in which the models are fit on the 
training sets and overfitting is assessed by predicting observations in the validation sets. CV takes many forms, but K -fold 
CV (Geisser, 1975; Allen, 1974; Stone, 1974) is arguably the most common. In K -fold CV, the data are partitioned into K
sets, or folds, of size nk each. For each λ, K sets of estimates are generated using K − 1 of the K folds and predictions are 
generated for the remaining fold, denoted ŷλ,k . Prediction error is calculated for each λ and fold as 1

nk
||yk − ŷλ,k||22 and is 

averaged across the K folds to give the average prediction error (APE) for each λ. The λ with the minimum APE is selected, 
or a 1SE rule—which chooses the largest λ within one standard error of the minimum APE—is implemented. The use of a 
1SE rule is most common for a one-dimensional λ, but Stallrich et al. (2020) proposed a multidimensional extension where 
the β̂λ chosen lies within one standard error of the minimum and also minimizes some penalty function. K -fold CV still 
has a tendency towards overselection, even with a 1SE rule (Krstajic et al., 2014).

Generalized cross validation (GCV) is an efficient alternative to n-fold Cross Validation (Craven and Wahba, 1978; Golub 
et al., 1979). GCV is appropriate when the estimation procedure admits linear predictions ŷ = Sy for some matrix S (Hastie et 
al., 2017). For example, in Ridge regression, S = X((XTX)−1+λI)XT . GCV minimizes a function that divides L(β̂λ) = ||y− ŷλ||22
by a function of kλ , the effective degrees of freedom. However, just like with other information criteria, GCV has been shown 
to lead to overselection (Homrighausen and McDonald, 2018).

2.3. Post-selection inference

Post-selection inference techniques carry out further variable selection after a tuning parameter value has been selected 
(van de Geer et al., 2014; Javanmard and Montanari, 2014; Taylor and Tibshirani, 2015; Lee et al., 2016; Shi et al., 2020). 
The debiased Lasso estimator (Zhang and Zhang, 2014) is a linear adjustment to the Lasso estimate 1

n
�XT (y−Xβ̂λ), where 

� is an estimate of (XTX)−1 . This causes zero estimates to become nonzero, but the additive adjustment for such estimates 
tends to be small. The correction leads to an approximately Normal distribution of β̂λ so one may perform hypothesis 
testing and construct confidence intervals.

The Covariance Test (Lockhart et al., 2014) takes advantage of the LARS algorithm, which constructs the Lasso solution 
path by adding variables one at a time (Efron et al., 2004). It is distinctive in that it assesses model fit using covariance 
rather than squared error loss. The test requires estimation of σ 2 and its extension to non-Lasso penalties is not well 
studied, but it provides precedence for the use of correlation in the evaluation of model fit for variable selection.

In general, when the tuning parameter selection event can be written as {Ay ≤ b} for some matrix A and vector b, there 
exists a general scheme for post-selection inference that gives exact confidence intervals and p-values for Gaussian errors. 
Choose η such that inference about ηT E[y] is of interest. Using the polyhedral lemma for Gaussian errors, Lee et al. (2016)
and Lockhart et al. (2014) represent this event in terms of ηT y to perform conditional inference. This allows for inference 
upon multiple λ or a fixed λ. When used for successive steps of LARS, it is known as the Spacing Test (Tibshirani et al., 
2014) and is a non-asymptotic version of the Covariance Test.

3. Methodology

3.1. Why correlation over squared prediction error?

Distinguish the magnitude of β∗ , denoted α∗ = ||β∗||2 , from its direction, ξ∗ = β∗/α∗ . Then ξ∗ retains all information 
about M∗ . The same summaries may be computed from an estimate, β̂ , denoted by α̃ and ξ̃ , having support M. Comparing 
M to M∗ is equivalent to comparing the supports of ξ̃ and ξ∗ . A tuning parameter selection strategy based on squared 
prediction error, however, concerns both magnitude and direction. Let {y, X} denote a holdout sample where y and X have 
been centered. The squared prediction error for yi = xT

i
β∗ + εi is

∑

i

(yi − xTi β̂)2 =
∑

i

(εi + xTi (α∗ξ∗ − α̃ξ̃))2 . (3)

In the ideal situation where ξ̃ = ξ∗ , (3) will be inflated when α̃ �= α∗ . Indeed, for penalized estimators with large λ, typically 
α̃ < α∗ . Therefore, it is possible for an estimate having ξ̃ = ξ∗ to have a large APE and so would be unlikely to be chosen 
by an APE-based tuning parameter selection strategy.
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Consider now the correlation between y and the predictions ŷ = Xβ̂ . After some simplification, we get the expression

Corr(y, ŷ) = (Xξ∗ + ε∗)TXξ̃

||Xξ∗ + ε∗||2 ||Xξ̃ ||2
, (4)

where ε∗ = ε/α∗ is a scaled error vector that does not depend on β̂ . The α̃ has no influence over this summary so this 
measure better compares the ξ∗ and ξ̃ , and hence better assesses support recovery than squared prediction error.

Our proposed tuning parameter selection strategy, called AR2 CV, employs K -fold CV with folds {yk, Xk} but replaces APE 
with

AR2 = 1

K

K
∑

k=1

[1 − Corr(yk, ŷk)
2] . (5)

The optimal λ may be chosen as the one that minimizes AR2, but we have found significant improvements in support 
recovery under an analogous 1SE rule. Applying AR2 CV with a 1SE rule to the toy example in Section 1, the optimal λ is 
that given in Fig. 1(d). The AR2 CV estimator was then able to compromise between support recovery and prediction error, 
while the APE-based CV prioritized prediction error. The coefficient estimates for the j ∈ M∗ under the APE CV model 
exhibit less bias than those of the AR2 CV model. A potential drawback then of AR2 CV is that its indifference towards 
α∗ may lead to a β̂λ that exhibits more shrinkage than is desired. A potential remedy is to follow selection of Mλ with 
unpenalized estimation for only predictors in Mλ . For example, one could perform OLS on only the j ∈ Mλ to form the 

estimator β̂
Mλ

O LS where β̂Mλ

O LS, j = β̂O LS, j when j ∈ Mλ and zero otherwise. We next discuss an alternative strategy that is 

related to AR2 CV that adjusts the shrinkage of β̂λ .

3.2. The α-modification

Consider now the training data’s y and their predictions, ŷ. If ŷ �= 0, calculate the least-squares estimate α̂ = argminα ||y−
αŷ||22 = (ŷ

T
ŷ)−1ŷ

T
y. Note this α̂ likely differs from α̃ = ||β̂||2 . By definition, the modified predictions α̂ŷ will be as close 

or closer to y as ŷ. The modified prediction is also equivalent to prediction under the adjusted penalized estimate, α̂β̂ . 
Calculating these α-modified coefficient estimates and predictions is described in Algorithm 1.

Algorithm 1 α-Modification for the Linear Model.

1: Given: Suppose y and X are centered such that an intercept term is unnecessary. Let β̂ be the vector of coefficient estimates.

2: Calculate α̂ = (ŷ
T
ŷ)−1ŷ

T
y = (β̂

T
XTXβ̂)−1β̂

T
XT y.

3: Calculate α-modified estimates, α̂β̂ , and α-modified predictions, α̂ŷ = α̂Xβ̂ .

For penalized estimators, the α-modified estimate can be viewed as

argmin
α,ξ

1

2n
||y− αXξ ||22 + λP (ξ) , (6)

by first fixing α = 1 to get ξ̂ = β̂λ and then minimizing the function for α given ξ̂ . This is a slight abuse of notation because 
ξ̂ is not required to be a unit vector like ξ∗ , but it does help to show how the α-modified estimate is related to separating 
β∗ into its magnitude and direction. As λ → 0, α̂λ → 1 because the objective function focuses most of its attention on 
the loss function. Thus the impact of the α-modification will be more pronounced for larger values of λ, and ideally the 
α-modified estimate will correct the bias of β̂λ due to shrinkage.

The α-modification is similar to existing modifications to penalized estimators. First, one can view the modification as 
reversing the process of calculating the Nonnegative Garrote estimator, which starts with OLS estimates of β∗ and then 
performs penalization. Zou and Hastie (2005) also recommended a multiplicative adjustment to the Elastic Net estimator, 
although the adjustment only involves one of the tuning parameters. For penalties that satisfy P (αξ ) = αP (ξ) for α > 0, we 
may rewrite the penalty in (6) as λα−1P (αξ) which resembles the relaxed Lasso penalty, so long as α−1 ∈ (0, 1]. Finally, 
the debiased Lasso tries to reduce bias through an additive adjustment, but this will cause some or all β̂λ, j = 0 to become 
nonzero, while a multiplicative adjustment will not change the support of β̂λ .

Penalized estimates are typically shrunk towards zero so the α-modification will correct this type of bias only if α̂λ ≥ 1. 
This property is guaranteed for common penalties:

Theorem 1. Suppose Pλ(β) =
∑L


=1 λ
g
(β) where g
(β) is convex and minimized at 0p . Then α̂λ ≥ 1 when β̂λ �= 0.

Amplifying penalized estimates does not necessarily decrease bias. To evaluate the α-modification as a bias-reduction tool, 
we have the following result.

5
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Lemma 1. If there exists a λ where P (ξ̂λ = ξ∗) = 1, then E(α̂λβ̂λ) = β∗ .

Lemma 1 conditions on an event that may have probability 0. The following lemma considers a broader condition, whereby 

the penalized estimate recovers the direction of β̂
Mλ

O LS , defined at the end of Section 3.1.

Lemma 2. If β̂λ ∝ β̂
Mλ

O LS then α̂λβ̂λ = β̂
Mλ

O LS .

There are multiple examples that satisfy the condition of Lemma 2. The OLS estimator itself qualifies as a scaled OLS 
estimator, where α̂λ = 1. Ridge estimates when XTX = nIp also take this form, having β̂λ = 1

1+λ
β̂O LS . Lemma 2 also applies 

whenever β̂λ contains exactly one non-zero entry. Finally, note that the relaxed Lasso always includes β̂λ,φ = β̂
Mλ

O LS among 
its solutions by setting φ = 0. Lemma 2 shows that this can sometimes occur for the α-modified estimates as well.

The α-modification serves to improve predictions under a given β̂λ through a positive, multiplicative adjustment and 
so its ability to improve estimation depends on the properties of β̂λ . While this paper is mainly concerned with tuning 
parameter selection for support recovery under finite sample sizes, properties of β̂λ are easier to study as n → ∞ and 
the same is true for α-modified estimators. Concerning support recovery consistency, since the support of α̂λβ̂λ equals the 
support of β̂λ , the α-modified estimator is support recovery consistent if and only if β̂λ is support recovery consistent. 
Next, the following theorem establishes estimation consistency of α-modified estimators.

Theorem 2. Fix p and suppose there exists a positive definite matrix Cwhere 1
n
X
T
nXn = 1

n
Cn → C as n → ∞. For a Pλ(·), if there exists 

a λn where β̂λn
converges in probability to cξ∗ for some c > 0, then α̂λn β̂λn

converges in probability to β∗ .

The case of c = α∗ in Theorem 2 says that if β̂λ converges in probability to β∗ then so will its corresponding α-modified 
estimator. For example, Knight and Fu (2000) determined certain conditions for which the Lasso exhibits this property. 
However, the rate of convergence for the α-modified estimators may improve due to the relaxation of finding a λn where 
β̂λn

converges in probability to any cξ∗ . Theorem 2 also suggests there may be opportunities for other penalized estimators 
that are not estimation consistent to have an α-modified estimator that is estimation consistent.

3.3. α-Modified cross validation

In addition to AR2 CV, we propose α-modified CV based on average squared prediction error under the α-modified 
estimates:

Mod APE = 1

K

K
∑

k=1

||yk − α̂kŷk||22 , (7)

where α̂k is calculated from the training data. Returning to the toy example from Section 1, the λ chosen through α-

modified CV with a 1SE rule returned a model with Mλ =M∗ . Its APE was 0.3821, which is marginally larger than that of 
AR2 CV. This demonstrates the possibility that the two CV strategies may point to different optimal λ.

Another benefit of α-modified CV over traditional CV surprisingly derives from the potential drawbacks of the modifica-

tion. We say that β̂λ recovers the direction of β∗ when β̂λ/‖β̂λ‖2 = ξ∗ . Because the modification unshrinks the β̂λ without 
changing its direction, the modification may exacerbate an estimate of poor quality, causing the Mod APE to exceed APE 
based on β̂λ . It is unlikely then for such a λ to be selected as the optimal value. Similarly, when β̂λ recovers ξ∗ but has 
small magnitude, Mod APE will decrease significantly over the traditional APE. Theorem 3 gives a theoretical justification 
for the latter situation.

Theorem 3. Suppose that β̂λ recovers the direction of β∗ and assume all εi are independent with constant variance σ 2. Then the 
expected value of the α-modified APE is less than the expected value of the traditional APE when:

α∗2

E[(‖β̂λ‖2 − α∗)2]
≤ β∗T

X
T
Xβ∗

σ 2
. (8)

Mod APE is then expected to be smaller than the traditional APE as long as the signal-to-noise ratio, represented by 
β∗TXTXβ∗/σ 2 , is sufficiently large.

4. The α-modified Lasso

The methods in Section 3 generalize to many types of penalties, but to better understand their properties we must 
focus on a specific penalty. Due to its popularity, we explore the properties for the Lasso penalty and finite n. First, note 
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Fig. 2. The leftmost plot shows solution path for the Lasso (dotted line), α-modified Lasso (solid line), and the relaxed Lasso at φ = 0.5 (dashed line) for β∗
1

and β∗
2 . The gray shaded area indicates the values of λ for which support recovery has occurred. The horizontal, dashed-dotted lines show the true values 

of β∗
1 and β∗

2 , −6 and 6 respectively. The plot on the right shows the α̂λ values.

that the α-modified Lasso may be thought of as a reverse Nonnegative Garotte in that it starts with shrunken estimates 
and uses a least squares modification to readjust and “un-shrink” them. The use of correlation to assess model quality is 
also consistent with the premise of the Covariance Test. The α-modified Lasso is most similar to the relaxed Lasso. The 
α-modification penalty is λα−1||αξ ||1 and the relaxed Lasso penalty is λφ||β||1 for φ ∈ (0, 1]. Theorem 1 establishes α−1 ∈
(0, 1] but we calculate the minimum α directly while the relaxed Lasso treats φ as a tuning parameter. Our approach reduces 
computation, but the resulting estimators are less flexible than the relaxed Lasso. Specifically, the α-modified estimate 
cannot change the direction of β̂λ .

Fig. 2 illustrates the distinction between the α-modified and relaxed Lasso estimator for an orthogonal X with n = 100, 
p = 50 and p∗ = 2 where (β∗

1 , β∗
2 ) = (−6, 6). The α-modified Lasso and relaxed Lasso solutions were generated for a set of 

100 λ and, for the relaxed Lasso, 20 φ values. The solution paths for β̂λ,1 and β̂λ,2 across all values of λ are shown for both 
the traditional and α-modified Lasso. The relaxed Lasso estimates for φ = 0.5 are also plotted. Fig. 2 also includes a plot of 
the α̂λ for the full data. For the λ exhibiting perfect support recovery, we see that α̂λ > 1, thereby demonstrating the value 
of the modification.

We now derive properties of the α-modified estimator for orthogonal X. The Lasso estimator for such X is β̂λ, j =
sign(β̂O LS, j)(|β̂O LS, j| − λ)+ , where β̂O LS, j is the OLS estimate of the β∗

j
and (z)+ = max(0, z). If the Lasso estimate for a j∗

is nonzero, the closed form expression for α̂λβ̂λ, j∗ may be derived.

Lemma 3. When X is orthogonal, the α-modified Lasso estimator has elements:

α̂λβ̂λ, j∗ = w1β̂O LS, j∗ + (1− w1)β̂λ, j∗ + w2β̂λ, j∗ , (9)

where w1 =
d2
j∗

∑p
j=1

d2
j

, w2 = λ
∑

j �= j∗ d j
∑p

j=1
d2
j

, and d j = (|β̂O LS, j| − λ)+ .

If d j∗ = 0, then α̂λβ̂λ, j∗ = β̂λ, j∗ = 0. If α̂λβ̂λ, j = 0 for all j �= j∗ and d j∗ > 0 then α̂λβ̂λ, j∗ = β̂O LS, j which is consistent 
with Lemma 2. When |Mλ| > 1, (9) involves a convex combination of the OLS and Lasso estimates, as well as an additive 
term, w2β̂ j∗,λ , that may overcorrect the α-modified Lasso beyond the OLS estimate. This behavior is illustrated for a simple 
example in Fig. 3. In that example, for λ < 10 there are potential values of β̂O LS, j∗ where the α-modified Lasso exceeds 
β̂O LS, j∗ . To better understand this behavior, Theorem 4 provides an upper bound for |α̂λβ̂λ, j∗ − β̂O LS, j∗ |.

Theorem 4. Suppose X is orthogonal and consider a given predictor, j∗, and λ where at least one j �= j∗ has |β̂O LS, j| > λ. Let x j∗

denote column j∗ of X. Then β̂O LS, j∗ = β∗
j∗ + n−1

x
T
j
ε where n−1

x
T
j
ε is fixed implies

|α̂λβ̂λ, j∗ − β̂O LS, j∗ | ≤ λ ×max

(

1,

√
u2v + v2 − v

2v

)

, (10)

where u =
∑

j �= j∗ d j and v =
∑

j �= j∗ d
2
j
. Moreover, lim|β∗

j∗ |→∞ |α̂λβ̂ j∗,λ − β̂O LS, j∗ | → 0.

The result of Theorem 4 is demonstrated in Fig. 3 for different values of λ. As |β∗
1 | increases in magnitude, thereby 

increasing β̂O LS,1 , the α-modified Lasso estimate moves away from the traditional Lasso estimate and towards the β̂O LS,1 . 

7
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Fig. 3. The α-modified estimates of β∗
1 under an orthogonal X as β̂O LS,1 changes, with all other nonzero OLS estimates fixed to β̂O LS, j = (−8, 5, −3, 1) for 

j = (2, 3, 4, 5). The dashed line gives the Lasso estimates and the dark solid line gives the α-modified estimates. The light solid line references when the 
penalized estimate equals the OLS estimate.

This happens instantaneously for λ = 10 and |β̂O LS,1| > 10 because β̂O LS,1 is the only estimate that exceeds λ. For λ = 6

and 4, when (
√
u2v + v2 − v)/2v > 1 there exists some β∗

1 in which the α-modified Lasso estimate overshoots β̂O LS,1 . This 
occurs as u2/v increases, meaning multiple d j are nonzero and are close to 0.

To generalize Theorem 4 to an arbitrary X we condition on the event that the λ recovers the sign vector of β∗ and 

consider the oracle OLS estimator β̂
M∗

O LS = (XT
M∗XM∗ )−1XT

M∗y where XM∗ is the subset of columns of X corresponding 

to M∗ . Then β̂
M∗

O LS, j∗ = β∗
j∗ + (XT

M∗XM∗ )−1
j∗ XT

M∗ε where (XT
M∗XM∗ )−1

j∗ denotes the j-th row of (XT
M∗XM∗ )−1 . Finally, let 

s̃ j∗ = (XT
M∗XM∗ )−1

j∗ s where s is the |M∗| × 1 vector of signs for the β∗
j
in M∗ .

Theorem 5. Suppose the Lasso estimate recovers the correct sign vector of β∗ . Let G j∗ = λ(s j∗ − ns̃ j∗ ). Then for a fixed ε , 
lim|β∗

j∗ |→∞|α̂λβ̂λ, j∗ − β̂M∗
O LS, j∗ | = |G j∗ |. Moreover |G j∗ | < |β̂λ, j∗ − β̂M∗

O LS, j∗ | if and only if
∣

∣

∣

∣

1− s j∗

ns̃ j∗

∣

∣

∣

∣

< 1 . (11)

Note for an orthogonal design ns̃ j∗ = s j∗ , making G j∗ = 0. Theorem 5 shows that the absolute difference between the α-

modified Lasso estimate and the OLS estimate generally does not approach 0 as |β∗
j∗ | → ∞. Rather, it approaches a constant 

that is always smaller than |β̂λ, j∗ − β̂M∗
O LS, j∗ | so long as s̃ j∗ is not close to 0. This indicates the α-modified Lasso estimate 

generally improves the bias of β̂λ, j∗ for large β∗
j∗ when the sign is recovered.

5. Numerical results

5.1. α-Modified CV under poor bias adjustment

Theorems 4 and 5 show that the α-modification cannot guarantee bias reduction for all λ. However, a poor bias adjust-
ment may be detected by CV. To illustrate, we performed a simulation study for the X used in Fig. 1 and considered two β∗

vectors, displayed in Fig. 4. For each β∗ , we generated 500 ε ∼ N(0, I) and averaged the three 10-fold CV metrics (APE, AR2, 
and Mod APE) for a range of λ. We also recorded the minimum and maximum λ values for which support recovery was 
achieved. The results are presented in Fig. 4. The gray shaded area was constructed by averaging the minimum and maxi-

mum λ achieving support recovery across all 500 data sets. Hence, the left of the gray area tended to lead to overselection 
of predictors (false positives) and values of λ to the right of the gray area tended to underselect predictors (false negatives).

As shown in Fig. 4(a), the Mod APE was less than or equal to APE for all λ, and especially so for larger λ that recover 
M∗ . The optimal λ’s according to the minimum AR2 and Mod APE resulted in sparser models than the minimum APE. With 
a 1SE rule, traditional CV recovered the support in only 24.4% of the replications, whereas α-modified and AR2 CV did so 
in 91.6% and 93.6% of the replications, respectively.

Fig. 4(b) corresponds to β∗ with larger and equal magnitude coefficients. Generally, the Mod APE was equal to or smaller 
than regular APE except for log(λ) ≈ 4, which had only one nonzero coefficient estimate. Mod APE highlights the poor 
bias adjustment and so would not recommend choosing this λ. The support recovery percentages were 19.8% for APE CV, 
98.2% for α-modified CV, and 98.8% for AR2 CV. Surprisingly, the support recovery percentage decreased for APE CV despite 
increasing magnitude of β∗ .

8
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Fig. 4. Average 10-fold Cross Validation results across 500 replications of linear data. X was taken from the example in Section 1. Average values of the 
minimum and maximum λ achieving support recovery are represented by the gray shaded region, the dashed line gives the APE, the solid line gives 
α-modified APE, and the dotted line gives AR2. Standard errors from these simulations were too small to be depicted.

Table 1

Average Hamming Distance for 100 replications of CV 1SE. Standard errors given in parentheses.

p 50 100 200 400 800 50 100 200 400 800

n p∗ = 5; SNR = 1.25; σ̄ = 5.19 p∗ = 5; SNR = 5; σ̄ = 2.59

100 3.1 (0.3) 4.3 (0.4) 6 (0.6) 7.8 (1.1) 9.1 (1.2) 2.2 (0.2) 4 (0.4) 7.5 (1.2) 9.3 (1) 10.7 (1.2)

500 0.6 (0.1) 1 (0.2) 1.3 (0.2) 1.9 (0.5) 2.9 (0.5) 0.9 (0.2) 0.9 (0.1) 1.7 (0.3) 1.7 (0.3) 1.5 (0.3)

1000 0.2 (0) 0.4 (0.1) 0.4 (0.1) 0.6 (0.1) 0.9 (0.2) 0.1 (0) 0.4 (0.1) 0.5 (0.1) 0.7 (0.1) 0.9 (0.2)

n p∗ = 50; SNR = 1.25; σ̄ = 16.6 p∗ = 50; SNR = 5; σ̄ = 8.3

100 31.7 (1.3) 43.5 (0.6) 50.1 (0.5) 51.1 (0.4) 53.2 (1.1) 5 (0.4) 32 (0.6) 47 (0.7) 53.8 (1.1) 54.5 (1.1)

500 1.6 (0.2) 18.2 (0.5) 33.3 (0.8) 48.6 (1.3) 57.4 (1.8) 0 (0) 16.8 (0.5) 35.3 (0.9) 58.4 (1.6) 81.2 (2)

1000 0.4 (0.1) 14.5 (0.4) 28.5 (0.9) 43.5 (1.4) 57.6 (1.6) 0 (0) 14.2 (0.5) 28 (0.8) 44.8 (1.3) 64.2 (1.8)

5.2. Support recovery simulation study

To evaluate the new methods for the Lasso, a broader simulation study consisting of 100 replications of data from model 
(1) was conducted. Following Meinshausen (2007), the rows of X were drawn from a multivariate Normal distribution with 
mean 0 and covariance �X . Nonzero elements of β∗ were drawn from a Gamma distribution with shape 10 and scale 0.25 
with negative and positive signs randomly assigned with equal probability, updating the coefficient vector with every repli-
cation. For each X and β∗ , two independent error vectors were generated from N(0, σ 2) distributions, with σ determined 
by a fixed signal-to-noise ratio SNR = β∗T

�Xβ∗/σ 2 . We considered n ∈ {100, 500, 1000}, p ∈ {50, 100, 200, 400, 800}, SNR 
∈ {1.25, 5} and p∗ = {5, 6, . . . , 50}.

Each simulated data set was analyzed using 10-fold CV with and without a 1SE rule under traditional APE (CV Min, 
CV 1SE), AR2 (AR2 Min, AR2 1SE), Mod APE (Mod Min, Mod 1SE), and the relaxed Lasso. For all methods, we considered 
250 λ values equally spaced on the exponential scale from e−20 to e10 . For the relaxed Lasso, we also considered 100 φ
values equally spaced from e−10 to 1. Selection under the relaxed Lasso was done using minimum APE as well as a 1SE 
rule based on Stallrich et al. (2020), wherein the optimal combination of λ and φ is the model with the smallest ||β̂λ,φ ||1
among all models with an APE within one standard error of the minimum. Relaxed Lasso estimates were found using a 
coordinate descent algorithm, capable of admitting more than n − 1 covariates into models, unlike LARS which was used by 
Meinshausen (2007). Support recovery was evaluated using the Hamming Distance (HD) between the 0/1 support vectors 
of β∗ and β̂λ , which is the sum of the number of false negatives and false positives. Additional metrics including the false 
discovery rate (FDR), average number of false positives and negatives, and the average prediction bias, where prediction bias 
is ||Xβ∗ − Xβ̂λ||2 or ||Xβ∗ − Xα̂λβ̂λ||2 for the α-modification, can be found in the Supplementary Materials.

We first considered the case of �X = Ip . Tables 1, 2, and 3 give the average HD between β∗ and β̂λ for the traditional 
APE method with a 1SE Rule, AR2 with a 1SE rule, and the relaxed Lasso with a minimum APE approach. AR2 and Mod APE 
performed similarly; the latter results may be found in the Supplementary Materials. In general, AR2 CV had better variable 
selection than APE CV and, for small n and large p∗ , the relaxed Lasso.

Results from increasing values of p∗ were considered for n = {100, 500, 1000} and p = 100 in Fig. 5. Additional methods 
and results may be found in the Supplementary Materials. For n = 100 all methods performed comparably, except for the 
relaxed Lasso with a minimum APE rule, which had a higher number of false positives than the other methods, leading 
to larger average HD. As n increased, Mod APE and AR2 CV performed comparably to the relaxed Lasso with a 1SE Rule, 
and had a consistently smaller average HD than CV 1SE. The new methods of CV performed similarly to Relaxed 1SE and 
outperformed CV 1SE in terms of support recovery.
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Table 2

Average Hamming Distance for 100 replications of AR2 CV 1SE. Standard errors given in parentheses.

p 50 100 200 400 800 50 100 200 400 800

n p∗ = 5; SNR = 1.25; σ̄ = 5.19 p∗ = 5; SNR = 5; σ̄ = 2.59

100 2.1 (0.3) 2.8 (0.3) 3.3 (0.3) 4.9 (0.7) 5 (0.5) 0.6 (0.1) 0.6 (0.1) 1.9 (0.8) 1.8 (0.4) 2.6 (0.4)

500 0.1 (0) 0.2 (0) 0.1 (0) 0.2 (0) 0.4 (0.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

1000 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

n p∗ = 50; SNR = 1.25; σ̄ = 16.6 p∗ = 50; SNR = 5; σ̄ = 8.3

100 23.6 (1.3) 40.4 (0.5) 51.4 (0.8) 55.1 (1.2) 54.8 (1.2) 4.2 (0.4) 31.9 (0.5) 47.9 (0.8) 54.6 (1.3) 53.5 (0.9)

500 1.8 (0.2) 17.1 (0.5) 28.7 (0.8) 42.3 (1.3) 51.9 (2.2) 0.2 (0) 9.1 (0.4) 17.8 (0.7) 30 (1) 46.6 (1.3)

1000 0.7 (0.1) 9.1 (0.4) 15.4 (0.6) 23.1 (0.9) 32.5 (1.1) 0 (0) 3.9 (0.3) 6.3 (0.4) 11.1 (0.6) 16.9 (0.8)

Table 3

Average Hamming Distance for 100 replications of Relaxed Lasso. Standard errors given in parentheses.

p 50 100 200 400 800 50 100 200 400 800

n p∗ = 5; SNR = 1.25; σ̄ = 5.19 p∗ = 5; SNR = 5; σ̄ = 2.59

100 3.7 (0.4) 5.4 (0.8) 7.4 (1.1) 18.4 (3.4) 28.1 (4.2) 1.1 (0.3) 1.8 (0.5) 4.5 (1.7) 6.6 (2.3) 7.9 (2.6)

500 0.8 (0.3) 1.2 (0.3) 0.5 (0.2) 0.7 (0.4) 1.5 (0.6) 1.2 (0.3) 0.8 (0.2) 0.8 (0.4) 0.3 (0.1) 0.1 (0)

1000 0.6 (0.2) 0.5 (0.2) 0.7 (0.3) 0.4 (0.1) 1.9 (1.5) 0.6 (0.2) 0.8 (0.3) 0.4 (0.2) 0.4 (0.2) 0.4 (0.2)

n p∗ = 50; SNR = 1.25; σ̄ = 16.6 p∗ = 50; SNR = 5; σ̄ = 8.3

100 19.5 (1.3) 39.9 (0.5) 57.6 (1.7) 70.8 (3.1) 67.9 (3.2) 2.1 (0.3) 34.1 (0.5) 75.9 (2.5) 87.6 (3.3) 93.6 (3.8)

500 0.9 (0.1) 22.9 (0.9) 39.6 (1.8) 66.2 (3.4) 74.5 (4.2) 0.1 (0) 7.2 (0.5) 14.8 (1.2) 25.4 (2.3) 36.8 (2.7)

1000 0.2 (0) 12.3 (0.9) 17.5 (1.4) 27.9 (2.7) 32.7 (2.9) 0 (0) 2.4 (0.3) 3.1 (0.3) 4.9 (0.5) 5.5 (0.3)

Fig. 5. Average Hamming Distance between β∗ and β̂λ from 100 replications of simulated data with n = {100, 500, 1000} and p = 100 with independent 
predictors for both SNR = 1.25 and SNR = 5. Standard errors were too small to be plotted but can be seen in the Supplementary Material.

We next considered correlated predictors where �X satisfied �ii = 1 and �i j = 0.75 whenever i �= j. Fig. 6 gives the 
average HD for 100 replications with p = 100 and n = {100, 500, 1000}, but further results can be found in the Supplemen-

tary Materials. Our two proposed CV methods were highly competitive with the Relaxed 1SE, whereas Relaxed Min tended 
to overselect as p∗ increases, particularly for n = 100. Similarly to the results from independent predictors, as n increased, 
the average HD for the relaxed Lasso and the two new methods of CV decreased for all considered p∗ . Relaxed Lasso with a 
minimum APE rule struggled when n was small, even for a high signal-to-noise ratio, primarily due to overselection. Once 
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Fig. 6. Average Hamming Distance between β∗ and β̂λ from 100 replications of simulated data with n = {100, 500, 1000} and p = 100 for correlated 
predictors. Standard errors were too small to be plotted but can be seen in the Supplementary Material.

again the new methods of CV generally had a smaller average HD than CV 1SE and were similar in support recovery to the 
relaxed Lasso with a 1SE Rule.

Unlike the relaxed Lasso, the α-modification is straightforward to apply to other penalties. The α-modified Lasso was 
compared with the non-convex penalties SCAD and MCP, both traditionally and with an α-modification. As expected, the α-

modification had a minimal effect on the predictive models. MCP and SCAD estimates were prone to underselection whereas 
the α-modified Lasso estimates were prone to overselection. Details may be found in the Supplementary Materials.

6. Optimal EMG placement for a robotic prosthesis controller

For the EMG application introduced in Section 1, we want to identify as few EMG sensors as needed to reliably predict 
hand movement. The data were collected from an able-bodied subject and consist of concurrent measurements of the 
subject’s finger position and 16 EMG signals as predictors. A full description of the data and some of its challenges can 
be found in Stallrich et al. (2020). Six data sets were analyzed, corresponding to three consistent finger movement patterns 
(FC1, FC2, FC3) and three random patterns (FR1, FR2, FR3). As data were collected from an able-bodied subject, it was known 
that three of the 16 sensors, denoted X5, X7 , and X12 , targeted muscles known to fully explain finger movement. Sensors 
X5 and X7 collected information from the same muscle, however, and so only one of the pair is necessary to predict finger 
position. An ideal model would thus include X12 and either X5 or X7 , but recovery of all three sensors is also acceptable.

Due to known biomechanical features of hand movement, Stallrich et al. (2020) use finger velocity as the response and 
treat the recent past EMG signals as functional covariates. The model is

yi =
16
∑

j=1

0
ˆ

−δ

Xi j(t)γ j(t, zi)dt + εi , (12)

where yi is the velocity, Xi j(t) represents past EMG signals, t ∈ [−δ, 0] is the recent past time, and zi is the recent finger 
position. Although this model is not the linear model introduced in (1), its approximation via basis expansion allows it 
to be treated similarly to the linear model. Following Gertheiss et al. (2013), Stallrich et al. (2020) proposed a penalized 
estimation procedure where the penalty accounted for both sparsity and smoothness of the γ j(·, ·):

Pλ(γ j) = λ( f j||γ j||22 + g jλt ||γ ′′
j,t ||22 + h jλz||γ ′′

j,z||22)1/2 , (13)
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Table 4

Variable selection results for EMG finger movements without adaptive weighting. FP indicates the total number of false positives in the model, and Size is 
the total number of EMG signals contained in the model.

FC1 FC2 FC3 FR1 FR2 FR3 Mean

APE
FP 2 1 2 2 1 1 1.5

Size 4 3 4 5 4 4 4

AR2
FP 0 1 3 0 1 1 1

Size 2 3 6 2 4 3 3.33

Mod
FP 1 1 2 2 1 1 1.33

Size 3 3 4 5 4 4 3.83

where ||γ j ||22 =
˜

γ j(t, zi)2dtdz and γ ′′
j,t

= ∂2γ j(t, zi)/∂t2 . There are three tuning parameters, λ, λt , and λz , and adaptive 
weights fk , gk , and hk . To facilitate estimation, the γ j(·, ·) were written using a tensor product basis expansion, leading to 
a group Lasso-type penalty; more details may be found in Stallrich et al. (2020) and the Supplementary Materials.

To perform variable selection, Stallrich et al. (2020) proposed Sequential Adaptive Functional Estimation (SAFE) that 
performs penalized estimation in stages. The first stage set f j = g j = h j = 1 and chose optimal tuning parameters based on 
an APE 1SE rule following 10-fold CV. Let Mλ,1 denote the support of this estimator. Adaptive weights were updated based 
on the estimates of the nonzero effects and penalized estimation was performed again using these weights and only those 
j ∈Mλ,1 . The process was repeated for up to 5 stages. While effective in identifying the correct submodel, the analysis can 
be very time consuming. We modified their method based on AR2 CV and modified APE for this application in hopes to 
reduce the number of stages required to perform variable selection.

Table 4 gives the variable selection results for the three CV methods based on the initial stage; results from subsequent 
stages of SAFE can be found in the Supplementary Materials. AR2 CV and Mod APE generally give smaller models than 
traditional APE CV, with one exception: the Average R2 method has a large model size for FC3. On average, however, both 
new methods have fewer false positives and smaller model sizes. Mod APE gives very similar results to APE, suggesting that 
the α-modified CV approach requires further study for the group Lasso. Although AR2 CV is not perfect in this application, 
in general it reduces model size and decreases false positives at no additional computational cost.

7. Discussion

In this paper, we proposed AR2 CV to choose tuning parameters to balance support recovery and prediction performance. 
This led to the α-modification, a multiplicative adjustment to predictions from penalized estimates which can also be used 
for α-modified CV. The α-modification is simple and efficient, making it an attractive option across many types of penalized 
estimators. A simulation study on the capabilities of AR2 and α-modified CV found that their variable selection results were 
highly competitive with—or, in some cases, better than—the relaxed Lasso. To ensure fair comparison, we introduced a 1SE 
Rule for the relaxed Lasso. Finally, we applied the approaches to a functional data problem in a demonstration of their 
flexibility.

The α-modification and the tuning parameter selection methods proposed here inspire several research questions. First, 
further theoretical analysis of the methods is of interest. Because the two new methods of tuning parameter selection are 
CV-based approaches, the theoretical properties of CV are central. Theoretical justifications for the use of CV for penalized 
estimators are relatively new and still evolving. Chetverikov et al. (2021) may be extended to show that α-modified and AR2 
CV lead to estimates that are low bias and appropriately sparse. A second area of future research is the theoretical properties 
of α-modified estimates themselves. In Theorem 2, it was shown that any consistent estimator will still be consistent with 
the α-modification. We posit that the rates of convergence for α-modified estimators are faster than unmodified estimators, 
but a proof of this conjecture is the work of future research. Similarly, many of the results from this paper assume finite 
sample sizes. Further study is needed to determine more of the asymptotic properties of α-modified estimators and to adapt 
the specific results given for the Lasso penalty to other penalties.

There are also a few extensions and adaptations of the α-modification that may prove fruitful. We are currently ex-
panding the α-modification to Generalized Linear Models (GLMs). This extension will require an iterative algorithm to find 
estimates of α because closed form solutions do not exist and an accommodation for the inclusion of an intercept term is 
necessary. Additionally, as noted in some of the theoretical results in this paper, the α-modification does not always reduce 
bias. We are interested in exploring a further penalty on α itself to ensure bias reduction. Finally, the calculation of α̂λ

described here uses in-sample predictions and observations. As overspecification is a particular concern, the question of 
whether out-of-sample data can be used to find estimates of α is another subject of further research.
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Appendix A

Proof of Theorem 1. Let β̂λ �= 0 and g(β) =
∑L


=1 λ
g
(β). Denote the subgradient vector of g(β) by ∇g∗ . Then the KKT 
conditions give 1

n
XT (y − Xβ̂λ) = ∇g∗ and there exists a generalized inverse (XTX)− where β̂λ = (XTX)−(XT y − n∇g∗). It is 

easy to show ŷTλ ŷλ = ŷ
T
λy− n∇g∗T β̂λ . Therefore:

α̂λ = 1+ n∇g∗T β̂λ

ŷ
T
λ ŷλ

. (A.1)

Because ŷTλ ŷλ , n, and λ are greater than zero, we must show ∇g∗T β̂λ ≥ 0. As ∇g∗ is the subgradient of a convex function 
at β̂λ , it satisfies

∇g∗T β̂λ ≥ g(β̂λ) − g(β) + ∇g∗Tβ (A.2)

for all β . For β = 0, g(β̂λ) − g(β) + ∇g∗Tβ = g(β̂λ) − g(0) ≥ 0. Hence, ∇g∗T β̂λ ≥ 0. �

Proof of Lemma 1. When ξ∗ is recovered, we have β̂λ = ‖β̂λ‖2ξ∗ . The response y = α∗Xξ∗ + ε , so:

α̂λβ̂λ = α∗ξ∗ +
( ξ∗TXT ε

ξ∗TXTXξ∗

)

ξ∗ . (A.3)

Thus E[α̂λβ̂λ] = α∗ξ∗ = β∗ . �

Proof of Lemma 2. Fix λ and let β̂λ = aβ̂
Mλ

O LS where β̂
Mλ

O LS is the OLS estimate for submodel Mλ . Let XMλ
be the submatrix 

of X containing only the columns indexed by Mλ . Then β̂
Mλ

O LS = (XT
Mλ

XMλ
)−1XT

Mλ
y. Now:

α̂λ =
ayTXMλ

(XT
Mλ

XMλ
)−1XT

Mλ
y

a2yTXMλ
(XT

Mλ
XMλ

)−1XT
Mλ

XMλ
(XT

Mλ
XMλ

)−1XT
Mλ

y
= 1

a
. (A.4)

Therefore:

α̂λβ̂λ = 1

a
× aβ̂

Mλ

O LS = β̂
Mλ

O LS . � (A.5)

Proof of Theorem 2. Consider α̂λn :

α̂λn =
1
n
β̂
T

λn
XT
n y

1
n
β̂
T

λn
XT
nXnβ̂λn

. (A.6)

By Continuous Mapping Theorem, the denominator of (A.6) converges in probability to c2ξ∗T Cξ∗ . Expanding y = α∗Xξ∗ + ε

establishes the numerator converges to αcξ ∗T Cξ∗ . Then α̂λn →p
α
c

and α̂λn β̂λn
→ α

c
cξ∗ = αξ∗ = β∗ . �

Proof of Theorem 3. It is sufficient to show that E[ModP E] < E[P E] where P E =
∑

i(yki − xT
ki
β̂λ)

2 and ModP E =
∑

i(yki −
α̂λx

T
ki
β̂λ)

2 . We can write β̂λ = ‖β̂λ‖2ξ∗ . Expand yki = α∗xT
ki
ξ∗ + εi to find:

P E =
∑

i

(

εi − xTki ξ
∗(‖β̂λ‖2 − α∗)

)2
. (A.7)

Similarly,

ModP E =
∑

i

(

εi − xTki ξ
∗
( ξ∗TXT ε

ξ∗TXTXξ∗

)

)2

. (A.8)

For V (ε) = σ 2I
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E[P E] = nkσ
2 +

∑

i

(xTki ξ
∗)2E[(‖β̂λ‖2 − α)2] (A.9)

E[ModP E] = E

[

∑

i

(

εi − xTki ξ
∗
( ξ∗TXT ε

ξ∗TXTXξ∗

)

)2]

(A.10)

= nkσ
2 + σ 2

ξ∗TXTXξ∗
∑

i

(xTki ξ
∗)2 . (A.11)

For β∗ = α∗ξ∗ , E[P E] ≥ E[ModP E] whenever

E[(‖β̂λ‖2 − α∗)2] ≥ σ 2

ξ∗TXTXξ∗ ⇔ α∗2

E[(‖β̂λ‖2 − α∗)2]
≤ β∗TXTXβ∗

σ 2
. � (A.12)

Proof of Lemma 3. When X is orthonormal,

α̂λβ̂λ, j∗ =
(

∑p

j=1
|β̂O LS, j|(|β̂O LS, j| − λ)+

∑p

j=1
(|β̂O LS, j| − λ)2+

)

× sign(β̂O LS, j∗) × (|β̂O LS, j∗ | − λ)+ . (A.13)

Letting d j = (|β̂O LS, j| − λ)+ and s j∗ = sign(β̂O LS, j∗), we can rewrite this expression as

α̂λβ̂λ, j∗ = w1β̂O LS, j∗ + β̂λ, j∗

∑

j �= j∗(d j + λ)d j
∑p

j=1
d2
j

, (A.14)

which uses s j∗ |β̂O LS, j∗ | = β̂O LS, j∗ , w1 = d2
j∗/ 

∑

j d
2
j
, β̂λ, j∗ = s j∗d j∗ , and |β̂O LS, j| = d j + λ whenever d j > 0. Hence we have 

the expression

α̂λβ̂λ, j∗ = w1β̂O LS, j∗ + (1− w1)β̂λ, j∗ + w2β̂λ, j∗ , (A.15)

where w2 = λ

∑

j �= j∗ d j
∑p

j=1
d2
j

. �

Proof of Theorem 4. For β̂O LS, j∗ > λ, applying Lemma 3 gives the expression

α̂λβ̂λ, j∗ − β̂O LS, j∗ =
λ(

∑

j �= j∗ d j)β̂O LS, j∗ − λ(
∑

j �= j∗ d
2
j
+ λ

∑

j �= j∗ d j)

(β̂O LS, j∗ − λ)2 +
∑

j �= j∗ d
2
j

. (A.16)

Let u =
∑

j �= j∗ d j , v =
∑

j �= j∗ d
2
j
, and x = β̂O LS, j∗ . Note that |β∗

j∗ | → ∞ implies |x| → ∞. We can express (A.16) as 

f (x) = [λux − λ(v + λu)]/[(x − λ)2 + v] which is a differentiable function for |x| ≥ λ. Between x = λ and x = (uλ + v +√
u2v + v2)/u ≡ x∗ , f (x) is an increasing function bounded below by −λ and bounded above by

λ

2

(

√

u2

v
+ 1− 1

)

. (A.17)

For x > x∗ , f (x) is decreasing and it is easy to see limx→∞ f (x) = 0 > −λ. Similar arguments can be applied to the case of 
x ≤ −λ. Therefore,

| f (x)| ≤ λ ×max

⎛

⎝1,
1

2

(

√

u2

v
+ 1− 1

)

⎞

⎠ , (A.18)

and limx→∞ | f (x)| = 0. �

Proof of Theorem 5. When the sign vector of the true model, s, is known and recovered by the lasso estimate, the nonzero 

coefficients have the expression β̂
M∗

λ = β̂
M∗

O LS − nλs̃ j . Then it is easy to show that both

ŷ
T
λy = β̂

M∗ T

O LS XT
M∗XM∗ β̂

M∗

O LS − nλsT β̂
M∗

O LS (A.19)

ŷ
T
λ ŷλ = β̂

M∗ T

O LS XT
M∗XM∗ β̂

M∗

O LS − 2nλsT β̂
M∗

O LS + n2λ2sT (XT
M∗XM∗)−1s , (A.20)
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are quadratic polynomials with respect to β̂M∗
O LS, j∗ with quadratic coefficients of n (due to the scaling of the columns of X ). 

We also have

ŷ
T
λy− ŷ

T
λ ŷλ = nλs j∗ β̂

M∗
O LS, j∗ + nλ

∑

j �= j∗
s jβ̂

M∗
O LS, j − n2λ2sT (XT

M∗XM∗)−1s , (A.21)

making (ŷTλy− ŷ
T
λ ŷλ)β̂

M∗
O LS, j∗ a quadratic polynomial with respect to β̂M∗

O LS, j∗ with quadratic coefficient nλs j∗ . Then

α̂λβ̂λ, j∗ − β̂M∗
O LS, j∗ = α̂λ

(

β̂M∗
O LS, j∗ − nλs̃ j∗

)

− β̂M∗
O LS, j∗ (A.22)

=
(ŷ

T
λy− yTλ ŷλ)β̂

M∗
O LS, j∗ − nλs̃ j∗ ŷ

T
λy

ŷ
T
λ ŷλ

, (A.23)

so α̂λβ̂λ, j∗ − β̂M∗
O LS, j∗ is a ratio of quadratic polynomials with respect to β̂M∗

O LS, j∗ where the numerator and denominator 

quadratic coefficients are nλ(s j∗ −ns̃ j∗ ) and n, respectively. It follows that lim|β∗
j∗ |→∞ α̂λβ̂λ, j∗ − β̂M∗

O LS, j∗ = λ(s j∗ −ns̃ j∗ ) = G j∗

and so

lim
|β∗

j∗ |→∞
|α̂λβ̂λ, j∗ − β̂M∗

O LS, j∗ | = |G j∗ | . (A.24)

Clearly −nλs̃ j∗ = β̂λ, j∗ − β̂M∗
O LS, j∗ so |G j∗ | = |λs j∗ + β̂λ, j∗ − β̂M∗

O LS, j∗ |. If s̃ j∗ = 0 then β̂λ, j∗ = β̂M∗
O LS, j∗ so |G j∗ | = λ > 0 = |β̂λ, j∗ −

β̂M∗
O LS, j∗ |. If s̃ j∗ �= 0 then

λ =
−(β̂λ, j∗ − β̂M∗

O LS, j∗)

ns̃ j∗
(A.25)

which makes

|G j∗ | =
∣

∣

∣

∣

(

1 − s j∗

ns̃ j∗

)

(β̂λ, j∗ − β̂M∗
O LS, j∗)

∣

∣

∣

∣

=
∣

∣

∣

∣

1− s j∗

ns̃ j∗

∣

∣

∣

∣

× |β̂λ, j∗ − β̂M∗
O LS, j∗ | (A.26)

Hence |G j∗ | < |β̂λ, j∗ − β̂M∗
O LS, j∗ | if and only if

∣

∣

∣

∣

1− s j∗

ns̃ j∗

∣

∣

∣

∣

< 1 . � (A.27)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2023 .107729.
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