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Abstract. Due to the curse of dimensionality and the limitation on training data, approximat-
ing high-dimensional functions is a very challenging task even for powerful deep neural networks.
Inspired by the Nonlinear Level-set Learning (NLL) method, which uses the reversible residual net-
work (RevNet), in this paper, we propose a new method of Dimension Reduction via Learning Level
Sets (DRILLS) for function approximation. Our method contains two major components: one is
the pseudoreversible neural network (PRNN) module, which effectively transforms high-dimensional
input variables to low-dimensional active variables, and the other is the synthesized regression mod-
ule for approximating function values based on the transformed data in the low-dimensional space.
The PRNN not only relaxes the invertibility constraint of the nonlinear transformation present in
the NLL method due to the use of RevNet but also adaptively weights the influence of each sample
and controls the sensitivity of the function to the learned active variables. The synthesized regres-
sion uses Euclidean distance in the input space to select neighboring samples whose projections on
the space of active variables are used to perform local least-squares polynomial fitting. This helps
to resolve numerical oscillation issues present in traditional local and global regressions. Extensive
experimental results demonstrate that our DRILLS method outperforms both the NLL and active
subspace methods, especially when the target function possesses critical points in the interior of its
input domain.
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1. Introduction. High-dimensional function approximation plays an important
role in building predictive models for a variety of scientific and engineering problems.
It is typical for scientists to build an accurate and fast-to-evaluate surrogate model
to replace a computationally expensive physical model, in order to reduce the overall
cost of a large set of model executions. However, when the dimension of the target
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function’s input space becomes large, the data fitting becomes a computationally chal-
lenging task. Due to the curse of dimensionality, an accurate function approximation
would require the number of samples in the training dataset to increase exponentially
with respect to the dimension of input variables. On the other hand, given the com-
plexity of the underlying physical model, the amount of observational data is often
very limited. This causes classical approximation methods such as sparse polyno-
mial approximation (e.g., sparse grids) to fail on high-dimensional problems outside
of some special situations. One way to alleviate the challenge is to reduce the input
dimension of the target function by finding intrinsically low-dimensional structures.

The existing methods for dimension reduction in function approximation can
be divided into two main categories. The first one is to exploit the dependence
between input variables to build low-dimensional manifolds in the input space. For
example, principal component analysis [1] is widely used, due to its simplicity, to
compress the input space to a low-dimension manifold. Isometric feature mapping [29]
is an effective method to compute a globally nonlinear low-dimensional embedding of
high-dimensional data. Its modification known as locally linear embedding [10, 27]
provides solutions to more general cases. However, in practice, there are often no
dependences between input variables to exploit, so that the dimension of the input
space cannot be effectively reduced by methods reliant on this assumption. This
represents a challenging research question for function approximation, namely, how
to effectively reduce the dimension of a function with independent input variables.

To answer this question, the second category of dimension reduction methods aims
at reducing the input dimension by exploiting the relationship between the input and
the output, i.e., learning the geometry of a function’s level sets. This includes methods
such as sufficient dimension reduction [2, 7, 19, 25] and its extensions [8, 9, 18, 20,
21, 22, 24, 31, 32], the active subspace (AS) method [5, 6], and neural network (NN)—
based methods [16, 30, 33]. This type of method first identifies a linear/nonlinear
transformation that maps the input variables to a handful of active variables (or
coordinates), then projects the observational data onto the subspace spanned by the
active variables, and finally performs the data fitting in the low-dimensional subspace
to determine the function approximation.

The AS method [5, 6] is a popular dimension reduction approach that seeks a
set of directions in the input space, named active components, affecting the function
value most significantly on average. Given the values of the function f(x) and its
gradient V f(x) at a set of sample points, this method first evaluates the uncentered
covariance matrix of the gradient C = E[Vf(Vf)"], where the symbol E[-] denotes
the expected value. The eigenvectors associated with the leading eigenvalues of C),
denoted by W 4, are selected to define active components z4 = Wl;a:, which is a
linear transformation of the input x. The subspace spanned by the set of active
components z 4 describes a low-dimensional linear subspace embedded in the original
input space that captures most of the variation in model output. A regression surface

f(z4) is then constructed based on the data projected onto the AS {z4, f(x)}, i.e.,
f(@)~ f(W)a).

Recently, NN-based approaches [16, 30, 33] were developed to extract low-
dimensional structures from high-dimensional functions. The Nonlinear Level-set
Learning (NLL) method [33] finds a bijective nonlinear transformation that maps
an input point & to a new point z, which is of the same dimension as x, more specif-
ically, z = r(x) with » modeled by a reversible residual NN (RevNet) [4, 11]. In
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this approach, the transformed variables z are expected to be split into two sets,
a set of active variables (coordinates) z4 = {zx}rea and a set of inactive variables
21 = {2k }rer, so that the function value f(r~!(2)) is insensitive to perturbations in
zy. That is, if z; € z7, a small perturbation in z; within the neighborhood of z would
lead to almost no change in function value. Based on this fact, the NLL method em-
ploys a loss function that encourages the gradient vector field V f(x) to be orthogonal
to the derivative of #~1(2) with respect to each inactive variable z; € z;. Therefore,
after a successful training, the NLL method can provide a manifold that captures the
low-dimensional structure of the function’s level sets. Similar to the AS method, once
z 4 is determined, a regression surface can be built using the data projected onto the
subspace of active variables, {z 4, f(x)}. It has been shown in [33] that NLL outper-
forms AS when the level sets of the function have nontrivial curvature. An improved
algorithm for the NLL method was studied in [13]. However, there still are even sim-
ple cases in which the NLL fails to effectively extract low-dimensional manifolds, as
shown later in this paper.

In this paper, we introduce a new Dimension Reduction via Learning Level Sets
(DRILLS) method for function approximation that improves on existing level set
learning methods in the following aspects: (1) To enhance the model’s capability,
we propose a novel pseudoreversible neural network (PRNN) to model the nonlinear
transformation for extracting active variables. (2) The learning process is driven by
geometric features of the unknown function, which is reflected in a loss function con-
sisting of three terms: the pseudoreversibility loss, the active direction fitting loss,
and the bounded derivative loss. (3) A novel synthesized regression on the mani-
fold spanned by the learned active variables is also proposed, which helps to resolve
numerical oscillation issues and provides accuracy benefits over traditional local and
global regressions. Extensive numerical experiments demonstrate that the proposed
DRILLS method leads to significant improvements on high-dimensional function ap-
proximations with limited or sparse data.

The rest of paper is organized as follows. In section 2, the setting of the func-
tion approximation problem is introduced, and the DRILLS method is proposed and
discussed. More specifically, the PRNN module is described in section 2.1 and the
synthesized regression module in section 2.2. We then numerically investigate the
performance of our DRIiLLS method in section 3, including ablation studies in section
3.1, high-dimensional function approximations with limited /sparse data in section 3.2,
and a PDE-related application in section 3.3. Finally, some concluding remarks are
drawn in section 4.

2. The proposed DRILLS method. We consider a scalar target function,
which is continuously differentiable on a bounded Lipschitz domain € in R%:

(2.1) y=f(x), x=(x1,22,...,24) €Q.

The input variables x1,xo,...,24 are assumed to be independent from each other,
which implies that the input space itself does not possess a low-dimensional structure.
The goal is to find an approximation f(z) of the target function given the information
of f and Vf on a set of training samples in 2. We denote the training dataset by

2= {(w("),f(w(")),Vf(w("))) n= L...,N},

which contains the input, the output, and the gradient information at the samples.
When the number of dimensions d is large, taking a handful of random selections
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Fic. 1. The overall structure of the proposed DRiLLS method, which consists of two magor
components: the PRNN module and the synthesized regression module.

in each coordinate would result in a huge amount of data, which is infeasible in
many application scenarios. Therefore, the sample dataset is usually sparse for high-
dimensional problems.

The NLL method has achieved successes in high-dimensional function approxi-
mation on sparse data for real-world applications, such as composite material design
problems [33]; however, it has difficulties in learning level sets of certain functions. In
particular, NLL struggles on functions with critical points contained in the interior of
the domain €2, such as the functions 2% + 23 or 22 — 2% on Q =[~1,1]? to be discussed
later in section 3.1. One reason for such a drawback is that the RevNet employed
by NLL enforces invertibility as a hard constraint, which limits the capability of the
RevNet in learning the structure of functions whose level sets are not homeomorphic
to hyperplanes in the input space. Another reason is that the rate of change in the
target function with respect to the inactivate variables is always zero at any interior
critical points, as the gradient of the function vanishes there. Hence, the training
process tends to ignore samples lying in a small neighborhood of the critical points
since they do not contribute much to the training loss.

To overcome these issues and improve the performance of level set learning—based
function approximation, the proposed DRIiLLS method consists of two major com-
ponents: (1) the PRNN module, which identifies active variables and reduces the
dimension of input space, and (2) the synthesized regression module, which selects
neighboring sample points according to their Euclidean distances in the original input
space and performs a local least-squares fitting based on the learned active variables
to approximate the target function. A schematic diagram of the proposed method is
shown in Figure 1.

2.1. The PRNN. To construct the PRNN, we first define a nonlinear mapping
from the input @ to a new point z of the same dimension. In contrast to the RevNet
used by the NLL method, the invertibility of this transformation is relaxed by defining
another mapping from z to & and encouraging & to be close to @ in distance. Thus,
the reversibility is imposed as a soft constraint on the PRNN model. Specifically, the
two nonlinear transformations are denoted by

(2.2) z=g(x;0,) and &=h(z;0;),

respectively, where g, h: R? — R¢ with ©, and O}, being their learnable parameters.
Since g is not exactly invertible by definition, h can be viewed as a pseudoinverse
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function to g. Both g and h are represented by a fully connected neural network
(FCNN), as displayed in Figure 2. The PRNN network structure is reminiscent of an
autoencoder [12], but the dimension of latent space (i.e., the dimension of z) remains
the same as the dimension of . While there are no theoretical restrictions on the
structure of g and h, the experiments in section 3 use the same FCNN architecture
for both mappings.

2.1.1. The loss function. The learnable parameters ©, and O, are updated
synchronously during the training process by minimizing the following total loss func-
tion:

(2.3) L=L1+MLs+ A2L3.

Here, £y is the pseudoreversibility loss, which measures the difference between x
and the PRNN output &; Lo is the active direction fitting loss, which enforces the
tangency between 88—;1 and the level sets of f; and L3 is the bounded derivative loss,
which regularizes the sensitivity of f with respect to the active variables z 4. The
weights A\; and Ay are hyperparameters for balancing the three loss terms. Below,
each term of £ is discussed in detail.

The pseudoreversibility loss. In order to train & = h(z) to be a pseudoinverse of

z = g(x), the pseudoreversibility condition is simply enforced in the L? sense,

N
1 n n
(2.4) EFNZI@( ) —hog(z™)]3,
n=1

which is the same as the standard loss used to train autoencoders.

The active direction fitting loss. This loss is defined based on the fact that if
the kth output z; of g(x) is inactive, a small perturbation of z; in a neighborhood
of z would change the target function f along a direction tangent to its level sets.
Specifically, we define the Jacobian matrix of the nonlinear transformation h as

In(z)=[J1(2),J2(2),...,Ja(2z)]
with
~ o T
Ji(z) = g”ij(z),...,%(@
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In the ideal case, if zj is completely inactive, then the gradient vector field V f(x) is
orthogonal to Jy(z), that is, (J(2z), Vf(x)) =0 with (-,-) denoting the inner product.
Thus, the active direction fitting loss is defined to encourage the orthogonality, i.e.,

(2.5) Lo= % ivi [ <Jz~(z<">),w<w<”>>>f

where the scaling factors

o =1+ae IVFEI p—192 . N

)

contain the hyperparameter o > 0 and wy,ws,...,wq € {0,1} are weight hyperparam-
eters determining how strictly the orthogonality condition is enforced for each of the
d variables. A typical choice is

(2.6) w=(0,...,0,1,...,1),

where k* denotes the dimension of the active variables/coordinates. An ideal case
would be k* = 1, which implies that there exists only one active variable z4 = {21}
and the intrinsic dimension of foh(z) is exactly one when Lo = 0. The scaling factor
~; distinguishes Lo from the one used in [33], and its value changes according to the
magnitude of the gradient: It approaches 1+« if |V f(2(™)| gets close to 0 and stays
close to 1 otherwise. Therefore, it serves as a rescaling factor designed to overcome the
situation where the contributions of samples near interior critical points are ignored
by the optimization due to their small gradients.

The bounded derivative loss. Existing methods such as NLL do not place any
restrictions on the active variables because the used RevNet imposes sufficient regu-
larization on those variables. On the other hand, using PRNNs without regularization
in z4 may cause the network to learn an AS which changes too fast, producing un-
desirable oscillations in the target function. To address this issue, we introduce a
regularization term into the loss as

(2.7) Ls= % isigmoid < (H 3észAh n) H )> )
n—1

where o is a positive rescaling hyperparameter. The purpose is to regularize the
magnitude of %’;—o:‘(z(”)) to be not much greater than one. In the practical implemen-

tation, we further approximate %(j) with (V f(x(™ N 5ps oh ( ™)) by considering
the pseudoreversibility of the PRNN.

2.2. The synthesized regression. The active variables (coordinates) z4 are
naturally identified based on the presetting values of the weights w. Once the PRNN
training is completed, the sample points {w("),n =1,...,N} can be nonlinearly
projected through PRNN to a much lower dimensional space spanned by z 4. Ideally,
approximating the high-dimensional function f(x) often can be achieved by approxi-
mating the low-dimensional function

(2.8) flza)=fog '(2) with z4 € R™,

where £* < d. Many existing methods could be used, including classic polynomial in-
terpolations, least-squares polynomial fitting [14], and regression by deep NNs. How-
ever, because the control on g is quite loose through the PRNN, f could be very
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Fic. 3. Top row: An example illustration of the sample points and their active variables learned
by the PRNN, where we take f(x1,z2) = z% — :c% and set z1 as the active variable and zo as the
inactive variable. As f is very oscillatory with respect to z1 and even may not be a function
of z1, this case is not suitable with general local or global regression approaches based solely on

the projected information in the space of active variables, {(zin),f(mW))}nN:l. Bottom row: The
proposed synthesized regression first selects the local neighbor sample points for each of the five new
inputs (i.e., the five A-shaped points whose function values are to be predicted) from the original
input space, then performs respective least-squares polynomial data fitting.

oscillatory with respect to z4 or even make ]? fail to form a function. For example,
there could exist two sample points & and y, which are separated in the input space
with different values f(x) and f(y) but mapped close together in the transformed
space, i.e., (g(x))a ~ (g(y))a. This is often the case for functions with interior crit-
ical points. The top row of Figure 3 presents an example illustration of such case,
where we take f(z1,72) = 23 — 25 and set z; as the active variable and 2z, as the
inactive variable. Consequently, general global or local regression approaches based
solely on the projected information in the space of active variables are not able to
effectively handle this case due to large numerical oscillations.

We develop a synthesized regression method to address this type of numerical
oscillation problem. The method uses local least-squares polynomial fitting in the
space of active variables but selects neighboring sample points based on the Euclidean
distance in the original input space to help to keep track of original neighborhood
relationships. Our synthesized regression algorithm can be described as follows:

1. Given an unseen input sample x*, we select a set of Ny points closest to *
from the set of all training samples, denoted by {@™ 7.
2. The Ny samples are fed into the trained PRNN to generate the samples of

the active variables {zsz) = (g(:rim)))A Zle
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3. We perform least-squares polynomial fitting using the data {(ZS:Z),

f (wi’")) 7]:?:17 which is a subset of the training set. The approximation of

f(x*), denoted by f(z*), is defined by the value of the resulting polynomial
at (9(x")) 1. .

Note that when the graph of f in z4 has several branches, the first two steps
in the proposed synthesized regression encourage localization of the polynomial data
fitting to only one of the branches. Indeed, the selected neighbors {wgﬂm)}zle to x*
usually stay on the same branch or intersecting region without many oscillations, as
shown in the bottom row of Figure 3.

3. Experimental results. The goal of this section is twofold: The first is to
test the influence of each ingredient of the proposed DRILLS method on its over-
all performance, and the second is to investigate the numerical performance of the
method in approximating high-dimensional functions. In particular, an ablation study
is implemented in section 3.1, including PRNN versus RevNet and the effect of « in
section 3.1.1, the effect of bounded derivative loss in section 3.1.2, and the synthesized
regression versus some existing regression methods in section 3.1.3. Then, through
extensive comparisons with the AS and the NLL methods, we demonstrate the ef-
fectiveness and accuracy of the proposed DRILLS method under limited /sparse data.
Particularly, high-dimensional example functions are considered in section 3.2, and a
PDE-related application is given in section 3.3.

The training dataset of size IV is randomly generated using the Latin hypercube
sampling method [28]. To measure the approximation accuracy, we use the normalized
root-mean-square error (NRMSE) and the relative l; error (RL;) over a test set of M
randomly selected input points from the domain

1f = £l 1 = £l
3.1 NRMSE = : , RL =1 01
31) Vil <maxf “wming ) T L
_ (1) (M) ; £ (F(p(D)
where f = (f(x;.5;),---, f(x;.s)) are the exact function values and f = (f(x;.5,),- - -,

f (xﬁé‘ft) )) are the approximated values. In the experiments, we set M = 1000 for low-
dimensional problems (d < 3) and M = 10000 for high-dimensional problems (d > 3).
This procedure is replicated 10 times, and the average values are reported as the final
NRMSE and RL; errors for function approximation.

Our DRILLS method is implemented using PyTorch. If not specified otherwise,
we choose the following default model setting: g and h in the PRNN are constructed
by FCNNs that contain four hidden layers with 10d (or 200 for d > 20) hidden neurons
per layer, respectively; Tanh is used as the activation function; the hyperparameters
A =1, Aa =1, @« =50, and o = 0.01 are selected in the loss function based on the
ablation study presented in section 3.1 for low-dimensional cases and the numerical
comparison of the proposed method with other methods (AS, NLL, and NN) for high-
dimensional cases except stated otherwise; and Ny = 30 and cubic polynomial are used
for the local least-squares fitting in the synthesized regression. For the training of
PRNN, we use a combination of the Adam optimizer [17] and the L-BFGS optimizer
[23]. The Adam iteration [17] is first applied with the initial learning rate 0.001, and
the learning rate decays every 5000 steps by a factor of 0.7 for up to 60000 steps.
Then the L-BFGS iteration is applied for a maximum of 1000 steps to accelerate the
convergence. The training process is immediately stopped when training error reduces
to 5x 107°. Both the AS and the NLL methods used for comparison are implemented
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in ATHENA! [26], which is a Python package for parameter space dimension reduction
in the context of numerical analysis. All the experiments reported in this work are
performed on an Ubuntu 20.04.2 LTS desktop with a 3.6-GHz AMD Ryzen 7 3700X
CPU, 32GB of DDR4 memory, and an NVIDIA RTX 2080Ti GPU. Code for this
paper is available at https://github.com/sloooWTYK/DRILLS.

3.1. Ablation studies. We first numerically investigate the effect of major com-
ponents in the proposed DRILLS method, including the PRNN, the loss functions, the
hyperparameters, and the synthesized regression. Several functions of two dimensions
are considered. Since the dimension d is 2, it is natural to take w = (0,1), i.e., k* =1
in (2.6), with z; being the active variable and zs the inactive one in the transformed
space of z. For the same reason, two hidden layers are used for each of the FCNNs
representing g and h, different from the default settings. From the tests reported
in sections 3.1.1 and 3.1.2, we observe that the Adam optimization during PRNN
training terminated within 20000 steps in all cases, while the tests in section 3.1.3
required up to 60000 steps to meet the stopping criterion due to more complicated
geometric structures in the target function.

To visually evaluate the function approximation, we present two types of plots:
The quiver plot shows the gradient field of f (blue arrows) and the vector field corre-
sponding to the second Jacobian column Jo (red arrows) on a 15 x 15 uniform grid,
where increased orthogonality between the red and blue arrows indicates increased ac-
curacy in the network mapping; The regression plot draws the approximated function
values (red circles) over 400 randomly generated points in the domain together with
the associated exact function values (blue stars), where good performance is indicated
by a thin regression curve and a large degree of overlap between the blue stars and
the red circles (exact and approximate function values).

3.1.1. PRNN versus RevNet and the effect of a. One of the main differ-
ences between the proposed PRNN and the RevNet is their treatments of reversibility:
The former imposes it as a soft constraint, while the latter imposes a hard constraint
(implemented by a special network structure). Furthermore, the special structure of
the RevNet requires an equal separation of the inputs into two groups. Thus, if the
input space has an odd dimension, it has to be padded with an auxiliary variable
(e.g., a column of zero). On the other hand, the PRNN represents a larger class of
functions than the RevNet [4], so that a better nonlinear transformation can be found
when there is no need for explicit invertibility. To compare these two NN structures,
the following two functions are considered for testing:

S ) 3
(32) fil)=ai+a3 and fo(z)= gxf + gffg — 5
where the domain of @ is either Q4 =[0,1]? or Q% =[—1,1]2. Note that both f; and

f2 reach their minimum at the origin, which is located in the interior of 2% but only
on the boundary of Q%. Since we focus on the influence of reversibility in this section,
we temporarily set Ay =1 and Ay = 0. The corresponding total loss £ for our DRiLLS
method defined by (2.3) then becomes

Lopwy :=L1+ Lo and  Lreyyet := L2,

respectively, because £ is automatically zero in the case of RevNet. In the following
tests, the RevNet uses 10 RevNet Blocks with two neurons each, as the input space

LATHENA codes available at https://github.com/mathLab/ATHENA.
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has the dimension 2 and a step size of 0.25 (see [33] for details about the used RevNet
structure). We choose the size of the sample dataset for training to be N =500, and
both the PRNN and the RevNet are trained using the same dataset.

The testing results of fi(x) are presented in Figure 4 for the case & € Q2 and
in Figure 5 for the case x € Q2B7 where several choices of « are considered, i.e., the
first column for o = 0, the second column for o« = 25, and the third column for
a = 50. It is observed that both network structures, the PRNN and the RevNet,
work well for f; with the domain %, as shown in Figure 4. It is worth noting
that g—ﬁ(m) > 0 and g—g{;(m) > 0 for any & € Q%; i.e, the behavior of fi in Q2 is
somehow monotonic. However, when the domain is changed to %, the behavior of
f1 in Q2 is not monotonic anymore, and the RevNet encounters difficulties in finding
the appropriate active variable. Indeed, as shown in the third row of Figure 5, the
gradient is not orthogonal to J; at many points no matter the value of «, which
indicates the function value is still sensitive to the first inactivate variable zo. This
further leads to larger errors in the regression process and function approximation, as
seen in the fourth row of Figure 5.

The testing results of fo(a) are displayed in Figures 6 and 7 for the function,
respectively, defined in Q% and Q%. We remark that the behavior of f in either
Q2 or in Q% is not monotonic at all. It is observed from Figures 6 and 7 that
the PRNN achieves superior performances on both domains: The quiver plots indi-
cate that the RevNet has difficulty in ensuring the function value to be insensitive
to 29 in both Q2% and Q% cases, and the associated regression plots show that the
RevNet produces a more erroneous function approximation. The PRNN, on the con-
trary, still works well on both domains, which further leads to more accurate function
approximations.

Meanwhile, we also observe that the value of a does not have much impact on
the performance of RevNet. For the PRNN, the effect of o on the performance also
seems negligible for the case & € Q4 but becomes significantly different for the case
x € 0%. As « increases from 0 to 25 and 50, the learned level sets and the function
approximations get more and more accurate, especially for fs. As shown in the
first rows of Figures 5 and 7, red arrows are well perpendicular to the blue arrows
in the quiver plots for two larger values of «, manifesting more effective dimension
reductions. Moreover, fewer blue dots are visible in the regression plots in the third
column than in the first two columns, which indicates less discrepancy between the
predicted values and the exact function values.

3.1.2. The effectiveness of the bounded derivative loss. We use f; with
the domain Q% to investigate the effect of the bounded derivative loss Lo, which is a
new loss term, compared to those used in the NLL method. The purpose of L5 is to
reduce the oscillation in the function values after they are projected onto the active
variable space; thus, it mainly can be regarded as a regularization term.

To check whether the proposed bounded derivative loss helps the training process
of the proposed PRNN in our DRILLS method, we vary the value of Ay from 0 to
1 and 100 while fixing the other experimental settings. The training dataset again
has 500 samples. The evolutions of the total loss £, the pseudoreversibility loss L,
and the active direction fitting loss Lo during the training process are presented in
Figure 8. It is observed that the pseudoreversibility loss £; is not affected by the
choice of Ay, but the total training loss and the active direction fitting loss both decay
faster when Ay =1 than when Ay =0. Conversely, the even larger value Ao =100 does
not further accelerate the training process.
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Fic. 4. Level set learning and function approrimation results produced by our DRiLLS method

with PRNN (the quiver plot in row 1 and the regression plot in row 2) or the RevNet (the quiver
plot in row 3 and the regression plot in row 4) for fi(x)= x% + CC% mn QIQL‘ =[0,1]? at three different
values of a=0,25,50, respectively. There is no critical point in the interior of the domain Q 4, and
both PRNN and RevNet successfully learn the level sets of the target function.
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Fic. 5. Lewvel set learning and function approzimation results produced by our DRiLLS method
with the PRNN (the quiver plot in row 1 and the regression plot in row 2) or the RevNet (the quiver
plot in row 3 and the regression plot in row 4) for fi(x)= a:% +x§ n Q2B =[~1,1)? at three different
values of a=0,25,50, respectively. RevNet fails to learn the level sets of the target function because
it cannot handle the interior critical point at the origin. In comparison, the PRNN successfully
learns these level sets partly because it does mot enforce the hard reversibility around the critical
point.
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Fic. 6. Level set learning and function approximation results produced by our DRiLLS method

with the PRNN (the quiver plot in row 1 and the regression plot in row 2) or the RevNet (the quiver
plot in row 3 and the regression plot in row 4) for fa(x) = %x% + gx% — %xlxg in Q%4 =1[0,1]2 at
three different values of o = 0,25,50, respectively. PRNN successfully learns the level sets of the

target function, but RevNet is somehow unable.
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F1G. 7. Level set learning and function approzimation results produced by our DRiLLS method
with the PRNN (the quiver plot in row 1 and the regression plot m row 2) or the RevNet (the quiver
plot in row 3 and the regression plot in row 4) for fo(x) = —xl +
at three different values of e =0,25,50, respectively. PRNN successfully learns the level sets of the
target function, but RevNet is somehow unable.

- %wlxg in Q% =[-1,1]2
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Active direction fitting Loss
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(a) Total Loss (b) Pseudo-reversibility Loss  (c) Active direction fitting Loss
F1G. 8. Evolutions of the total loss L (left), the pseudoreversibility loss L1 (middle), and the

active direction fitting loss Lo (right) with three different values of A2 =0,1,100 during the training
process of the PRNN for fa in Q% =[—1,1]%.
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Fic. 9. Level set learning and function approximation results produced by our DRiLLS method
for f3 in Q% = [—1,1]2: the quiver plot (left) and the regression plot (right). The synthesized
regression approach successfully overcomes the numerical oscillation issue illustrated in the top row
of Figure 3.

3.1.3. The synthesized regression versus other regression methods.
Once the transformation to the active variable z,4 is obtained through the PRNN,
we apply the proposed synthesized regression for approximating the target function.
To better demonstrate the advantage of our synthesized regression, we consider the
following example featured in Figure 3:

(3.3) f3(x) =2 —23 for x€Q%.

Due to the complicated behavior of the function f3 in [—1,1]%, we set the size of
training dataset N = 2500 in the PRNN, and the associated quiver and regression
plots produced by our method are presented in Figure 9. The former demonstrates the
efficacy of PRNN dimension reduction, as the derivative in the function with respect
to zo is tangent to the level sets, and the latter indicates that accurate regressions
have been obtained, as almost all the blue stars and red circles coincide with each
other, though the graph of f has several branches.

The performance of the proposed synthesized regression is also compared with
some other popular regression methods based on the same PRNN transformed data,
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TABLE 1
Approzimation errors by different regression methods on the same PRNN transformed data for
f3 in Q% =[-1,1]2.

Synthesized regression Direct local fitting Global fitting Neural network
NRMSE 0.86% 20.49% 20.16% 19.93%
RLy 1.32% 91.11% 93.89% 91.27%

including the polynomial regression in local and global fashions and the nonlinear
regression by NNs. In particular, cubic polynomial fitting is applied, and the NN
regression uses an FCNN of three hidden layers with 20 neurons in each layer. The
function approximation errors are summarized in Table 1, which shows that the direct
local fitting, the global fitting, and the NN regression all fail to provide accurate
predictions, while the synthesized regression performs significantly well.

3.2. High-dimensional function approximation with limited data. Here
we compare our DRILLS method with two popular dimension reduction methods, the
AS and the NLL, for function approximation with limited/sparse data. To ensure a
fair comparison, the proposed synthesized regression will be applied to all compared
methods for regression after AS variables are identified. In particular, the dimension
of the active variables is set to k* =1 and 2 for DRILLS and NLL and similarly for
AS, which are often the typical choices in practice. We consider the following four
functions:

h@)=$at @ =sin(La?)).
(3.4) =t 1 =
f6(9’3)=i:1 et f7(fﬂ)=—$3+i; 3.

For fy, f5 and fg, Q4 =[0,1]¢ with d = 10,20 and Q% = [~1,1]¢ with d = 8,12 are,
respectively, used as the domain of the functions. For f7, we only take Q% = [—1,1]¢
with d = 8,12 as the domain. Obviously, the behaviors of these functions are much
more complicated in Q% than in Q4. We observed that for all the tests reported in this
section, their training processes again terminated within 60000 Adam optimization
steps.

Numerical approximation errors produced by our DRILLS method as well as the
NLL and AS methods are reported for the above examples in Tables 2-5, where the
sizes of the training dataset are selected as N = 500, 2500, and 10000 for Qi and
N = 2500, 10000, and 40000 for Q%. Note that the training samples in all these cases
are very sparse due to the high dimension of input space. Some observations from
these tables are summarized below.

For the functions fy, fs, f¢ with the domain Q°, both DRiLLS and NLL perform
better than AS, as their approximation errors are several times smaller than that of
AS with all tested sizes of training samples 500, 2500, and 10000. When 500 samples
are used for training, DRILLS performs similarly to NLL but gradually outperforms
NLL when the size of the training dataset increases to 2500 and 10000. For the
functions fy, f5, fo with the domain Q% NLL performs better than AS. When 500
training samples are used, DRILLS achieves worse results than NLL. For f; and fs,
it even yields errors bigger than AS. However, once the size of the training dataset
size increases to 2500 and 10000, the performance of DRILLS improves significantly:
Its errors are close to that of NLL for f; and f5; and better than that of NLL for fs.
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TABLE 2
Numerical approzimation errors produced by DRiLLS, NLL, and AS for fi on various domains.

fa in 500 2500 10000
Q10 =0, 1]1° NRMSE RL; NRMSE RLy NRMSE RL;
DRILLS (k* =1) 0.60% 0.80% 0.22% 0.31% 0.20% 0.26%
DRILLS (k* =2) 0.61% 0.82% 0.22% 0.31% 0.20% 0.26%
NLL (k* =1) 0.32% 0.43% 0.30% 0.43% 0.32% 0.45%
NLL (k* =2) 0.37% 0.50% 0.40% 0.56% 0.37% 0.51%
AS (k* =1) 3.52% 5.51% 3.20% 4.88% 2.68% 4.19%
AS (k* =2) 3.81% 5.84% 3.49% 5.22% 2.92% 4.39%
fa in 500 2500 10000
020 =0,1]*° NRMSE RL; NRMSE RL; NRMSE RLy
DRILLS (k*=1) 9.74% 11.18% 0.57% 0.62% 0.39% 0.40%
DRILLS (k* =2) 11.25% 12.68% 0.68% 0.75% 0.73% 0.71%
NLL (k*=1) 0.31% 0.33% 0.28% 0.31% 0.37% 0.38%
NLL (k* =2) 0.39% 0.40% 0.35% 0.36% 0.40% 0.38%
AS (k*=1) 3.83% 4.52% 3.74% 4.35% 3.68% 4.24%
AS (k* =2) 4.27% 4.84% 4.07% 4.60% 3.97% 4.46%
fa in 2500 10000 40000
08 =[-1,1)® NRMSE RL; NRMSE RL; NRMSE RLj
DRILLS (k*=1) 4.26% 3.19% 2.25% 1.51% 1.53% 1.17%
DRILLS (k* =2) 2.63% 2.52% 1.55% 1.39% 1.05% 0.87%
AS (k* =1) 11.42% 19.14% 9.73% 15.49% 7.53% 12.14%
AS (k* =2) 12.66% 20.13% 9.96% 16.25% 8.04% 13.62%
fa in 2500 10000 40000
Q12 =[-1,1]'2 NRMSE RL; NRMSE RL; NRMSE RLy
DRILLS (k* =1) 13.71% 19.66% 3.59% 2.40% 2.22% 1.59%
DRILLS (k* =2) 13.88% 19.69% 2.93% 2.47% 1.86% 1.80%
AS (k*=1) 12.96% 19.38% 12.17% 17.45% 10.98% 15.22%
AS (k*=2) 14.35% 20.12% 12.70% 18.14% 11.55% 15.96%

For the functions f4, fs, fs, fr with the domain Q%, DRIiLLS achieves the best
performance among all three methods with all tested sizes of training samples 2500,
10000, and 40000. Particularly, NLL does not work at all, partially due to the exis-
tence of interior critical points in the domain. For the functions fy, f5, fs, f7 with the
domain Q¥ NLL still does not work at all, as in the case of Q%. For the training
dataset of the size 2500, both DRIiLLS and AS cannot achieve good approximations.
However, once the sample size increases to 10000 and 40000, DRIiLLS yields a much
more accurate function approximation whose errors are several times smaller than
that of AS with one or two active coordinates.

For the functions f4, f5, f¢ with the domains QY and Q%, DRILLS with k* =2
achieves approximation errors very close to that with k* = 1. For fy4, fs, fs, fr with
the domains Q% and 12, DRIiLLS with k* = 2 usually achieves slightly smaller errors
than that with k* =1, but these values are generally on the same order. This makes
sense since k* = 1 is the ideal and natural choice when the level sets of the target
function are well captured. On the other hand, AS with two active variables performs
almost the same as that with only one active variable, partly because the input dimen-
sion cannot be effectively reduced by linear transformations when the level sets are
nonlinear [33].

Overall, the approximation error by our DRILLS method quickly decreases as the
size of training dataset increases, and our method significantly outperforms the NLL
and AS methods when the dataset size becomes relatively large.
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TABLE 3
Numerical approzimation errors produced by DRiLLS, NLL, and AS for fs on various domains.

f5 in 500 2500 10000
Q10 =0, 1]1° NRMSE RL; NRMSE RLy NRMSE RL;
DRILLS (k* =1) 1.54% 3.56% 0.71% 1.63% 0.51% 1.18%
DRILLS (k* =2) 1.58% 3.68% 0.73% 1.60% 0.54% 1.21%
NLL (k* =1) 1.19% 2.27% 1.08% 2.52% 1.13% 2.76%
NLL (k* =2) 1.42% 2.56% 1.03% 2.33% 0.84% 1.95%
AS (k* =1) 8.95% 22.95% 8.07% 20.66% 6.91% 17.55%
AS (k* =2) 10.02% 24.97% 8.58% 21.80% 7.23% 18.38%
f5 in 500 2500 10000
020 =0,1]*° NRMSE RL; NRMSE RL; NRMSE RLy
DRILLS (k*=1) 28.73% 79.29% 3.75% 7.72% 2.81% 5.73%
DRILLS (k* =2) 33.28% 87.72% 4.06% 7.72% 3.08% 5.82%
NLL (k*=1) 5.09% 7.46% 3.48% 5.78% 2.58% 4.92%
NLL (k* =2) 5.92% 8.13% 4.17% 6.22% 3.07% 5.02%
AS (k*=1) 13.89% 32.84% 12.96% 30.99% 12.60% 29.90%
AS (k* =2) 15.54% 35.73% 14.04% 32.87% 13.42% 31.44%
f5 in 2500 10000 40000
08 =[-1,1)® NRMSE RL; NRMSE RL; NRMSE RLj
DRILLS (k*=1) 9.18% 15.90% 6.34% 9.96% 4.56% 6.66%
DRILLS (k* =2) 8.06% 13.56% 5.10% 8.19% 3.11% 4.90%
AS (k* =1) 25.21% 62.51% 21.29% 52.42% 17.29% 42.63%
AS (k* =2) 26.61% 64.48% 22.42% 54.13% 18.31% 44.15%
f5 in 2500 10000 40000
Q12 =[-1,1]'2 NRMSE RL; NRMSE RL; NRMSE RLy
DRILLS (k* =1) 26.86% 74.17% 17.17% 30.54% 11.95% 20.81%
DRILLS (k* =2) 22.54% 49.60% 15.55% 27.14% 9.62% 15.90%
AS (k*=1) 26.82% 73.84% 24.58% 67.50% 22.15% 60.43%
AS (k*=2) 28.66% 76.43% 26.76% 70.45% 23.78% 62.81%

3.3. A PDE-related application. The PDE-constrained optimization and op-
timal control problems in engineering applications often lead to multiquery computing
scenarios where multiple numerical PDE solves are required as parameters of the prob-
lems change, which results in huge or even prohibitive computational costs. On the
other hand, the goal of multiquery numerical simulations is often to determine the
response of certain quantities of interest (Qol) to the varying parameters and/or the
sensitivity of the Qol with respect to its parameters. Therefore, a function approxima-
tion method can be used to model the Qol offline as a function of system parameters,
which can then be applied online to provide real-time responses. In the following, we
demonstrate the performance of our DRILLS method through a thermal block engi-
neering problem, which is a popular test case for model order reduction algorithms
[15].

Consider the heat diffusion on the domain Q= [0,1]? as follows:

=V (k(z,y; ) Vu(z,y;p)) =0 inQ,
(3.5) u(z,y;u)=0 onTp,
(k(z,y; w)Vu(z,y; 1) -n(z,y) =i onl'y, for i=0,1,
where the zero Dirichlet boundary condition is imposed on the upper boundary, de-
noted by I'p; the left and right edges of the domain are insulated, denoted by I'n o;

and unit flux is assumed on the lower boundary, denoted by I'y ;. Suppose that the
domain is uniformly divided into p subblocks {€2;}?_; and that a piecewise constant
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Numerical approzimation errors produced by DRiLLS, NLL, and AS for fe¢ on various domains.

fe in 500 2500 10000
Q10 =0, 1]1° NRMSE RL; NRMSE RL; NRMSE RL;
DRILLS (k* =1) 0.32% 1.44% 0.12% 0.39% 0.09% 0.27%
DRILLS (k* =2) 0.29% 1.31% 0.11% 0.37% 0.09% 0.27%
NLL (k* =1) 0.73% 3.29% 0.59% 2.42% 0.32% 1.41%
NLL (k* =2) 0.95% 2.76% 0.51% 2.12% 0.57% 2.31%
AS (k* =1) 2.19% 9.91% 2.03% 8.73% 1.76% 7.58%
AS (k* =2) 2.58% 10.73% 2.09% 9.30% 1.97% 7.99%
fe in 500 2500 10000
020 =0,1]*° NRMSE RL; NRMSE RL; NRMSE RLy
DRILLS (k* =1) 1.28% 13.35% 0.27% 2.48% 0.14% 1.27%
DRILLS (k* =2) 1.34% 13.63% 0.23% 1.97% 0.14% 1.23%
NLL (k* =1) 0.67% 5.11% 1.76% 16.86% 0.96% 8.23%
NLL (k* =2) 0.85% 6.88% 0.46% 4.20% 0.54% 4.83%
AS (k* =1) 1.98% 17.25% 1.55% 15.93% 1.96% 15.73%
AS (k* =2) 2.37% 19.84% 1.90% 17.48% 1.99% 16.93%
f6 in 2500 10000 40000
08 =[-1,1)® NRMSE RL; NRMSE RL; NRMSE RLj
DRILLS (k* =1) 4.31% 11.76% 2.56% 6.36% 1.74% 3.95%
DRILLS (k* =2) 3.38% 8.15% 2.09% 5.05% 1.06% 2.66%
AS (k* =1) 8.43% 36.86% 6.43% 27.92% 4.94% 20.31%
AS (k* =2) 8.96% 38.55% 6.90% 29.48% 5.17% 21.98%
fo in 2500 10000 40000
Q12 =[-1,1]'2 NRMSE RL; NRMSE RLy NRMSE RLy
DRILLS (k* =1) 8.70% 61.31% 3.27% 17.78% 2.38% 12.27%
DRILLS (k* =2) 9.82% 64.64% 2.80% 14.60% 2.02% 10.16%
AS (k* =1) 8.04% 62.19% 7.01% 53.50% 6.11% 44.14%
AS (k* =2) 10.13% 67.74% 8.34% 56.40% 6.61% 46.68%
TABLE 5

Numerical approzimation errors produced by DRiLLS, NLL, and AS for f7 on various domains.

fr in 2500 10000 40000
08 =[-1,13 NRMSE RLy NRMSE RLy NRMSE RLy
DRILLS (k* =1) 3.30% 5.26% 2.14% 3.28% 1.73% 2.36%
DRILLS (k* =2) 3.25% 3.87% 1.63% 1.94% 1.13% 1.34%
AS (k*=1) 10.83% 24.73% 8.73% 19.55% 6.94% 15.51%
AS (k* =2) 11.84% 26.12% 9.61% 21.26% 7.52% 16.64%
fr in 2500 10000 40000
Q2 =[-1,1]'2 NRMSE RL; NRMSE RL1 NRMSE RL1
DRILLS (k* =1) 12.81% 22.42% 11.42% 20.09% 2.18% 2.52%
DRILLS (k* =2) 9.49% 16.02% 2.91% 2.98% 1.74% 1.67%
AS (k* =1) 12.38% 22.36% 11.54% 19.95% 10.02% 17.34%
AS (k* =2) 13.65% 23.71% 12.22% 21.14% 10.77% 18.41%

diffusion coefficient

with P = (/’617/’627 T
lower boundary

is assumed in each subblock whose magnitude could vary in a
prescribed interval. That is,

p
K@,y ) =Y pixe, (,y)
=1

,up) € P:=10.1,107. The Qol is the average temperature at the
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01 - 0.05
0 o

o 02 0.4 0.6 08 1

Fic. 10. Some sample solutions to the thermal block problem for the cases of p=9,16,25,36,
respectively.

(3.6) f(w) ;:/F u(z,y; p)ds,

which can be regarded as a function of p input variables. To learn this function,
N samples are randomly selected in the parameter space P, and the finite element
method is taken to solve (3.5) and evaluate f(u) [3]. The derivative information, V,, f,
is then calculated using an adjoint approach. As an example, several sample solutions
of the thermal block problem are plotted in Figure 10 for the cases we consider here.

Assume the dimension of the parametric space to be p = 9, 16, 25, and 36,
respectively. The DRILLS method is used to learn and predict the Qol (3.6). For all
cases, g and h are modeled by two FCNN with four hidden layers, and the size of the
training dataset is N =10000. These experiments use the ideal choice w = (0,1,---,1)
because the results in section 3.2 show that our DRILLS method can perform well
even with £* = 1. Moreover, Ay =1, Ay =100, o =50 are set in the loss function. We
observe that this example benefits from some L-BFGS optimization steps in addition
to the 60000 Adam optimization steps used by default. To evaluate the sensitivity of
the Qol with respect to transformed variables z, we calculate the following relative
sensitivity with respect to z;: Fori=1,...,p,

N apr),
| N V() - Y
N n of ggzt ’
D SN Y (ur)) - Y
(n) (n)

where fi;,5; = h o g(pt4.5;). The numerical results on relative sensitivities of the Qol
produced by our DRIiLLS method are reported in Table 6 and also visually illustrated

(3.7) RS; 1=
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TABLE 6
Results on the relative sensitivities of the Qol (3.6) to the transformed variables z produced by
our DRiLLS method with k* =1.

21 29 23 24 25 26 27 28 29
9D 9.99e—01 2.94e—05 5.12e—05 3.31e—05 2.95e—05 1.71e—05 5.23e—05 5.84e—05 1.12e—04
16D 9.99¢—01 2.34e—05 3.01e—05 4.95e—05 6.28¢—05 2.33e—05 2.00e—05 4.24e—05 4.31e—05
25D 9.97e—01 1.46e—04 6.99e—05 1.14e—04 2.73e—05 7.0le—05 1.05e—04 4.27¢—05 1.09¢e—04
36D 9.98¢—01 3.51e—05 1.19e—04 2.55e—05 6.42e—05 2.54e—05 5.61le—05 6.74e—05 6.87e—05

210 211 212 213 214 215 216 217 218
16D 1.31e—05 7.36e—05 5.08¢e—05 3.58e—05 4.58e—05 2.24e—05 3.07e—05
25D 3.67e—05 1.49e—04 1.55e—04 8.76e—05 1.50e—04 1.32e—04 1.21e—04 5.11e—05 6.97e—05
36D 8.46e—05 4.10e—05 3.55e—05 2.44e—05 6.33e—05 3.02e—05 7.03e—05 8.38¢e—05 5.61le—05

219 220 221 222 223 224 225 226 227
25D 6.96e—05 4.92e—05 1.18e—04 7.68e—05 1.07e—04 8.32e—05 5.26e—05
36D 2.77e—5 4.01e—05 1.13e—04 2.32e—05 4.07e—05 5.33e—05 8.13e—05 1.12e—04 3.21e—05

228 229 230 231 232 233 234 235 236
36D 4.23e—05 3.78e—05 8.15e—05 5.28¢—05 4.94e—05 3.22e—05 4.33e—05 6.73e—05 1.28e—04

10° Active coordinate 10° Active coordinate 10° Active coordinate 10° Active coordinate
= Inactive coordinates = Inactive coordinates = Inactive coordinates = Inactive coordinates

2
2

Relative Sensitivity
s

Relative Sensitivity
Relative Sensitivity
Relative Sensitivity

s

z 21029 z 210236 2 2,10 255 2 21023

(a) 9D (b) 16D (c) 25D (d) 36D

Fic. 11. Visual illustration of the relative sensitivities of the Qol (3.6) to the transformed
variables z produced by our DRiLLS method with k* =1.

in Figure 11. In all cases, it is seen that the target function is sensitive only to
the active variable z1, as desired. The regression plots are presented in Figure 12
and again show good agreement between the exact values and the predicted values.
For the purpose of comparison, the approximation errors produced by our DRIiLLS
method (with &* = 1) are presented in Table 7 together with those by the NLL and
AS methods (with £* =1 and 2). Besides, we also adopt an NN to train the mapping
from x to f(x) directly. The associated approximation results are listed in Table 7.
For building the NN, we use one FCNN with nine hidden layers and 10d (or 200 for
d > 20) hidden neurons. The NN is trained using the Adam optimizer with the initial
learning rate 0.001, decaying every 10000 steps by a factor of 0.7, for 60000 steps in
total with no early stop criteria. It is obvious that the DRiLLS method significantly
outperforms the other three methods, especially when the input parameter space of
the problem has a high dimension.

4. Conclusions. In this paper, an NN-based method, DRILLS, has been pro-
posed for dimension reduction via learning level sets in function approximation, which
performs very well on applications involving high-dimensional limited/sparse data.
This model consists of a PRNN module and a synthesized regression module: The
former aims to find a handful of active variables that reduce the dimension of original
input space and to capture the level set information of the target function, while the
latter is designed for effectively approximating function values based on these active
variables and neighborhood relationships in the input space. Particularly, the PRNN
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FiG. 12. The Qol (3.6) approzimated by our DRiLLS method with k* =1 for the thermal block
problem.

employs two feed-forward FCNNs to model the nonlinear transformations z = g(x; 9,)
and & = h(z;0y,), which transform the original data = but do not change its dimen-
sion. A new total loss function has been introduced which involves a pseudoreversibil-
ity term enforcing hog to be close to the identity mapping, an active direction fitting
loss compelling changes in target function value caused by small perturbations of the
inactive variables to be tangent to the function’s level sets, and a bounded derivative
loss regularizing the graph of the target function as the input variables change from x
to z4. Once the PRNN is trained, function values are predicted using a synthesized
regression that selects neighboring training samples based on the distance information
from the original input space and projects them to the space of the active variables
to perform local least-squares polynomial fitting.

Some ablation studies are carried out to show the effect of the major compo-
nents and hyperparameters of our DRIiLLS method. Several high-dimensional func-
tion approximation examples and a PDE-related application problem are also used to
investigate and compare the performance of the proposed method with the popular
nonlinear and linear dimension reduction methods NN, NLL, and AS, and experi-
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TABLE 7
Numerical approzimation errors produced by DRiLLS, NN, NLL, and AS for the QoI (3.6) in
the thermal block problem when the number of input parameters is 9, 16, 25, or 36.

9D 16D 25D 36D
NRMSE RL; NRMSE RL; NRMSE RL; NRMSE RL;
DRILLS (k*=1) 1.14% 1.57%  1.68%  1.81% 2.84%  2.88%  3.20%  2.93%
NN 1.22%  1.83%  2.95%  4.93%  10.01% 17.05% 10.27%  13.85%

NLL (k* =1) 4.87%  13.40% 6.51% 12.57% 7.48% 11.28% 8.20% 10.15%
NLL (k*=2) 4.61% 12.92% 6.77%  13.22% 8.22% 12.25% 8.77% 10.90%
AS (k*=1) 5.00% 13.80% 6.51%  12.65% 7.39% 11.13% 8.07% 10.00%
AS (k*=2) 4.44%  13.00%  6.19% 12.61% 7.42% 11.55% 8.18% 10.35%

mental results demonstrate that the DRILLS method is superior in many examples
of high-dimensional function approximation with limited/sparse data. Note that our
method requires gradient information of the target function just as the NLL and AS
methods. As a next step, we will explore gradient-free approaches to level set learning
and function approximation. We will further combine our method with model order
reduction methods to develop efficient intrusive computational surrogates for complex
systems with high-dimensional parameters.
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