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ABSTRACT: Although community or cluster identification is becoming a standard tool within
the simulation community, traditional algorithms are challenging to adapt to time-dependent data.
Here, we introduce temporal community identification using the Δ-screening algorithm, which has
the flexibility to account for varying community compositions, merging and splitting behaviors
within dynamically evolving chemical networks. When applied to a complex chemical system
whose varying chemical environments cause multiple time scale behavior, Δ-screening is able to
resolve the multiple time scales of temporal communities. This computationally efficient algorithm
is easily adapted to a wide range of dynamic chemical systems; flexibility in implementation allows
the user to increase or decrease the resolution of temporal features by controlling parameters
associated with community composition and fluctuations therein.

■ INTRODUCTION
Network or graph representations of chemical systems have a
long history that dates to the first intimations of valence and
connectivity patterns within molecules.1,2 Broadly, the most
common applications have involved the study of static or
ensemble-averaged network properties and graphs that
represent intramolecular (or covalent) interactions between
atoms (so-called molecular graphs). Network analysis of
intermolecular interactions had perhaps its first application
studying the hydrogen bond networks of water3−5 and has
more recently emerged as a powerful technique to study a
variety of condensed phase phenomena�from the solvation
and aggregation of electrolyte ions, to self-assembly of
amphiphiles, and the organization of liquid−liquid interfa-
ces.6−9 These systems often exhibit structural heterogeneity,
which is a manifestation of the competition of different
intermolecular forces. In many systems, subgraphs can be
identified that can be thought of as clusters by Chemists and
communities in network science.10,11 In the latter, a
community is defined as a tightly knit group of vertices in an
input network, such that the members of each community
share a higher concentration of edges among them than the
rest of the network.
While the notion of communities has been used for

decades,10 the seminal work by Girvan and Newman12 on
defining modularity13 as an objective for community detection
revolutionized the field. Intuitively, modularity is a real-valued
score between 0 and 1 that denotes the degree to which the
network is organized as “modules” or “communities”. The
modularity score measures the strength of partitioning of a
graph into communities, and mathematically it can be
calculated by summing over all clusters of the number of
edges in a community minus the number of edges expected by
chance within that community. Modularity-based methods use

modularity as their optimization function for identifying the
vertex community assignment. Given a graph G(V, E) with n
nodes in V and m edges in E, modularity is mathematically
defined as13
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where, i, j ∈ V with degrees (number of edges connected to the
node) di and dj, respectively; Ai,j denotes the weight of the edge
(i, j) if the edge exists in E (0 otherwise); and δ(ci, cj) = 1 if the
communities containing nodes i and j, respectively, are the
same (i.e., ci = cj) and 0 otherwise. Modularity optimization is
an NP-hard problem, but several efficient heuristics are used in
practice.14,15

Recent efforts have started to explore the multiple length-
scale resolution imparted by multiple pass modularity
maximation procedures, as implemented in the Louvain
algorithm,16 which is relevant to the identification of
hierarchical organization in chemical systems.17 Here, the
maximization function works in two primary passes: (i)
iterative local greedy displacement of a node into one of its
neighboring communities that maximizes its contribution to
the overall modularity value and (ii) the coarse-graining of the
identified communities once there is no further appreciable
gain in modularity between two successive iterations. The
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coarse-graining step collapses the identified communities into
metanodes, with edges connecting metanodes and representing
the strength of inter-community edges; the edges connecting
each metanode to itself (i.e, loops) represent the strength of all
intra-community edges for that community. The procedure is
repeated on this coarsened graph representation until the
modularity function reaches a peak value and cannot be
increased further.
Building upon this nascent body of work, we recognize that

the time evolution of these communities is an unexplored, yet
potentially high impact area, where there is the potential to
identify the multiple time scale evolution of a chemical system.
Algorithms to identify dynamic communities over time-
evolving graphs can be categorized into three main groups:18

(1) static methods use the current state of the network,
identify communities for this state, and retroactively map them
onto the communities of the previous states of the network to
track the evolution. These static-based two-step algorithms are
not temporally smoothed�making tracking of communities
difficult. Further, these methods incur the additional overhead
of running static implementations at each timestep and
mapping of communities to track the evolution also at every
timestep�making the approach expensive;19−25 (2) dynamic
methods work across timesteps and identify communities at
any given timestep based on the knowledge of the entire graph
across all timesteps. The advantage of these cross-timestep
algorithms is that they are better at detecting temporally
persistent communities. However, these algorithms require
prior knowledge of the global graph. In addition, several of
these methods compare the graph and/or community states at
multiple timesteps, making the approach not scalable to larger
networks;26−33 (3) incremental approaches follow a strategy
where communities of the current timestep are identified based
on the communities detected at the previous timestep(s).34−45

These incremental approaches have the advantage of
generating more stable communities over time, thereby
facilitating an easier tracking of the evolution of communities.
The Δ-screening method46 is an incremental approach where,
at each timestep, a subset of nodes in the network is identified
that are expected to be impacted by node or edge additions
and deletions that occur in the fluctuating network.
Computation of any potential community change is then
restricted to only that subset of nodes. This strategy is effective
at reducing the computational complexity at any step to the
amount of change at that step.
In this work, we extend the Δ-screening approach, which is

an incremental technique that applies to any given timestep, to
one that works for multiple timesteps. Consequently, we define
temporal communities and present a new efficient method to
detect and track them across multiple timesteps of a
dynamically evolving network. Importantly, the user has the
ability to define a criterion for the temporal communities based
upon the persistence and fluctuation of community composi-
tion (i.e., a temporal community can evolve so that nodes
added or deleted up to a defined threshold before it is
considered a new chemical entity). This feature allows the user
to choose what is best suited for the chemical problem under
study to study its multiple time scale dynamic behavior.
Using this approach, we demonstrate that dynamic

community detection resolves multiple time scale behavior
within complex temporal networks of intermolecular inter-
actions. This is demonstrated for a ternary liquid system
containing a liquid/liquid phase boundary. Focusing on

hydrogen bond networks of water, the temporal communities
of bulk water, interfacial water, and water aggregates with
amphiphilic molecules in the organic phase are identified and
shown to have characteristically different durations. The ability
of the Δ-screening method to decouple the multiple time scale
behavior within these structurally heterogeneous systems is
computationally efficient and easily transferable to a wide
range of dynamic chemical systems, providing an important
new tool to study dynamic phenomena in the absence of
predetermined temporal correlation functions.

■ ALGORITHM DEVELOPMENT AND DATA
ANALYSIS

Time-Dependent Networks Analyzed. Equilibrium
time-dependent hydrogen bond networks of water were
analyzed within a biphasic system consisting of a bulk water
phase in contact with immiscible hexane laden with the
surface-active amphiphile tributyl phosphate (TBP). The
simulation system within this work consists of 12820 water,
1524 hexane, and 744 TBP within a periodic box, as illustrated
in Figure 1. The all-atom molecular dynamics simulation

methodology and force fields have been previously reported by
Servis and Clark.47 After equilibration at 300 K, 60 ps of the
production trajectory was analyzed, with the atomic
coordinates recorded every 2 fs (30,000 frames within the
simulation trajectory). The unweighted and undirected graph
G(V, E) contains a set of vertices V corresponding to
individual H2O molecules and a set of edges E that represent
hydrogen bonds (defined by a geometric criterion where an
edge between two nearby H2O is created if the O···H distance
<2.5 Å and the O···H−O angle is ∼145−180°). An illustration
is provided in Figure 1, with three major categories of
hydrogen-bonding environments being present in the system:
(1) the hydrogen bond network of bulk water, (2) the local
hydrogen bonding about small water clusters with TBP that are

Figure 1. Schematic illustration of the water/TBP/hexane biphasic
simulation system and associated hydrogen bond networks (H2O as
black vertices and hydrogen bonds as edges). In the organic phase,
this consists of small water clusters (top) that are extracted by TBP, a
percolated network in the bulk aqueous phase (middle), and H2O at
the instantaneous liquid/liquid surface forming hydrogen bonds with
other water and TBP (bottom).
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extracted into the organic phase, and (3) the water hydrogen
bonding at the instantaneous surface, where H2O comes into
direct contact with the surface-adsorbed TBP or hexane. The
production data was subsampled for dynamic community
analysis at two different time intervals: every 0.2 ps to yield 300
frames of data and every 2 ps to yield 30 frames.
Dynamic Chemical Community Detection Algorithm.

A dynamic network G(V, E) that evolves over T timesteps is a
sequence of T graphs G1(V1, E1), G2(V2, E2), ··· GT(VT, ET),
where Gt(Vt, Et) denotes the graph snapshot at timestep t. Let
nt and mt denote the number of vertices and edges,
respectively, at timestep t. Between each consecutive pair of
timesteps, additions and/or removals to nodes and/or edges
will occur, as illustrated in the simple example of Figure S1.
The algorithmic workflow presented here48 consists of two
primary steps (illustrated in Figure 2): (1) community
detection at each timestep t of a dynamic graph G(Vt, Et)
and (2) the subsequent step of tracking communities as they
evolve across timesteps. In particular, given the network at
timestep t, the goal of step (1) is to compute a set of
communities = { ···}C C, ,t t t

1 2 local to timestep t, such that
Ct
i ∩ Ct

j = ⌀ for any i ≠ j and ∪iCt
i = Vt. Step (2) integrates the

communities from all timesteps toward the detection of
temporal communities that span across multiple (two or more)
timesteps. Figure 2 illustrates this workflow for a more generic
setting where the network increments are provided for every k
steps (i.e., sampling rate). The forward arrow from step t + k to
t + 2k illustrates step (1), which is carried out through the Δ-
screening method. The temporal communities identified from
step (2) are shown using dotted horizontal lines connecting
communities between individual timesteps. Note that in this
formulation, for a community to be identified as temporal, it
should persist for at least two consecutive timesteps (if not
more). The minimum temporal persistence is a differentiating
feature relative to the static community analysis that could be
performed at any individual timestep and will lead to
differences in the absolute value of the number of temporal
communities relative to static communities.
While tracking temporal communities, the algorithm also

detects various community-level events. As shown in Figure 3,
for every temporal community there will be a birth timestep
when the community first appears (ti) and a death timestep (tj)
when it last appears�with ti < tj. The figure also shows other
events such as growth and contraction, and merging and
splitting�any of which could occur when the community is
alive. In what follows, we provide the implementation details
for the above two major steps of the algorithm. For ease of
exposition, we assume (without loss of generality) a network

sampling rate of 1 (i.e., k = 1) and T to denote the total
number of sampled timesteps.

Step 1: Incremental Community Detection at Timestep t.
The communities at any given timestep t are detected using
the Δ-screening algorithm,46 which employs the Louvain
algorithm49 internally to assign communities to nodes.
Importantly, Δ-screening only uses Louvain on a selected
subset of nodes that are likely to be impacted by edge additions
and/or deletions that occur between time t to t + 1. Algorithm
1 presents the main steps for incremental detection. Initially, to
bootstrap the incremental process, the Louvain algorithm is
used to detect the set of communities ( 1) from the graph at
timestep 1, i.e., G1(V1, E1). The set of communities at any
subsequent timestep t > 1 (i.e., t) are computed using the
information from the communities of the previous timestep (

t 1) and the batch of edge additions (denoted by Δt+) and
deletions (denoted by Δt−) in Gt relative to Gt−1. The Δ-

Figure 2. Workflow to identify temporal communities. A time sequence of T graphs employs a sampling rate k. Each community identified in the
graph at the current step is updated using the community structure of the previous timestep through the Δ-screening technique (different temporal
communities are represented by a color).

Figure 3. Different temporal community events are captured by the
algorithm, including the birth of a community as well as its growth
and contraction, the merging and splitting of communities, as well as
eventual death of a community. The figure assumes a sampling rate of
k, i.e., each successive network snapshots are separated by k timesteps.
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screening algorithm internally identifies a subset of vertices
(denoted by t) and updates the community assignments only
for those nodes in that subset. The details of the selection
procedure, as well as related properties and experimental
analysis of the algorithm, are provided in Zarayeneh and
Kalyanaraman.46 After this procedure is completed for all T
timesteps, the final output is a time series of community sets:
{ ··· }, , T1 2 . Importantly, our approach may be imple-
mented in an interleaved mode, where incremental detection
of communities at any timestep is followed by the
identification and tracking of temporal communities until
that timestep. It is only for ease of exposition that we describe
the approach as a sequential procedure where step (2) starts
only after step (1) completes.

Step 2: Temporal Community Identification and Tracking
across Timesteps. Given the time series of community sets for
all T timesteps, the goal is then to identify communities that
span two or more consecutive timesteps (temporal commun-
ities). Toward this end, we define the following key events at
the community level:

• Birth: a community C is said to be born at timestep t if it
has no predecessor�i.e., there is no community at
timestep t − 1 that shares α or more fraction of its
vertices in common with C. Consequently, we refer to α
as the predecessor threshold. When a community is
born, we consider this special instance of the community
to be the core for all future instances of the community
(in subsequent timesteps).

• Persistence: a community is said to persist at timestep t
if it was born at timestep t − 1 or before, and if it shares
at least ρ% of its vertices with its core community. This
implies satisfying two conditions: (a) that the
community has a predecessor from timestep t − 1
(based on α) and (b) that the community has not
become too dissimilar from its core (based on ρ). We
refer to ρ as the core threshold and set ρ ≤ α in practice.
Intuitively, thresholds α and ρ ensure that the temporal
community has not deviated too far from either its birth
instance or node composition over the course of its life.
The working hypothesis is that the temporal evolution of
a community is gradual and incremental as would be
expected for many chemical systems at equilibrium.

• Death: a community is said to die at timestep t if it
persisted until timestep t − 1 but ceases to exist at t (in
effect violating either the predecessor condition or the
core condition or both).

In the above definition of a temporal community, the notion
of the predecessor threshold is intended to track the smooth
evolution of a community, while the notion of the core
threshold is to help us bind the divergence of a temporal

community over its entire lifetime. An alternative approach to
bounding this divergence could be to compare each temporal
instance against every other temporal instance of a community
over its lifetime. In the literature, there are alternative forms of
modularity50 that are defined over this approach, where a
coupling factor is defined to compare and relate each pair of
timesteps. This approach, however, entails a significantly
higher time complexity that would make an all-pair comparison
impractical at scale for networks with thousands of timesteps.
Furthermore, detecting the temporal boundaries (birth and
death) of a community could also become challenging as there
could be temporal gaps in communities that may have to be
detected and resolved. In contrast, the combination of a single
core instance alongside a predecessor instance, as defined in
this paper, provides a more efficient approach. Finally, the
evolution of the node composition of the community over time
also has distinct chemical implications. In some chemical
systems, any variation in the node composition will lead to a
distinct chemical entity�having different physicochemical
properties. In the system studied here, the variation in the
chemical environment of the community leads to different time
scale behaviors, not necessarily the internal composition of the
community. The definition of the temporal community in this
work provides sufficient flexibility for the chemist to tune the
definition in a manner consistent with the chemical problem
under study.

Algorithmic Complexity. Given a graph at timestep t,
denoted by Gt(Vt, Et), taken from one of the T timesteps, the
runtime complexity of our algorithmic workflow is as follows.

Community Detection. The cost of detecting communities
at the first timestep is proportional to the size of the network

| | + | | ×V E r(( ) )1 1 , where r denotes the number of iterations
the Louvain algorithm takes to converge (input dependent and
typically a constant in tens or at most hundreds on most
practical inputs49,51). For each subsequent timestep t, the Δ-
screening method46,52 takes | | + | | ×f V E r( ( ) )t t1 1 , where f t ∈
[0, 1] denotes the fraction of the input graph selected by the
Δ-screening procedure and kt denotes the number of iterations
taken to converge on that reduced graph. Intuitively, Δ-
screening selects subgraphs to run Louvain based on where the
changes appear, and the fractional value f t is proportional to
the sizes of the communities impacted by those changes.

Community Tracking. The cost of community tracking at
any given timestep t is proportional to the number of
community output at that timestep plus the time taken to
detect predecessors for each of those communities. Note that
the number of communities at any given timestep is strictly
upper-bounded by the number of vertices at that timestep in
the worst case (and is significantly smaller in practice). To
efficiently compute the predecessor communities for a given
community at step t, we keep the member list associated with
each community as a sorted list so that with a linear scan of
two lists we can compute the Jaccard similarity.53 To avoid
comparing each community Ct from timestep t with every
community from timestep t − 1, we store the originating
community information for each vertex of Ct provided by the
Δ-screening method�i.e., Ct needs to be compared only
against the subset of communities at t − 1 from which its
vertices originated. This effectively bounds the comparisons to
at most the number of distinct previous communities from t −
1 that contributed members to Ct. We process those candidate
predecessors in the decreasing order of the contributions and
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stop when we find the first predecessor that shares at least α
fraction of vertices in common with Ct (as there can be no
others down the list when we use α ≥ 50%). Given this
description, the space complexity of the algorithmic workflow
is linear in the input size�i.e., | | + | |[ ] V E( )t T t t1, .
In the experiments for the entire hydrogen bond network

(comprising 30,000 timesteps), the total runtime was 23 min,
of which the first timestep took 7 s, while each subsequent
timestep took 0.04 s on average. All experiments were
conducted on a single CPU of a Linux server with 2.13 GHz
AMD Ryzen thread ripper 1920x processors and access to 64
GB DRAM.
Definitions of a Temporal Hydrogen Bond Commun-

ity. As described previously, the parameters α (predecessor
threshold) and ρ (core threshold) define the characteristics of
temporally clustered groups of hydrogen bond networks. The
predecessor threshold α controls how much overlap in node
composition is necessary to extend a community by a single
timestep (ti−1 to ti), while the core threshold ρ ensures that the
overall node composition has not far deviated from the initial
instance of that community. The combination of the two
influences the number of temporal communities and their
duration. Here, α and ρ were chosen as 0.5; however, different
ρ values were also examined so as to understand how enforcing
larger overlap in node composition from one timestep to the
next impacted the temporal community size and duration.
Based on the above scheme, each community corresponds to
an active interval of timesteps when it is alive, i.e., from the
timestep it was born (core) to the timestep it dies. This
temporal sequence defines a temporal community and the
length of the interval its duration.

■ RESULTS AND DISCUSSION
We begin by presenting the results of the different stages of the
dynamic community detection algorithm. The behavior of the
temporal communities is then described where we demonstrate
that the algorithm successfully identifies the different
characteristic time scales associated with hydrogen bond
networks of the biphasic chemical system: water in the bulk,
at the water/TBP/hexane interface, and those water clusters
that have been extracted into the organic phase. This
represents a significant addition to the minimal suite of
existing tools that are able to efficiently identify multiple time
scale correlations within chemical simulation data.
Prior to analyzing the dynamic behavior of the temporal

network, we first examined the general quality of the
community structure via the modularity values reported by
the Louvain algorithm at each timestep (i.e., static
communities). Networks with better community-level organ-
ization typically have larger values of modularity Q (eq 1, with
the theoretical maximum at 1.0). Figure 4 shows the values for
the probability distribution P(Q) using the ensemble of
snapshots from the sampling rate of Δt = 0.2 ps. The
modularity values are highly stable and bounded within a fine
range [0.873, 0.878], implying a significant community-level
structure for hydrogen bond networks.
Temporal Evolution of the Network. The equilibrium

characteristics of the hydrogen bond network are well
demonstrated through analysis of the fluctuation of network
edge additions and deletions as a function of time (Figure S2).
For every timestep, the edge list within the network is
analyzed; all new edges at t + 1 relative to t are identified, along

with edges that have been lost and the set of edges present at
both time t and t + 1. The total number of edges in the
network at any time t is 19863 ± 68. With the more frequent
sampling rate of 0.2 ps, the average number of added edges per
snapshot is 418 ± 25 (roughly 2% of the total edges within the
network), while the number of deleted edges is 420 ± 25. On
average, the number of added and deleted edges nearly cancels
(Δ = 10−3). Complementary is the number of common edges
that are retained from t to t + 1, which has an average value of
19440. Thus, as the hydrogen bond network fluctuates in time,
approximately 96% of the edges are maintained from one 0.2
ps increment of time to another. The average hydrogen bond
edge lifetime (using 2 fs sampling) obtained from the
hydrogen bond autocorrelation function fitted to a biexpo-
nential function is computed to be 5.1 ps.54,55 This is
consistent with the well-known dynamics of water, where
multiple time scale behavior that breaks and reforms HBs is
observed; vibrational motion takes place between a pair of
H2O on a time scale of 50−200 ps; hydrogen bond (HB)
reorientation occurs among three H2O at 2−3 ps; and water
diffusive motion occurs among several water molecules at ∼10
ps.56−58 In the case of the 2 ps sampling rate, approximately
63% of the hydrogen bond network is retained from one step
to another, as would be anticipated based on the comparable
time of the sampling rate and edge lifetime.

Identification of Temporal Communities. The hydro-
gen bond network structure of water has been studied since the
advent of molecular dynamics and Monte Carlo to perform
liquid simulations.59 By defining chemical clusters, or isolated
subgraphs, within the network and applying statistical physics
models of site percolation,59,60 a general consensus has been
developed over several decades where water consists of a
constantly rearranging percolating network (infinitely spanning
clusters).61−64 From a chemical perspective, a cluster could be
considered a distinct region of the system based on the
network topology that has different physicochemical character-
istics (e.g., spatial density, stability, etc.). It is desirable that a
community that is identified from a community-wise
partitioning algorithm (which maximizes internal connectivity
within a subgraph while minimizing intercommunity con-
nectivity) is consistent with the chemical notion of a cluster.
This has been recently demonstrated using the Louvain
algorithm, or modularity optimization, in both Lennard Jones
fluids and the biphasic system studied in this work,17 as well as
liquid water experiencing a shear flow,65 and in electrolyte
solutions.66 Although the study of the dynamics and lifetimes

Figure 4. Probability distribution (P(Q)) of the graph modularity (Q)
obtained from eq 1, illustrating the quality of the communities
identified for Δt = 0.2 ps systems.
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of chemical clusters is widely used within the simulation
community, partitioning of a chemical network based on
temporal features of the network topology has been relatively
unexplored. Evidence for growing interest is demonstrated by
the recent work of Melo et al.67 that studied dynamic networks
for the identification of allosteric interactions in proteins.
To identify and track temporal communities for the water

hydrogen bond network, we applied dynamic chemical
community detection to the two input data sets, one sampled
at 2 ps and another at 0.2 ps. Figure 5 presents the birth and

death times of the temporal communities identified (colored
bars) in which bar thickness indicates the community size
(measured in the number of participating nodes), while bar
length corresponds to duration. There is significant consistency
between the two sampling rates. As shown in Figure S4,
maintaining a core threshold ρ of 0.5 but increasing the
predecessor threshold α from 0.5 to 0.6 and then 0.75 causes
an interesting shift in both the size and duration of the
identified temporal communities. As expected, requiring more
overlap in the node composition from one timestep to the next
decreases the overall number of temporal communities
identified, yet within those that are identified, the overall size
typically grows. Very large and short lived communities that

are present with ρ = 0.5 are virtually absent with larger ρ
values. Necessarily, this implies that the large- and short-lived
communities observed with a ρ of 0.5 exhibit significant
changes to node composition from one timestep to another.
Complementing these data, we further examined how vertex
pairs either stay together or split (or merge together) between
successive pairs of timesteps. The results and corresponding
observations are discussed in the Supporting Information
(Figure S4). Using metrics that follow the merging and
splitting events as a function of time, there is a demonstrated
balance between merges and splits that occur between any two
successive timesteps for vertex pairs that share a community.
For most timesteps, these values are at 80%, effectively
implying that for every four pairs of vertices that stay together
one pair separates and one new pair enters the group.
Given the prior work using the Louvain algorithm to identify

communities within bulk fluids,17,65,66 we finally compare the
distribution of temporal community sizes with those from the
Louvain algorithm applied to the sampled snapshots (static
communities). Recall that temporal communities are defined
to exist only if they live for at least two snapshots, and further
there are restrictions imposed based upon the core and
predecessor thresholds. This will lead to a quantitative
difference between the distributions of temporal vs static
communities. That being said, the shapes of the two
distributions should be qualitatively similar, a feature observed
in Figure S5.

Resolving Multiple Time Scale Behavior in Temporal
Communities. Figure 6 plots the time duration of a given
community vs the community size. This provides three clear
groupings, where cross-identification of the node IDs with
their location within the simulation box delineates the different
chemical environments of the temporal communities. Large
communities having an average size of 400 nodes are present
in the bulk aqueous phase and have exceptionally short time
durations with an average value of 1.1 ps (using the 0.2 ps
sampling rate). These are labeled dynamic temporal
communities. Those temporal communities at the aqueous/
organic interface have an average size of 10 nodes and a
duration of 5 ps and are labeled transitory communities.
Finally, very long lived (24 ps) and somewhat smaller (8
nodes) temporal communities are observed as clusters of
(H2O)n that are extracted by the amphiphile TBP into the
organic phase (labeled intact communities). Note that intact
communities do not reflect the majority of H2O that gets
extracted, as the predominant species in the organic phase is
the TBP(H2O)TBP dimer and the temporal communities
considered in this work consist only of H2O···H2O hydrogen
bonds as edges.
Interestingly, the average duration of the bulk aqueous

dynamic communities (1.1 ps) is shorter than that of an
individual hydrogen bond (calculated to be ca. 5 ps). To
explain this behavior, we selected a random subset of temporal
communities with a duration of 0.4 ps (two snapshots at the
0.2 ps sampling rate) and studied their ratio of the number of
intracommunity edges (i.e., edges connecting two nodes that
are both inside the community) to intercommunity edges (i.e.,
edges leaving that community to connect to nodes in a
neighboring community). In all cases examined, the disintegra-
tion of the temporal communities correlated with a
degradation of their respective ratios. For example, in one
such community that survived only for two timesteps, the
number of nodes decreased from 658 nodes (at t) to 436

Figure 5. Birth and death times of temporal communities (identified
by their community ID), where the relative thickness of the bars
indicates the number of vertices present in the community. (a) Using
the Δt = 0.2 ps data set; for the sake of clarity only 2 ps of total
simulation time is illustrated. The thickest bar consists of 622 nodes,
while the thinnest bar consists of 6 nodes. (b) Using the Δt = 2 ps
data set, where 20 ps is illustrated. The thickest bar consists of 593
nodes, while the thinnest bar is comprised of 6 nodes.
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nodes (at t + 1), before eventually dying (at t + 2). This
correlated to the intra- vs intercommunity edge ratios of 5.57
(at t) and 3.98 (at t + 1).
These data are consistent with the observation that the large

temporal communities are influenced by the value of the
predecessor threshold α (as explained in the Supporting
Information discussion on temporal community analysis;
Figure S3). Intuitively, a larger α can make it harder for
nodes to be retained in communities from one timestep to the
next, unless the intra- vs intercommunity edge ratio is
maintained. Considering that these relatively large bulk
aqueous dynamic temporal communities are losing their
internal edges and disintegrating very quickly in time and
that there are only a small fraction of edges added or removed
between successive timesteps (∼4%, as shown in Figure S2 of
the Supporting Information) imply that these edge removals
are locally concentrated in the bulk aqueous region. Finally,
with respect to the intra- vs intercommunity edge ratio, note
that the modularity objective Q is closely tied to this ratio�
i.e., a community is likely to be formed when the ratio
increases from t to t + 1 and likely to be broken when the ratio
decreases. Yet, this is in strong contrast to the analysis of the
modularity of the static communities shown in Figure 4 for the
total network, which indicated an otherwise strong community
structure. As such, there remains an opportunity to consider
further improvements in modularity optimization in the
context of temporal communities relative to their static
analogues and in considering which algorithm is best suited
to a given network structure. For example, the Louvain
algorithm may have a resolution limit for modularity that
prevents the detection of small communities if they are
internally disconnected. To improve these issues, the Leiden
community detection algorithm68 in combination with the
constant Potts model has been suggested.69 As discussed in the
Supporting Information, any modularity algorithm may be
chosen within the Δ-screening approach. Our own compar-
isons between Louvain vs Leiden algorithms did not yield
appreciable differences in the temporal community detection.

■ CONCLUSIONS
The recently developed Δ-screening algorithm has been
applied to study the dynamic evolution of intermolecular

networks of interactions within a ternary biphasic chemical
system. The identified temporal communities differ from static
communities present within individual timesteps as they must
persist over >1 instance in time and have constraints upon the
allowed changes to node composition in time (relative to both
the node composition at the time of community birth and the
variation in node composition from one timestep to the next).
These features may be tuned based on the nature of the
chemical system to optimize resolution. The algorithm is
computationally efficient, as it uses edge formation and
deletion data to selectively apply the Louvain algorithm to
subsets of nodes within the network. It further monitors the
dynamic evolution of communities in the context of merging
and splitting events, providing well-defined avenues for
studying dynamic chemical behavior. Within the system
under study, the method clearly identifies three groups of
temporal communities, that further have variations in
community size. These are the large highly dynamic networks
of bulk aqueous phase, the mid-size longer-duration transitory
communities of water at the instantaneous interface of water/
hexane, and the exceptionally long-lived intact smaller
communities of water that are transported into the organic
phase by the surface-active amphiphile tributyl phosphate.
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