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Abstract—ReRAM-based Processing-in-Memory (PIM) 
offers a promising paradigm for computing near data, making 
it an attractive platform of choice for graph applications that 
suffer from sparsity and irregular memory access. However, the 
performance of ReRAM-based graph accelerators is limited by 
two key challenges – significant storage requirements 
(particularly due to wasted zero cell storage of a graph’s 
adjacency matrix), and significant amount of on-chip traffic 
between ReRAM-based processing elements. In this paper we 
present, GraphIte, an approximate computing-based 
framework for accelerating iterative graph applications on 
ReRAM-based architectures. GraphIte uses sparsification and 
approximate updates to achieve significant reductions in 
ReRAM storage and data movement. Our experiments on 
PageRank and community detection show that our proposed 
architecture outperforms a state-of-the-art ReRAM-based 
graph accelerator by up to 83.4% reduction in execution time 
while consuming up to 87.9% less energy for a range of graph 
inputs and workloads.  

Index Terms — Processing-in-Memory, Approximate 
Computing, Graph Analytics, ReRAM.  

I. INTRODUCTION 
Graph analytics has become part of machine learning 

toolkits to analyze relational data in many real-world 
applications. Considering poor data locality in most of the 
real-world graphs, irregular data access patterns become a 
bottleneck in the performance of conventional manycore 
architectures (such as CPUs and GPUs). Moreover, skewed 
vertex degree distributions of real-world graphs cause 
repeated accesses to vertex neighborhoods or random walk 
traversals to incur a high volume of cache misses.  

Resistive random-access memory (ReRAM)-based 
Processing-in-Memory (PIM) modules offer an effective way 
to address the high memory bandwidth requirement of graph 
analytics by integrating the computing logic in the memory. 
To perform graph computations on ReRAM crossbars, it is 
necessary to load the input graph as an adjacency matrix so 
that the underlying primitives can be decomposed into 
multiply-and-accumulate (MAC) operations.  However, large 
graph sizes in the real-world (with millions of rows implying 
trillions of cells) make it prohibitive to load or store the entire 
adjacency matrix. It is also rather unnecessary to do so 
because most real-world graphs tend to be highly sparse, with 
the number of nonzero entries orders of magnitude fewer than 
the number of cells. Graph computations usually only use the 
nonzero entries. Sparsity also affect locality since the nonzero 
cells may not be necessarily contiguous in the input matrix. 
Subsequently, the question arises on how to store a large 
sparse matrix on an ReRAM platform without wasting space 
and without compromising on performance or energy 
benefits.  

Contributions: In this paper, we design approximate 
computing techniques for executing iterative graph 
applications on ReRAM-based architectures. We refer to our 
proposed approach as GraphIte (Fig. 1 shows a schematic 
illustration). Approximate computing [2] is a broad class of 
techniques that use heuristic schemes to achieve the best of 
performance-precision tradeoffs in real-world applications. 
GraphIte uses two types of approximate computing 
techniques as follows: 

Sparsification: First, we present a graph sparsification 
approach to selectively determine and eliminate large 
portions of the adjacency matrix dominated by zero entries 
(sparse tiles), while retaining parts that are concentrated with 
non-zeros (dense tiles). This approach helps not only in 
significant reductions in ReRAM storage, but it also 
improves the achievable performance and energy efficiency.  

Approximate update: Next, we present an approximate 
update method by which vertices are selectively and 
dynamically pruned (or terminated) as the algorithm proceeds 
on the ReRAM in iterative steps. This is a generic technique 
that can be applied to any graph operation with an iterative 
structure, where all vertices are visited at each iteration (e.g., 
PageRank, community detection) [3]. A higher level of 
pruning corresponds to larger savings in time (and data 
movement), however with the potential risk of degrading 
quality. Therefore, a careful design is necessary to make this 
idea work in practice for real-world graph applications.   

We implemented the above two types of approximate 
computing techniques for two different graph operations – 
namely, PageRank [4] and community detection [5]. Both 
these operations are exemplars of iterative graph methods that 
iterate repeatedly over all the vertices until a point of 
convergence.  

We perform a thorough experimental evaluation of the 
GraphIte-based implementations of PageRank and 
community detection on an ReRAM-based architecture with 
1,024 processing elements (PEs) connected using a Network-
on-Chip (NoC) architecture. Results show that the GraphIte 
implementations are highly effective in reducing storage 
requirement, time to solution as well as energy costs – all 

  
Fig 1: Schematic illustration of the GraphIte architecture. 
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without compromising the output quality. GraphIte with 
sparsification and early termination, called GraphIte-ET 
outperforms a state-of-the-art ReRAM-based design by up to 
83.4% reduction in execution time while consuming up to 
87.9% less energy for a range of graph inputs and workloads. 

II. RELATED WORK 
Due to irregular memory accesses in most of the real-world 
graph applications, data movement between logic and 
memory layer limits the performance and energy efficiency 
of CPU and GPU-based conventional manycore 
architectures. DRAM-based Hybrid Memory Cube (HMC) is 
an effective way to improve performance by closely 
integrating the memory with the logic layer [19]. Another 
possible way is to partition the caches into multiple planar 
layers in a 3D structure to improve the cache hit rate [20]. 
However, such deep memory hierarchies also degrade the 
overall performance. Alternatively, due to in-memory 
processing capability, ReRAM-based architectures are 
gaining momentum as a natural choice for accelerating graph 
operations [6][7][8]. These accelerators outperform CPU- or 
GPU-based implementations in terms of execution time and 
energy [6]. While reliability due to hardware faults is a well-
documented problem with ReRAM platforms, a number of 
fault-tolerant schemes being proposed (such as error-
correction codes (ECC) [10], redundancy [11]) that enable 
reliable operation on ReRAMs. Therefore, in this paper, we 
primarily focus on improving the performance and energy 
efficiency of graph processing on reliable ReRAM 
architectures.  
     Performance of the current ReRAM-based accelerators is 
limited by the sparsity and lack of locality in graph structures 
[7][8]. Two recently proposed ReRAM-based graph 
accelerators (GraphSAR [7] and Spara [8]) leveraged vertex 
reordering techniques to improve the sparsity-induced 
inefficiency. While vertex reordering can help by clustering 
the non-zero cells of the matrix, new algorithmic strategies to 
fully exploit the reordered structure are needed to realize 
performance and storage benefits on ReRAMs. More 
specifically, reordering can rearrange the nonzeroes in the 
matrix in such a way that there is a clearer separation between 
denser and sparser “tiles” (or submatrix blocks).  The 
schemes presented in this paper takes advantage of this 
observation. 
    Approximate computing [2] generally works by trading off 
quality for performance. The main idea is to find ways to skip 
portions of computation such that the overall quality of the 
solutions is not significantly perturbed while enhancing the 
performance and energy efficiency [3]. One challenge in 
implementing approximate computing for ReRAM-based 
platforms arises from the adjacency matrix-based 
representation to load and compute on the graph (compared 
to more traditional formats like adjacency/edge lists or 
compressed sparse row). Another challenge arises owing to 

the crossbar structure of ReRAMs. In this paper we tackle 
both these challenges.  

III. APPROXIMATE COMPUTING ON RERAM 

A. Identifying active blocks using Sparsification 
    Graph computations on ReRAM-based architectures 
involve traversing the input sparse adjacency matrix 
corresponding to the graph. For a graph G(V,E) with n 
vertices, the corresponding adjacency matrix has n2 cells. 
However, most of the real-world graphs are sparse in nature 
with orders of magnitude fewer nonzero values (i.e., edges) 
than n2. Therefore, storing the entire adjacency matrix will be 
wasteful and prohibitive in practice.  

 Here, we present a sparsification based approach toward 
reducing the storage requirement on ReRAMs. To 
accomplish this reduction, we first define the term active 
block. A square tile of a matrix of size X rows * X columns 
is considered “active” if it contains at least one cell with a 
nonzero value. Since graph computations only involve the 
nonzero cells of a matrix, we need to transfer only the active 
blocks of the adjacency matrix onto the ReRAM. A simple 
but naïve decomposition of the input adjacency matrix into 
evenly sized active blocks may not necessarily reduce storage 
in practice as nonzeros can be scattered across the matrix. To 
this end, vertex reordering techniques can be used [7]. 
Intuitively, the idea is to reorder the rows and columns of the 
matrix in such a way that the nonzeros are clustered along the 
main diagonal [7][8]. As part of this work, we used the Spara 
reordering [8] although any vertex reordering of choice can 
be used.  

However, even after reordering, there may be several 
blocks which are highly sparse. Fig. 2 shows the distribution 
of the number of nonzero cells within each active block for 
two real-world graph datasets (GitHub and Deezer) after 
reordering using Spara (using a crossbar size of 128 x128 as 
an example). Fig. 2 shows a skewed distribution where most 
of the blocks have very low number of nonzeros (i.e., still 
very sparse). If one were to store all active blocks on the 
ReRAM, then that will result in substantial wasted space 
devoted to storing zero cells.  
    To reduce the number of active blocks after vertex 
reordering, we use sparsification, which removes a subset of 
edges (i.e., nonzero cells). Unlike conventional schemes that 
remove edges randomly, our sparsification approach 
prioritizes removal of the sparser active blocks until the 
desired level of sparsification is achieved. We use a 
parameter called sparsification factor (SF) that denotes an 
upper limit on the fraction of edges to be removed prior to 
loading the graph onto the ReRAM. To maximize the number 
of active blocks that can be eliminated, we process the active 
blocks in the decreasing order of their sparsity, until a total of 
SF fraction of edges is removed. Note that sparsity of a block 
is simply the fraction of cells that has nonzero entries. In 
Section IV, we show that choosing an optimized value for SF 
causes insignificant precision loss while significantly 
reducing the storage requirement, execution time and energy.  

 B. Approximate Updates for Iterative Graph Algorithms  
    In the next step, we describe an approximate update 
scheme that is performed during the computation stage once 
the graph is loaded on the ReRAM platform. Our technique 

 
Fig. 2: No. of non-zero elements in each block for GH and DZ, after Spara. 
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applies to any graph algorithm that has the following iterative 
structure:  
1) Initialize a state (or value) at every vertex. 
2) Perform multiple iterations such that at each iteration the 

states (or values) of each vertex is updated using the 
states (or values) of its neighboring vertices. 

3) The algorithm terminates when a convergence criterion 
is achieved.  

The above computational structure is generic and applies to a 
broad class of iterative graph algorithms. For instance:  
• In the PageRank algorithm [4], the value computed at 

each vertex u is its PageRank value, which is updated at 
each iteration using the PageRank values of u’s 
neighbors.  

• In community detection [5], the state computed at each 
vertex u is its community label. Two actions are possible 
for u at each step – either u stays in its current 
community, or it leaves its current community and joins 
one of the communities of its neighbors. This greedy 
decision is made based on whichever action maximizes 
net gain in modularity [3] – a global objective function.  

• In balanced distance-1 coloring [2], the state of each 
vertex represents its color, which is updated at each 
iteration based on the colors used by its neighbors.  

• In the Bellman-Ford single source shortest path 
algorithm [18], the value updated at each vertex u is its 
most up-to-date shortest path distance from the source. 

  In all the above iterative graph algorithms, the graph 
algorithms progress toward convergence at each step of the 
iteration. Subsequently, most of these algorithms show a 
diminishing returns property [3], whereby the returns in the 
improvement of quality diminishes with every passing 
iteration. This happens, however, without any reduction in the 
work performed as all vertices are processed at each iteration. 
This is the key property that we exploit in this paper to design 
our approximate update method. Our scheme tries to reduce 
the work performed at each iteration (adaptively) as the 
iterations progress. The challenge is to design a scheme 
which would achieve significant reductions in work without 
compromising or negatively impacting the output quality.  
   Next, we describe two such approximate update schemes: 
one for community detection and another for PageRank.  
Similar strategies can be designed for other iterative graph 
algorithms following the template laid out here.   

 1) Approximate Update for Community Detection 
      We devise a probabilistic scheme by which a vertex 
decides to stay “active” or get “terminated”, at any given 
iteration. Being active implies that the vertex will compute its 
community affiliation and decide whether to change the 
corresponding community or not, by examining its 
neighborhood. Alternatively, if the vertex is terminated, it 
will be dropped from the processing queue during that 
iteration. Note that by terminating a vertex during an 
iteration, we can save on all the subsequent computations and 
inter-PE communication that originate at that vertex. At the 
start of the first iteration, all vertices are active. As the 
algorithm progresses through its iterations, more and more 
vertices will get terminated. Compare this with the baseline 
(precise) algorithm [5] where all vertices stay active across 
all the iterations. Consequently, we refer to this approximate 
update scheme as Early Termination (ET). 

     To identify vertices to terminate, we track the most recent 
activity at each vertex – i.e., intuitively, if the community of 
a vertex has not changed in the past few consecutive 
iterations, the probability of that vertex staying active is 
reduced.  Specifically, given vertex v and its community 𝐶𝑣,𝑗 
at the end of iteration j, we assign the probability that v is 
active during iteration k, denoted by 𝑃𝑣,𝑘, as follows [16]: 

             𝑃𝑣,𝑘 =  {
0,
1,

         𝑖𝑓𝐶𝑣,𝑘−3 = 𝐶𝑣,𝑘−2 = 𝐶𝑣,𝑘−1

         otherwise
            (1) 

For implementation, a binary flag is used at every vertex 
to determine the active state of a vertex. This flag is 
determined based on the probability 𝑃𝑣,𝑘. If a vertex becomes 
inactive at a certain iteration, it is not considered as part of 
future iterations (which implies its community status will no 
longer be updated). Note that this deviation from precise 
update may potentially affect output quality. Precision in 
quality is measured using the modularity metric. This 
heuristic has two performance advantages: a) it could lead to 
a faster convergence of modularity within a phase, by 
reducing both the number of vertices that need to be 
processed at every iteration and the total number of iterations 
required, and b) it could also reduce inter-PE traffic generated 
by terminated vertices.  

 2) Approximate Update for PageRank 
    PageRank [4] computes a ranking of webpages (i.e., nodes 
on a web graph), with a higher value of PageRank denoting 
more importance to that webpage. The conventional 
implementation of PageRank is based on the fact that an 
average web surfer visits page to page, either using the 
outgoing links of a page (vertex) chosen uniformly at random 
with probability d, or by randomly jumping to a new page 
(with probability 1- d). The output of PageRank is a score for 
each page on the web that determines its importance. The 
PageRank of a vertex depends on the PageRank of its 
neighboring vertices. More specifically, consider a directed 
graph G(V, E) with vertex set V and edge set E. For a given 
vertex 𝑣𝑖 , let I( 𝑣𝑖 ) be the set of vertex neighbors with 
incoming links to 𝑣𝑖 . The PageRank score for vertex 𝑣𝑖  is 
defined by the equation: 

     𝑃𝑅(𝑉𝑖) =
1 − 𝑑

|𝑉|
+ 𝑑 ∗ ∑ 𝑃𝑅(𝑣𝑗)

𝑗∈𝐼(𝑣𝑖)

       (2) 

We start by initializing all vertices to an initial PageRank 
(PR) score of 1

|V |
. PageRank iteratively computes the PR 

value of each vertex using (2) until convergence.  
    It has been observed that the magnitude of changes in the 
PR values tend to diminish as iterations progress [3]. We 
exploit this property to retire or early-terminate a source 
vertex 𝑣𝑖  if that change in that vertex’ PR value between 
consecutive iterations drops below a threshold 𝛼 .  More 
specifically, based on the change in individual PR value of a 
vertex at a given iteration ( 𝑃𝑅(𝑣𝑖)𝑘) , we introduce a 
probability function (ƥ

𝑣,𝑘
) which determines vertices that 

needs to be terminated. This probability during iteration k is 
given by: 
            ƥ

𝑣,𝑘
=  {

0,
1,

         𝑖𝑓|𝑃𝑅(𝑉𝑖)𝑘−1 − 𝑃𝑅(𝑉𝑖)𝑘−2| < 𝛼
         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (3) 

Here, 𝛼  is an input parameter that sets the minimum 
threshold of PR difference between the previous two 
iterations to keep a vertex active in the current iteration.  





Authorized licensed use limited to: Washington State University. Downloaded on July 29,2023 at 01:20:48 UTC from IEEE Xplore.  Restrictions apply. 



 3) Overall ReRAM-based Architecture 
In ReRAM-based accelerators, the adjacency matrix of the 

input graph is stored across the ReRAM cells. During 
execution, graph computations are decomposed into a set of 
MAC operations that are performed based on Ohm’s and 
Kirchhoff’s current laws. The overall system consists of 
multiple ReRAM processing elements (PEs), where each PE 
contains several ReRAM tiles. Each ReRAM tile is 
composed of several crossbars and the associated peripherals. 

It should be noted that both the vertex reordering and 
sparsification steps are one-time preprocessing steps that are 
executed on the host machine, and it is only the resulting 
reordered sparsified graph (with only its identified active 
blocks) that are loaded on to the ReRAM manycore 
architecture. For reordering we use the state-of-the-art Spara 
reordering scheme [8]. Sparsification was described in 
Section III.A. The approximate update schemes (described in 
Section III.B) are executed on the ReRAM manycore 
architecture during the subsequent graph computation phase.  
Fig. 1 illustrates the overall workflow proposed in this work. 
The manycore ReRAM architecture with its components is 
shown for illustration purpose only.  

IV. EXPERIMENTAL RESULTS 
 A. Experimental Setup 
    For our experimental evaluation, we implemented two 
different versions of GraphIte: the baseline version that uses 
Spara for graph reordering, followed by our block-based 
sparsification described in III.A; and an extended version, 
GraphIte-ET, that in addition uses the early termination 
heuristic described in Section III.B. We modified the open 
source Grappolo toolkit for the GraphIte implementations 
with the approximate computing techniques [17].  
    In the GraphIte architecture, each PE has four tiles. Each 
tile contains 96 crossbars (128x128) and associated 
peripheral circuits such as ADC, DAC, etc. Each PE takes up 
0.37 mm2 of area [14]. We consider a 3D architecture to offer 
a higher degree of integration of ReRAM PEs than the 2D 
counterparts [9]. By considering 10mmx10mm as the size of 
each planner layers, such layer contains 256 PEs. Considering 
four of such planner layers connected on top of each other, it 
gives rise to a 3D ReRAM-based system with 1024 PEs. Due 
to simplicity and ease for implementation, we choose a 
conventional 3D Mesh-based NoC to connect the PEs. Within 
each layer 256 PEs are placed in a 16x16 grid pattern, and the 
length of each inter-router link is 0.625mm. We leverage 
Booksim [13] for implementing 3D Mesh-based NoC 
architecture considered in this work. The overall system runs 
at the clock frequency of 2.5 GHz. Considering this clock 

frequency, each inter-router planar link can be traversed in 
one cycle. All the vertical links connecting the planar layers 
are traversed in one cycle due to their small length. BookSim 
determines the overall NoC latency. We use the PE and 
memory characteristics along with total NoC latency in 
NVSim [12] to determine the overall energy consumption and 
execution time. Table 1 shows all the graph inputs used for 
the performance analysis. These graph datasets are taken 
from the Stanford Network Analysis Platform1 and the 
Network Repository2.  
 B. Effect of Crossbar Size on Area, Power, and Storage 
    The adjacency matrix of a graph is decomposed into 
multiple non-overlapping 𝑁 × 𝑁  segments to map on to 
𝑁 × 𝑁  shaped crossbars. Intuitively, selecting relatively 
smaller crossbars would reduce zero cells stored but also 
would negatively impact the area and power requirements as 
those terms are dominated by peripheral circuits [14]. On the 
other hand, a large crossbar size would reduce area and power 
but would also potentially increase zero cell storage. We 
evaluate this tradeoff with multiple inputs. Fig. 3 shows the 
normalized area, power and zero storage by varying the 
crossbar size from 8 × 8  to 256 × 256 . All values are 
normalized relative to the respective numbers observed for 
the 8 × 8 crossbar configuration. While we tested for several 
inputs, the observed trends were similar and therefore we 
show the results for only two exemplar inputs. We can see 
that the area and power continuously decrease with increasing 
crossbar size. However, beyond 128 × 128  both area and 
power show saturating trends, while the zero storage 
significantly increases (more than 30x over the  8 × 8 
configuration). Hence, we select the 128 × 128 crossbar size 
as the default for all our experiments. In this configuration, 
on average, the area and power are 92% and 85% less than 
that of the 8 × 8  crossbar respectively, while the zero 
wastage is reduced by more than 27.4X.  

 C. Effect of Sparsification Factor on Quality and 
Storage  

As shown in Fig. 2, active blocks in most real-world graph 
datasets have varying sparsity. Active blocks with high 
sparsity not only increase storage requirement but also 
generate inter-PE traffic. Through sparsity-based 
approximation, we remove edges belonging to the blocks 

1http://snap.stanford.edu/;     2http://networkrepository.com/ 

Table 1: Input statistics of the graph datasets used in our experiments. 
Input graph (label) No. vertices No. edges 
musae_Github (GH) 37,699 289,003 
gemsec-Deezer (DZ)  41,773 125,826 

ego-Twitter (TW) 81,306 1,768,149 
road_luxembourg-osm (RM)  114,598 119,667 

Web-Standford (WS) 281,903 2,312,497 
com-Amazon (AZ) 334,863 925,872 
roadNet-PA (PA) 1,088,092 3,083,796 
Wiki-topcats (TP) 1,791,489 28,511,807 

roadNet-CA 1,965,206 5,533,214 
com-Orkut (OR) 2,937,612 20,959,854 

socfb-A-anon (FB) 3,097,165 23,667,394 
soc-LiveJournal1 (LJ) 4,847,571 68,993,773 

 

 
Fig. 4: Community detection: (a) Effect of sparsification and (b) early 
termination on the normalized number of active blocks (y-axis left) and 
on the quality of output (precision loss and modularity by the y-axis right). 

 
Fig. 3: Area-Power-Zero storage trade-offs for different crossbar 
configurations. Crossbar size X*X is denoted as X. All values are normalized 
relative to that of the 8 × 8 crossbar configuration. 


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with comparatively high sparsity. The parameter 
sparsification factor (SF) denotes the fraction of edges to be 
removed (relative to the original number of edges in the input 
graph). We study the number of active blocks by varying the 
value of SF. As removal of edges may also potentially 
degrade the precision of the output, we also analyze the loss 
in precision along with the number of active blocks.  
     Fig. 4 (a) shows the effect of sparsification on the 
normalized number of active blocks (y-axis left) and on the 
precision loss in community detection (y-axis right) with GH. 
The precision loss in community detection is measured as the 
difference between the output modularity values calculated 
by the sparsified implementation versus the implementation 
without sparsification. We show the result with GH as an 
example (the same trend is observed for all the others). The 
number of active blocks with the SF value of zero is 100%.  
     It should be noted that increasing SF decreases the number 
of active blocks (i.e., generating more space savings) but it 
also increases precision loss. While this storage-precision 
tradeoff is expected, it should be noted that for most of the 
graph datasets considered in this work, when the value of SF 
is  25, the modularity (precision) loss is maintained below 
1%, which is desirable from an application standpoint [15]. 
For this setting, we can achieve 61% to 89% reduction in the 
number of active blocks, which is a significant savings in 
space. We use SF value of 25 for all the experiments.  

 D. Performance with Early Termination (GraphIte-ET) 
In what follows, we analyze the impact of early termination 
(ET) by testing the GraphIte-ET implementations of 
community detection and PageRank.   
GraphIte-ET for Community Detection rests on the main 
idea of terminating vertices as soon as their community labels 
stop changing (III.B.1). This heuristic tries to improve 
performance but, in the process may degrade output quality. 
Fig. 4 (b) shows the effect of early termination on the number 
of active vertices (Y-axis on the left) and on the output quality 
(shown as modularity by the Y-axis on the right) of 
community detection with GH. It should be noted that the 
results are shown on the sparsified inputs. We observed 
similar trend for other datasets as well. Fig. 4 (b) shows that 
as the iterations progress, the number of active vertices 
decreases while increasing the modularity. Table 2 shows the 
modularity comparison between GraphIte and GraphIte-ET 
for six datasets. We can see that difference in the modularity 
values between GraphIte and GraphIte-ET varies from 0.01% 
to 3.4%. Section IV.E discusses the effect of early 
termination on inter-PE communication volume and overall 
performance gain.  
GraphIte-ET for PageRank rests on the main idea of 
terminating vertices as soon as their individual PageRank 
values stop changing significantly in consecutive iterations, 
defined by the threshold 𝛼 (III.B.2). This heuristic tries to 
improve performance but, in the process may degrade output 
quality. We determine the number of active vertices and loss 

in precision per iteration by varying the value of 𝛼. Fig. 5 (a) 
shows the effect of early termination on the number of active 
vertices within each iteration of PageRank with GH for three 
threshold values of 𝛼 . Here, 𝛼 =10-9 would represent a 
conservative threshold setting while 𝛼=10-3 would represent 
an aggressive threshold setting.  The results for GH are shown 
as examples. Fig. 5 (a) shows that a larger value of 𝛼 (i.e., 
10−3) results in a drastic reduction in the number of active 
vertices but with a larger precision loss (as can be expected). 
On the other hand, smaller value for 𝛼 (i.e., 10−9) does not 
achieve any meaningful reduction in the number of active 
vertices. Fig. 5(b) illustrates the loss in precision per iteration 
of PageRank with GH for the three values of 𝛼 mentioned 
above. We can see from Fig. 5(b) that as the iterations 
progress, we have maximum loss in precision when the value 
of  𝛼 as 10−3. In contrast, choosing 10−9 as the value of  𝛼 
achieves minimum precision loss. Moreover, careful 
observation of Fig. 5(b) reveals that the difference in 
precision loss between 10−6 and 10−9 is negligible. Hence, it 
is clear from Figs. 5 (a) and (b) that larger value of 𝛼 achieves 
higher reduction in number of active vertices towards the goal 
of reducing computation, while a smaller value of 𝛼 achieves 
better precision. The setting with the best tradeoff between 
performance and precision appears with 𝛼 = 10−6  for the 
inputs tested. We use this setting for the full system 
performance on PageRank.  

 E. Overall Performance Evaluation 
     Due to the early termination on GraphIte-ET, with 
progressing iterations the number of active vertices 
decreases. As a result, inactive vertices also stop generating 
the inter-PE traffic. Therefore, we study the total volume of 
inter-PE traffic for GraphIte and GraphIte-ET. Considering 
the total inter-PE traffic, GraphIte-ET reduces 48% to 66% 
traffic volume compared to GraphIte.  
      In Figs. 6 and 7, we compare the speed up and energy 
reduction for community detection and PageRank, 
respectively, on GraphIte and GraphIte-ET with respect to the 
Spara (baseline). In these figures, we show the range of speed 
up and the normalized energy for different datasets 
considered in this work. The full-system execution time 
includes the computation time, inter-PE communication time 
and the data transfer time from the host. Since the 
preprocessing step including vertex reordering using Spara 
followed by sparsification, is carried out in the CPU host, we 
exclude this preprocessing time – so that the focus of our 
performance analysis stays on the executions that happen on  
the ReRAM architecture. Figs. 6 (a) and 7 (a) show the speed   
up of GraphIte and GraphIte-ET with respect to Spara for 
community detection and PageRank, respectively. We can 
see from Fig. 6 (a) that GraphIte achieves 1.17x to 3.01x 

Table 2: Modularity comparison between GraphIte and GraphIte-ET. 
Input graph (label) GraphIte GraphIte-

ET 
musae_Github (GH) 0.3593 0.3757 
gemsec-Deezer (DZ)  0.8418 0.8417 

road_luxembourg-osm (RM)  0.7969 0.7957 
com-Orkut (OR) 0.6602 0.6835 

socfb-A-anon (FB) 0.5246 0.5084 
soc-LiveJournal1 (LJ) 0.7552 0.7566 

 

Fig. 5: PageRank: (a) Effect of early termination on the number of active 
vertices and (b) the loss in precision within each iteration of the algorithm 
for three threshold values of 𝛼 with GH after sparsified inputs.  
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performance improvement with respect to Spara depending 
on the datasets considered in this work. We observed that the 
performance gains realized by GraphIte is higher for the 
larger datasets (where it matters more) – e.g., GraphIte 
achieves peak speedups (3.01x) for the largest input tested 
(LJ: 4.8M vertices and 68.9M edges). Moreover, there are 
more savings in total execution time achieved by GraphIte on 
social media datasets (1.33x to 3.01x savings) than with road 
network i.e., RM, CA and PA (1.17x to 1.2x) compared to 
Spara. The speed up is least for road network as it has a 
uniform degree distribution. Hence, the variation of sparsity 
among active blocks for road network is comparatively less 
than that of the social media datasets. Next, after 
incorporating early termination-based approximation on top 
of GraphIte, we can see from Fig. 6 (a) that GraphIte-ET 
achieves 1.3x to 5.4x speed up compared to Spara reordering 
(i.e., with no sparsification or early termination). Moreover, 
GraphIte-ET achieves 13% to 47.9% reduction in execution 
time compared to GraphIte depending on the considered 
datasets. It is clear from Fig. 6 (a) that the improvement is 
input dependent.  
    Fig. 6 (b) and Fig. 7 (b) illustrate the normalized full-
system energy consumption using community detection and 
PageRank for GraphIte and GraphIte-ET compared to Spara. 
Figs. 6 (b) and 7 (b) show that GraphIte consumes 33.2% to 
76.2% less energy compared to Spara. We can also see that, 
incorporating early termination-based approximation, 
GraphIte-ET achieves 18.5% to 49.3% compared to GraphIte 
depending on different datasets considered in this work.  
Moreover, GraphIte-ET outperforms Spara by consuming 
45% to 87.9% less energy. As mentioned above, GraphIte and 
GraphIte-ET are more efficient in reducing the number of 
active blocks and on-chip data movement for social media 
datasets compared to road network, the reduction of energy 
consumption is least for RM.  
    It should also be noted that due to high energy efficiency 
of ReRAM-based PEs, the peak temperature of the 3D 
manycore system remains below 85οC for all the 
configurations tested. Hence, temperature hotspots are not of 
any concern in GraphIte and GraphIte-ET architectures.  

V. CONCLUSION 
    In this paper, we demonstrated the benefits of using 
approximate computing for accelerating the computation as 
well as reducing the storage requirements of graph 
computations on ReRAM-based architectures. Our GraphIte 
implementations achieve 61% to 89% reduction of active 
blocks for negligible precision loss. This reduction also 
results in reducing the overall computation and inter-PE 
communication on GraphIte. Hence, it achieves 19.8% to 
68.9% reduction in execution time and 33.2% to 76.2% less 
energy consumption compared to the state-of-the-art 
ReRAM-based architecture Spara (baseline). GraphIte-ET 
also reduces 48% to 66% of total traffic compared to 

GraphIte. For full system performance evaluation, GraphIte-
ET is 13% to 47.9% faster and 18.5% to 49.3% energy 
efficient compared to GraphIte.  
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Fig. 11: Normalized execution time of GraphIte and 

GraphIte-ET compared to Spara for PageRank. 

 
Fig. 6: (a) Speed up, (b) normalized energy of GraphIte, GraphIte-ET 
for community detection w.r.t Spara. 

 
Fig. 7: (a) Speed up and (b) normalized energy of GraphIte and GraphIte-
ET for PageRank with respect to Spara. 
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