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Abstract—ReRAM-based  Processing-in-Memory (PIM)
offers a promising paradigm for computing near data, making
it an attractive platform of choice for graph applications that
suffer from sparsity and irregular memory access. However, the
performance of ReRAM-based graph accelerators is limited by
two key challenges — significant storage requirements
(particularly due to wasted zero cell storage of a graph’s
adjacency matrix), and significant amount of on-chip traffic
between ReRAM-based processing elements. In this paper we
present, Graphlte, an approximate computing-based
framework for accelerating iterative graph applications on
ReRAM-based architectures. Graphlte uses sparsification and
approximate updates to achieve significant reductions in
ReRAM storage and data movement. OQur experiments on
PageRank and community detection show that our proposed
architecture outperforms a state-of-the-art ReRAM-based
graph accelerator by up to 83.4% reduction in execution time
while consuming up to 87.9% less energy for a range of graph
inputs and workloads.

Index Terms — Processing-in-Memory,
Computing, Graph Analytics, ReRAM.

Approximate

. INTRODUCTION

Graph analytics has become part of machine learning
toolkits to analyze relational data in many real-world
applications. Considering poor data locality in most of the
real-world graphs, irregular data access patterns become a
bottleneck in the performance of conventional manycore
architectures (such as CPUs and GPUs). Moreover, skewed
vertex degree distributions of real-world graphs cause
repeated accesses to vertex neighborhoods or random walk
traversals to incur a high volume of cache misses.

Resistive random-access memory (ReRAM)-based
Processing-in-Memory (PIM) modules offer an effective way
to address the high memory bandwidth requirement of graph
analytics by integrating the computing logic in the memory.
To perform graph computations on ReRAM crossbars, it is
necessary to load the input graph as an adjacency matrix so
that the underlying primitives can be decomposed into
multiply-and-accumulate (MAC) operations. However, large
graph sizes in the real-world (with millions of rows implying
trillions of cells) make it prohibitive to load or store the entire
adjacency matrix. It is also rather unnecessary to do so
because most real-world graphs tend to be highly sparse, with
the number of nonzero entries orders of magnitude fewer than
the number of cells. Graph computations usually only use the
nonzero entries. Sparsity also affect locality since the nonzero
cells may not be necessarily contiguous in the input matrix.
Subsequently, the question arises on how to store a large
sparse matrix on an ReRAM platform without wasting space
and without compromising on performance or energy
benefits.
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Fig 1: Schematic illustration of the Graphlte architecture.

Contributions: In this paper, we design approximate
computing techniques for executing iterative graph
applications on ReRAM-based architectures. We refer to our
proposed approach as Graphlte (Fig. 1 shows a schematic
illustration). Approximate computing [2] is a broad class of
techniques that use heuristic schemes to achieve the best of
performance-precision tradeoffs in real-world applications.
Graphlte uses two types of approximate computing
techniques as follows:

Sparsification: First, we present a graph sparsification
approach to selectively determine and eliminate large
portions of the adjacency matrix dominated by zero entries
(sparse tiles), while retaining parts that are concentrated with
non-zeros (dense tiles). This approach helps not only in
significant reductions in ReRAM storage, but it also
improves the achievable performance and energy efficiency.

Approximate update: Next, we present an approximate
update method by which vertices are selectively and
dynamically pruned (or terminated) as the algorithm proceeds
on the ReRAM in iterative steps. This is a generic technique
that can be applied to any graph operation with an iterative
structure, where all vertices are visited at each iteration (e.g.,
PageRank, community detection) [3]. A higher level of
pruning corresponds to larger savings in time (and data
movement), however with the potential risk of degrading
quality. Therefore, a careful design is necessary to make this
idea work in practice for real-world graph applications.

We implemented the above two types of approximate
computing techniques for two different graph operations —
namely, PageRank [4] and community detection [5]. Both
these operations are exemplars of iterative graph methods that
iterate repeatedly over all the vertices until a point of
convergence.

We perform a thorough experimental evaluation of the
Graphlte-based implementations of PageRank and
community detection on an ReRAM-based architecture with
1,024 processing elements (PEs) connected using a Network-
on-Chip (NoC) architecture. Results show that the Graphlte
implementations are highly effective in reducing storage
requirement, time to solution as well as energy costs — all
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without compromising the output quality. Graphlte with
sparsification and early termination, called Graphlte-ET
outperforms a state-of-the-art ReRAM-based design by up to
83.4% reduction in execution time while consuming up to
87.9% less energy for a range of graph inputs and workloads.

II. RELATED WORK

Due to irregular memory accesses in most of the real-world
graph applications, data movement between logic and
memory layer limits the performance and energy efficiency
of CPU and GPU-based conventional manycore
architectures. DRAM-based Hybrid Memory Cube (HMC) is
an effective way to improve performance by closely
integrating the memory with the logic layer [19]. Another
possible way is to partition the caches into multiple planar
layers in a 3D structure to improve the cache hit rate [20].
However, such deep memory hierarchies also degrade the
overall performance. Alternatively, due to in-memory
processing capability, ReRAM-based architectures are
gaining momentum as a natural choice for accelerating graph
operations [6][7][8]. These accelerators outperform CPU- or
GPU-based implementations in terms of execution time and
energy [6]. While reliability due to hardware faults is a well-
documented problem with ReRAM platforms, a number of
fault-tolerant schemes being proposed (such as error-
correction codes (ECC) [10], redundancy [11]) that enable
reliable operation on ReRAMSs. Therefore, in this paper, we
primarily focus on improving the performance and energy
efficiency of graph processing on reliable ReRAM
architectures.

Performance of the current ReRAM-based accelerators is
limited by the sparsity and lack of locality in graph structures
[7][8]. Two recently proposed ReRAM-based graph
accelerators (GraphSAR [7] and Spara [8]) leveraged vertex
reordering techniques to improve the sparsity-induced
inefficiency. While vertex reordering can help by clustering
the non-zero cells of the matrix, new algorithmic strategies to
fully exploit the reordered structure are needed to realize
performance and storage benefits on ReRAMs. More
specifically, reordering can rearrange the nonzeroes in the
matrix in such a way that there is a clearer separation between
denser and sparser “tiles” (or submatrix blocks). The
schemes presented in this paper takes advantage of this
observation.

Approximate computing [2] generally works by trading off
quality for performance. The main idea is to find ways to skip
portions of computation such that the overall quality of the
solutions is not significantly perturbed while enhancing the
performance and energy efficiency [3]. One challenge in
implementing approximate computing for ReRAM-based
platforms arises from the adjacency matrix-based
representation to load and compute on the graph (compared
to more traditional formats like adjacency/edge lists or
compressed sparse row). Another challenge arises owing to
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Fig. 2: No. of non-zero elements in each block for GH and DZ, after Spara.

the crossbar structure of ReRAMs. In this paper we tackle
both these challenges.

III. APPROXIMATE COMPUTING ON RERAM

A. Identifying active blocks using Sparsification

Graph computations on ReRAM-based architectures
involve traversing the input sparse adjacency matrix
corresponding to the graph. For a graph G(V,E) with n
vertices, the corresponding adjacency matrix has n’ cells.
However, most of the real-world graphs are sparse in nature
with orders of magnitude fewer nonzero values (i.e., edges)
than n°. Therefore, storing the entire adjacency matrix will be
wasteful and prohibitive in practice.

Here, we present a sparsification based approach toward
reducing the storage requirement on ReRAMs. To
accomplish this reduction, we first define the term active
block. A square tile of a matrix of size X rows * X columns
is considered “active” if it contains at least one cell with a
nonzero value. Since graph computations only involve the
nonzero cells of a matrix, we need to transfer only the active
blocks of the adjacency matrix onto the ReRAM. A simple
but naive decomposition of the input adjacency matrix into
evenly sized active blocks may not necessarily reduce storage
in practice as nonzeros can be scattered across the matrix. To
this end, vertex reordering techniques can be used [7].
Intuitively, the idea is to reorder the rows and columns of the
matrix in such a way that the nonzeros are clustered along the
main diagonal [7][8]. As part of this work, we used the Spara
reordering [8] although any vertex reordering of choice can
be used.

However, even after reordering, there may be several
blocks which are highly sparse. Fig. 2 shows the distribution
of the number of nonzero cells within each active block for
two real-world graph datasets (GitHub and Deezer) after
reordering using Spara (using a crossbar size of 128 x128 as
an example). Fig. 2 shows a skewed distribution where most
of the blocks have very low number of nonzeros (i.e., still
very sparse). If one were to store all active blocks on the
ReRAM, then that will result in substantial wasted space
devoted to storing zero cells.

To reduce the number of active blocks after vertex
reordering, we use sparsification, which removes a subset of
edges (i.e., nonzero cells). Unlike conventional schemes that
remove edges randomly, our sparsification approach
prioritizes removal of the sparser active blocks until the
desired level of sparsification is achieved. We use a
parameter called sparsification factor (SF) that denotes an
upper limit on the fraction of edges to be removed prior to
loading the graph onto the ReRAM. To maximize the number
of active blocks that can be eliminated, we process the active
blocks in the decreasing order of their sparsity, until a total of
SF fraction of edges is removed. Note that sparsity of a block
is simply the fraction of cells that has nonzero entries. In
Section IV, we show that choosing an optimized value for SF
causes insignificant precision loss while significantly
reducing the storage requirement, execution time and energy.

B. Approximate Updates for Iterative Graph Algorithms

In the next step, we describe an approximate update
scheme that is performed during the computation stage once
the graph is loaded on the ReRAM platform. Our technique
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applies to any graph algorithm that has the following iterative

structure:

1) Initialize a state (or value) at every vertex.

2) Perform multiple iterations such that at each iteration the
states (or values) of each vertex is updated using the
states (or values) of its neighboring vertices.

3) The algorithm terminates when a convergence criterion
is achieved.

The above computational structure is generic and applies to a

broad class of iterative graph algorithms. For instance:

e In the PageRank algorithm [4], the value computed at
each vertex u is its PageRank value, which is updated at
each iteration using the PageRank values of u’s
neighbors.

o In community detection [5], the state computed at each
vertex u is its community label. Two actions are possible
for u at each step — either u stays in its current
community, or it leaves its current community and joins
one of the communities of its neighbors. This greedy
decision is made based on whichever action maximizes
net gain in modularity [3] — a global objective function.

e In balanced distance-1 coloring [2], the state of each
vertex represents its color, which is updated at each
iteration based on the colors used by its neighbors.

e In the Bellman-Ford single source shortest path
algorithm [18], the value updated at each vertex u is its
most up-to-date shortest path distance from the source.

In all the above iterative graph algorithms, the graph
algorithms progress toward convergence at each step of the

iteration. Subsequently, most of these algorithms show a

diminishing returns property [3], whereby the returns in the

improvement of quality diminishes with every passing
iteration. This happens, however, without any reduction in the
work performed as all vertices are processed at each iteration.

This is the key property that we exploit in this paper to design

our approximate update method. Our scheme tries to reduce

the work performed at each iteration (adaptively) as the
iterations progress. The challenge is to design a scheme
which would achieve significant reductions in work without
compromising or negatively impacting the output quality.
Next, we describe two such approximate update schemes:
one for community detection and another for PageRank.

Similar strategies can be designed for other iterative graph

algorithms following the template laid out here.

1) Approximate Update for Community Detection

We devise a probabilistic scheme by which a vertex
decides to stay “active” or get “terminated”, at any given
iteration. Being active implies that the vertex will compute its
community affiliation and decide whether to change the
corresponding community or not, by examining its
neighborhood. Alternatively, if the vertex is terminated, it
will be dropped from the processing queue during that
iteration. Note that by terminating a vertex during an
iteration, we can save on all the subsequent computations and
inter-PE communication that originate at that vertex. At the
start of the first iteration, all vertices are active. As the
algorithm progresses through its iterations, more and more
vertices will get terminated. Compare this with the baseline
(precise) algorithm [5] where all vertices stay active across
all the iterations. Consequently, we refer to this approximate
update scheme as Early Termination (ET).

To identify vertices to terminate, we track the most recent
activity at each vertex — i.e., intuitively, if the community of
a vertex has not changed in the past few consecutive
iterations, the probability of that vertex staying active is
reduced. Specifically, given vertex v and its community C,, ;
at the end of iteration j, we assign the probability that v is
active during iteration k, denoted by P, , as follows [16]:

ka — {0' iva,k—S = Cv,k—Z = Cv,k—l (1)
' 1, otherwise
For implementation, a binary flag is used at every vertex

to determine the active state of a vertex. This flag is
determined based on the probability P, ;. If a vertex becomes
inactive at a certain iteration, it is not considered as part of
future iterations (which implies its community status will no
longer be updated). Note that this deviation from precise
update may potentially affect output quality. Precision in
quality is measured using the modularity metric. This
heuristic has two performance advantages: a) it could lead to
a faster convergence of modularity within a phase, by
reducing both the number of vertices that need to be
processed at every iteration and the total number of iterations
required, and b) it could also reduce inter-PE traffic generated
by terminated vertices.

2) Approximate Update for PageRank

PageRank [4] computes a ranking of webpages (i.c., nodes
on a web graph), with a higher value of PageRank denoting
more importance to that webpage. The conventional
implementation of PageRank is based on the fact that an
average web surfer visits page to page, either using the
outgoing links of a page (vertex) chosen uniformly at random
with probability d, or by randomly jumping to a new page
(with probability /- d). The output of PageRank is a score for
each page on the web that determines its importance. The
PageRank of a vertex depends on the PageRank of its
neighboring vertices. More specifically, consider a directed
graph G(V, E) with vertex set V" and edge set E. For a given
vertex v;, let I(v;) be the set of vertex neighbors with
incoming links to v;. The PageRank score for vertex v; is
defined by the equation:

1-d
PR(V) = ——+d» Z PR(v) (2
Vi jer(y

We start by initializing all vertices to an initial PageRank

(PR) score of ﬁ PageRank iteratively computes the PR

value of each vertex using (2) until convergence.

It has been observed that the magnitude of changes in the
PR values tend to diminish as iterations progress [3]. We
exploit this property to retire or early-terminate a source
vertex v; if that change in that vertex’ PR value between
consecutive iterations drops below a threshold «. More
specifically, based on the change in individual PR value of a
vertex at a given iteration ( PR(v;),), we introduce a
probability function (f)v‘k) which determines vertices that

needs to be terminated. This probability during iteration & is
given by:
0, ifIPR(Vk-1 = PR(Vk—z| <«
= 3
P {1, otherwise ®)
Here, @ is an input parameter that sets the minimum

threshold of PR difference between the previous two
iterations to keep a vertex active in the current iteration.
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3) Overall ReRAM-based Architecture

In ReRAM-based accelerators, the adjacency matrix of the
input graph is stored across the ReRAM cells. During
execution, graph computations are decomposed into a set of
MAC operations that are performed based on Ohm’s and
Kirchhoff’s current laws. The overall system consists of
multiple ReRAM processing elements (PEs), where each PE
contains several ReRAM tiles. Each ReRAM tile is
composed of several crossbars and the associated peripherals.

It should be noted that both the vertex reordering and
sparsification steps are one-time preprocessing steps that are
executed on the host machine, and it is only the resulting
reordered sparsified graph (with only its identified active
blocks) that are loaded on to the ReRAM manycore
architecture. For reordering we use the state-of-the-art Spara
reordering scheme [8]. Sparsification was described in
Section III.A. The approximate update schemes (described in
Section III.B) are executed on the ReRAM manycore
architecture during the subsequent graph computation phase.
Fig. 1 illustrates the overall workflow proposed in this work.
The manycore ReRAM architecture with its components is
shown for illustration purpose only.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

For our experimental evaluation, we implemented two
different versions of Graphlte: the baseline version that uses
Spara for graph reordering, followed by our block-based
sparsification described in III.A; and an extended version,
Graphlte-ET, that in addition uses the early termination
heuristic described in Section III.B. We modified the open
source Grappolo toolkit for the Graphlte implementations
with the approximate computing techniques [17].

In the Graphlte architecture, each PE has four tiles. Each
tile contains 96 crossbars (128x128) and associated
peripheral circuits such as ADC, DAC, etc. Each PE takes up
0.37 mm? of area [ 14]. We consider a 3D architecture to offer
a higher degree of integration of ReRAM PEs than the 2D
counterparts [9]. By considering 10mmx10mm as the size of
each planner layers, such layer contains 256 PEs. Considering
four of such planner layers connected on top of each other, it
gives rise to a 3D ReRAM-based system with 1024 PEs. Due
to simplicity and ease for implementation, we choose a
conventional 3D Mesh-based NoC to connect the PEs. Within
each layer 256 PEs are placed in a 16x16 grid pattern, and the
length of each inter-router link is 0.625mm. We leverage
Booksim [13] for implementing 3D Mesh-based NoC
architecture considered in this work. The overall system runs
at the clock frequency of 2.5 GHz. Considering this clock

Table 1: Input statistics of the graph datasets used in our experiments.

Input graph (label) No. vertices No. edges
musae_Github (GH) 37,699 289,003
gemsec-Deezer (DZ) 41,773 125,826
ego-Twitter (TW) 81,306 1,768,149
road_luxembourg-osm (RM) 114,598 119,667
Web-Standford (WS) 281,903 2,312,497
com-Amazon (AZ) 334,863 925,872
roadNet-PA (PA) 1,088,092 3,083,796
Wiki-topcats (TP) 1,791,489 | 28,511,807
roadNet-CA 1,965,206 5,633,214
com-Orkut (OR) 2,937,612 | 20,959,854
socfb-A-anon (FB) 3,097,165 | 23,667,394
soc-LivedJournal1 (LJ) 4,847,571 68,993,773
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frequency, each inter-router planar link can be traversed in
one cycle. All the vertical links connecting the planar layers
are traversed in one cycle due to their small length. BookSim
determines the overall NoC latency. We use the PE and
memory characteristics along with total NoC latency in
NVSim [12] to determine the overall energy consumption and
execution time. Table 1 shows all the graph inputs used for
the performance analysis. These graph datasets are taken
from the Stanford Network Analysis Platform' and the
Network Repository?.

B. Effect of Crossbar Size on Area, Power, and Storage

The adjacency matrix of a graph is decomposed into
multiple non-overlapping N X N segments to map on to
N X N shaped crossbars. Intuitively, selecting relatively
smaller crossbars would reduce zero cells stored but also
would negatively impact the area and power requirements as
those terms are dominated by peripheral circuits [14]. On the
other hand, a large crossbar size would reduce area and power
but would also potentially increase zero cell storage. We
evaluate this tradeoff with multiple inputs. Fig. 3 shows the
normalized area, power and zero storage by varying the
crossbar size from 8 X 8 to 256 X 256 . All values are
normalized relative to the respective numbers observed for
the 8 X 8 crossbar configuration. While we tested for several
inputs, the observed trends were similar and therefore we
show the results for only two exemplar inputs. We can see
that the area and power continuously decrease with increasing
crossbar size. However, beyond 128 x 128 both area and
power show saturating trends, while the zero storage
significantly increases (more than 30x over the 8 X 8
configuration). Hence, we select the 128 X 128 crossbar size
as the default for all our experiments. In this configuration,
on average, the area and power are 92% and 85% less than
that of the 8 X 8 crossbar respectively, while the zero
wastage is reduced by more than 27.4X.

C. Effect of Sparsification Factor on Quality and
Storage

As shown in Fig. 2, active blocks in most real-world graph
datasets have varying sparsity. Active blocks with high
sparsity not only increase storage requirement but also
generate  inter-PE  traffic.  Through  sparsity-based
approximation, we remove edges belonging to the blocks

e =« Loss in Modularity No. of Active Vertices

Modularity
0.4

o

g

8 8 8

8 8 8

& & ©
o o
N w
Modularity

10000

o
-

No. of Active Blocks
o
o
~N
Loss in Modularity
Number of Active vertices

0-*" 0
0 10 20 30 40 50 60

Sparsification Factor
(a)

Fig. 4: Community detection: (a) Effect of sparsification and (b) early
termination on the normalized number of active blocks (y-axis left) and
on the quality of output (precision loss and modularity by the y-axis right).

o

]
1234567 8910
Iteration
(b)

Authorized licensed use limited to: Washington State University. Downloaded on July 29,2023 at 01:20:48 UTC from IEEE Xplore. Restrictions apply.



with comparatively high sparsity. The parameter
sparsification factor (SF) denotes the fraction of edges to be
removed (relative to the original number of edges in the input
graph). We study the number of active blocks by varying the
value of SF. As removal of edges may also potentially
degrade the precision of the output, we also analyze the loss
in precision along with the number of active blocks.

Fig. 4 (a) shows the effect of sparsification on the
normalized number of active blocks (y-axis left) and on the
precision loss in community detection (y-axis right) with GH.
The precision loss in community detection is measured as the
difference between the output modularity values calculated
by the sparsified implementation versus the implementation
without sparsification. We show the result with GH as an
example (the same trend is observed for all the others). The
number of active blocks with the SF value of zero is 100%.

It should be noted that increasing SF decreases the number
of active blocks (i.e., generating more space savings) but it
also increases precision loss. While this storage-precision
tradeoff is expected, it should be noted that for most of the
graph datasets considered in this work, when the value of SF
is < 25, the modularity (precision) loss is maintained below
1%, which is desirable from an application standpoint [15].
For this setting, we can achieve 61% to 89% reduction in the
number of active blocks, which is a significant savings in
space. We use SF value of 25 for all the experiments.

D. Performance with Early Termination (Graphlte-ET)

In what follows, we analyze the impact of early termination
(ET) by testing the Graphlte-ET implementations of
community detection and PageRank.

Graphlte-ET for Community Detection rests on the main
idea of terminating vertices as soon as their community labels
stop changing (III.B.1). This heuristic tries to improve
performance but, in the process may degrade output quality.
Fig. 4 (b) shows the effect of early termination on the number
of active vertices (Y-axis on the left) and on the output quality
(shown as modularity by the Y-axis on the right) of
community detection with GH. It should be noted that the
results are shown on the sparsified inputs. We observed
similar trend for other datasets as well. Fig. 4 (b) shows that
as the iterations progress, the number of active vertices
decreases while increasing the modularity. Table 2 shows the
modularity comparison between Graphlte and Graphlte-ET
for six datasets. We can see that difference in the modularity
values between Graphlte and Graphlte-ET varies from 0.01%
to 3.4%. Section IV.E discusses the effect of early
termination on inter-PE communication volume and overall
performance gain.

Graphlte-ET for PageRank rests on the main idea of
terminating vertices as soon as their individual PageRank
values stop changing significantly in consecutive iterations,
defined by the threshold a (IIL.B.2). This heuristic tries to
improve performance but, in the process may degrade output
quality. We determine the number of active vertices and loss

Table 2: Modularity comparison between Graphlte and Graphlte-ET.

Input graph (label) Graphlte Graphlte-

ET
musae_Github (GH) 0.3593 0.3757
gemsec-Deezer (DZ) 0.8418 0.8417
road_luxembourg-osm (RM) 0.7969 0.7957
com-Orkut (OR) 0.6602 0.6835
socfb-A-anon (FB) 0.5246 0.5084
soc-LiveJournal1 (LJ) 0.7552 0.7566

in precision per iteration by varying the value of a. Fig. 5 (a)
shows the effect of early termination on the number of active
vertices within each iteration of PageRank with GH for three
threshold values of a. Here, @ =10° would represent a
conservative threshold setting while =10 would represent
an aggressive threshold setting. The results for GH are shown
as examples. Fig. 5 (a) shows that a larger value of @ (i.e.,
1073) results in a drastic reduction in the number of active
vertices but with a larger precision loss (as can be expected).
On the other hand, smaller value for a (i.e., 10™%) does not
achieve any meaningful reduction in the number of active
vertices. Fig. 5(b) illustrates the loss in precision per iteration
of PageRank with GH for the three values of @ mentioned
above. We can see from Fig. 5(b) that as the iterations
progress, we have maximum loss in precision when the value
of a as 1073, In contrast, choosing 107° as the value of «
achieves minimum precision loss. Moreover, careful
observation of Fig. 5(b) reveals that the difference in
precision loss between 107 and 107° is negligible. Hence, it
is clear from Figs. 5 (a) and (b) that larger value of & achieves
higher reduction in number of active vertices towards the goal
of reducing computation, while a smaller value of a achieves
better precision. The setting with the best tradeoff between
performance and precision appears with @ = 107° for the
inputs tested. We use this setting for the full system
performance on PageRank.

E. Overall Performance Evaluation

Due to the early termination on Graphlte-ET, with
progressing iterations the number of active vertices
decreases. As a result, inactive vertices also stop generating
the inter-PE traffic. Therefore, we study the total volume of
inter-PE traffic for Graphlte and Graphlte-ET. Considering
the total inter-PE traffic, Graphlte-ET reduces 48% to 66%
traffic volume compared to Graphlte.

In Figs. 6 and 7, we compare the speed up and energy
reduction for community detection and PageRank,
respectively, on Graphlte and Graphlte-ET with respect to the
Spara (baseline). In these figures, we show the range of speed
up and the normalized energy for different datasets
considered in this work. The full-system execution time
includes the computation time, inter-PE communication time
and the data transfer time from the host. Since the
preprocessing step including vertex reordering using Spara
followed by sparsification, is carried out in the CPU host, we
exclude this preprocessing time — so that the focus of our
performance analysis stays on the executions that happen on
the ReRAM architecture. Figs. 6 (a) and 7 (a) show the speed
up of Graphlte and Graphlte-ET with respect to Spara for
community detection and PageRank, respectively. We can
see from Fig. 6 (a) that Graphlte achieves 1.17x to 3.01x
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Fig. 5: PageRank: (a) Effect of early termination on the number of active
vertices and (b) the loss in precision within each iteration of the algorithm
for three threshold values of a with GH after sparsified inputs.
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Fig. 6: (a) Speed up, (b) normalized energy of Graphlte, Graphlte-ET

for community detection w.r.t Spara.
performance improvement with respect to Spara depending
on the datasets considered in this work. We observed that the
performance gains realized by Graphlte is higher for the
larger datasets (where it matters more) — e.g., Graphlte
achieves peak speedups (3.01x) for the largest input tested
(LJ: 4.8M vertices and 68.9M edges). Moreover, there are
more savings in total execution time achieved by Graphlte on
social media datasets (1.33x to 3.01x savings) than with road
network i.e., RM, CA and PA (1.17x to 1.2x) compared to
Spara. The speed up is least for road network as it has a
uniform degree distribution. Hence, the variation of sparsity
among active blocks for road network is comparatively less
than that of the social media datasets. Next, after
incorporating early termination-based approximation on top
of Graphlte, we can see from Fig. 6 (a) that Graphlte-ET
achieves 1.3x to 5.4x speed up compared to Spara reordering
(i.e., with no sparsification or early termination). Moreover,
Graphlte-ET achieves 13% to 47.9% reduction in execution
time compared to Graphlte depending on the considered
datasets. It is clear from Fig. 6 (a) that the improvement is
input dependent.

Fig. 6 (b) and Fig. 7 (b) illustrate the normalized full-
system energy consumption using community detection and
PageRank for Graphlte and Graphlte-ET compared to Spara.
Figs. 6 (b) and 7 (b) show that Graphlte consumes 33.2% to
76.2% less energy compared to Spara. We can also see that,
incorporating early termination-based approximation,
Graphlte-ET achieves 18.5% to 49.3% compared to Graphlte
depending on different datasets considered in this work.
Moreover, Graphlte-ET outperforms Spara by consuming
45% to 87.9% less energy. As mentioned above, Graphlte and
Graphlte-ET are more efficient in reducing the number of
active blocks and on-chip data movement for social media
datasets compared to road network, the reduction of energy
consumption is least for RM.

It should also be noted that due to high energy efficiency
of ReRAM-based PEs, the peak temperature of the 3D
manycore system remains below 85°C for all the
configurations tested. Hence, temperature hotspots are not of
any concern in Graphlte and Graphlte-ET architectures.

V. CONCLUSION

In this paper, we demonstrated the benefits of using
approximate computing for accelerating the computation as
well as reducing the storage requirements of graph
computations on ReRAM-based architectures. Our Graphlte
implementations achieve 61% to 89% reduction of active
blocks for negligible precision loss. This reduction also
results in reducing the overall computation and inter-PE
communication on Graphlte. Hence, it achieves 19.8% to
68.9% reduction in execution time and 33.2% to 76.2% less
energy consumption compared to the state-of-the-art
ReRAM-based architecture Spara (baseline). Graphlte-ET
also reduces 48% to 66% of total traffic compared to
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Fig. 7: (a) Speed up and (b) normalized energy of Graphlte and Graphlte-
ET for PageRank with respect to Spara.

Graphlte. For full system performance evaluation, Graphlte-
ET is 13% to 47.9% faster and 18.5% to 49.3% energy
efficient compared to Graphlte.
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