
Cuckoo Node Hashing on GPUs
Muhammad Javed

Department of Computer and Information Science
The University of Mississippi

University, Mississippi
mhjaved@go.olemiss.edu

Hao Zhou
Department of Computer Science and Engineering

Pennsylvania State University
State College, Pennsylvania

hfz5190@psu.edu

David Troendle
Department of Computer and Information Science

The University of Mississippi
University, Mississippi
david@cs.olemiss.edu

Byunghyun Jang
Department of Computer and Information Science

The University of Mississippi
University, Mississippi
bjang@cs.olemiss.edu

Abstract— The hash table finds numerous applications in
many different domains, but its potential for non-coalesced
memory accesses and execution divergence characteristics impose
optimization challenges on GPUs. We propose a novel hash table
design, referred to as Cuckoo Node Hashing, which aims to better
exploit the massive data parallelism offered by GPUs. At the core
of its design, we leverage Cuckoo Hashing, one of known hash
table design schemes, in a closed-address manner, which, to our
knowledge, is the first attempt on GPUs. We also propose an
architecture-aware warp-cooperative reordering algorithm that
improves the memory performance and thread divergence of
Cuckoo Node Hashing and efficiently increases the likelihood
of coalesced memory accesses in hash table operations. Our
experiments show that Cuckoo Node Hashing outperforms and
scales better than existing state-of-the-art GPU hash table designs
such as DACHash and Slab Hash with a peak performance of
5.03 billion queries/second in static searching and 4.34 billion
insertions/second in static building.

I. INTRODUCTION

Basic data structure semantics are typically specified for a
single-threaded environment, but require a concurrent imple-
mentation to perform well in modern, highly parallel execution
environments. Designing and optimizing concurrent data struc-
tures for modern multicore processors, however, have proven
to be a challenging task. The primary difficulty is concurrency.
Threads executing concurrently may interleave their operations
in many different ways with potentially unexpected outcomes.
Along with correctness, there are numerous challenges related
to performance and scalability. Hardware thread execution
model, the layout of data in memory, and the communication
mechanism across processors all influence performance.

GPUs have become an accelerator of choice for data and
compute intensive tasks. Their unique throughput oriented
architecture that trades memory subsystem (e.g., effective
cache lines per thread) for ALU units requires the following
new considerations when designing concurrent data structures:
First, the GPU implements a thread model that a group of
threads execute the same single instruction in lock step. This
model, called the Single Instruction Multiple Thread (SIMT)
model [1], can cause thread divergence where threads in a

group remain idle while others take the control path. Second,
a SIMT model cannot execute an instruction until the data for
all threads in the SIMT model is available to the execution
unit. Thus, designs with good spatial data locality within a
SIMT model are desirable. Third, the thread execution order
is out of the programmer’s control. GPU threads are scheduled
as a group by the hardware in a two-level hierarchical fashion
based on a certain policy. Such fixed hardware scheduling
policies and thread execution models can cause frequent
lock-oblivious thread switching and worsen under increased
concurrency.

A hash table implements a dictionary of <key, value>
pairs [2]. Dictionary objects can be inserted, deleted, updated,
or searched. While there are many different hash table design
schemes, Cuckoo Hashing [3] is one scheme that guarantees
worst-case O(1) lookup time by evicting an existing key to a
different location in the table when a new key’s hash collides
with the existing key. However, Cuckoo Hashing can make
this guarantee at the cost of making the table static and by
using open-addressing techniques.

This paper presents the design and implementation of a
concurrent hash table for GPUs that uses a dynamic Cuckoo
Hashing scheme. We call the proposed hash table design
Cuckoo Node Hashing. Cuckoo Node Hashing is the first
design to use Cuckoo Hashing in a closed-addressing scheme
and may open the door to other such schemes. The novel
features of our Cuckoo Node Hashing can be summarized as
follows:

First, the proposed base structure of the hash table enables
Cuckoo hashing on the entries within a Cuckoo node. This
unique Cuckoo hashing scheme does not guarantee a constant
search lookup time as original Cuckoo Hashing does, but,
does minimize the addresses probed within the table and
improves lookup efficiency. Next, a GPU architecture-aware
warp-cooperative reordering algorithm is proposed to improve
the performance of the hash table. The algorithm leverages
memory coalescing and warp-level primitive functions to
reorder data in a way that does not strain the GPU’s memory

25

2022 21st International Symposium on Parallel and Distributed Computing (ISPDC)

978-1-6654-8802-0/22/$31.00 ©2022 IEEE
DOI 10.1109/ISPDC55340.2022.00013

20
22

 2
1s

t I
nt

er
na

tio
na

l S
ym

po
si

um
 o

n
Pa

ra
lle

l a
nd

 D
is

tri
bu

te
d

C
om

pu
tin

g
(I

SP
D

C
) |

 9
78

-1
-6

65
4-

88
02

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

PD
C

55
34

0.
20

22
.0

00
13

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 30,2023 at 15:15:40 UTC from IEEE Xplore. Restrictions apply.

subsystem. The efficiency of reordering is very important for
such an algorithm as it is a memory intensive task that can
easily lose its benefits.

Our experiments conducted on an NVIDIA RTX 3090 show
that, for random input datasets, our Cuckoo Node Hashing
performs at a peak of 5 billion queries per second for both
when all searched keys exist in the table and when they
do not exist. It translates to a peak speedup of 3.88× over
DACHash [4] and 7.61× over Slab Hash [5] for when all
keys exist, and 15.41× over DACHash and 14.10× over Slab
Hash when all queries fail. Additionally, we find that our data
reordering algorithm performs at a peak reordering rate of 6.31
billion elements reordered per second which translates to a
peak speedup of 2.23× over DACHash’s reordering algorithm.
Our profiling shows that our reordering algorithm is more
efficient than DACHash’s in L1 and L2 cache utilization,
demonstrating that the proposed algorithm is more amendable
to the GPU’s architecture.

II. RELATED WORKS

Cuckoo Hashing [3] was a seminal paper introducing a
novel hash table scheme. Cuckoo Hashing guarantees constant
search performance because keys that are searched for could
only be found in one of two hash buckets. Two hash functions
determine the two possible buckets for each key. As a result,
Cuckoo Hashing has an elegant search function which simply
compared a key to two locations and checked for any matches.
It has an insertion algorithm that places keys only in buckets to
which they hash to. The algorithm evicts keys that are already
situated in the table (similarly to cuckoo birds in a nest) and
keeps rehashing old keys until a configuration is found where
every key is situated in the table at one of its hashed locations.
However, such a configuration is not guaranteed to always
exist. Because of collisions with the two hash functions, it is
possible that a set of keys could not be hashed to the table
in any configuration. Cuckoo Hashing realizes this when the
insertion process has iterated past a threshold. In this case, the
table will be rehashed to an up-sized table.

Khorasani et al. [6] proposed Stadium Hashing that intro-
duces a unique approach to sustain a very large table size.
This is particularly useful in scenarios where the hash table
can not reside in GPU memory. They achieve it by keeping
the hash table in system main memory and a supplemental
data structure, referred to as a ticket board, in GPU memory.
The ticket board manages all buckets in the hash table by
keeping track of bucket availability and hints as to what
keys may reside in the buckets. They also introduce a SIMT-
aware version of their table which allows threads in a warp to
collaborate on operations.

Ashkiani et al. [5] proposed a dynamic hash table using
chaining on GPUs referred to as Slab Hash. They found
that the linked list element of traditional chaining methods
was excellent for a dynamic hash table on GPUs. However,
traditional linked lists exhibited a large amount of random
memory requests. In order to mitigate that, they introduce
the Slab List: every node in the linked list now contains a

contiguous array of elements and one pointer rather than just
one element and one pointer. This design was derived from
Braginsky and Petrank’s idea of a linked list that exploited
spatial locality [7].

DACHash [4] introduced another chaining approach that
was oriented towards cache awareness. The table featured
buckets with chains of Super Nodes. These Super Nodes are
composed of contiguous memory chunks to be more favorable
to cache, similarly to Slab Hash. However, DACHash attaches
a stack to the table which contains Super Nodes. Thus, when
a thread needs to attach a Super Node to a chain, it can refer
to the stack as a source of Super Nodes. When the table
needs to get rid of unused Super Nodes due to deletions, the
stack becomes replenished with those Super Nodes. In order
to further improve cache performance, DACHash implements
data reordering in their table. When an operation on the table is
about to occur, the input data is reordered such that keys which
hash to the same bucket are likely to be found closer together
in the input data. DACHash also introduces a dynamic thread-
to-data mapping scheme that can change operation techniques
based on a certain threshold for better performance.

Fig. 1: A Cuckoo Node Hashing with 5 buckets. The base
structure resembles traditional hashtable with linked lists of
Cuckoo Nodes.

III. BASIC DESIGN AND IMPLEMENTATION

Modern applications execute in a highly threaded environ-
ment, and require high-performance supporting data structures
consistent with that environment. GPUs offer an inexpensive,
power efficient, massively parallel execution environment, but
inject challenging algorithm design considerations. Linked
lists, which are essential to our algorithm, are especially
challenging because their scattered memory access patterns
cannot be processed efficiently on GPU architecture.

A. Basic Data Structure
Our Cuckoo Node Hashing adopts a chaining technique

as a basic structure. The hash table consists of a set of B
buckets (Figure 1) such that the set of buckets can be indexed
via the integers between 0 and B − 1. Each bucket contains
only a pointer which points to the first node of a linked list.
Traditionally, the nodes that compose a linked list contains just
a single element and a pointer to another node. This allowed

26

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 30,2023 at 15:15:40 UTC from IEEE Xplore. Restrictions apply.

for modifications of the linked list to occur at a fine granularity.
However, at the hardware level, linked list traversal can cause
irregular memory access patterns, which are unfavorable to
cache memory. To mitigate this, our proposed hash table
contains buckets which point to a linked list of nodes, which
we refer to as Cuckoo Nodes, where each node consists of
a bounded array of multiple elements. This approach was
inspired by Slab Hash [5] and DACHash [4], and sacrifices fine
grained node traversal and modification in favor of improved
memory performance.

Fig. 2: The internal structure of a Cuckoo Node. It consists of
a certain number of key-value pairs and a pointer to another
Cuckoo Node.

B. Cuckoo Node

The Cuckoo Node (Figure 2) consists of two components:
a bounded array that holds key-value pairs and a pointer to
the next Cuckoo Node in the linked list. This differs from the
traditional structure of a linked list where every node contains
a single element rather than an array. This unique structure
of a Cuckoo Node brings benefits of better per-warp memory
accesses over scattered memory access patterns of traditional
linked list nodes.

This node structure also introduces an opportunity for the
Cuckoo Hashing scheme. With the increasing of key-value
pairs per node, every Cuckoo Node within a bucket can now be
treated as its own Cuckoo Hash table. To our knowledge, this
is the first time Cuckoo Hashing is used in a closed addressing
hash table scheme.

The pointer within each Cuckoo Node holds the address of
the next Cuckoo Node. This allows for concurrent modification
of a chain of Cuckoo Nodes through the use of atomic
functions such as compare-and-swap (CAS) [1]. The result
is a table that can be dynamically resized with no need for
rebuilds. The original Cuckoo Hashing scheme encountered
significant performance degradation because each failed insert
triggered a rebuild, while in our scheme a failed insert simply
expands the Cuckoo Node list.

The allocation system for Cuckoo Node Hashing is the same
as the one in DACHash [4], in that we pre-allocate a large
amount of Cuckoo Nodes and place them onto a stack.

The first hash function associated with the hash table is
hB(key). In a table with B buckets, this function will hash the
key to some value from 0 to B − 1. Effectively, this function
determines which bucket the key will be placed into. Since
this is a closed addressing hash table scheme, keys can only
be found in the bucket to which this function outputs.

There is also a set of hash functions H = {hi(key), 1 ≤ i ≤
k}, where k is a configurable integer value which denotes the
size of set of hash functions H . Each hi is a Cuckoo Node

hash function, and, ideally, hi(key) $= hj(key) when i $=
j. hi(key) determines the key’s placement within a Cuckoo
Node. Thus, for each hi(key) we must have 0 ≤ hi(key) <
|S| − 1, where S is the number of maximum keys a Cuckoo
Node can hold.

Fig. 3: An example of the search algorithm. The key being
searched is hashed to the bucket Bm and the two hash functions
associated with the table tell us that the key could be in the
i or j spot of any of the 2 Cuckoo Nodes in the chain. The
search algorithm then performs 2 probes per Cuckoo Node for
a total of 4 probes, regardless for any node size n.

Algorithm 1: Search Operation
Input: given key

1 H = set of hash functions();
2 cuckoo node = hB(given key);
3 while cuckoo node != null do
4 foreach h in H do
5 index = h(given key);
6 if cuckoo node[index].key == given key then
7 return cuckoo node[index].value;
8 end
9 end

10 cuckoo node = cuckoo node.next;
11 end
12 return KNF;

C. Hash Table Operations

We implement the four standard hash table operations:
search, update, insert, and delete. Additionally, a clean func-
tion is triggered when an insert allocation fails.

The search operation (Figure 3 and Algorithm 1) takes
in a key (given key) as input and attempts to retrieve its
value from the hash table. However, if the key does not exist
in the hash table, then the search operation returns a Key-
Not-Found (KNF) sentinel. The search operation starts by
hashing given key using the hB(key) hash function. Then, for
every Cuckoo Node within bucket hB(given key), the search
operation compares the keys located at every position in the
set {x | (∀h ∈ H)[x = h(given key)]} with given key. If there
is a match, the search operation returns the associated value
of that key. Otherwise, the search operation returns KNF. As a

27

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 30,2023 at 15:15:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: An example insertion of the key 13 which has hashed to the bucket Bm and the hash table is configured with a max loop
value of 2.

result, Cuckoo Node Hashing only performs |H| comparisons
for every Cuckoo Node in a bucket because it needs to check
the index given by every hash function in the set H.

The update operation takes in a key (given key) and value
(given value) as input and attempts to replace the value asso-
ciated with given key in the hash table with given value. This
operation behaves similarly to search and, as a consequence,
has the same procedure except it updates the value once the
key is found.

The insert operation takes in a key (given key) and value
(given value) and inserts the key and value in the hash table.
Since we do not allow duplicate keys in the table, we first
search for given key to ensure it does not exist within the
hash table. If given key does exist in the hash table, then
we simply update its value with given value. The insertion
operation starts by hashing given key using the hB(key) hash
function that determines which bucket given key is inserted
into (hB(given key)). We then access the head Cuckoo Node
of the bucket hB(given key) and we pick some hash function
h from H to apply unto given key to find a point of insertion
for given key. If there is no other key at h(given key), we
simply insert given key at this position and finish the insertion
process. However, if there is already a key at h(given key),
then we simply evict the old key (evicted key) and replace it
with given key. Next, we replace h with a different function
from the set H and apply it to the evicted key to find its
next point of insertion (h(evicted key)). Again, if another
key is already at h(evicted key) then we simply evict it,
replace evicted key with this newly evicted key, and repeat
this process of picking some different hash function from H
and applying it to evicted key until we either find an empty
spot for evicted key or we conduct the evicting process at
most max loop times. Once max loop is reached and and an
insertion without an eviction has not occurred yet, we allocate
and attach another Cuckoo Node if the current one does not
point to another one already, and we begin the eviction loop
again until we find an empty spot for evicted key in the next
Cuckoo Node. This process repeats until an insertion that does
not cause an eviction occurs. An example scenario of insertion
can be found in Figure 4 and the pseudocode can be found in
Algorithm 2.

The delete operation takes in a key (given key) and searches
for it. If successful, it marks the given key as logically deleted.
This operation also behaves similarly to search and has the

Algorithm 2: Insert Operation
Input: given key

given value
1 cuckoo node = hB(given key);
// Start hash function at h1

2 hash function = h1;
3 evicted kv = key value(given key, given value);
4 do

// Eviction loop
5 for i← 0 to max loop do
6 hash function = alternate hash(hash function);
7 index = hash function(evicted kv.key);
8 evicted kv = atomicExch(cuckoo node[index],

evicted kv);
9 if evicted kv == null then

10 break;
11 end
12 end
13 if cuckoo node.next == null then
14 attach cuckoo node(cuckoo node);
15 end
16 cuckoo node = cuckoo node.next;
17 while evicted kv != null;

same procedure.
When an insert operation fails to allocate a new node, it calls

the clean kernel, which frees and compresses nodes. Empty
nodes are deallocated and become available for allocation. All
normal operations are suspended while a clean is in progress.

IV. DATA REORDERING

GPU performance is known to be very sensitive to the
memory access patterns [8]. Thus, improving memory access
patterns is one of the most important and effective optimiza-
tions. With the modern GPU programming model, memory
access patterns are a function of thread-data mapping and the
hardware thread scheduler. We propose a data reordering al-
gorithm to address the dynamic nature of thread-data mapping
in hash table operations.

A. Warp-Cooperative Reordering Algorithm
To remove potential non-coalesced memory accesses and

thread divergence found in hash table operations, we propose

28

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 30,2023 at 15:15:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Warp-Cooperative Reorder Algorithm
Input: key set

reordered key set
reorder bucket sizes
max bucket size
combining factor

1 N = key set.length;
2 R = reorder bucket sizes.length;
3 lane key = key set[thread id];
4 lane bucket = HR(lane key) / combining factor;
5 has reordered key = false;
// Work-sharing loop

6 while (work queue = ballot(has reordered key == false)) do
7 chosen lane = ffs(work queue);
8 chosen key = shfl(lane key, chosen lane);
9 chosen bucket = (shfl(lane bucket, chosen lane) +

lane id) % R;
10 chosen inserter lane =

ffs(ballot(reorder bucket sizes[chosen bucket] <
max bucket size));

11 completed reorder = false;
12 if lane id == chosen inserter lane then
13 index =

atomicInc(reorder bucket sizes[chosen bucket]);
14 if index < max bucket size then

// Key can be reordered
15 reordered key set[chosen bucket *

max bucket size + index] = chosen key;
16 completed reorder = true;
17 end
18 end
19 if any(completed reorder) then
20 if lane id == chosen lane then
21 has reordered key = true;
22 end
23 end
24 else
25 if lane id == chosen lane then
26 lane bucket = (lane bucket + warp size) % B;
27 end
28 end
29 end

a warp-cooperative reordering algorithm. Reordering occurs
right before a hash table operation takes place and operates
upon the input data for that hash table operation. The algorithm
aims to reorder keys such that keys which hash to the same
bucket are more likely to be found contiguously in memory.
Perfectly reordering the keys so that they are sorted by which
bucket they belong to can be a very costly operation. There-
fore, we take a heuristic approach that gives an approximate
reordering that still reaps significant speedup. The algorithm
does not need to make any assumptions about how the keys
will be distributed among the buckets and is meant to reorder
keys on-the-fly. Also, data reordering can be quite taxing
on the memory subsystem. Therefore, we leverage memory
coalescing to reduce the strain on the memory subsystem. The
algorithm also features work-sharing within a warp in order
to exploit the SIMT execution model and eliminate thread
divergence for most of the algorithm.

The algorithm’s first input is a set of keys (key set) of

size N to be reordered. The algorithm also takes in the
memory space where the reordered keys will be placed in (re-
ordered key set), which is of size N. Also, reordered key set
is split up into equally sized chunks referred to as re-
order buckets, such that every reorder bucket has size
max bucket size (Figure 5). reorder bucket sizes, another in-
put for the algorithm, keeps track of the amount of keys
inserted into these equally sized buckets. If a bucket’s size
is equal to or exceeds max bucket size then that bucket is
treated as full and cannot have anymore keys inserted into it.

Fig. 5: reordered key set split into reorder buckets with
max bucket size being 4.

The goal of the algorithm is to place keys that hash to the
same bucket, or a neighborhood of buckets, into the same
reorder bucket. The size of the neighborhood of buckets is de-
termined by one of the inputs of the algorithm which is called
combining factor. As a result, the size of reorder bucket sizes
is R, which is equivalent to the number of buckets in the
hash table divided by combining factor. If combining factor
is 1 then for every bucket in the hash table there is a
corresponding reorder bucket. However, if it is greater than
1, then a corresponding number of buckets are mapped to
a single reorder bucket. As a result, each reorder bucket in
reordered key set should contain a contiguous set of keys
which hash to the same neighborhood of combining factor
hash table buckets. If a neighborhood of buckets contains more
keys than max bucket size, then the overflow keys will be
placed in some other arbitrary reorder bucket.

The algorithm begins by instructing every thread to grab
its relevant key into (lane key), then hash lane key and ap-
ply the combining factor to find the corresponding reorder
bucket (lane key), and finally create a boolean that represents
whether the individual thread has finished their reordering job
(has reordered key). Then, the work-sharing loop begins. At
the beginning of every iteration of the loop, a ballot [1] warp-
primitive function is performed by all threads in the warp.
The ballot function evaluates the predicate, which it receives
as input, for every thread in the warp and returns a 32-bit
value. This 32-bit value indicates which threads of the warp
evaluated true for the predicate and which evaluated false. In
the case of the work-sharing loop, the ballot at every iteration
is to create an ever-updating list of the threads in the warp
who have not finished reordering their key (work queue).

29

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 30,2023 at 15:15:40 UTC from IEEE Xplore. Restrictions apply.

Within the work-sharing loop, every thread performs the
CUDA ffs (find first bit set) [1] function on work queue to
pluck a thread from their warp as the chosen lane (a thread
in a warp) whose reordering task will be completed by the
entire warp. Once the lane has been chosen (chosen lane)
this lane will have its relevant data copied from it by every
other lane in the warp. Every lane will do this by performing
the shfl (shuffle) [1] function on the chosen lane’s key and
bucket (chosen key and chosen bucket respectively). Once
every lane has copied the chosen bucket, we offset this value
for every lane by the value of the lane’s id. Thus, when the
lanes begin their search for a reorder bucket which has room
for chosen key, they will access reorder bucket sizes with
chosen bucket and the reading of reorder bucket sizes will
be a coalesced memory access. The algorithm uses the ballot
and ffs function again to determine which lane will be chosen
to insert chosen key into reorder bucket sizes as long as that
lane reported to have found a reorder bucket that had room
(chosen inserter lane).

In order to avoid race conditions, chosen inserter lane will
atomically increment the size of the reorder bucket they found
and ensure that the bucket has room. If the reorder bucket does
have room, the lane will insert chosen key into that bucket
and the loop will continue on to the next lane which still
has to reorder their bucket. However, if ffs returned 0 (i.e.
no thread was able to find a suitable reorder bucket), then
chosen lane will offset its lane bucket by the size of a warp.
Thus, when the loop executes again, it will pick the same
lane as the previous iteration and the search for a suitable
reorder bucket will be offset by the warp size. Also, the warp-
cooperative reordering algorithm can be found in Algorithm
3.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
data reordering algorithm and Cuckoo Node Hashing. We
performed all experiments on an NVIDIA GeForce RTX 3090
GPU, which is based on NVIDIA’s Ampere architecture and
features 10,496 CUDA Cores with a clock rate between 1.40
GHz and 1.70 GHz. The GPU is also equipped with 24 GB
of GDDR6X memory. All code is written in CUDA v11.4
running on Ubuntu 20.04.

A. Data Reordering Performance
We begin by evaluating the performance of our warp-

cooperative reordering algorithm against the reordering algo-
rithm offered by DACHash [4]. Both algorithms use a similar
parameter known as the combining factor. This parameter ef-
fectively measures the strictness of the reordering algorithms.
When the combining factor is low, fewer hash table buckets
are mapped to a reorder bucket. However, when the combining
factor is high, more hash table buckets can be mapped to
a single reorder bucket, which can make it easier for the
reordering algorithms to find a suitable spot for their data. In
our experiments we reorder 225 random elements for a hash
table that would have a bucket count of 221. The performance

Fig. 6: Reordering algorithm performance: the proposed warp-
cooperative vs. DACHash’s.

is measured in millions of elements reordered per second and
can be found in Figure 6. The evaluation demonstrates that our
warp-cooperative reordering algorithm performs better up until
a combining factor of 211. At that point, DACHash’s reordering
algorithm starts to perform better. This trend highlights that
for lower combining factors, the warp-cooperative reordering
algorithm performs significantly better. As a consequence, the
warp-cooperative reordering algorithm can perform under a
much stricter reordering scenario and efficiently produces a
much more favorable reordering. However, we did notice a
considerable dip in performance when the combining factor is
set to 512, and this issue is a subject of ongoing investigation.
Additionally, we found a peak reordering rate for our table
resides at a value between 27 and 210 for the combining factor.
We consider this range of values for the combining factor
to be more favorable because we noticed a trend such that
lower combining factors consistently guaranteed faster search
speeds.

Finally, data reordering is known to be a memory intensive
task. Therefore, we profile the utilization of various memory
components using the NVIDIA CUDA toolkit profiler. We
compare the L1 and L2 cache utilization of the proposed
warp-cooperative algorithm with DACHash’s and these results
are shown in Figure 7. We found that our warp-cooperative
reordering algorithm has a higher peak utilization for all 3
memory types compared to DACHash’s reordering algorithm.
This is consistent with the trend of reordering performance
discussed earlier. The cooperative nature of the algorithm helps
explain the higher peak utilization in both caches. Since all
threads in a warp are working on the same task, it is more
likely that the data they need has already been loaded into the
cache by another thread in the warp.

B. Hash Table Performance

Search and build rates are fundamental performance metrics
which should be reported for all hash table designs. A lower
bound on search performance can be estimated by searching
for keys that exist in the hash table while an upper bound can
be estimated by searching for keys that do not. For estimating

30

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 30,2023 at 15:15:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: DACHash’s data reordering algorithm’s L1 cache
utilization vs. the warp-cooperative reordering algorithm’s L1
cache utilization.

build performance, we time how fast a given set of keys can
be inserted into the table.

First, we evaluate the performance of the proposed Cuckoo
Node Hashing by building the table using one large batch of
keys and then performing searches on the table with another
large batch of keys. This building and searching is performed
on 3 different hash table designs: Cuckoo Node Hashing, Slab
Hash [5], and DACHash [4]. For all 3 hash tables, we evaluate
how each performs with a varying number of buckets. We fix
the size of the batches to be 225 keys with all keys being
generated with uniform randomness. For DACHash, we use
a combining factor of 210 and a node size of 32, which we
found to be generally optimal configuration for DACHash. For
our Cuckoo Node Hashing, we keep both the combining factor
and node size at a constant 27, set the max loop value to 26,
and have 4 hash functions belong to H. We began by building
the table using a batch of insertion keys. At a lower bucket
count, DACHash outperforms both Slab Hash and Cuckoo
Node Hashing. However, as bucket count scales up, we begin
to see that Cuckoo Node Hashing benefits from an increase in
the number of buckets. Overall, we found the Cuckoo Node
Hashing achieves a peak speedup of 3.20× over DACHash
and 2.16× over Slab Hash in terms of building the table. The
results can be found in Figure 8.

Fig. 8: Static build performance comparison.

Fig. 9: Search performance when all keys searched for are
guaranteed to exist in the table.

Fig. 10: Search performance across varying input sizes.

Then, we compare the performance of the 3 aforementioned
hash tables in a static search setting. We use the same config-
uration for all tables as mentioned before and we perform
a search on a prebuilt table. However, two distinct types
of searches occur in our experiment. One type of search
performed is on a set of keys such that all keys are guaranteed
to exist in the prebuilt table (Figure 9 and Figure 10). In
Figure 9 we fix the input size at 225 random keys and vary the
bucket count, while in Figure 10 we fix the bucket count at 220

and vary the input sizes. Evaluating hash table performance
under varying input sizes is critical in a concurrent setting
as it helps estimate just how well the table can utilize the
hardware. When varying the bucket counts, we found that
Cuckoo Node Hashing attains a peak searching rate of 3.88×
over DACHash and a peak searching rate of 7.61× over Slab
Hash. However, when varying the input sizes, we found that
Slab Hash and DACHash perform better than Cuckoo Node
Hashing for small input sizes. However, for input sizes of 225

and beyond, we find that Cuckoo Node maintains considerably
better performance. This suggests that Cuckoo Node Hashing
may be better for operations involving large amounts of data.
The other type of search experiment has a set of keys where
none of the keys exist in the prebuilt table (Figure 11). When
keys do not exist, we found a peak speedup of 15.41× over
DACHash and 14.10× over Slab Hash. We believe that this
speedup over the other two hash tables is primarily due to the
reduction of comparisons (probes) that occur per thread when

31

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 30,2023 at 15:15:40 UTC from IEEE Xplore. Restrictions apply.

conducting a search, which leads to the next experiment.

Fig. 11: Search performance when all keys searched for do
not exist in the table.

Fig. 12: Search performance for both DACHash and Cuckoo
Node over varying node sizes.

In order to show that Cuckoo Node Hashing performs fewer
probes when searching for a key, we conducted experiments
to count and compare how many probes occur in two hash
table designs. Slab Hash was not included since it has a very
similar searching algorithms as DACHash which yields a very
similar number of probes. During the search experiment where
all keys exist in the table, we counted how many positions
within the table a thread has to search for their desired key
(Table I). We found that even at a low bucket count (215) our
table still performs a small amount of probes. At higher bucket
counts, most threads only have to probe between one and four
positions in the hash table before they find their desired key.

Finally, because both DACHash and Cuckoo Node Hashing
share the same design-specific parameter of node size, we
compare how those two tables handle varying node sizes. We
keep the number of buckets in both tables at a constant 217,
and we set the Cuckoo Node hash table’s combining factor
to 27 and DACHash’s to 210. We then performed a search of
225 random keys that all were guaranteed to exist in the table.
The results from the experiments are measured in millions
of queries per second. We found that Cuckoo Node Hashing
outperforms DACHash at any node size. These results can
be found in Figure 12. As node size increases, Cuckoo Node
Hashing continues to climb in performance. This is primarily

Probes CNH DACHash
KF KNF KF KNF

32768 16.92 36.59 512.99 1039.06
65536 8.89 20.15 256.99 527.04
131072 4.82 12.03 128.99 271.03
262144 2.65 8.00 64.99 143.40
524288 1.52 5.32 32.99 79.61
1048576 1.19 4.05 16.99 47.26

TABLE I: Average number of probes performed per thread by
both Cuckoo Node Hashing (CNH) and DACHash when keys
were found (KF) and when keys were not found (KNF).

because as the node gets larger, the number of keys that can
be held within the node increases. However, the number of
queries that occur per node remains constant and depends on
how many hash functions are in the set H. Thus, at large node
sizes, a small number of probes occur for a large set of keys.
On the other hand, DACHash plateaus at a node size of 16.

VI. CONCLUSION

We presented a novel, dynamic, high performance, and scal-
able hash table design for GPUs. Our Cuckoo Node Hashing
completely eliminates the rebuild problem of conventional
Cuckoo Hashing and reduces the number of probes required
during hash table operations. Our experiments demonstrate
that Cuckoo Node Hashing outperforms other state-of-the-art
hash table designs. Additionally, we proposed a data reorder-
ing algorithm targeted specifically for GPU architectures that
reduces data irregularities. This, in turn, improves the memory
access patterns and minimizes thread divergence that occur
during hash table operations.

REFERENCES

[1] NVIDIA Corporation, “NVIDIA CUDA C++ programming guide,” 2022,
version 11.4.0.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press, 2001.

[3] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms — ESA 2001,
F. M. auf der Heide, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 121–133.

[4] H. Zhou, D. Troendle, and B. Jang, “Dachash: A dynamic, cache-aware
and concurrent hash table on gpus,” in 2021 IEEE 33rd International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), 2021, pp. 1–10.

[5] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A dynamic hash table
for the GPU,” CoRR, vol. abs/1710.11246, 2017. [Online]. Available:
http://arxiv.org/abs/1710.11246

[6] F. Khorasani, M. E. Belviranli, R. Gupta, and L. N. Bhuyan, “Stadium
hashing: Scalable and flexible hashing on gpus,” in 2015 International
Conference on Parallel Architecture and Compilation (PACT), 2015, pp.
63–74.

[7] A. Braginsky and E. Petrank, “Locality-conscious lock-free linked lists,”
vol. 6522, 01 2011, pp. 107–118.

[8] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory access
patterns to improve memory performance in data-parallel architectures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1,
pp. 105–118, 2010.

32

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on July 30,2023 at 15:15:40 UTC from IEEE Xplore. Restrictions apply.

