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Abstract. With machine learning (ML) becoming a transformative tool
for science, the scientific community needs a clear catalogue of ML tech-
niques, and their relative benefits on various scientific problems, if they
were to make significant advances in science using AI. Although this
comes under the purview of benchmarking, conventional benchmarking
initiatives are focused on performance, and as such, science, often be-
comes a secondary criteria.

In this paper, we describe a community effort from a working group,
namely, MLCommons Science Working Group, in developing science-
specific Al benchmarking for the international scientific community. Since
the inception of the working group in 2020, the group has worked very
collaboratively with a number of national laboratories, academic insti-
tutions and industries, across the world, and has developed four science-
specific Al benchmarks. We will describe the overall process, the resulting
benchmarks along with some initial results. We foresee that this initia-
tive is likely to be very transformative for the AI for Science, and for
performance-focused communities.

Keywords: Machine Learning - Benchmarks - Science and Al for Sci-
ence.

1 Introduction

Recently, owing to the advances in deep learning, machine learning, or in general,
the AI, has been transformational in various aspects of our life. These advances
have resulted in machine learning being one of the effective techniques for sci-
entific data analysis and experimental methods, covering various domains of
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sciences, such as material, life, and environmental sciences, particle physics and
astronomy [17,18,42,19,43,47,4,21,41]. With AT and ML becoming underpinning
technologies for science, there is a considerable amount of attention on several
aspects, including, but not limited to, understanding the general applicability
of AI/ML to various scientific problems, role of high performance computing
on AI/ML, datasets, explainability of those AI/ML techniques, robustness of
AT/ML techniques, role of small-scale devices on AI/ML, AI/ML-specific algo-
rithms, and scalability of AI/ML techniques with varying volumes of data or
varying computational capabilities.

With each of these areas being considerably large, it is a substantial under-
taking for any single organization or community for developing an overall un-
derstanding of various initiatives and their corresponding impacts, particularly
across different domains of applications. Ideally, multiple communities should
join forces to understand these issues and to make relevant progress in Al

MLCommons is one such global initiative with the mission being acceler-
ate machine learning innovation and increase its positive impact on Society.
Although MLCommons™ initiatives were legally setup in 2020, the initiatives
originated along with the MLPerf™ benchmarking efforts in 2018 [29]. The over-
arching strands are: benchmarks, datasets, and best practice systems and usage.
The current MLCommons initiatives retain the core activities of MLPerf across
six distinct focus areas: Training, Training HPC, Inference Datacenter, Inference
Edge, Inference Mobile, and Inference Tiny.

With application and impact of AI being rather broad, MLCommons is setup
along with a number of research working groups with the vision of creating an
open “Al for Research” ecosystem that is driven by the community for the
community [15]. These groups are open to the public, including academics and
researchers from other institutions. The philosophy of MLCommons is to sup-
port open-source “Al for Research”. The MLCommons’ Research organization
is responsible for overseeing new activities that can lead to new scientific meth-
ods in ML, as well as new applications of ML and currently houses a number of
working groups that focus on various areas of ML. These include: ML algorithms
(Algorithms), dataset benchmarking (DataPerf), building shared resource infras-
tructure (Dynabench), benchmarking and best practices for healthcare (Medi-
cal), storage benchmarking for ML (Storage),and AI benchmarking for science
(Science) [16]. Each of these research working groups, as highlighted, focuses on
a specific domain where Al can be transformational.

In this paper, we describe the benchmarking initiatives of the Science Work-
ing Group, covering our initial set of benchmarks, datasets, policies that govern
our benchmarks and benchmarking, rules around submitting new benchmarks
or datasets, our overall experiences and lessons in developing these initial set of
benchmarks, and how we intend to maintain these initiatives over the coming
years.

The rest of this paper is organised as follows: In Section 2, we describe the
working group, goals of the group, and policies adopted by the working group
towards science benchmarking. This is then followed by Section 3, where we
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describe the initial set of benchmarks curated by the working group. In Section 4,
we provide some initial evaluations and discuss the results, and we conclude the
paper with future directions in Section 5.

2 MLCommons Science Working Group

2.1 About the Working Group

The Science working group [16] was an early member of MLCommons Research
created by an active international community working on Al for Science, such
as various national laboratories, large-scale experimental facilities, universities
and commercial entities, to advance Al for Science along with other national
and international level initiatives (for example [6]). The overarching drive of the
WG is to support various scientific communities that are trying to leverage Al
for advancing scientific discoveries.

Since the inception, the WG has expanded to include almost 120 members, lo-
cated across various international organizations. The WG meets on a fortnightly
basis, with well over 50 recorded meetings until May 2022. The group also works
with a number of other groups, such as MLCommons HPC WG [32,31], where
there are a number of overlapping issues of interest.

The overall mission of the group entails collaborative engagements across
different domains of sciences, including material, life, environmental, and earth
sciences as well as particle physics and astronomy, to mention a few.

2.2 Science Benchmarking

Achieving the overall goals of the working group requires a number of sub-aspects
to be covered by the WG, such as,

1. identifying a number of representative scientific problems where Al can make
a difference,

2. engineering at least one ML solution to the problem, to be considered as a
baseline implementation,

3. identifying relevant datasets upon which the ML models can be trained or
tested,

4. identifying a scientifically-driven metric that can help recognizing the scien-
tific advancement to the problem,

5. curating and publishing those relevant datasets,

6. publishing the scientific results that can help the communities to develop
improve these solutions, and

7. fostering collaborations and scientific achievements across multidisciplinary
communities.

All these activities are akin to conventional benchmarking, but with a major
difference of focusing on scientific merits than pure performance, and hence the
notion of science benchmarking. Since the formation, the WG has consulted a
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large number of scientific organizations, and worked with scientists in achieving
some of the sub-aspects listed above. In particular, the WG has succeeded in
identifying four science benchmarks derived from different branches of sciences.
These are,

1. Cloud masking (cloud-masking) [20] — atmospheric sciences.

2. Space group classification of solid state materials from Scanning Transmis-
sion Electron Microscope (STEM) data using Deep Learning (DL) (stemdl) [35]
— solid state physics.

3. Time evolution operator (tevelop) [11] exemplified using predicting earth-
quakes — earth sciences.

4. predicting tumor response to single and paired drugs (candle-uno) — health-
care.

We discuss these benchmarks in detail in Section 3. The key aspect here is
that a single benchmark is actually a combination of a baseline or reference im-
plementation and one or more datasets. The scientific data here requires a special
attention. Although scientific datasets are widespread and common, curating,
maintaining, and distributing large-scale, scientific datasets for public consump-
tion is a challenging process, covering various aspects, from abiding by the FAIR
principles [46] to distribution to versioning of the datasets. These benchmarks
have a multitude of purpose, which are discussed at length in [42,19]. However, it
is worth highlighting that these scientific benchmarks serve one important pur-
pose to the wider Al community: offering an unprecedented pedagogical value
across domain boundaries.

2.3 Policies for Benchmarking

Benchmarking is an art and can be very subjective. Without clear policies, the
results, in particular in science, can be interpreted in different ways, and in
rather subjective manners, leading to the whole initiative not serving the in-
tended purpose. As such, establishing a policy around the rules and guidelines
for evaluating and reporting results for the benchmarks from the WG is an im-
portant step. Other WGs have their own policies, for example [27,30]. The WG
is in the process of drafting a detailed policy statement, and, here, we mention
some of the key points for the reasons of brevity.

The overarching policy will cover training and inference benchmarks, with a
number of sub-policies focusing on each and every benchmark. This is essential,
as no two benchmarks are the same, nor their functional behavior or scientific
goals. As such, tailoring the policies for each and every benchmark is unavoid-
able. In general, the policies will cover the evaluation of benchmarks under two
divisions, namely, Open and Closed divisions. Benchmark evaluation under the
Open division will primarily focus on achieving better scientific results or outper-
forming existing performance (using the established scientific metric). As such,
the community has considerable amount of freedom to enhance the underlying
ML models or pre- or post-processing aspects of the benchmarks, including data
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augmentation, wherever that is possible or sensible. Evaluation under the Closed
division, on the other hand, limits the freedom for evaluation and often will list
permissible changes. The exact list of permissible changes is likely to vary across
benchmarks, but in general, pre- and/or post-processing, and data are often kept
fixed, with freedom to change or fine-tuning the underling ML model. The same
line of argument applies for policies around submission of results. For example,
some benchmarks may insist on certain set of measurements to be submitted,
such as power or network performance, while some may rely on generic details
along with scientific metrics. The policy will also likely to cover the general
format of the results to facilitate automation or maintaining a league-table.

3 Benchmarks for the First Release

As outlined in Section 2, the WG has consolidated four different benchmarks
from four different branches of sciences, namely, cloud-mask, stemdl, candle-uno
and tevelop. We describe each of these benchmarks in detail, covering the sci-
ence case, objectives, metrics, data and outline the baseline reference implemen-
tation. The aim here is to ensure that the community is aware of these challenges,
and can develop techniques outperforming the baseline cases.

3.1 Cloud Masking (cloud-mask)

Sea and land surface temperatures (SST and LST), have a significant influence
on the Earth’s weather. For instance, large variations of the SST in the Pacific
can cause anything from severe drought, to heavy rainfall, to tropical cyclones.
Estimation of Sea Surface Temperature (SST) from space-borne sensors, such
as satellites, is crucial for a number of applications in environmental sciences.
Satellites are often equipped with special sensors for this purpose, such as the
Sea and Land Surface Temperature Radiometer on board the Sentinel-3 satellite,
a mission operated jointly by the European Space Agency and by the European
Organization for the Exploitation of Meteorological Satellites. In principle, it is
possible to make direct measurements of surface temperature from these satel-
lites everywhere, except when clouds are present. Clouds can really affect the
signals measured by satellites making it much harder to retrieve the temperature
measurements. One of the aspects that underpins the derivation of SST is cloud
screening, which is a step that marks each pixel of thousands of satellite images
as containing cloud or clear sky. This has been, historically, performed using
either thresholding or Bayesian methods. An example input and output images
are given in Figure 1. We also summarize the key features of this benchmark
in Table 1. The overarching scientific objective, objective of the benchmark, de-
scription of the relevant dataset, and reference implementation are given below.

Benchmarking Objectives and Metrics: The scientific objective of the prob-
lem is to develop a segmentation model for classifying the pixels in satellite im-
ages. This classification allows determining whether the given pixel belongs to
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Table 1: Summary of the cloud-mask Benchmark.

Description Image classification at pixel level of satellite imagery.

Objective Classification of pixels of satellite images into cloud
and clear sky categories using machine learning.

Challenge Stream Image Segmentation

Domain Atmospheric Sciences

Metrics Classification accuracy

Data Type: Images
Resolution: [2400 x 3000 x 6] and [1200 x 1500 x 3]
Size: 180 GB

Source: CEDA
Location: STFC Servers [20]

Reference implementation SciML-Bench Cloudmask Benchmark [38]

Fig.1: Cloud mask example. The left column shows the raw images from the
Sentinel-3 satellite while the images on the right column shows the predicted
probability that a particular pixel is cloud.

a cloud or to a clear sky. Historically this has been performed using Bayesian
techniques [28], which can lead to sub-optimal outputs in a number of cases. The
scope of the cloud-mask benchmark is to explore whether ML-driven algorithms
can outperform the Bayesian techniques or even can be a replacement technique.

Although various options are there, in its present form, the cloud-mask
benchmark is set as a supervised learning problem, with cloud images are treated
as inputs. However, like all science cases, the “true” ground truth (or labels),
are never available for this case. Hence, the benchmark uses the Bayesian masks,
supplied by the provider of the satellite images, as the ground truth. While
this is arguable, in the absence of any ground truth, this is a valid and perfect
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choice. However, with Bayesian masks not always being accurate or offering a
gold-standard for labeling masks, the resulting model is likely to suffer from
learnability issues, which sets the perfect challenge for an ML-driven case.

The benchmark can be considered as both training and inference focused,
where the science metric is same as the classification accuracy — number of
pixels classified correctly. The performance metric, can be inference timing and
scalability on the training, especially when trained across a number of Graphical
Processing Units (GPUs).

Data: The masking can be performed across different satellite imaging modal-
ities. This particular benchmark relies on satellite imagery obtained from the
Sentinel-3 satellites, particularly from the Sea and Land Surface Temperature
Radiometer (SLSTR) equipped as part of the Sentinel-3 satellite. More specifi-
cally, the benchmark operates on multi-spectral image data. The overall dataset
identified for this benchmark is split into two distinct sets: training set (163 GB)
and an inference set (1.7GB). Each dataset inside these sets is made up of two
parts: reflectance and brightness temperature. The reflectance is captured across
six channels with the resolution of 2400 x 3000 pixels, and the brightness temper-
ature is captured across three channels with the resolution of 1200 x 1500 pixels.
Although the raw satellite images are free to download from CEDA archive [10],
the curated datasets are available as part of this benchmark, located in object
store within the Science and Technology Facilities Council (STFC) servers. The
exact instructions for securing these datasets are outlined in the WG pages.

Reference Implementation: The current reference implementation is varia-
tion of the U-Net deep neural network [37], implemented using TensorFlow and
Keras [1,5], with the support for distributed training using TensorFlow’s native
library, Distribute Mirrored Strategy. The model represents a U-Net network
and consists of 39 layers with two million trainable parameters. Further details
can be found in [20].

3.2 STEMDL (stemdl)

State of the art Scanning Transmission Electron Microscopes (STEM) produce
focused electron beams with atomic dimensions, and allow capturing diffraction
patterns arising from the interaction of incident electrons with nanoscale mate-
rial volumes. Backing out the local atomic structure of said materials requires
compute- and time-intensive analyses of these diffraction patterns (known as
convergent beam electron diffraction or CBED). Traditional analyses of CBED
requires iterative numerical solutions of partial differential equations and com-
parison with experimental data to refine the starting material configuration. This
process is repeated anew for every newly acquired experimental CBED pattern
and/or probed material.
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Table 2: Summary of the stemdl benchmark.

Description Classification and reconstruction of convergent
beam electron diffraction, CBED.

Objectives Classification for crystal space groups and recon-
struction for local electron density using machine
learning.

Challenge Stream Classification

Domain Solid-state Physics

Metrics Classification accuracy and/or Fl-score

Data Type: Images

[612 x 512 x 3], label: [200] (Classification)

[256 x 256 x 256], label: [256 x 256] (Reconstruction)
Size: 548.7 GB for Classification

Training samples: 138.7K

Validation samples: 48.4

Reconstruction: 10 TB

Source: Oak Ridge National Laboratory (ORNL)
Location: OSTI Servers [23] and [35]

Reference Implementation AAIMS repository [39]
Model: ResNet-50
Run Instructions: [39]
Time-to-solution: 40 minutes on 60 V100 GPUs

References [25,23,22,36,24]

Benchmark Objectives and Metrics: The scientific objective of the bench-
mark is to develop a universal classifier for space group of solid state materials,
and reconstruction of local electron density. As stated before, this is convention-
ally performed using expensive simulations. The goal here is to use explore the
suitability of ML algorithms for performing advanced analysis of CBED. This
benchmark aims to quantify this using a classification task. As such, the bench-
mark is set with the supervised learning focus where both the scientific metric
is reflected by the classification accuracy of the ML model. The benchmark also
desires to achieve better top-1 classification accuracy and/or Fl-score compared
to the reference implementation.

Data: A data sample [35] from this dataset is given by a three-dimensional array
formed by stacking various CBED patterns simulated from the same material at
different distinct material projections (i.e. crystallographic orientations). Each
CBED pattern is a two-dimensional array with 32-bit floating-point image in-
tensities. Associated with each data sample in the dataset is a host of material
attributes or properties which are, in principle, retrievable via analysis of this
CBED stack. The dataset has (1) 200 crystal space groups out of 230 unique
mathematical discrete space groups and (2) local electron density which governs
material’s property. A more detailed description of the data can be found in
CBED database [23]. The dataset is divided into three distinct sets, split across
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training (148,006 files), testing (18,749 files), and development (20,400 files). The
distinct nature of these sets ensures that the model learns the generic symmetry
based on space groups instead of memorizing a particular pattern for a material.

Reference Implementation: A detailed description of the baseline implemen-
tation method can be found in [36] and [24] along with the reference implemen-
tation deposited into the AAIMS repository [39].

3.3 CANDLE-UNO (candle-uno)

The CANDLE (Exascale Deep Learning and Simulation Enabled Precision Medicine
for Cancer) project [3] aims to implement deep learning architectures that are
relevant to problems in cancer research. These architectures address problems
at three biological scales: cellular (Pilotl or P1), molecular (Pilot2 or P2), and
population (Pilot3 or P3). The CANDLE initiative has three mainstreams of
benchmarks to cover these pilots. In summary:

— The Pilotl (P1) benchmarks are formed out of problems and data at the
cellular level. The high level goal of the problems behind the P1 benchmarks
is to predict drug response based on molecular features of tumor cells and
drug descriptors.

— Pilot2 (P2) benchmarks are formed out of problems and data originating
at the molecular level. The high level goal of the problems behind the P2
benchmarks are molecular dynamic simulations of proteins involved in can-
cer, specifically the RAS protein.

— Pilot3 (P3) benchmarks are formed out of problems and data originating
at the population level. The high level goal of the problems behind the P3
benchmarks is to predict cancer recurrence based on patient-related data.

The UNO version of the CANDLE suite is a P1 benchmark. We summarize
the key aspects of this benchmark in Table 3, and a detailed description of the
objectives, metrics, data and the reference implementation below.

Benchmarking Objectives and Metrics: The goal of Uno is to predict tu-
mor response to single and paired drugs, based on molecular features of tumor
cells across multiple data sources. It aims to accelerate the scientific goal of ef-
fectiveness of drugs and how they can be developed to cure the tumor cells. The
ML component aims to accelerate this part through being able to predict the
response values. As such, it is a regression problem, with the science metric being
mean absolute error (MAE) between the predicted and ground truth values. On
the performance front, the metric is responses predicted per second for a given
batch size.
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Table 3: Summary of the candle-uno benchmark.

Description The Pilot 1 Unified Drug Response Predictor bench-
mark, Uno to enable drug discovery, drug response
prediction from cell lines.

Objectives Predictions of tumor response to drug treatments,
based on molecular features of tumor cells and drug
descriptors

Challenge Stream Regression

Domain Healthcare

Metrics Validation loss with a minimum score of 0.0054

Data Type:

Size: 6.4GB

Training samples: 423,952
Validation samples: 52,994
Location : ALCF Servers [44,45]

Reference implementation Github [8]
Model: Multi-task Learning-based custom model
Code: [8]
Instructions: [9]
Ideal performance: 10,667 samples/sec on a single
A100 GPU for a batch size of 64

Data: Combined dose response data relies on a number of sources that are
specific drug responses to cancer conditions. We summarise these sources in
Table 4. The ML model can be trained on any subset of a dataset obtained from
these dose response data sources. The benchmark relies on a dataset that includes
both single drug dose response measurements pair dose response measurements.
More specifically, there are 27,769, 716 single drug dose response measurements
and 3,686,475 drug pair dose response measurements. The combined raw dose
response data has 3,070 unique samples and 53,520 unique drugs. For the scope
of this work, we used the AUC configuration of Uno that utilizes a single data
source, namely, CCLE. We show the data distribution between the samples in
Table 5. The training can be accelerated by using a pre-staged dataset file. This
static dataset can, however, be prebuilt. The datasets are publicly available from
the CANDLE site [44]. These are directly downloadable with relevant download
scripts, including a pre-built static dataset to simplify the deployment.

Reference implementation: The reference implementation implements a deep
learning architecture with 21 M parameters in TensorFlow framework in Python.
The code is publicly available on GitHub [8]. It can be run in both training and
inference modes. However, this benchmark is defined to be training focussed.
A dedicated script in this repository downloads all required datasets. The pri-
mary metric to evaluate for this application is the model throughput (samples
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Table 4: Data sources of the dose response information.

|#[Source [Parameters
1 |The Cancer Therapeutics Response Portal |CTRP

2 |The Genomics of Drug Sensitivity in Cancer |GDSC

3 |The NCI Sarcoma SCL

4 |The NCI Small Cell Lung Cancer SCLC

5 |The NCI-60 Human Cancer Cell Line Screen |[NCI60

single drug response
6 |A Large Matrix of Anti-Neoplastic Agent ALMANAC.FG

Combinations drug pair response ALMANAC.FF
ALMANAC.1A
7 |The Genentech Cell Line Screening Initiative|gCSI
8 |The Cancer Cell Line Encyclopedia CCLE

Table 5: The data distribution between the single and pair drug samples.

Growth Sample Drugl Drug2 MedianDose
ALMANAC.1A| 208,605 60 102 102 7.000000
ALMANAC.FF| 2,062,098 60 92 71 6.698970
ALMANAC.FG| 1,415,772 60 100 29 6.522879
CCLE 93,251 504 24 0 6.602060
CTRP 6,171,005 887 544 0 6.585027
GDSC 1,894,212 1,075 249 0 6.505150
NCI60 18,862,308 59 52,671 0 6.000000
SCL 301,336 65 445 0 6.908485
SCLC 389,510 70 526 0 6.908485
gCSI 58,094 409 16 0 7.430334

per second). The model is said to converge when the validation loss reaches a
certain threshold for example 0.0054. The throughput is then measured for the
last epoch when the model reaches convergence. With the required packages in
the software stack, Uno can be run on diverse systems. More details on running
Uno can be found in [9,8].

3.4 Time Series Evolution Operator (tevelop)

Time series capture the variation of values against time, and common to a a
number of scientific problems. Time series can be multiple dimensions. For ex-
ample geospatial datasets are two-dimensional series, based both on time and
spatial position. One of the common tasks when dealing with time series is the
ability to predict or forecast them in advance. Such a task is considerably easier
if the underlying time series has a clear evolution structure across dimensions.
For example, if the evolution structure can be established on the spatial aspects
(i.e. there is a strong correlation between nearby spatial points), estimating the
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evolution becomes relatively easier. The problem chosen is termed as a spatial
bag where there is spatial variation, but it is not clearly linked to the geometric
distance between spatial regions. In contrast, traffic-related time series have a
strong spatial structure. As such, identifying the evolution in time series is a
common problem across a number of domains. This particular benchmark fo-
cuses on extracting these evolutions, using earthquake as the driving example.
We summarise the key features of the benchmark in Table 6.

Table 6: Summary of the tevelop Benchmark

Description Earthquake Forecasting.

Objectives Improve the quality of Earthquake forecasting in a
region of Southern California.

Metrics Normalized Nash-Sutcliffe model efficiency coefli-
cient (NNSE)with 0.8 < NNSE < 0.99

Data Type: Richter Measurements with spatial and tem-

poral information (Events).

Input: Earthquakes since 1950.

Size: 11.3GB (Uncompressed), 21.3MB (Com-
pressed)

Training samples: 2,400 spatial bins

Validation samples: 100 spatial bins

Source: USGS Servers [7]

Reference Implementation [14]

References [11,13,12,26,14,7]

Benchmarking Objectives and Metrics: The scientific objective is to ex-
tract the evolution of a time series, exemplified using earthquake forecasting.
To make the benchmarking exercise more focused, this forecasting is done on a
subset of the overall earthquake dataset for the region of Southern California.
Conventional methods for forecasting relies on statistical techniques. Here, the
aim is to use ML for not only extracting the evolution, but also to test the effec-
tiveness using forecasting. The exact scientific metric for quantifying the benefit
of the forecasting is the Nash Sutcliffe Efficiency (NSE) [33]. It is also possible
to qualitatively asses prediction by comparing the observed earthquake, if one
desires, but the benchmarks relies on the former [11,13].

Data: The United States Geological Survey (USGS) supplies earthquake data
for the entire world, based on various measurements. The benchmark relies on
a very small subset of the data from USGS focused between the regions of four
degrees of latitude (32 degN to 36 degN) and six degrees of longitude (—120 degS
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to —114 degS) region, effectively covering Southern California. The subset of the
data for this region covers all earthquakes in that region since 1950. There are
four measurements per record, namely, magnitude, spatial location, depth from
the crust, and time. The curated dataset is organized to cover this in different
temporal and spatial bins. Although the actual time lapse between measurements
is one day, we accumulate this into a fortnightly data. Southern California is
divided into a grid of 40 x 60 with each each pixel covering actual zone of
0.1deg x0.1 or 11km x 11km grid. The dataset also includes an assignment of
pixels to known faults, and a list of the largest earthquakes in that region from
1950. We have chosen various samplings of the dataset to provide both input
and predicted values. These include time ranges from a fortnight up to four
years. Furthermore, we calculate summed magnitudes and depths and counts of
significant quakes (magnitude < 3.29).

Reference Implementation: The benchmark includes three distinct deep
learning-based reference implementations. These are Long short-term memory
(LSTM)-based model, Google Temporal Fusion Transformer (TFT) [26]-based
model, and a custom hybrid transformer model. The TFT-based model uses two
distinct LSTMs, covering a an encoder a decoder with a temporal attention-
based transformer. The custom model includes a space-time transformer for
the Decoder and a two-layer LSTM for the encoder. Each model predicts NSE
and generates visualizations illustrating the TFT for interpretable multi-horizon
time series forecasting [26]. Details of the current reference models can be found
in [13,11].

4 Results from Initial Evaluations

As mentioned in previous sections, the Science WG is focused on developing
benchmarks for advancing Al for Science, and hence scientific discoveries. To
this end, we presented the benchmarks that the WG has consolidated since the
formation of the WG. Each benchmark is accompanied by at least one reference
implementation, with the aim of setting the trend for open competition.

In this section, we present some of the early results obtained initial evalua-
tions of these benchmarks. As this is the first instance we are presenting these
findings, it is worth noting that the initial evaluations are far from being com-
plete or perfect, especially when lacking any relative measures to benchmark
against. However, these initial evaluations are likely to provide more insight into
how these evaluations should be tuned or scoped in future releases. Further-
more, as these benchmarks are in the process of being evaluated on different
platforms, and as such, the results presented here may not appear to be uni-
form across benchmarks. We outline these aspects in Table 7. Additional details
around Pearl, Summit and Theta systems can be found at [40], [34] and [2],
respectively.



14

Jeyan Thiyagalingam et al.

Table 7: Summary of the Evaluation.

Benchmark|Platforms Science Performance
/(Architectures) |Metric(s) |Metric(s)

cloud-mask |Pearl (V100) Accuracy Scalability
Summit (V100)

stemdl Summit (V100) Accuracy, F1|-

candle-uno |Theta (A100) - Throughput

tevelop K80, P100 NNSE Training Time
V100, A100
RTX3080, RTX3090

4.1 Results for the cloud-mask Benchmark

We show the masking accuracy for the training and validation cases in Figure 2a,

and the scalability results in Figure 2b. We show two different performance
results. In the former, we show how the accuracy of the classification varies
against the number of epochs, either trained or tested. The latter shows how the
benchmark training scales (average time per epoch) on the Pearl (STFC) and
Summit (ORNL) when the number of GPUs are varied up to 32. There are a
number of observations here:

— Although the accuracy improves with the number of epochs (both testing

and training), they do not exceed 95% of the accuracy shows by the Bayesian
mask-based ground truth. However, this has to be interpreted very carefully.
The Bayesian-based mask is not necessarily the best either [28]. Hence the
sub-optimal outputs does not mean, the ML model is not being effective.
There are two possible avenues to verify the real accuracy of the model.
One is to compare this against LIDAR data (obtained from ground sensors).
However, the region where the Sentinel-3 and LIDAR sensors overlap is very
limited, and hence the available data is considerably limited. This means, we
need to evaluate the model only for a small subset of the overall data. Second
option is to use this to estimate the SST values, and compare this against
the real readings measured by the ground sensors (such as those obtained
from buoys).

As for scalability, there are a number of different observations. Pearl offers
better scalability when more than two GPUs are used, while for Summit
this has to be four GPUs. However, interestingly, both Pearl and Summit
are based on V100 GPUs with totally two different configurations. The for-
mer tightly integrates two DGX-2 nodes, with each node housing 16 GPUs,
while the latter has six GPUs per node. However, there are performance
differences between these platforms when a few GPUs are used. A more de-
tailed investigation is needed both on the scalability and why few GPUs offer
sub-optimal performance.

It is very important to note that these conclusions would not have been

possible without these initial evaluations.
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CloudMask benchmark (epochs=20)
CloudMask on 32 GPUs, 100 epochs
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Fig.2: Performance of cloud-mask on the PEARL platform. In the figure (a)
shows the variation of classification accuracy against the number of epochs, and
(b) shows the training scalability of benchmark compared on Pearl and Summit.
See text for more details.

4.2 Results for the stemdl Benchmark

With the reference implementation [39], we used newly developed multi-GPU
and multi-node electron scattering simulation codes [25] on the Summit to gen-
erate CBED patterns for well over 60,000 solid-state materials, representing
nearly every known crystal structure. Although the classification accuracy is
the ultimate metric, this is influenced by a number of hyperparameters that un-
derpin our network architecture. As such, it is important to ensure that the the
best classification is achieved through hyperparameter search. Although various
techniques exist for hyperparameter search, and that itself can be a separate
benchmarking challenge, here we show the validation accuracy and F1l-score
for various hyper-parameter sets. There are a number of observations here, but
to highlight two: first, as expected, hyperparameters have an overall influence
on the rate and best performance of the benchmark, and secondly the perfor-
mance converges rapidly for some of the hyperparameter settings, namely, for the
ResNet-101 model. We also show how the accuracy can further be improved from
baseline performance in Figure 4, where the raw performance is marked as (1),
along with various optimizations, including, pre-processing (2), time augmenta-
tion (3), regularization (4), and by using deeper models (5). These optimizations
improve the accuracy from 14% to 57% through these optimizations.

4.3 Results for the candle-uno Benchmark

We used the reference implementation on the ThetaGPU platform [2] (ALCF,
Argonne), consisting of NVIDIA A100 GPUs. As stated before, our metric is
throughput (i.e., number of samples processed per second) for varying batch
sizes on a single GPU. We present the results in Figure 5. The results show
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Fig.3: Performance of stemdl on the Summit platform. Figures (a) and (b)
shows the variation of classification accuracy and F1-Score against the number
of epochs for various hyperparameter settings, respectively. See text for more
details.
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Fig.4: Accuracy improvements. Fig.5: Throughput of candle-uno.

that the the overall throughput increases with the batch size, showing a trend
of saturation, and highlights that more investigation is needed to qualify future
implementations, especially across different platforms.

4.4 Results for the tevelop Benchmark

As stated in previous sections, we will be using the benchmark to predict earth-
quakes over the Southern Californian region. As stated before, earthquake data
is often binned to generate the spatial time series, and for this evaluation we
have considered the bin size of two-weeks. With this, we used our reference
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implementation for this evaluation. There are three baseline implementations,
namely, LSTM, TFT and Transformer-based models. We first present the perfor-
mance results of the LSTM-based model focused on science metric in Figure 6.
The results show that ML can, indeed, offer significant benefits. Additional ex-
amples ranging from a week to a year are presented in [11].

Training EARTHQB-LSTMFullProps2 Magnitude 2 weeks Validation EARTHQB-LSTMFullProps2 Magnitude 2 weeks

d
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Fig. 6: Evaluation of the tevelop to predict earthquakes since 1955, for two-
week window periods over the Californian region. Figure (a) shows the training
performance while (b) shows the validation accuracy. We show both real and
predicted values along with the error.

Next, to compare and contrast the performance of different baseline models,
we use a subset of the full dataset contained (which has 2,400 pixels) consisting
of 500 most active pixels, with 400 of them for training and 100 for validation. We
then compare these models (with the same bin size), across a number of time
periods, ranging from two-weeks to four years, and compare their normalized
NSE (NNSE) values, with the NNSE value zero signifying the worst and value of
unity signifying the best possible prediction. We show the resulting performance
in Table 8. A more detailed set of examples, and illustrations can be found

n [11]. Finally, we compare the performance of this benchmark on different
architectures, and show the results in Figure 7.

5 Conclusions

In this paper, we have discussed the initiatives of the MLCommons Science
Working Group for advancing the Al for Science through science-specific bench-
marks. By collaboratively working with multiple communities, covering various
international laboratories, academic institutes and industries, the working group
has succeeded in identifying a number of key scientific problems, and devel-
oped benchmarks for them. These include, cloud-mask from atmospheric sci-
ences, stemdl from condensed matter physics, candle-uno from healthcare, and
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Table 8: Comparison of different models for earthquake prediction.

LSTM TFT Transformer
Period Train Test |Train Test |Train Test
2 weeks 0.902 0.869 |0.931 0.885 |0.893 0.856
4 weeks 0.896 0.883 |- - 0.866 0.883

2 months 0.887 0.881 |- - 0.865 0.881
3 months 0.925 0.893 [0.976 0.922 |0.919 0.881
6 months 0.950 0.900 |0.972 0.882 ]0.954 0.896

1 year 0.923 0.865 [0.976 0.853 [0.955 0.876
2 years 0.928 0.830 |- - 0.855 0.830
4 years 0.937 0.770 |- - 0.817 0.770
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Fig. 7: Evaluation of the tevelop benchmark across a range of architectures and
storage systems. Figure (a) shows the training performance while (b) shows the
impact of different storage (such as, local HDD, local NVMe, NFS)

tevelop from earth sciences. Here, each benchmark include a data set, science-
and/or performance-based metrics, and one or more reference implementations.
All these benchmarks support both Open and Closed divisions.

While this is a notable step forward for AI benchmarking, it is significant step
for AT benchmarking focused on science. The working group is also actively work-
ing on a number of future benchmarks, drawing expertise from various domains.
These future benchmarks will cover additional domains, and will also include
a variety of classes of ML algorithms, such as surrogate models, inference- and
training-based evaluations, and generative models, to mention a few. The future
work will also give emphasis to the FAIR aspects of the data, ensuring that all
our datasets are FAIR compliant. The working group is aspiring to support sub-



Al Benchmarks from MLCommons Science 19

missions of evaluations, so that the community is aware of performance benefits
of different systems.

We are very hopeful that this initiative becomes beneficial to the scientific
community in a number of different ways, such as supporting easy selection of
ML algorithms for a given scientific problem, or for pedagogical purposes. With
such purposes, we are hopeful the combined effect of MLCommons is likely to
make a significant difference in the AI community.
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