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Abstract. We develop hybrid projection methods for computing solutions to large-scale inverse
problems, where the solution represents a sum of different stochastic components. Such scenarios
arise in many imaging applications (e.g., anomaly detection in atmospheric emissions tomography)
where the reconstructed solution can be represented as a combination of two or more components and
each component contains different smoothness or stochastic properties. In a deterministic inversion or
inverse modeling framework, these assumptions correspond to different regularization terms for each
solution in the sum. Although various prior assumptions can be included in our framework, we focus
on the scenario where the solution is a sum of a sparse solution and a smooth solution. For computing
solution estimates, we develop hybrid projection methods for solution decomposition that are based
on a combined flexible and generalized Golub--Kahan process. This approach integrates techniques
from the generalized Golub--Kahan bidiagonalization and the flexible Krylov methods. The benefits
of the proposed methods are that the decomposition of the solution can be done iteratively, and the
regularization terms and regularization parameters are adaptively chosen at each iteration. Numerical
results from photoacoustic tomography and atmospheric inverse modeling demonstrate the potential
for these methods to be used for anomaly detection.

Key words. inverse problems, hybrid methods, generalized Golub--Kahan, flexible methods,
Tikhonov regularization, Bayesian inverse problems
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1. Introduction. In many inverse problems, the ability to efficiently and accu-
rately detect anomalies from observed data can have significant benefits. For exam-
ple, in atmospheric inverse modeling, large-scale anomalous emissions of greenhouse
gases and air pollution pose threats to human health, state emissions targets, and en-
ergy security. We need inverse models that can identify anomalous emissions events
quickly---so the leak or malfunction in question can be fixed. However, inverse models
that can identify anomalous emissions events require more complicated prior models,
in particular, models that can incorporate multiple complex sources with different
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S98 J. CHUNG, J. JIANG, S. MILLER, AND A. SAIBABA

smoothness properties. It is desirable to capture both anomalies (e.g., sparsely dis-
tributed events representing anomalous emissions like natural gas blowouts or point
sources like large power plants) and smooth regions (e.g., representing broad scale
emissions patterns from area sources). Moreover, the quality of the reconstruction
depends crucially on the choice of appropriate hyperparameters that govern the prior
and noise distributions, and estimating these parameters prior to inversion can be
prohibitively expensive. For these and other inverse problems where the solution
must capture different stochastic properties, we describe efficient and flexible itera-
tive methods for reconstructing solutions that have a combination of smooth regions
with sparse anomalies (e.g., for anomaly detection).

More specifically, we consider linear inverse problems of the form

d=As+ \bfitdelta with s= s1 + s2,(1.1)

where the goal is to reconstruct the desired parameters s1, s2 \in \BbbR 
n, given forward

operator (or parameter-to-observable map) A\in \BbbR 
m\times n and the observed data d\in \BbbR 

m.
We assume that the measurement errors \bfitdelta are realizations of Gaussian random vari-
ables, i.e., \bfitdelta \sim \scrN (0,R), where R is a symmetric positive definite (SPD) matrix, and
that s1 and s2 are mutually independent and are realizations from different distribu-
tions [29, 10]. Contrary to most inverse problems that involve estimating the unknown
parameters s, a distinguishing feature of the solution decomposed approach is that
both sets of parameters s1 and s2 are estimated from the data d, even if s is desired
in the end.

Contributions and overview. In this paper we propose a new computational frame-
work for solving inverse problems in which the solution is assumed to be the sum of
two components: a ``smooth"" background and a sparse term that represents anom-
alies. Following the Bayesian approach, we derive a posterior distribution for the
unknown solution components and focus on efficiently computing the maximum a
posteriori (MAP) estimate. Our approach has three main components:

1. Use of a majorization-minimization (MM) scheme to solve the optimization
problem for the MAP estimate as a sequence of iteratively reweighted least-
squares problems that carefully reweight only the sparse term;

2. a novel flexible, generalized Golub--Kahan (FGGK) iterative method for ef-
ficiently generating a single basis for approximately solving the reweighted
least-squares subproblems; and

3. robust methods for automatically selecting the regularization parameters
within the projected solution space at each iteration.

The main novelty of this paper is that in contrast to inner-outer methods or alter-
nating approaches that solve a sequence of least-squares/optimization problems from
``scratch,"" our approach successively builds a single basis with which we seek approx-
imate solutions for the components. To accomplish this task, we develop the FGGK
approach, a new Krylov subspace solver, by paying close attention to the computa-
tional cost; like the generalized Golub--Kahan (genGK) process [17], it avoids forming
inverses of covariance matrices and uses the same number of matrix-vector products
with the forward operator and covariance matrices, but has the ability to incorpo-
rate information about both of the solution components. By automatically selecting
the regularization parameter at each iteration, we avoid the need to solve repeated
optimization problems to estimate the parameters.

We demonstrate the performance of our approach on a series of large-scale test
problems that represent anomaly detection in dynamic tomography and atmospheric

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/3

0
/2

3
 t

o
 1

5
2
.1

4
.1

3
6
.3

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



HYBRID METHODS FOR SOLUTION DECOMPOSITION S99

inverse modeling, where for the last example that contains over a million unknowns,
our method is capable of achieving satisfactory results in fewer than 50 iterations.

An outline of the paper is as follows. In section 2 we describe a Bayesian approach
for (1.1) and provide an overview of related works that incorporate multiple stochastic
components for inverse problems. The proposed hybrid projection method for solution
decomposition is described in section 3, along with a description of some algorithmic
considerations. Heuristic methods to choose regularization parameters are provided in
Appendix A. Numerical results are provided in section 4, and conclusions are provided
in section 5.

2. Bayesian inverse problems with solution decomposition. In this sec-
tion, we describe a Bayesian approach for solving (1.1). We assume that the errors
\bfitdelta and the unknowns s are mutually independent. For anomaly detection and more
generally for problems where the solution can be decomposed, we consider the case
where s1 follows a multivariate Gaussian distribution, and the components of s2 are
independent and follow the univariate Laplace distribution [3, Chapter 4.3]. The
Laplace prior promotes sparsity in s2 (e.g., the solution itself is sparse and contains
many zeros or a representation in some frequency domain is sparse) [28].

In the geostatistical framework [37, 32, 30, 31], we model the unknown function
s(\bfitzeta ), where \bfitzeta \in \BbbR 

d represents the coordinates in space, as a realization of a random
field. We express this realization as a sum of two terms,

s(\bfitzeta ) = s1(\bfitzeta ) + s2(\bfitzeta ), s2(\bfitzeta ) :=

p\sum 

k=1

\beta k\psi k(\bfitzeta ),

where s1 is the realization of a random field that captures the smooth features, \psi k

are deterministic basis functions, and \beta k are coefficients to be determined. As is the
prevalent approach, we take the random field s1 to be Gaussian, which is characterized
by a mean function \mu 1(\bfitzeta ) and a covariance function \lambda  - 2\kappa (\bfitzeta ,\bfitzeta \prime ), where \lambda is a parame-
ter that controls the precision and is a hyperparameter that must be determined. For
short, we write s1 \sim GP(\mu 1(\bfitzeta ), \lambda 

 - 2\kappa (\bfitzeta ,\bfitzeta \prime )), where GP denotes a Gaussian process.
We consider a set of grid points \{ \bfitzeta j\} 

n
j=1 on which we represent the unknown random

field. Define the vector s1 =
\bigl[ 
s1(\bfitzeta 1) . . . s1(\bfitzeta n)

\bigr] \top 
, then it follows that

s1 \sim \scrN (\bfitmu 1, \lambda 
 - 2Q),

where \bfitmu 1 =
\bigl[ 
\mu 1(\bfitzeta 1) . . . \mu 1(\bfitzeta n)

\bigr] \top 
and Qij = \kappa (\bfitzeta i,\bfitzeta j) for 1\leq i, j \leq n.

Since anomalies are localized, we take p= n and basis functions \psi k(\bfitzeta ) = \delta (\bfitzeta  - \bfitzeta k)
as Dirac delta functions.1 We promote sparsity in the coefficients \beta k as follows: we
assume that the coefficients \beta k are independent of one another and the random field s1,
and impose the univariate Laplace distribution with mean [\bfitmu 2]j and scale parameter
2\alpha  - 2, that is,

\beta j \sim \scrL ([\bfitmu 2]j ,2\alpha 
 - 2), 1\leq j \leq n.

Similarly to s1, we define the vector s2 with components [s2]j = \beta j for 1\leq j \leq n.
In summary, we have the prior model

s1 \sim \scrN (\bfitmu 1, \lambda 
 - 2Q) and [s2]j \sim \scrL ([\bfitmu 2]j ,2\alpha 

 - 2), 1\leq j \leq n,(2.1)

1Although this model corresponds to the assumption that point source locations coincide with
grid points, this assumption is not strictly needed for the algorithm. Other basis functions could be
considered.
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S100 J. CHUNG, J. JIANG, S. MILLER, AND A. SAIBABA

where \bfitmu 1,\bfitmu 2 \in \BbbR 
n, Q is SPD, and \lambda \not = 0, \alpha \not = 0 are scaling parameters. For problems

of interest, computing the inverse and square root of R is inexpensive (e.g., R is often
a diagonal matrix), but explicit computation of Q (or its inverse or square root) may
not be possible. However, we assume that matrix-vector multiplications involving A,
A\top , and Q can be done efficiently (e.g., in \scrO (n logn) operations rather than \scrO (n2)
operations for an n\times n matrix); for details, see [2]. This framework can be extended
to spatiotemporal models, but we do not provide the details here.

Under assumptions (1.1) and (2.1) and using Bayes' theorem, the posterior prob-
ability density function is given by

\pi post(s1, s2 | d) =
\pi (d | s1, s2)\pi (s1)\pi (s2)

\pi (d)

\propto exp

\biggl( 
 - 
1

2
\| As - d\| R - 1

2  - 
\lambda 2

2
\| s1  - \bfitmu 1\| Q - 1

2  - 
\alpha 2

2
\| s2  - \bfitmu 2\| 1

\biggr) 
,

(2.2)

where \| \cdot \| 1 denotes the 1-norm of a vector, \| x\| M
2
= x\top Mx for any SPD matrix

M, and \propto means ``proportional to."" In the Bayesian framework, the solution is the
posterior distribution. Notice that the posterior is not Gaussian.

In this manuscript, we describe new hybrid projection methods to efficiently ap-
proximate the MAP estimate, which corresponds to the mode of the posterior distri-
bution and is the solution to the following optimization problem:

min
s1\in \BbbR n,s2\in \BbbR n

\| A(s1 + s2) - d\| 2R - 1 + \lambda 2\| s1  - \bfitmu 1\| 
2
Q - 1 + \alpha 2\| s2  - \bfitmu 2\| 1.(2.3)

Computational challenges. Optimization problems such as (2.3) can be computa-
tionally challenging to solve, and there are three main computational concerns. First,
an accurate reconstruction of s will rely heavily on being able to obtain good esti-
mates of regularization parameters \lambda and \alpha , which can be very difficult to estimate
prior to solution computation. Second, for many problems with nonstandard priors
(e.g., priors defined on nonstructured grids), explicit computation of Q (or its inverse
or square root) may not be possible. Generalized hybrid iterative methods which are
based on the genGK bidiagonalization can be used to solve problems of the form

min
s1\in \BbbR n

\| As1  - d\| 2R - 1 + \lambda 2\| s1  - \bfitmu 1\| 
2
Q - 1(2.4)

and are described in [17]. Third, it is well known that solving the \ell 1 regularized
problem can be computationally difficult, due to nondifferentiability at the origin
as well as the need to use expensive nonlinear or iteratively reweighted optimiza-
tion schemes. These inner-outer approaches can get very costly [20, 44], which has
led to the development of accelerated alternative methods such as split Bregman
methods [51] and iterative shrinkage threshholding algorithms [4], where an iterative
two-step process is used. In [19], a weighted sum of mixed regularizing penalties were
proposed to promote sparsity. However, these methods require a priori selection of
various parameters (including the regularization and shrinkage parameter), which can
be cumbersome [38]. Iterative alternating sequential algorithms that promote spar-
sity in solutions via a hierarchical Bayesian framework that postulate a conditionally
Gaussian prior model and gamma hyperpriors are described in [8, 7, 11]. Connections
between priorconditioning in the context of Bayesian hyperpriors and flexible precon-
ditioning for iterative methods were made in [9]. Flexible Krylov methods have been

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HYBRID METHODS FOR SOLUTION DECOMPOSITION S101

Algorithm 2.1 Solving (2.3) using alternating optimization

1: Initialize s
(0)
2 , k= 1

2: while not converged do

3: Solve s
(k)
1 = arg mins1\| As1  - (d - As

(k - 1)
2 )\| 2R - 1 + \lambda 2\| s1  - \bfitmu 1\| 

2
Q - 1

4: Solve s
(k)
2 = argmins2 \| As2  - (d - As

(k)
1 )\| 22 + \alpha 2\| s2  - \bfitmu 2\| 1

5: Set k= k+ 1
6: end while

proposed [22, 14] as a means to both avoid inner-outer schemes and allow automatic
regularization parameter selection. Such methods can be used to solve problems of
the form

min
s2\in \BbbR n

\| As2  - d\| 22 + \alpha 2\| s2  - \bfitmu 2\| 1(2.5)

and are described in [14].
A natural approach to solving (2.3) would utilize an alternating optimization

scheme (see Algorithm 2.1), but this approach may be very slow and requires un-
realistic initialization vectors. Instead, we describe in section 3 an iterative FGGK
approach that combines the flexible and generalized Golub--Kahan projection methods
to efficiently generate a basis for solving inverse problems with mixed prior models.

Related approaches and ideas. The idea to incorporate multiple stochastic compo-
nents for inverse problems is not necessarily new (see, e.g., earlier works [29, 10]), nor
is it restricted to atmospheric imaging. For example, different texture models have
been investigated for improved breast cancer imaging [34]. However, previous methods
to handle multiple stochastic components are quite costly and often rely on simplify-
ing assumptions. For example, in [52], the authors disaggregate the unknown fluxes to
account for the biospheric and fossil fuel components separately, but simple Gaussian
priors were used (a stationary, separable exponential model for the biospheric fluxes
and a diagonal covariance matrix for the fossil fuel fluxes). In the special case where
both priors are Gaussian, i.e., s1 \sim \scrN (\bfitmu 1,Q1) and s2 \sim \scrN (\bfitmu 2,Q2) with \bfitmu 1,\bfitmu 2 \in \BbbR 

n

and SPD matrices Q1,Q2, it can be shown that s\sim \scrN (\bfitmu 1+\bfitmu 2,Q1+Q2), and meth-
ods for mixed Gaussian priors can be used [13]. Furthermore, if sparsity or a sparsity
decomposition is desired, methods based on robust principal component analysis have
been developed, e.g., in dynamic magnetic resonance imaging, to separate the solution
(reshaped into a matrix) into a low-rank plus a sparse matrix [48], but such methods
are too restrictive for the problems of interest.

We remark that although optimization problem (2.3) has a similar flavor to elastic
net regularization [54, 27, 12] and other \ell 1-\ell 2 problems [53], our approach is funda-
mentally different. First, these approaches linearly combine \ell 1 and \ell 2 regularization
for s and do not split the solution into two stochastic components. That is, they
assume that the entire solution vector is included in both regularization terms, e.g.,
for elastic net,

min
s\in \BbbR n

\| As - d\| 22 + \lambda 2\| s\| 22 + \alpha 2\| s\| 1.

Second, typically iterative numerical methods of active set type are employed to solve
elastic net regularized problems, but the inclusion of nontrivial regularizers makes
these approaches infeasible.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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S102 J. CHUNG, J. JIANG, S. MILLER, AND A. SAIBABA

3. Hybrid projection methods for solution decomposition. In this sec-
tion, we describe an efficient computational method to approximate the MAP esti-
mate given in (2.3). We develop a combined hybrid projection method that builds on
the generalized and flexible Golub--Kahan processes and inherits many of the main
computational benefits from previously developed hybrid approaches.

We begin in subsection 3.1 by describing an MM approach to handle the 1-norm
regularization term in (2.3). Although this inner-outer optimization approach is com-
putationally infeasible, it motivates the use of flexible preconditioning techniques that,
extended and combined with genGK methods, are described in subsection 3.2. In par-
ticular, we describe an FGGK projection method, with some discussion on algorithmic
considerations (e.g., breakdown) and computational considerations, and then we de-
scribe a hybrid projection approach based on the FGGK projection. We pay special
attention to methods to choose regularization parameters for the projected problem
in Appendix A.

3.1. MM approach. Various methods have been developed for approximating
the solution of an \ell 1-regularized problem (2.5), ranging from iterative shrinkage al-
gorithms to iterative reweighted norms [4, 44, 23]. In this subsection, we provide an
overview of the MM approach for approximating the solution of (2.3), which requires
solving a sequence of optimization problems. For this discussion, we assume that \lambda 
and \alpha are fixed.

We begin with the following change of variables,

s1 =\bfitmu 1 +Qx, s2 =\bfitmu 2 + \bfitxi , and c= d - A\bfitmu 1  - A\bfitmu 2,(3.1)

and get the optimization problem

min
x\in \BbbR n,\bfitxi \in \BbbR n

f(x,\bfitxi ) = \| AQx+A\bfitxi  - c\| 2R - 1 + \lambda 2\| x\| 2Q + \alpha 2\| \bfitxi \| 1.(3.2)

Notice that we have removed all instances of Q - 1. Next, to handle the \ell 1 term,
we use the MM approach to convert optimization problem (3.2) into a sequence of
reweighted least-squares problems. For some \epsilon > 0, we consider | \xi | \approx \varphi \epsilon (\xi ) =

\sqrt{} 
\xi 2 + \epsilon 

and approximate \| \bfitxi \| 1 \approx 
\sum n

j=1\varphi \epsilon (\xi j). The corresponding objective function is

f\epsilon (x,\bfitxi ) = \| AQx+A\bfitxi  - c\| 2R - 1 + \lambda 2\| x\| 2Q + \alpha 2
n\sum 

j=1

\varphi \epsilon (\xi j).(3.3)

Let \xi (k) be the iterate at the kth step of the MM approach, then from (1.5) in [33],
we have the majorization relationship

\varphi \epsilon (\xi ) =
\sqrt{} 
\xi 2 + \epsilon \leq 

\sqrt{} 
(\xi (k))2 + \epsilon +

1

2
\sqrt{} 
(\xi (k))2 + \epsilon 

(\xi 2  - (\xi (k))2) =: \psi \epsilon (\xi | \xi 
(k)),

i.e., the function \psi \epsilon (\xi | \xi 
(k)) is said to majorize the function \varphi \epsilon (\xi ) at \xi (k). Applying

the majorization relationship to (3.3), we can define the surrogate function

g\epsilon (x,\bfitxi | x
(k),\bfitxi (k)) = \| AQx+A\bfitxi  - c\| 2R - 1 + \lambda 2\| x\| 2Q + \alpha 2

n\sum 

j=1

\psi \epsilon (\xi j | \xi 
(k)
j ),

where the current iterate is given by (x(k),\bfitxi (k)).
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HYBRID METHODS FOR SOLUTION DECOMPOSITION S103

It is easily verified that f\epsilon (x
(k),\bfitxi (k)) = g\epsilon (x

(k),\bfitxi (k) | x(k),\bfitxi (k)) and

f\epsilon (x,\bfitxi )\leq g\epsilon (x,\bfitxi | x
(k),\bfitxi (k)) \forall x,\bfitxi \in \BbbR 

n.

These two conditions mean that the surrogate function g\epsilon (x,\bfitxi | x
(k),\bfitxi (k)) matches the

objective function f\epsilon (x,\bfitxi ) at the current iterate and majorizes the surrogate function
for every point, respectively. This means that as long as we choose the next iterate
(x(k+1),\bfitxi (k+1)) such that the surrogate g\epsilon decreases, then we ensure that this decreases
the objective f\epsilon since

f\epsilon (x
(k+1),\bfitxi (k+1))\leq g\epsilon (x

(k+1),\bfitxi (k+1) | x(k),\bfitxi (k))

\leq g\epsilon (x
(k),\bfitxi (k) | x(k),\bfitxi (k)) = f\epsilon (x

(k),\bfitxi (k)).

The first inequality and the final equality are due to the majorization properties of the
surrogate function g\epsilon . The second inequality is satisfied by choosing the next iterates
in a manner to ensure that the surrogate is decreased; it is important to note that it
is not necessary to minimize the surrogate at each iteration.

Thus, the MM algorithm for solving (3.2) is as follows: Given initial guesses
(x(0),\bfitxi (0)), solve the following sequence of reweighted least-squares problems,

(x(k+1),\bfitxi (k+1)) = arg min
x\in \BbbR n,\bfitxi \in \BbbR n

g\epsilon (x,\bfitxi | x
(k),\bfitxi (k))

= arg min
x\in \BbbR n,\bfitxi \in \BbbR n

\| AQx+A\bfitxi  - c\| 2R - 1 + \lambda 2\| x\| 2Q + \alpha 2
\bigm\| \bigm\| \bigm\| D(\bfitxi (k))\bfitxi 

\bigm\| \bigm\| \bigm\| 
2

2
,(3.4)

where terms from g\epsilon that do not depend on x and \bfitxi have been dropped and the
diagonal matrix D(\bfitxi ) = diag([2

\sqrt{} 
\xi 2i + \epsilon ] - 1/2)ni=1. To get the solution after removing

the change of variables, we get s(k+1) =\bfitmu 1 +Qx(k+1) +\bfitmu 2 + \bfitxi (k+1).
The convergence of the MM scheme has been established; see, e.g., [26]. However,

notice that minimizing the surrogate requires solving a large optimization problem
(3.4) with 2n unknowns at each iteration. For small problems, one could solve the cor-
responding normal equations. For larger problems, an iterative method could be used
to solve the reweighted least-squares problems, but this often leads to expensive inner-
outer solves [44]. Instead, we describe in the next section an approach that avoids
inner-outer schemes by exploiting flexible preconditioning techniques, following recent
works, e.g., [22, 14]. That is, we solve optimization problem (3.4) approximately at
each step.

3.2. FGGK iterative method. In this section, we describe iterative projection
methods that can be used for approximating the solution for inverse problems with
solution decomposition (e.g., for anomaly detection). We exploit aspects of both the
flexible and generalized Golub--Kahan projection methods and develop a solution de-
composition hybrid projection approach, henceforth dubbed sdHybr, to approximate
the MAP estimate (2.3). Similarly to all hybrid projection methods that combine
iterative projection methods with variational regularization techniques, there are two
main components. First, we generate a single basis for the solution (which in this
case includes two sets of solution vectors) by exploiting a flexible preconditioning
framework integrated with a genGK bidiagonalization. Second, we compute an ap-
proximate solution to the inverse problem by solving an optimization problem in the
projected subspace where regularization parameters can be estimated automatically.
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FGGK process. We consider solving problems of the form (3.4) by incorporating
a changing diagonal matrix, which rescales the norms, to generate a basis for the
solution. Suppose we are given A, Q, R, c, and a sequence of invertible matrices
\{ Dj\} 

k
j=1. We initialize the iterations with m1,1 = \| c\| R - 1 and u1 = c/m1,1; further-

more, take v1 =A\top R - 1u1 and t1,1 = \| v1\| Q. The FGGK iterative process generates
vectors zk, vk, and uk+1 such that at the kth iteration, we have

mk+1,kuk+1 =AQvk +AD - 1
k vk  - 

k\sum 

j=1

mj,kuj ,(3.5)

tk+1,kvk+1 =A\top R - 1uk+1  - 
k\sum 

j=1

tj,kvj .(3.6)

In the first step, we expand the basis uk+1 by including the vectors AQvk and
AD - 1

k vk, and we orthogonalize against the previous basis vectors u1, . . . ,uk using
Gram--Schmidt with the inner product \langle \cdot , \cdot \rangle Q. Similarly, we expand the basis vectors
vk+1 with the vector A\top R - 1uk+1 and orthogonalize against the previous vectors
v1, . . . ,vk using the inner product \langle \cdot , \cdot \rangle R - 1 . Finally we ensure that both uj ,vj are
normalized so that \| uj\| R - 1 = \| vj\| Q = 1, and let wj =D - 1

j vj for 1\leq j \leq k+ 1.
For notational convenience, consider the augmented matrices

\widehat A=
\bigl[ 
A A

\bigr] 
\in \BbbR 

m\times 2n and \widehat Q=

\biggl[ 
Q

I

\biggr] 
\in \BbbR 

(2n)\times (2n).(3.7)

Equations (3.5) and (3.6) can be summarized in matrix form as

\widehat A\widehat QZk =Uk+1Mk and A\top R - 1Uk+1 =Vk+1Tk+1,(3.8)

where the search basis Zk takes the form

Zk =
\bigl[ 
z1 . . . zk

\bigr] 
=

\biggl[ 
v1 . . . vk

w1 . . . wk

\biggr] 
=

\biggl[ 
Vk

Wk

\biggr] 
\in \BbbR 

2n\times k.(3.9)

Furthermore, we have two matrices Mk \in \BbbR 
(k+1)\times k and Tk+1 \in \BbbR 

(k+1)\times (k+1) that are
upper Hessenberg and upper triangular, respectively. The basis vectors are collected
in the matrices Uk+1 =

\bigl[ 
u1 . . . uk+1

\bigr] 
\in \BbbR 

m\times (k+1) and Vk+1 =
\bigl[ 
v1 . . . vk+1

\bigr] 
\in 

\BbbR 
n\times (k+1) which satisfy the orthogonality conditions (in exact arithmetic)

U\top 
k+1R

 - 1Uk+1 = Ik+1, V\top 
k+1QVk+1 = Ik+1.(3.10)

Solving the least-squares problem. Thus far, we have described the FGGK process
as an iterative method to generate a basis for the solution. Next, we seek approximate
solutions to the least-squares problem (3.4) by using the FGGK relations above to
obtain a sequence of projected least-squares problems. For clarity of presentation, we
assume that the parameters \lambda and \alpha are fixed.

To determine the optimal coefficients f in (3.12), we plug the FGGK relations
(3.8) into the objective function to get

fk = arg min
f\in \BbbR k

\| Mkf  - m1,1e1\| 
2
2 + \lambda 2\| f\| 22 + \alpha 2\| Wkf\| 

2
2,(3.11)

which is equivalent to

min
x=Vkf ,y=Wkf

\| AQx+Ay - c\| 2R - 1 + \lambda 2\| x\| 2Q + \alpha 2\| y\| 22.(3.12)
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HYBRID METHODS FOR SOLUTION DECOMPOSITION S105

Our ultimate goal is to obtain the decomposed solution s= s1+ s2. Based on the
discussion above and using the change of variables (3.1), we get

s
(k)
1 :=\bfitmu 1 +QVkfk, s

(k)
2 :=\bfitmu 2 +Wkfk,

where fk \in \BbbR 
k are the coefficients obtained by solving (3.11). In summary, an approx-

imation to the MAP estimate at the kth iteration of the sdHybr method would be
s(k) =\bfitmu 1 +QVkfk +\bfitmu 2 +Wkfk, where fk solves the optimization problem (3.11).

Efficient QR update. Similar to what is done in [14], we can take the thin QR
factorization of Wk =QW,kRW,k, then (3.11) becomes

fk = arg min
f\in \BbbR k

\| Mkf  - m1,1e1\| 
2
2 + \lambda 2\| f\| 22 + \alpha 2\| RW,kf\| 

2
2.(3.13)

An efficient update of the QR factorization of Wk is as follows. Suppose we have
computed the thin-QR factorization

Wk =QW,kRW,k,(3.14)

whereQ\top 
W,kQW,k = Ik andRW,k is an upper triangular matrix. Then we can efficiently

update the QR factorization of Wk in \scrO (nk) flops using Gram--Schmidt as

Wk+1 =
\bigl[ 
Wk wk+1

\bigr] 

=
\bigl[ 
QW,kRW,k wk+1

\bigr] 

=
\bigl[ 
QW,k (I - QW,kQ

\top 
W,k)wk+1/\beta k+1

\bigr] 
\underbrace{}  \underbrace{}  

QW,k+1

\biggl[ 
RW,k Q\top 

W,kwk+1

0 \beta k+1

\biggr] 

\underbrace{}  \underbrace{}  
RW,k+1

,
(3.15)

where \beta k+1 = \| (I - QW,kQ
\top 
W,k)wk+1\| 2. For additional numerical stability, one can

use another round of Gram--Schmidt or instead use Householder QR updates.
A summary of the sdHybr method is provided in Algorithm 3.1. Notice that in a

fully Bayesian approach, the regularization parameters \lambda and \alpha are part of the prior.
Thus, they should be set in advance. Any uncertainty in the prior can be expressed,
e.g., in terms of hyperpriors [9], but estimation of these parameters requires expen-
sive sampling schemes [3, 1] that can quickly prove to be computationally infeasible.
Furthermore, if poor hyperparameters are selected, a fully Bayesian approach may
lead to poor solutions. To circumvent such challenges, we provide in Appendix A
some heuristic approaches that can be used to automatically estimate the regulariza-
tion parameters at each iteration, i.e., \lambda k and \alpha k. We remark that various existing
stopping criteria can be used. A systematic study of computational methods for
hyperparameter selection is outside the scope of this article.

Computational Cost. Each iteration of the sdHybr method requires one matrix-
vector product with A and one with its adjoint (let TA denote the cost of one matrix-
vector product with A or its adjoint, two matrix-vector products with Q (similarly,
denoted TQ), one matrix-vector product with R - 1 (denoted TR - 1), one matrix-vector
product with D - 1

k (denoted TD - 1

k

), the inversion of diagonal matrix Dk that is \scrO (n)

floating point operations (flops), and additional \scrO (k(m+n)) flops for the summation
calculation in (3.5) and (3.6). To compute the solution of the projected problem
(3.13), the cost is \scrO (k3) flops, since Mk is an upper Hessenberg matrix. And the
cost of forming x and y to get s is \scrO (k2(m+ n)) flops. Thus, the overall cost of the
algorithm is

TsdHybr = 2kTA + 2kTQ + kTR - 1 +\scrO (k2(m+ n)) +\scrO (k4) flops.(3.16)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/3

0
/2

3
 t

o
 1

5
2
.1

4
.1

3
6
.3

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y
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Algorithm 3.1 sdHybr

Require: Matrix A\in \BbbR 
m\times n, positive definite matrices Q\in \BbbR 

n\times n and R\in \BbbR 
m\times m,

vector c\in \BbbR 
m,\bfitmu 1,\bfitmu 2 \in \BbbR 

n. Invertible matrix D1 = In \in \BbbR 
n\times n.

1: Initialize u1 = c/m1,1, where m1,1 = \| c\| R - 1 and v1 = 0, k= 1.
2: while stopping criteria are not satisfied do

3: h=A\top R - 1uk, tj,k = h\top Qvj for j = 1, . . . , k - 1

4: h= h - 
\sum k - 1

j=1 tj,kvj , tk,k = \| h\| Q, vk = h/tk,k

5: zk =

\biggl[ 
vk

wk

\biggr] 
, Vk =

\bigl[ 
v1 . . . vk

\bigr] 
, Wk =

\bigl[ 
w1 . . . wk

\bigr] 
, where wk =D - 1

k vk.

6: h=A(Qvk +wk), mj,k = h\top R - 1uj for j = 1, . . . , k

7: h= h - 
\sum k

j=1mj,kuj , mk+1,k = \| h\| R - 1 , uk+1 = h/mk+1,k

8: Update QR factorization using (3.15) to obtain Wk+1 =Qk+1Rk+1

9: Solve (3.13) to get fk(\lambda k, \alpha k) with selected regularization parameters \lambda k, \alpha k.

10: s
(k)
1 =\bfitmu 1 +QVkfk, s

(k)
2 =\bfitmu 2 +Wkfk.

11: Dk+1 =D(Wkfk)
12: k= k+ 1
13: end while

14: return Approximations s
(k)
1 and s

(k)
2 that define the sum s(k) = s

(k)
1 + s

(k)
2 .

Notice that compared to the MMmethod, the projected problem (3.11) for sdHybr
is cheaper to solve than (3.4) at each MM iteration, since it is an optimization problem
over a smaller dimensional space.

Variations of the proposed approach. We remark that various projection
methods that combine flexible and generalized GK methods could be considered be-
sides the sdHybr approach; however, for stability and for proper selection of regular-
ization parameters, we found this projection approach (Algorithm 3.1) to be the most
computationally appealing. For example, a na\"{\i}ve first approach would be to use a
genGK approach to handle the Q-norm regularizer and use the flexible Golub--Kahan
approach to handle the 1-norm separately in (3.2). This would generate two solu-
tion subspaces that each contain orthonormal columns but are not orthogonal to each
other, and the number of unknowns for the projected problem would be 2k. Although
an efficient QR update could be used, there are potential issues with breakdown (e.g.,
due to linear dependence of subspace vectors). Furthermore, we found that this ap-
proach can be sensitive to initializations. The FGGK process described above avoids
this by working with stacked solution vectors and a projected problem of order k.

Another natural approach to combine flexible and genGK methods would be to
reformulate the problem such that the genGK vectors include the flexible precondi-
tioner. This approach is described in Appendix B and provides a nice alternative,
but the main caveat is that selecting regularization parameters in a hybrid framework
becomes more challenging. In particular, a hybrid framework based on the projection
method described in Appendix B requires formulating one regularization parameter
as a fixed scalar multiple of the other or utilizing more expensive optimization pro-
cedures. This is due to the inability to simplify the norm for the regularizer when
considering different regularization parameters. In contrast, the FGGK procedure
leads to a projected problem (3.11) for which existing parameter selection approaches
can be naturally applied, as described in the next section.

Remarks on the solution decomposition method. The FGGK process was
designed to solve the sequence of optimization problems (3.4) involving a diagonal

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/3

0
/2

3
 t

o
 1

5
2
.1

4
.1

3
6
.3

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



HYBRID METHODS FOR SOLUTION DECOMPOSITION S107

weighting matrix that changes at each iteration. We make a few comments when the
weighting matrix is fixed at each iteration. Recall that the Krylov subspace associated
with the matrix E and vector g is defined as

\scrK k(E,g)\equiv Span\{ g,Eg, . . . ,Ek - 1g\} .

Assume that Dj with j = 1, . . . , k are fixed, that is D1 = \cdot \cdot \cdot =Dk = \widehat D and, further-

more, assume \widehat D is invertible. For the FGGK process, based on the relations in (3.5)
and (3.6), it can be shown that the columns of Uk and Vk form R - 1-orthogonal and
Q-orthogonal (c.f., (3.10)) bases for the Krylov subspaces,

Span\{ Uk\} =\scrK k(A(Q+ \widehat D - 1)A\top R - 1,c),

Span\{ Vk\} =\scrK k(A
\top R - 1A(Q+ \widehat D - 1),A\top R - 1c),

respectively. This means that when the diagonal weighting matrices are fixed, the
subspaces generated using the FGGK approach are Krylov subspaces.

4. Numerical results. In this section, we investigate the performance of the
proposed sdHybr method using various examples from image processing. In subsec-
tion 4.1, we consider a hypothetical atmospheric transport problem where the goal is
to recover emissions maps that cover North America for detecting anomalies. Then,
in subsection 4.2 we consider dynamic spherical means tomography reconstruction,
where the true image combines moving smooth components and sparsely positioned
dots. Finally, in subsection 4.3 we consider a more challenging case study from
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite that includes an atmo-
spheric transport model and dynamic data. For the last example, the true solution is
not synthetically generated as a sum of random fields. For each of the case studies, we
show that sdHybr methods are able to capture both smooth and sparse components.

We compare the performance of sdHybr methods to that of generalized hybrid
methods [17] and flexible hybrid algorithms [14], which we denote by genHyBR and
fHybr, respectively. For the hybrid methods, we consider regularization parame-
ters selected using the unbiased predictive risk estimation (UPRE) method, discrep-
ancy principle (DP), and the weighted generalized cross validation (WGCV) method.
For sdHybr, this corresponds to solving nonlinear constrained optimization problems
(A.2), (A.3), and (A.4), respectively. For this task, we use a quasi-Newton method as
implemented in the MATLAB fminunc function with an initial guess of \lambda = - 0.5 and
\gamma = - 0.5. For the stopping criteria for sdHybr, the iterative method is terminated if
either of the following two criteria is satisfied: (i) a maximum number of iterations is
reached; (ii) the GCV stopping function \widehat G defined in (A.5) reaches the minimum or
flattens out. The following experiments ran on a laptop computer with Intel i5 CPU
2GHz and 16G memory.

4.1. Case study 1: A hypothetical atmospheric transport problem. We
investigate a synthetic atmospheric transport problem, where observations d\in \BbbR 

98880

are generated as in (1.1) with A \in \BbbR 
98880\times 3222 representing a forward atmospheric

model and s representing the true emissions map which is a synthetically generated
summation of a randomly generated smooth image and an image with sparse anom-
alies. Henceforth, we denote the true emissions vector as strue \in \BbbR 

3222. See Figure 1.
The smooth image is generated by a Mat\'ern kernel [50, equation (4.14)] with param-
eters \nu = 2.5 and \ell = 0.05. For the image with sparse speckles, a few of the speckles
acquire the maximum value, whereas the remaining have varying values. The goal is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/3

0
/2

3
 t

o
 1

5
2
.1

4
.1

3
6
.3

2
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



S108 J. CHUNG, J. JIANG, S. MILLER, AND A. SAIBABA

-180 -130 -80 -30

80

57

33

10

 s
 true

-180 -130 -80 -30

80

57

33

10

 s
1

-180 -130 -80 -30

80

57

33

10

 s
2

-1

0

1

2

Fig. 1. Atmospheric transport example, case study 1. The true emissions image strue provided
on the left is the sum of smooth image s1 and sparse image s2, i.e., strue = s1 + s2. Colormaps for
all images are the same.

to reconstruct the unknown set of states or fluxes in space, where the spatial resolu-
tion is 1o \times 1o. This resolution is coarser than ideal for detecting superemitters but
provides a nice testbed example. In this case study, the observations d are sampled
at the locations and times of OCO-2 observations during July through mid-August
2015, and the atmospheric model A is from NOAA's CarbonTracker-Lagrange project
[41, 36]. Specifically, these atmospheric modeling simulations are from the weather
research and forecasting stochastic time-inverted Lagrangian transport model mod-
eling system [35, 42]. Note that we do not use realistic CO2 emissions in this case
study (c.f., case study 3). Instead, we use randomly generated emissions to create a
relatively simple, initial test case for the algorithms proposed here. We add Gaussian

white noise corresponding to a 4\% noise level to the observations, i.e.,
\| \bfitdelta \| 

2

\| As\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2

= 0.04.

We obtain reconstructions using the proposed sdHybrmethod and provide relative
reconstruction error norms per iteration. These are computed as

\| sk  - strue\| 2/\| strue\| 2,

where sk is the reconstruction at the kth iteration. In the left plot of Figure 2, we
provide relative reconstruction error norms per iteration using the optimal regular-
ization parameter at each iteration, which is not available in practice. In the right
plot, we see that similar results are obtained using the DP-selected regularization
parameters. Results for sdHybr with WGCV and UPRE are very similar, so we do
not provide them here. For comparison, we provide the relative reconstruction er-
ror norms per iteration of genHyBR and fHybr for both the optimal and DP-selected
regularization parameters. For genHyBR and sdHybr, we let Q represent a Mat\'ern
kernel with \nu = 0.5 and \ell = 0.5. All considered hybrid methods include a variety of
stopping criteria. The tolerance for the GCV function was set to \delta GCV = 10 - 6 and
the maximum number of iterations is 50. The diamonds denote the (automatically
selected) stopping iterations. sdHybr with different parameter selection resulted in
similar stopping points.

We observe that sdHybr reconstructions produce smaller relative reconstruction
errors than genHyBR and fHybr, demonstrating that our solution decomposition can
be beneficial. This result is also evident in the image reconstructions displayed in
Figure 3. In the top row of Figure 3, we provide the overall sdHybr-dp reconstruc-
tion, along with the computed estimates of s1 and s2. In the bottom row, we provide
the reconstructions obtained using genHyBR-dp and fHybr-dp. We observe that the
genHyBR reconstruction captures the smooth regions but fails to reconstruct the anom-
alies, while the fHybr reconstruction captures the anomalies but lacks smoothness in
the background.
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Fig. 2. Atmospheric transport, case study 1: Relative reconstruction error norms per iteration
of sdHybr, genHyBR, and fHybr. Results in the left plot correspond to selecting the optimal regu-
larization parameters at each iteration, and results in the right plot correspond to the DP-selected
regularization parameters.
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Fig. 3. Atmospheric transport, case study 1: Reconstructions with relative reconstruction error
norms provided in the titles. Decomposed solutions computed using sdHybr-dp.

In the bottom row of Figure 3, we also provide a reconstruction using Alter-wgcv,
which is an alternating optimization approach Algorithm 2.1. Both sdHybr and
Alter-wgcv capture the sparse anomalies as well as the smooth background. The
maximum number of iterations for Alter-wgcv was 200. We found that the Alter

approach requires high accuracy of the algorithms used to compute solutions in the
alternating framework, hence the larger number of iterations for each solve within
Alter and the overall longer CPU times: sdHybr took 19.15 seconds and Alter took
253.97 seconds. Furthermore, we observed that Alter is very sensitive to the accuracy
of the initial guess. Moreover, only WGCV was able to provide Alter reconstructions
that could distinguish anomalies.
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4.2. Case study 2: Dynamic spherical means tomography. In this exper-
iment, we consider a dynamic tomography setup where the goal is to reconstruct a
sequence of images from a sequence of projection datasets. Such scenarios are com-
mon in dynamic photoacoustic or dynamic electrical impedance tomography, where
the underlying parameters change during the data acquisition process [49, 47, 24].
Reconstruction is particularly challenging for nonlinear or nonparametric deforma-
tions and often requires including a spatiotemporal prior [18, 46]. In spatiotemporal
inversions, classic approaches (e.g., those based on parametric covariance families or
separable covariance functions) may not be rich enough to capture the phenomena of
interest alone, and multiple priors may be required to promote different spatiotempo-
ral properties.

In this example, we consider a sequence of 20 true images (e.g., time points),
where each image is 128\times 128 and represents a sum of a smooth image and a sparse
image. That is, the true image at the tth time point can be represented as the sum of
two images: the smooth image s1 was generated using a truncated Karhunen--Lo\'eve
expansion using 30 basis vectors, with a Mat\'ern covariance kernel defined with two
spatial and one temporal dimensions (see, for example, [18]). We will refer to this
as a three-dimensional (3D) Mat\'ern kernel. We also take \nu = 0.2 and \ell = 0.2. The
sparse image s2 was generated using a star cluster example, and the two images were
summed together. In Figure 4, we provide three of the true image decompositions
(i.e., for time points t = 1,10,20). Notice that although sparsely distributed, the
spots in s2 take pixel values in a larger range than pixel values in s1.

We consider a linear problem of the form (1.1), where

A=

\left[ 
  
F1

. . .

F20

\right] 
  \in \BbbR 

20\ast 181\times 1282 ,

where Ft represents a spherical projection matrix corresponding to 20 equally spaced
angles between t and 340+t for t= 1, . . . ,20, and d\in \BbbR 

20\ast 181 contains projection data.
For this, we use the PRspherical test problem from the IRTools toolbox [21, 25],

t=1

 s
1

t=10 t=20

-2

-1

0

1

 s
2

2

4

6

8

10

12

Fig. 4. Dynamic spherical tomography example, case study 2. We provide three true images
corresponding to time points t= 1,10,20. For each time point the true image is a sum of a smooth
image and a sparse image.
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Fig. 5. Dynamic spherical tomography example, case study 2. There are 20 observed sinograms
corresponding to 20 time points.

0 100 200

iterations

0.3

0.4

0.5

0.6

0.7

0.8

re
la

ti
v
e

 e
rr

o
r

sdHybr-opt

genHyBR-opt

fHybr-opt

0 100 200

iterations

0

0.2

0.4

0.6

0.8

1

0.8

0.85

0.9

0.95

1

1.05

sdHybr

s
1

s
2

Fig. 6. Dynamic spherical tomography example, case study 2. Relative reconstruction error
norms per iteration are provided in the left plot for sdHybr-opt, genHyBR-opt, and fHybr-opt. In
the right plot, we provide the relative reconstruction errors for s1 (left axis) and s2 (right axis)
separately. The relative reconstruction errors for sdHybr-opt from the left plot are provided again
for reference.

and to simulate measurement error we add 2\% Gaussian noise. The collection of 20
observed sinograms are concatenated and provided in Figure 5.

For the reconstructions, we used prior covariance matrix Q representing a 3D
Mat\'ern kernel with \nu = 0.5 and \ell = 0.4. We focus on a comparison of methods using
optimal regularization parameters, and we provide relative reconstruction error norms
computed per iteration for sdHybr-opt, genHyBR-opt, and fHybr-opt in the left plot
of Figure 6. We observe that sdHybr-opt can achieve smaller overall reconstruction
error norms compared to genHyBR-opt and fHybr-opt. In the right plot of Figure 6,
we provide relative reconstruction errors for s1 and s2 separately. An interesting
observation is that in early iterations, the sdHybr-opt method seems to reconstruct
better approximations of s1, and in later iterations, reconstructions seem to capture
features in s2.

The main benefit of the solution decomposition approach can be seen in the recon-
structions. For time point t= 1, we provide image reconstructions in Figure 7, along
with the corresponding true image. We observe that sdHybr-opt can reconstruct
better solutions than genHyBR-opt and fHybr-opt. Moreover, the solution decom-
position approach can simultaneously solve for both components, which means that
we have two separate image reconstructions s1 and s2. Notice that the sdHybr-opt
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Fig. 7. Dynamic spherical tomography example, case study 2. For time point t = 1, the
sdHybr-opt solution is provided along with reconstructed solutions s1 and s2 in the top row. In
the bottom row, the true image along with genHyBR and fHybr reconstructions with the optimal
regularization parameter are provided.

solution can better capture the larger values in s2 while simultaneously capturing the
smooth features in s1.

We obtained similar results for the automatic parameter selection techniques, so
we omit those here. Also, we acknowledge that the choice of hyperparameters will
be important for the overall reconstruction. Additional investigation is necessary to
determine appropriate Mat\'ern hyperparameters for the prior covariance matrix, and
this is a topic of future work.

4.3. Case study 3: Atmospheric inverse modeling based on NASA's

OCO-2 satellite. For this case study, we consider a more realistic atmospheric in-
verse model, where the goal is to estimate CO2 fluxes across North America using
observations from NASA's OCO-2 satellite. The setup parallels that in [41, 36], so
we just provide an overview here.

We consider a linear model of the form (1.1), where the aim is to estimate CO2

fluxes at 3-hourly temporal resolution over 41 days (approximately 6 weeks from late
June through July 2015) and at 1\circ \times 1\circ latitude-longitude spatial resolution. This
setup corresponds to 3,222 unknowns per 3-hour time interval; hence, s \in \BbbR 

328\cdot 3222.
For strue, we use CO2 fluxes from NOAA's CarbonTracker product (version 2019b).
Although a decomposition of strue = s1+s2 is not available, we observe that, similarly
to actual atmospheric models, the true fluxes contain a combination of large, sparsely
distributed values which correspond to anomalies (e.g., fires, anthropogenic emissions,
or anomalies in biospheric fluxes) and smooth, broad regions of surface fluxes with
small-scale variability. Synthetic satellite observations given in d\in \BbbR 

19,156 are gener-
ated as in (1.1), where A represents the atmospheric transport simulation described
in subsection 4.1 and \bfitdelta is added noise to represent measurement errors. The noise
covariance matrix R is \sigma 2I, where \sigma = 0.5648, which corresponds to a noise level of
50\%. More specifically, for n\sim \scrN (0, I) the noise level of the observation corresponds

to adding \bfitepsilon = \sigma n where \sigma = nlevel \cdot \| As\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2

\| n\| 2
. Notice that this inverse problem is

significantly underdetermined, and thus, appropriate prior information plays a key
role.
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Fig. 8. OCO-2 example, case study 3. In the top row, we provide the averaged computed
reconstruction of the fluxes (in \mu mol m - 2s - 1) for sdHybr, along with the average reconstructions
for s1 and s2. In the bottom row, we provide the averaged true fluxes for reference, along with
the reconstructions obtained using genHyBR and fHybr. Relative reconstruction error norms for the
spatiotemporal fluxes are provided in the titles, and all results correspond to using the DP selected
regularization parameters.

Similarly to previous approaches [52, 41], we consider a prior covariance matrix,
Q = \lambda  - 2Qt \otimes Qs, where Qt represents the temporal covariance and Qs represents
the spatial covariance in the fluxes. These covariance matrices are defined by kernel
functions

kt(dt;\theta t) =

\Biggl\{ 
1 - 3

2

\Bigl( 
dt

\theta t

\Bigr) 
+ 1

2

\Bigl( 
dt

\theta t

\Bigr) 3

if dt \leq \theta t,

0 if dt > \theta t,
(4.1)

ks(ds;\theta s) =

\Biggl\{ 
1 - 3

2

\Bigl( 
ds

\theta s

\Bigr) 
+ 1

2

\Bigl( 
ds

\theta s

\Bigr) 3

if ds \leq \theta s,

0 if ds > \theta s,
(4.2)

where dt is the day difference between two unknowns, ds is the spherical distance
between two unknowns, and \theta t, \theta g are kernel parameters. In this setting, we set
\theta t = 9.854 and \theta s = 555.42, as in [41].

We compute spatiotemporal reconstructions using sdHybr, genHyBR, and fHybr,
all using the automatically selected regularization parameters using the discrepancy
principle. We provide in Figure 8 the overall average image of flux reconstructions,
along with the average true image. We observe that genHyBR does fairly well at
estimating the broad regions of flux estimates, and fHybr is not able to capture a
good reconstruction. The average reconstruction of our proposed sdHybr method
best captures both sources and sinks present in the true average image. Furthermore,
a significant benefit of sdHybr is the ability to obtain a solution decomposition. The
reconstructions of s1 and s2 from sdHybr are provided in the top row of Figure 8.

For this experiment, we remark that the 50\% error level corresponds to \sigma = 0.56
ppm, which is aspirational for real data inverse modeling studies using OCO-2 data
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but not too far from the error levels recommended in the recent OCO-2 model in-
tercomparison project. These values average \sigma = 0.92 ppm for land nadir/land glint
observations and \sigma = 0.62 ppm for ocean glint observations. Similarly, recommended
error levels for OCO-3 are \sigma = 0.77 ppm (averaged across all observation types) [6].
Furthermore, these noise levels may become more realistic in the future as obser-
vational and atmospheric modeling errors decline [40, 39]. Thus, these case studies
allow us to explore the capabilities and behavior of the proposed inverse modeling
algorithms at many different error levels.

In particular, the results of this case study demonstrate that sdHybr can yield
accurate results for complex, spatiotemporal atmospheric inverse modeling. The pro-
posed method enables anomaly detection, due to the simultaneous reconstruction of
two separate reconstructions, one containing smooth, broad regions and another cap-
turing sparsely distributed anomalies. Moreover, the use of efficient hybrid projection
methods means that these methods can be paired with the adjoint of an atmospheric
model (where explicit construction of A is replaced with efficient matrix-vector prod-
ucts with A and A\top ) and with automatic selection of regularization parameters.

5. Conclusions. We have described hybrid projection methods for efficiently
computing solutions to large-scale inverse problems, where the solution consists of
two characteristically different solutions. We focus on the scenario where the desired
solution is a sum of a sparse solution and a smooth solution (e.g., a framework that
can be used for anomaly detection) and describe an FGGK hybrid iterative approach
that confers several advantages. The approaches are efficient , in part because they
converge quickly, they exploit efficient matrix-vector multiplications, and they avoid
expensive inner-outer optimization schemes by leveraging recent work on flexible pre-
conditioning techniques. These methods are also automatic since hyperparameters
and stopping criteria can be determined as part of the iterative algorithm. We describe
various problems and alternative formulations that also fit within our framework, so
these methods can be utilized for a wide range of problems. Numerical results from
various applications, including dynamic inverse problems and atmospheric inverse
modeling, demonstrate the benefits and potential for our approach.

Future work includes extending and applying the proposed method for real satel-
lite data, that when coupled with the GEOS-Chem chemical transport model, requires
a reformulation to handle the adjoint. In addition, techniques for uncertainty quan-
tification can be extended to this framework by utilizing a linearization approach to
approximate the posterior at the MAP estimate with a Gaussian distribution [3, 5]
or by exploiting previously computed bases for the solution subspaces as described
in [45].

Appendix A. Heuristics for selecting regularization parameters. In this
section, we describe various methods for selecting regularization parameters \lambda and \alpha 
for the projected problem (3.13). Notice that the solution to this problem is given by

fk(\lambda ,\alpha ) = (M\top 
k Mk + \lambda 2I+ \alpha 2R\top 

W,kRW,k)
 - 1M\top 

km1,1e1.

We write fk(\lambda ,\alpha ) to denote the explicit dependence of fk on the regularization pa-
rameters \lambda and \alpha .

Let Ck(\lambda ,\alpha ) = (M\top 
k Mk + \lambda 2I+ \alpha 2R\top 

W,kRW,k)
 - 1M\top 

k , and denote the projected
residual as

r
proj
k (\lambda ,\alpha ) =Mkfk(\lambda ,\alpha ) - m1,1e1.
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We use hybrid regularization techniques to estimate the regularization parameters in
the projected space similarly to [13]. However, the key difference is that (2.3) is no
longer a Tikhonov type problem, so the techniques do not apply directly. Therefore,
the parameter selection techniques used on the projected problem we present below
are heuristics inspired by [13].

In order to provide a benchmark for comparing the parameter selection methods,
we define the optimal parameters as

(\lambda proj, \alpha proj) = arg min
\lambda ,\alpha 

\| sk(\lambda ,\alpha ) - strue\| 
2
2,(A.1)

where strue is the true solution that is not available in practice. As was mentioned,
we use it merely to test the performance of the parameter selection methods. We can
select parameters \lambda ,\alpha using the UPRE method for the projection problem, where

(\lambda proj, \alpha proj) = arg min
\lambda ,\alpha 

1

k

\bigm\| \bigm\| \bigm\| rprojk (\lambda ,\alpha )
\bigm\| \bigm\| \bigm\| 
2

2
+

2

k
tr(MkCk(\lambda ,\alpha )) - 1.(A.2)

Notice that the noise level of the problem should be included in the definition of R.
Another common approach is to use the DP , where parameters \lambda ,\alpha are selected such
that

(\lambda proj, \alpha proj) = arg min
\lambda ,\alpha 

\bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| rprojk (\lambda ,\alpha )

\bigm\| \bigm\| \bigm\| 
2

2
 - m\tau 

\bigm| \bigm| \bigm| ,(A.3)

where \tau \geq 1 is a safety factor. Without a priori knowledge of the noise level, another
option is to use an extension of the WGCV method. The basic idea is to select
parameters

(\lambda proj, \alpha proj) = arg min
\lambda ,\alpha 

\bigm\| \bigm\| \bigm\| rprojk (\lambda ,\alpha )
\bigm\| \bigm\| \bigm\| 
2

2

(tr(Ik  - \omega MkCk(\lambda ,\alpha )))2
,(A.4)

where \omega = k/m [43]. Various parameter choice methods can be used here since
the projected problem is small. We point the interested reader to other works on
regularization parameter selection in the context of hybrid methods [14].

Motivated by the approaches described in [15, 16], we introduce three stopping
criteria for the FGGK process in the solution decomposition hybrid approach. The
iterative process is terminated if either of these conditions is satisfied: (i) a maxi-
mum number of iterations is attained; (ii) the GCV function defined in terms of the
iteration,

\widehat G(k) =
k
\bigm\| \bigm\| \bigm\| rprojk (\lambda ,\alpha )

\bigm\| \bigm\| \bigm\| 
2

2

(tr(Ik  - MkCk(\lambda ,\alpha )))2
(A.5)

reaches the minimum or flattens out. In addition to these criteria, one could also
consider stopping if the gradient of the objective function (3.3) is sufficiently small;
however, we did not need this in our implementation.

Appendix B. Alternative to FGGK. Here we briefly derive an alternative
to FGGK. Recall that we have to solve the sequence of systems (3.4) where now
Dk =D(\bfitxi (k)). Let y=Dk\bfitxi , so that the optimization problem can be recast as

min
x, y

\bigm\| \bigm\| \bigm\| \bigm\| \widehat A\widehat Q
\biggl[ 
I

D - 1
k

\biggr] \biggl[ 
x

y

\biggr] 
 - c

\bigm\| \bigm\| \bigm\| \bigm\| 
2

2

+

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl[ 
\lambda I

\alpha I

\biggr] \biggl[ 
x

y

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

\widehat Q
,(B.1)
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Algorithm B.1 Alternative flexible, generalized Golub--Kahan process

1: Initialize u1 = c/\| c\| R - 1

2: for i= 1, . . . , k do

3: w= \widehat A\top R - 1ui, hj,i =w\top \widehat Qvj for j = 1, . . . , i - 1

4: w=w - 
\sum i - 1

j=1 hj,ivj , hi,i = \| w\| \widehat Q, vi =w/hi,i

5: zi =

\biggl[ 
I

D - 1
i

\biggr] 
vi

6: w= \widehat A\widehat Qzi, gj,i =w\top R - 1uj for j = 1, . . . , i

7: w=w - 
\sum i

j=1 gj,iyj , gi+1,i = \| w\| R - 1 , ui+1 =w/gi+1,i

8: end for

where \widehat A and \widehat Q were defined in (3.7). We can derive a similar process as before, where
after k iterations of this process, we obtain

\widehat A\widehat QZk =Uk+1Gk and \widehat A\top Uk+1 =Vk+1Hk+1,(B.2)

where

\bullet Zk =
\bigl[ 
z1 . . . zk

\bigr] 
=

\bigl[ 
L1v1 . . . Lkvk

\bigr] 
\in \BbbR 

2n\times k with Li =

\biggl[ 
I

D - 1
i

\biggr] 
\in 

\BbbR 
2n\times 2n contains solution basis vectors;

\bullet Gk = [gi,j ]i=1,...,k+1;j=1,...,k \in \BbbR 
(k+1)\times k is upper Hessenberg;

\bullet Hk+1 = [hi,j ]i,j=1,...,k+1 \in \BbbR 
(k+1)\times (k+1) is upper triangular;

\bullet Uk+1=
\bigl[ 
u1 . . . uk+1

\bigr] 
\in \BbbR m\times (k+1) with u1 = c/\| c\| R - 1 ; and

\bullet Vk+1 =
\bigl[ 
v1 . . . vk+1

\bigr] 
\in \BbbR 

2n\times (k+1) such that

U\top 
k+1R

 - 1Uk+1 = Ik+1, V\top 
k+1

\widehat QVk+1 = Ik+1.

The specific algorithm is given in Algorithm B.1.

Next, assume that we seek solution

\biggl[ 
x

y

\biggr] 
\in \scrR (Zk), i.e.,

\biggl[ 
x

y

\biggr] 
=Zkf for some f \in \BbbR 

k.

Then the projected problem

min\left[ 

 x

y

\right] 

 \in \scrR (Zk)

\bigm\| \bigm\| \bigm\| \bigm\| \widehat A\widehat Q
\biggl[ 
x

y

\biggr] 
 - c

\bigm\| \bigm\| \bigm\| \bigm\| 
2

2

+

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl[ 
\lambda I

\alpha I

\biggr] \biggl[ 
x

y

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

\widehat Q
(B.3)

becomes

min
f\in \BbbR k

\| Gkf  - \| c\| R - 1e1\| 
2
2
+

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl[ 
\lambda I

\alpha I

\biggr] 
Zkf

\bigm\| \bigm\| \bigm\| \bigm\| 
2

\widehat Q
.

The important point here is that, while the projected problem is in a smaller dimen-
sional space, it is not obvious how to simultaneously estimate the parameters \lambda and \alpha .
One choice would be to assume \alpha = \lambda \lambda \alpha , where \lambda \alpha is fixed and estimate \lambda using tech-
niques similar to Appendix A. However, the choice we made in subsection 3.2 allows
for the estimation of both parameters within the projected space, while maintaining
the same computational cost. This highlights the novelty of the proposed approach.
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