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ABSTRACT

In this article, we propose a general framework for distribution-free nonparametric testing in multi-
dimensions, based on a notion of multivariate ranks defined using the theory of measure transporta-
tion. Unlike other existing proposals in the literature, these multivariate ranks share a number of useful
properties with the usual one-dimensional ranks; most importantly, these ranks are distribution-free. This
crucial observation allows us to design nonparametric tests that are exactly distribution-free under the
null hypothesis. We demonstrate the applicability of this approach by constructing exact distribution-
free tests for two classical nonparametric problems: (I) testing for mutual independence between random
vectors, and (II) testing for the equality of multivariate distributions. In particular, we propose (multivariate)
rank versions of distance covariance and energy statistic for testing scenarios (I) and (II), respectively.
In both these problems, we derive the asymptotic null distribution of the proposed test statistics. We
further show that our tests are consistent against all fixed alternatives. Moreover, the proposed tests are
computationally feasible and are well-defined under minimal assumptions on the underlying distributions
(e.g., they do not need any moment assumptions). We also demonstrate the efficacy of these proce-
dures via extensive simulations. In the process of analyzing the theoretical properties of our procedures,
we end up proving some new results in the theory of measure transportation and in the limit theory
of permutation statistics using Stein’s method for exchangeable pairs, which may be of independent
interest.

ARTICLE HISTORY

Received September 2019
Accepted April 2021

KEYWORDS

Asymptotic null distribution;
Consistency against fixed
alternatives; Distance
covariance; Distribution-free
inference; Energy distance;
Multivariate ranks;
Multivariate two-sample
testing; Quasi-Monte Carlo
sequences; Stein’s method
for exchangeable pairs;
Testing for mutual
independence

1. Introduction

Consider the following two classicalmultivariate nonparametric
hypothesis testing problems:
(I) Testing for mutual independence: Given independent obser-
vations from a distribution G on R

d, d = d1 + d2, d1, d2 ≥ 1,
let G1 and G2 denote the marginals of G corresponding to the
first d1 and last d2 components, respectively. Then, the problem
of mutual independence testing reduces to H0 : G = G1 ⊗
G2 versus H1 : G �= G1 ⊗ G2, where by G1 ⊗ G2,
we mean the product of the marginal distributions G1 and G2.
A natural extension of this problem is to test for the mutual
independence of K marginals, with K ≥ 2. The indepen-
dence testing problem has found applications in a wide variety
of disciplines such as in statistical genetics (Liu et al. 2010),
survival analysis (Martin and Betensky 2005), ecological risk
assessment (Dishion, Capaldi, and Yoerger 1999), independent
component analysis (Lu, Lee, and Chiu 2009), etc., and has con-
sequently inspired a long line of research over the past century
(see, e.g., Puri and Sen 1971; Gieser and Randles 1997; Hollan-
der, Wolfe, and Chicken 2014, chaps.1 and 8 and the references
therein).
(II) Testing for equality of distributions: Given independent
observations from two multivariate distributions, say F1 and F2
on R

d, d ≥ 1, the nonparametric two-sample goodness-of-fit
testing problem can be formulated as H0 : F1 = F2 versus
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H1 : F1 �= F2. The above problem can also be extended to
the K-sample setup (K ≥ 2) when one observes independent
samples from K distributions and the goal is to nonparamet-
rically test the equality of all the K distributions. The two-
sample (or K-sample) problem also has numerous applications,
for example, in pharmaceutical studies (Farris and Schopflocher
1999), causal inference (Folkes, Koletsky, and Graham 1987),
remote sensing (Conradsen et al. 2003), econometrics (Mayer
1975), etc., and has been studied extensively (see, e.g., Weiss
1960; Bickel 1968; Hollander, Wolfe, and Chicken 2014 and the
references therein).

In this article, we study the above two problems and develop
nonparametric testing procedures that are exactly distribution-
free (i.e., the null distributions of the test statistics are free of
the underlying (unknown) data-generating distributions, for
all sample sizes), computationally feasible and are consistent
against all fixed alternatives (i.e., the probability of rejecting
the null, calculated under the alternative, converges to 1 as the
sample size increases). In fact, we develop a general frame-
work for multivariate distribution-free nonparametric testing
applicable much beyond the above two examples. To the best
of our knowledge, the test proposed here in the context of
testing independence is the first and only nonparametric test
that guarantees the three aforementioned desirable properties.
In the multivariate two-sample setting, the only two tests with
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the above properties are due to Rosenbaum Rosenbaum (2005)
and Boeckel, Spokoiny, and Suvorikova (2018).

To construct our finite sample distribution-free tests, we
use a suitable notion of multivariate ranks (obtained from
the theory of measure transportation, to be discussed below)
which are themselves distribution-free. This is analogous to
what is usually done in one-dimensional problems. Let us
illustrate this principle in the context of testing for mutual
independence (problem (I)). When d1 = d2 = 1, the
classical product-moment correlation—which mainly captures
linear dependence between the variables—can be used to
test this hypothesis. However, the exact distribution of the
Pearson correlation coefficient, under H0, depends on the
marginals G1 and G2. This gave way to Spearman’s rank-
correlation (another related measure is Kendall’s τ coeffi-
cient; also see Pearson 1920; Kendall and Gibbons 1990; Gib-
bons and Chakraborti 2011) which calculates the product-
moment correlation between the one-dimensional ranks of
the variables. Consequently, the resulting test is distribution-
free under the null hypothesis of mutual independence and
can deal with nonlinear (monotone) dependencies. Note that
the use of ranks to obtain distribution-free tests is ubiqui-
tous in one-dimensional problems in nonparametric statistics—
for example, two-sample Kolmogorov–Smirnov test (Smirnoff
1939), Wilcoxon signed-rank test (Wilcoxon 1947), Wald–
Wolfowitz runs test (Wald and Wolfowitz 1940), Mann-
Whitney rank-sum test (Mann and Whitney 1947), Kruskal–
Wallis test (Kruskal 1952), Hoeffding’s D-test (Hoeffding
1948), etc.

In the d-dimensional Euclidean space, for d ≥ 2, due to
the absence of a canonical ordering, the existing extensions of
concepts like ranks (such as component-wise ranks, e.g., Bickel
1965; Puri and Sen 1966; spatial ranks, e.g., Chaudhuri 1996;
Marden 1999; depth-based ranks, e.g., Liu and Singh 1993;
Zuo and Serfling 2000; Mahalanobis ranks, e.g., Hallin and
Paindaveine 2004, 2006) and the corresponding rank-based
tests no longer possess exact distribution-freeness. This raises
a fundamental question: “How do we define multivariate ranks
that can lead to distribution-free testing procedures?”. A major
breakthrough in this regard was very recently made in the
pioneering work of Marc Hallin and coauthors (Hallin 2017;
Hallin et al. 2021; Chernozhukov et al. 2017)where they propose
a notion of multivariate ranks, based on the theory of measure
transportation, that possesses many of the desirable properties
present in their one-dimensional counterparts.

To motivate this notion of multivariate ranks, let us start
with the following interpretation of the one-dimensional ranks.
Given a collection of n iid random variables X1, . . . ,Xn on
R (having a continuous distribution) the rank map assigns
these observations to elements of the set {1/n, 2/n, . . . , n/n} (or
1, 2, . . . , n, depending on interpretation) by solving the follow-
ing optimization problem:

σ̂ := argminσ=(σ (1),...,σ(n)) ∈ Sn

n
∑

i=1

∣

∣

∣
Xi −

σ(i)

n

∣

∣

∣

2
(1)

= argmaxσ=(σ (1),...,σ(n)) ∈ Sn

n
∑

i=1

σ(i)Xi,

where Sn is the set of all permutations of {1, 2, . . . , n} (see Villani
2003, chap. 1). It is not difficult to check (by using the rearrange-
ment inequality; see, e.g., Hardy, Littlewood, and Pólya 1952,
theor. 368) that σ̂ (i)/n (or simply σ̂ (i)) will equal the rank of
Xi, for i = 1, . . . , n; see the left panel of Figure 1.

Note that Equation (1) can be readily extended to the mul-
tivariate setting where the discrete uniform numbers {i/n :
1 ≤ i ≤ n} are replaced by the set of multivariate rank
vectors {c1, . . . , cn} ⊂ [0, 1]d — a sequence of “uniform-like”
points in [0, 1]d (see Section E.2 in the supplement for other
choices of reference distributions; also see, e.g., Hallin 2017;
Hallin et al. 2021; Chernozhukov et al. 2017; Boeckel, Spokoiny,
and Suvorikova 2018). In this article, we consider {ci : 1 ≤
i ≤ n} as a quasi-Monte Carlo sequence—in particular, we
advocate the use of Halton sequences and employ it in our
simulation experiments; other natural choices like the equally
spaced d-dimensional lattice are also possible (see Section E.3
in the supplement for a detailed discussion). Specifically, given
iid random vectorsX1, . . . ,Xn onRd, we consider the following
optimization problem:

σ̂ := argminσ=(σ (1),...,σ(n)) ∈ Sn

n
∑

i=1

‖Xi − cσ(i)‖2 (2)

where, as before, the optimization is over Sn, the set of all per-
mutations of {1, 2, . . . , n}, and ‖ · ‖ denotes the usual Euclidean
norm in R

d. Note that (2) can be viewed as an assignment
problem (see, e.g., Munkres 1957; Bertsekas 1988) for which
algorithmswithworst case complexityO(n3) are available in the
literature (see Appendix B in the supplement for a discussion).
Based onEquation (2), one can then define themultivariate rank
of Xi as cσ̂ (i). This is illustrated in the right panel of Figure 1
where the dashed lines join the data points (in red) with the
corresponding rank vectors (indicated by blue crosses).

The above optimization problem (see Equation (2)) indeed
results in a distribution-free notion of empirical multivariate
ranks as we demonstrate in Proposition 2.2 (also see (Hallin
et al. 2021, prop. 1.6.1)). Note that Equation (2) is connected to
the theory of optimal measure transportation as we are “trans-
porting” the empirical distribution of the Xi’s to the empirical
distribution of ci’s. We review this literature and build on the
work of Hallin et al. (2021) in Sections 2.1 and 2.2.

Having defined a suitable notion of multivariate ranks, the
next natural question becomes: “How does one use these multi-
variate ranks for nonparametric testing?”. In this regard we have
a general yet powerful recipe: Given a set of multivariate obser-
vations for a nonparametric testing problem (e.g., (I) or (II)),
define their multivariate ranks in such a way (depending on the
problem) so that the distribution of these ranks is exactly univer-
sal (free of the data generating distribution(s)) under H0. Next,
take a “good” test statistic for the corresponding nonparametric
testing problem (which may not be distribution-free under H0).
Then, form a new test by evaluating the original test statistic
on these obtained multivariate ranks instead of the data points
themselves. Clearly, this will result in a distribution-free test
statistic. We believe that this approach is quite general and can
consequently be used in a variety of multivariate nonparametric
inference problems, much beyond the two problems (I) and
(II) discussed above. As we have observed before, this prescrip-
tion indeed yields Spearman’s rank correlation coefficient when
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Figure 1. The left panel illustrates the correspondence between univariate data points and their ranks (which are the points i/n, for i = 1, . . . , n = 10). The right panel

shows the similar correspondence between bivariate data points and their bivariate ranks which are now pseudo-random numbers in the unit square [0, 1]2 . The rank of a
data point (in solid red) is given by the blue cross at the other end of the dashed line joining them. Note that the points near the center of the data distribution aremapped
close to (1/2, 1/2)whereas the points closer to the extremes of the data cloud are mapped to the corresponding extreme regions of the unit square, thereby giving rise to
a natural bivariate ordering of the data points.

applied to the usual product-moment correlation for testing
mutual independence when d1 = d2 = 1. In fact, this general
principle has motivated a number of other interesting articles
in the last year-and-a-half after the first arxiv version of this
article was posted (see Section 5, i.e., the discussion section for
details).

Let us now describe our contributions in the problem of
testing for mutual independence (i.e., problem (I)). Over the
last 2–3 decades a plethora of nonparametric testing proce-
dures have been proposed for this problem in the multivariate
setting; see, for example, Székely, Rizzo, and Bakirov (2007),
Berrett and Samworth (2019), Gretton, Fukumizu et al. (2008),
Heller, Heller, and Gorfine (2013), Biswas, Sarkar, and Ghosh
(2016), Gieser and Randles (1997), Taskinen, Oja, and Randles
(2005), Oja (2010), and Friedman and Rafsky (1983) and the
references therein. One particular testing procedure, namely
distance covariance (introduced in Székely, Rizzo, and Bakirov
2007; also see Bakirov, Rizzo, and Székely 2006), has received
much attention recently, mainly due to its simplicity and good
power properties. We also introduce the “population” version of
rank distance covariance in Section 3.1 and study its empirical
analogue in Section 4.1. In Lemma 3.1, we show that rank
distance covariance also characterizes independence.

In Lemma 4.1, we show that our proposed rank distance
covariance test is exactly distribution-free as soon as the two
marginal distributions are absolutely continuous. In fact, when
d1 = d2 = 1, we show in Lemma 4.2 that our proposed
test is exactly equivalent to the statistic put forward in Blum,
Kiefer, and Rosenblatt (1961) which in turn is a modification
of the celebrated Hoeffding’s D-statistic (Hoeffding (1948))—
one of the first nonparametric tests for mutual independence.
We further demonstrate, in Theorem 4.2, that our proposed
test is consistent (i.e., has asymptotic power 1) as soon as the
two marginals are absolutely continuous. In fact, we do not
even need the underlying distributions to have finite means for
this result (cf. with usual distance covariance). We also go a
step further and obtain the asymptotic distributional limit of

our test statistic, under H0, in Theorem 4.1. This result further
demonstrates that the asymptotic limit of our test statistic does
not depend on the underlying data-generating distribution and
is invariant to the choice of the sequence {cn}n≥1—the multi-
variate ranks.

In Section 4.2, we study the problemof testing for the equality
of twomultivariate distributions (i.e., problem (II)) and propose
a test for this goodness of fit using the rank energy statisticwhich
is based on the usual energy statistic (as introduced in Székely
and Rizzo 2013, also see Baringhaus and Franz 2004; Székely
and Rizzo 2005 for definitions and motivation). Similar to dis-
tance covariance, the energy statistic is also based on pairwise
distances and is easy to compute. The energy statistic equals 0
if and only if the two underlying distributions are the same, as
long as the two distributions have finite means. The energy test
has also attracted a lot of attention recently in a variety of appli-
cations, see, for example, in robust statistics (Klebanov 2002),
microarray data analysis (Xiao et al. 2004), material structure
analysis (Beneš et al. 2009), etc.

We demonstrate the distribution-free nature of our proposed
test statistic for problem (II) in Lemma 4.3. An interesting
property of this proposed statistic is that it is exactly equiva-
lent to the famous two-sample Cramér-von Mises statistic (see,
e.g., Anderson 1962 when d = 1. We explain this connection
in Lemma 4.4. We further prove the consistency and derive the
asymptotic distribution (under H0) of our proposed rank-based
energy test statistic in Theorems 4.4 and 4.3, respectively. The
population version of this rank-based energy statistic exhibits
several interesting and desirable properties which we highlight
in Lemma 3.2.

Moreover, we extend both the above tests to their multi-
sample versions in Appendix E.1 in the supplement; the corre-
sponding theoretical results are presented in Propositions E.1
and E.2.

In Appendix C, we carry out extensive simulation exper-
iments to study the power behavior of the proposed tests.
These simulations show that our proposed procedures for
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independence testing and two-sample goodness-of-fit testing
perform well under a variety of alternatives, often outperform-
ing competing methods. In general, these distribution-free tests
have good efficiency, are more powerful for distributions with
heavy tails and are more robust to outliers and contaminations.
In Appendix A (in the supplement), we demonstrate practical
advantages of our proposals over competing methods via the
analysis of two benchmark datasets.

In the following, we encapsulate some of the main contribu-
tions of this article, all the while comparing our procedures to
existing approaches from the statistics literature.
(i) Exact distribution-freeness: As mentioned before, our pro-
posals are all exactly distribution-free in finite samples. This is
a particularly desirable property as it avoids the need to esti-
mate any nuisance parameters, or use resampling/permutation
ideas, or conservative asymptotic approximations, for deter-
mining rejection thresholds. Moreover, distribution-free pro-
cedures can help reduce computational burden in statistical
problems—a very practical concern in this era of big data; see,
e.g., (Heller, Gorfine, and Heller 2012, sec. 7) for an inter-
esting discussion on this topic. As far as we are aware, the
only distribution-free methods available in the literature for
tackling the above discussed problems (I) and (II) are: Rosen-
baum (2005),Boeckel, Spokoiny, and Suvorikova (2018), Biswas,
Mukhopadhyay, and Ghosh (2014) for the multivariate two-
sample problem and Biswas, Sarkar, and Ghosh (2016), Heller,
Gorfine, and Heller (2012), and Heller and Heller (2016) for
the mutual independence testing problem. Note that exact
distribution-freeness is stronger than obtaining distribution-
free thresholds for testing procedures (which are usually con-
servative) as in Gretton and Györfi (2008), Gretton and Györfi
(2010), Gretton et al. (2012), and Biau and Györfi (2007).
(ii) Completely nonparametric and computationally feasible:
Being based on multivariate ranks, our proposal is completely
nonparametric. Moreover, our proposed test statistics can be
computed with worst-case complexityO(n3) for all dimensions
(once the pairwise distances between data points are calculated).
Further, our procedures do not depend crucially on the choice
of the ci’s (as in Equation (2)); see Theorems 4.1 and 4.3. In
Appendix B (in the supplement), we explain how our proposed
test statistics can be computed in a few simple steps using readily
available R packages. Although exactly distribution-free graph-
based tests formutual independence and two-sample goodness-
of-fit testing were proposed in Biswas, Sarkar, andGhosh (2016)
and Biswas, Mukhopadhyay, and Ghosh (2014), respectively,
these tests are extremely expensive to compute and possibly not
applicable even for moderate sample sizes.
(iii) Consistency under absolute continuity: The only condition
we need on the underlying distributions for the consistency of
our tests is that they are absolutely continuous (no moment
conditions are necessary). This enables their direct usage for
nonparametric inference under heavy-tailed data-generating
distributions such as stable laws Yang (2012) and Pareto dis-
tributions Rizzo (2009), and also sets them apart from popular
methods such as usual distance covariance and energy statistic.
To the best of our knowledge, there are only two computa-
tionally efficient exactly distribution-free multivariate mutual
independence testing procedures in literature, both based on a
similar graph-based framework and proposed simultaneously

in Heller, Gorfine, and Heller (2012); also see Heller and Heller
(2016). However, in Heller, Gorfine, and Heller (2012), the
authors did not provide any results that guarantee consistency
of their tests against fixed alternatives.
(iv) Broader scope of applications in multivariate nonpara-
metric testing: As described before, our approach is holistic.
Based on our ideas, one can easily construct multivariate rank-
based distribution-free tests for mutual independence using
other statistics, such as Hilbert-Schmidt independence criteria
(Gretton, Fukumizu et al. 2008) or HHG (Heller, Heller, and
Gorfine 2013), instead of distance covariance; same goes for the
goodness-of-fit testing problem. Note that, although we delve
deep into these two particular nonparametric problems, we
essentially describe a general principle to construct distribution-
free tests inmultivariate nonparametric settings that can be used
in a variety of other contexts; e.g., in tests of symmetry (Székely
and Rizzo 2013), hierarchical clustering (Székely and Rizzo
2005), change point analysis (Székely and Rizzo 2009), etc.

The rest of the article is organized as follows. In Section 2,
we start with a brief overview of measure transportation (Sec-
tion 2.1), followed by a description of our proposedmultivariate
ranks and their properties (Sections 2.2 and 2.3). Section 3 intro-
duces new measures of multivariate association and goodness
of fit and also discusses some interesting properties of these
measures that make them desirable. Our proposed procedures
for testing mutual independence and equality of distributions
are introduced in Section 4 (along with their multi-sample
extensions). In that section, we also discuss interesting/useful
properties of our test statistics and provide theoretical guar-
antees with regards to distribution-freeness, consistency and
asymptotic null distribution. We conclude the main article with
a brief discussion in Section 5. Appendices C, D and A (in the
supplement) illustrate the usefulness of our proposed methods
via simulation experiments and real data analysis. We conclude
themain article with a brief discussion in Section 5. InAppendix
B (in the supplement), we explain how the proposed test statis-
tics can be computed using standard software packages (in R).
Appendix E.3 (in the supplement) is aimed at providing a very
brief introduction to the field of quasi-Monte Carlo methods
which plays a tangential role in our approach. Finally, in Appen-
dices F and G (see the supplement) we provide the proofs of
our main results, while in Appendix H (see the supplement),
we discuss some existing results on convex analysis and Stein’s
method of exchangeable pairs, which are used in the proofs of
our main results.

Themethods described in the article have been implemented
using the R software. The relevant codes, including simulation
experiments, are available in the first author’s GitHub page.

After the first version of this article was posted on arxiv,
we were made aware of the article (Shi, Drton, and Han 2020)
(uploaded a few days after our first submission on arxiv).
Shi, Drton, andHan (2020) considered distribution-freemutual
independence testing of two random vectors (i.e., problem (I))
usingmultivariate ranks as described in Hallin et al. (2021). The
article also shows the distribution-freeness and consistency of
the same test-statistic as in Section 4.1 of this article. However,
the asymptotic consistency results in Shi, Drton, andHan (2020)
are derived undermore stringent conditions (e.g., nonvanishing
Lebesgue probability densities). Note that in our article, we
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develop a general framework for multivariate distribution-free
nonparametric testing using optimal transportation, applicable
much beyond problem (I); in particular, we also consider prob-
lem (II).

2. Multivariate Ranks and Quantiles

In this section, we define ranks and quantiles for multivariate
distributions (both population and empirical versions) using the
theory ofmeasure transportation; our approach is similar to that
of Hallin et al. (2021) and Boeckel, Spokoiny, and Suvorikova
(2018). This will serve a pivotal role in defining the test statistics
that appear later in the article.

2.1. Preliminaries: Overview ofMeasure Transportation

Let us introduce some notation for the rest of the article.Wewill
use ‖ · ‖ and 〈·, ·〉 to denote the standard Euclidean norm and
inner product on a suitable finite-dimensional Euclidean space
(sayRd), respectively.Weak convergence of distributions will be

denoted by
w→ while

d= will denote equality in distribution. We
will use Ud to denote the uniform distribution on [0, 1]d, and Sn
for the set of all permutations of {1, 2, . . . , n}. Let δa denote the
Dirac measure that assigns probability 1 to the point a. Finally,
let P(Rd) and Pac(R

d) denote the families of all probability
distributions and Lebesgue absolutely continuous probability
measures on R

d, respectively.
As the name suggests, “measure transportation” (perhaps

more commonly referred to as optimal transportation) is the
problem of finding “nice” functions F : Rd → R

d such that
F pushes a given measure μ ∈ P(Rd) to ν ∈ P(Rd). Here, by F
pushesμ to ν, usually written as F#μ = ν, wemean that F(X) ∼
ν where X ∼ μ. This rich area of mathematics was initiated by
the work of Gaspard Monge in 1781 (see Monge 1781). Based
on already introduced notation, perhaps the simplest version of
Monge’s problem is as follows:

inf
F

∫

‖x − F(x)‖2 dμ(x) subject to F#μ = ν; (3)

this is technically a mis-characterization as Monge originally
worked with the loss ‖·‖ instead of ‖·‖2. A minimizer of (3),
if it exists, is referred to as an optimal transport map. One of the
most powerful results in this field came into being fromBrenier’s
polar factorization theorem (see Brenier 1991) which yields: If
μ, ν ∈ Pac

(

R
d
)

have finite second-order moments, then the
correspondingMonge’s problem admits aμ-a.e. unique solution
which happens to be the gradient of a convex function.

While the above approach addresses the problem of finding
functions that push μ to ν, the assumption on the second-order
moments (which is a basic requirement for Monge’s problem to
make sense) seems extraneous and inappropriate. Indeed, for
d = 1, if Fμ andFν are the distribution functions associatedwith
μ and ν (assumed to be absolutely continuous), respectively,
then F−1

ν ◦ Fμ pushes μ to ν without any moment assumptions.
A ground-breaking extension of this univariate property was
proved byMcCann (1995), where he took a geometric approach
to the problem of measure transportation. His result is the
defining tool we will need to make sense of the definitions in
this section. Therefore, let us state McCann’s theorem in a form

which will be useful to us; see, for example, Villani (2003, theor.
2.12 and Corol 2.30).

Proposition 2.1 (McCann’s theorem (McCann 1995)). Suppose
that μ, ν ∈ Pac(R

d). Then, there exist functions R(·) and Q(·)
(hereafter referred to as “transport maps”), both of which are
gradients of (extended) real-valued d-variate convex functions
(hereafter called “transport potentials”), such that R#μ = ν,
Q#ν = μ, R and Q are unique (μ and ν a.e., respectively),
R ◦ Q(x) = x (μ a.e.) and Q ◦ R(y) = y (ν a.e.). Moreover,
if μ and ν have finite second moments, R(·) is also the solution
to Monge’s problem in Equation (3).

Observe that McCann’s theorem does away with all moment
assumptions and guarantees existence and (a.e.) uniqueness of
transport maps under minimal assumptions on μ and ν. Note
that any convex function on R

d is differentiable Lebesgue a.e.,
and consequently μ (or ν) a.e. by Alexandroff theorem (see,
e.g., Alexandroff 1939). In Proposition 2.1, by “gradient of a
convex function,” we essentially refer to a function from R

d →
R
d which is μ (or ν) a.e. equal to the gradient of some convex

function.

2.2. Definitions ofMultivariate Ranks

Definition 2.1 (Population multivariate ranks and quantiles). Set
ν = Ud. Given a measure μ ∈ Pac(R

d), the corresponding
population rank and quantilemaps are defined as functionsR(·)
andQ(·), respectively (as in Proposition 2.1). Note that these are
unique only up to measure zero sets with respect to μ and ν,
respectively.

Remark 2.1. The smoothness and regularity properties of the
population rank and quantile maps as in Definition 2.1 have
been studied extensively over the past 30 years or so. Since such
discussions are beyond the scope of this article, we would like
to refer the interested reader to De Philippis and Figalli (2013),
Caffarelli (1990), and Villani (2009, chap. 12).

In standard statistical applications, the population rank map
is not available to the practitioner. In fact, the only accessible
information about themeasureμ comes in the formof empirical

observations X1,X2, . . . ,Xn
iid∼ μ ∈ Pac(R

d). A natural ques-
tion thus arises: “How can we estimate population ranks from
empirical observations?”. In this direction, let

H
d
n := {hd1 , . . . , hdn} (4)

denote the (fixed) set of sample multivariate rank vectors (anal-
ogous to ci’s in (2)). In practice, for d ≥ 2 we may take Hd

n to
be the d-dimensional Halton sequence of size n (or any quasi-
Monte Carlo sequence; see Appendix E.3 in the supplement for
more details), and the usual {i/n}1≤i≤n sequence when d =
1. The empirical distribution on Hd

n will serve as a discrete
approximation of Ud. Also, let DX

n := {X1, . . . ,Xn} be the
observed data. Let

μX
n := 1

n

n
∑

i=1

δXi and νn := 1

n

n
∑

i=1

δhdi
(5)

denote the empirical distributions onDX
n andHd

n, respectively.
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Definition 2.2 (Empirical rank map). We define the empirical
rank function R̂n : DX

n → Hd
n as the optimal transport map

which transports μX
n (the empirical distribution on the data) to

νn (the empirical distribution onHd
n), that is,

R̂n = argminF

∫

‖x − F(x)‖2 dμX
n (x) subject to

F#μX
n = νn (6)

Note that Equation (6) can be thought of as the discrete ana-
log of Equation (3) which defines the population rank function
R(·) if μ has finite second moments. Further, Equation (6) is
equivalent to the following optimization problem:

Oσn := argminσ∈Sn

n
∑

i=1

‖Xi − hdσ(i)‖2

= argmaxσ∈Sn

n
∑

i=1

〈Xi, h
d
σ(i)〉. (7)

The equivalence between the two optimization problems
in Equation (7) can be easily established by writing out the
norms in terms of standard inner products. Note that Oσn is
a.s. uniquely defined (for each n). Now, based on Equation (7),
observe that the sample rank map R̂n satisfies

R̂n(Xi) = hd
σ̂n(i)

, for i = 1, . . . , n. (8)

Remark 2.2. The optimization problem in Equation (7) is a
combinatorial optimization problem. However, it is known to
be equivalent to a linear program and can consequently be
solved by standard solvers. Moreover, the special structure of
the above problem allows us to view it as an assignment problem
(see Munkres 1957; Bertsekas 1988) for which algorithms with
worst case complexity O(n3) are available in the literature. We
will discuss this inmore detail in Appendix B in the supplement.

Remark 2.3 (Connection to usual ranks in one-dimension). For
d = 1, if we useH1

n = {i/n}ni=1, then the empirical ranks R̂n(·)
reduce to the usual notion of one-dimensional ranks.

Remark 2.4 (Why choose a quasi-Monte Carlo sequence?). In
this article, we use a quasi-Monte Carlo sequence to compute
the multivariate empirical rank map. There are many reasons to
prefer a quasi-Monte Carlo sequence as: (i) it is deterministic,
(ii) can be constructed for every n and d, (iii) the sequence
need not be recomputed if n increases by 1, and importantly,
(iv) it provides greater uniformity as it is a low-discrepancy
sequence (the discrepancy of a sequence is low if the proportion
of points in the sequence falling into an arbitrary hyperrectangle
is close to the Lebesgue measure of the set); see Appendix
E.3 for more details. In our numerical computations, we use
the Halton sequence—a quasi-Monte Carlo sequence—which
is readily available in computing packages; for example, in the
R package randtoolbox. Note that the equally-spaced d-
dimensional lattice does not satisfy (ii) and (iii) above.

2.3. Properties ofMultivariate Ranks

When d = 1, the notion of ranks has a number of desirable
properties which have been useful in analyzing rank-based esti-
mators and test statistics (see, e.g., Hallin et al. 2021, Part I

and the references therein). Below in Proposition 2.2 (proved
in Appendix F.1 in the supplement), we reproduce some of
these properties for the empirical multivariate ranks as in Def-
inition 2.2. Proposition 2.2 is in fact very similar to (Hallin
et al. 2021, prop. 1.6.1) (also see Hallin 2017, prop. 6.1), with
some differences which we will elaborate in Appendix E.2 in the
supplement.

Proposition 2.2. Suppose that X1, . . . ,Xn
iid∼ μ ∈ Pac(R

d).

We define an order statistic X
(n)
(·) of {X1, . . . ,Xn} as any fixed,

arbitrary ordered version of the same—for example, X(n)
(·) =

(X(1), . . . ,X(n)), where X(i) is such that the first coordinate of
X(i) is the ith-order statistic of the n-tuple formed by the first

coordinates of the n-vectors in X
(n)
(·) . Then

(i) The order statistic X(n)
(·) is complete and sufficient.

(ii) The vector (R̂n(X1), . . . , R̂n(Xn)) is uniformly distributed
over the n! permutations of the fixed gridHd

n (see (4)).

(iii) (R̂n(X1), . . . , R̂n(Xn)) and X
(n)
(·) are mutually independent.

Remark 2.5 (On Proposition 2.2). Property (ii) from Propo-
sition 2.2 is an analog of the distribution-freeness of one-
dimensional ranks. Property (iii) may be interpreted as the
independence between ranks and order statistics.

As we will see in Section 4, the distribution-free property of
the empirical multivariate ranks will lead to the distribution-
freeness of the proposed test statistics. However, to guarantee
the consistency of the proposed tests, we need the sample rank
maps to be well-behaved as the sample size grows. In fact, in the
following theorem (proved in Appendix F.2 in the supplement)
we show that the sample rank map converges to its population
counterpart (i.e., the population rank function R(·) as in Defi-
nition 2.1) in a suitable sense, under minimal assumptions.

Theorem 2.1 (Almost sure L2 convergence). Assume X1, . . . ,

Xn
iid∼ μ ∈ Pac(R

d). Suppose that νn
w−→ Ud; see Equation

(5). Then 1
n

∑n
i=1‖R̂n(Xi) − R(Xi)‖

a.s.−→ 0.

Remark 2.6 (Convergence under Lp-norm). As R̂n(·) and R(·)
are uniformly bounded, Theorem 2.1 implies convergence with
respect to any Lp-norm, for 1 ≤ p < ∞.

Remark 2.7 (On absolute continuity of μ). It is perhaps
instructive to note that, even for ranks in one-dimension, the
distribution-free property does not hold if the data generating
measure is not continuous. Since distribution-free inference is
the main goal of this article, it seems reasonable to assume
absolute continuity of μ.

It is easy to see that the a.s.-convergence, as presented in The-
orem 2.1, is weaker than uniform convergence; see, for exam-
ple, Ghosal and Sen (2019), Chernozhukov et al. (2017), and
Hallin et al. (2021). However, the assumption in Theorem 2.1 is
minimal—we only assume the absolute continuity of μ, which
is much weaker than the assumptions in the above references. A
related result that proves a local uniform convergence of empiri-
cal rankmaps can be found in Zemel and Panaretos (2019, prop.
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6) where the authors additionally impose finite second moment
assumptions on μ. In Section 4, we will highlight specifically
how and why Theorem 2.1 provides a more useful notion of
convergence necessary for the results in this article.

3. NewMultivariate Rank-BasedMeasures for

Nonparametric Testing

We introduce new multivariate rank-based measures of depen-
dence and goodness of fit in this section and study the properties
of these population quantities.

3.1. Rank-Based DependenceMeasure

To motivate our proposal, let us start with d = 1. Suppose
that Z1 and Z2 are real-valued absolutely continuous random
variables with distribution functions G1(·) and G2(·). It is a
simple probability exercise to show that Z1 and Z2 are indepen-
dent if and only if G1(Z1) and G2(Z2) are independent (a more
general version of this result will be proved later in the article,
see Lemma 3.1 (part (b)). Thus, Z1 and Z2 are independent if
and only if the joint characteristic function of (G1(Z1),G2(Z2))
factors as the product of the marginal characteristic functions,
that is, for all (t, s) ∈ R

2,

∣

∣E exp
(

itG1(Z1) + isG2(Z2))

−E exp
(

itG1(Z1))E exp
(

isG2(Z2))
∣

∣

2 = 0.

This suggests the following natural measure of dependence:

Rw :=
∫ ∫

∣

∣E exp
(

iGt,s(Z)
)

− E exp
(

itG1(Z1))E exp
(

isG2(Z2))
∣

∣

2
w(t, s) dt ds,

where Z = (Z1,Z2), Gt,s(Z) = tG1(Z1) + sG2(Z2) and w : R ×
R → [0,∞) is a weight function such thatRw < +∞. The fol-
lowing proposition (proved in Appendix F.3 in the supplement)
draws a connection between Rw and the classical Spearman’s
rank correlation, which we think has not been observed before.

Proposition 3.1. Consider the notation introduced above. Set
fZ1,Z2(t, s) := E exp

(

itG1(Z1) + isG2(Z2)) − E exp
(

itG1(Z1))E
exp

(

isG2(Z2)). Then,

lim
t,s→0,|t|/|s|→c

∣

∣fZ1,Z2(t, s)
∣

∣

2

∣

∣fZ1,Z1(t, s)
∣

∣

∣

∣fZ2,Z2(t, s)
∣

∣

= ρ2(G1(Z1),G2(Z2)
)

,

(9)
where ρ2

(

G1(Z1),G2(Z2)
)

denotes the usual correlation
between G1(Z1) and G2(Z2). In the above display, c > 0 is
finite, and ensures that s and t do not converge to 0 at “different
rates.”

The right-hand side of Equation (9) may be interpreted as
the population analogue of the classical Spearman’s rank corre-
lation. Note that applications of Spearman’s rank correlation as
a measure of association have been extensively studied in the
statistics literature (see, e.g., Hauke and Kossowski 2011; Iman
and Conover 1982; Mukaka 2012).

Remark 3.1. Proposition 3.1 shows how Spearman’s rank cor-
relation measure effectively looks at the difference between the
joint and marginal characteristic functions for small (in magni-
tude) choices of t and s. Therefore,Rw (after rescaling) offers a
very natural extension to Spearman’s rank correlation, but it can
capture all kinds of departures from independence.

Remark 3.2. It is easy to see that the right-hand side of
Equation (9) being 0 does not imply the independence of Z1 and
Z2. For example, say Z1 ∼ U1 and Z2 = Z1 if Z1 ∈ [1/4, 3/4],
Z2 = 1 − Z1 if Z1 ∈ (0, 1/4) ∪ (3/4, 1). Then, Z2 ∼ U1

and bothG1(·),G2(·) are identity functions on (0, 1). Therefore,
E[G1(Z1)G2(Z2)]−E[G1(Z1)]E[G2(Z2)] = E[Z1Z2]−1/4 = 0.

The above discussion now raises the following two ques-
tions: “Can we extend Rw beyond d = 1? Also, how do we
choose the weight function w(·, ·)?”. For the first question, we
will proceed by replacing G1(·) and G2(·) with the notion of
population multivariate ranks as introduced in Definition 2.1.
For the second question, we will borrow the weight function
from the seminal article Székely, Rizzo, and Bakirov (2007)
where the authors introduced the notion of distance covari-
ance. As in Székely, Rizzo, and Bakirov (2007), we do not
make any claims on the optimality of our proposed weight
function except that it ensures simple, applicable empirical for-
mulae and an exact equivalence between Rw and the inde-
pendence between Z1 and Z2. We are now in a position to
formally define the new rank-based multivariate measure of
dependence.

Definition 3.1 (Rank distance covariance). Suppose that Z1 ∼
μ1 and Z2 ∼ μ2 (not necessarily independent) such that μ1 ∈
Pac(R

d1) and μ2 ∈ Pac(R
d2). Let R1(·) and R2(·) denote the

corresponding population rankmaps (Definition 2.1). The rank
distance covariance (RdCov2) between Z1 and Z2 is defined
as the usual distance covariance between R1(Z1) and R2(Z2),
that is,

RdCov2(Z1,Z2) :=
∫

Rd1+d2

(10)

×

∣

∣

∣
E exp

(

iRt,s(Z)) − E exp
(

it�R1(Z1))E exp
(

is�R2(Z2))

∣

∣

∣

2

c(d1)c(d2)‖t‖1+d1‖s‖1+d2

× dt ds,

where Z := (Z1,Z2), Rt,s(Z) := t�R1(Z1) + s�R2(Z2) and

c(d) := π (1+d)/2
(

�((1 + d)/2)
)−1

.

Definition 3.2 (Rank distance correlation). The rank distance
correlation (RdCorr) between Z1 and Z2 is defined as the usual
distance correlation (see Székely, Rizzo, and Bakirov 2007, eq.
2.7) between R1(Z1) and R2(Z2). In other words,

RdCorr2(Z1,Z2) :=
RdCov2(Z1,Z2)

RdCov(Z1,Z1)RdCov(Z2,Z2)
. (11)

RdCorr2(Z1,Z2) is well-defined by Lemma 3.1 (part (c)).
By (Székely, Rizzo, and Bakirov 2007, theor. 3), it follows directly
that RdCorr(Z1,Z2) ∈ [0, 1].
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Now let us look into some of the properties of RdCov that make
it a desirable measure of dependence. The proof of the following
lemma is given in Appendix F.4 (in the supplement).

Lemma 3.1. Under the same assumptions as in Definition 3.1,
we have

(a) Suppose that (Z1
1,Z

1
2), (Z

2
1,Z

2
2), (Z

3
1,Z

3
2) are independent

observations having the samedistribution as (Z1,Z2). Then,

RdCov2(Z1,Z2)

= E
[

‖R1(Z
1
1) − R1(Z

2
1)‖‖R2(Z

1
2) − R2(Z

2
2)‖

]

+ E
[

‖R1(Z
1
1) − R1(Z

2
1)‖

]

E
[

‖R2(Z
1
2) − R2(Z

2
2)‖

]

− 2E
[

‖R1(Z
1
1) − R1(Z

2
1)‖‖R2(Z

1
2) − R2(Z

3
2)‖

]

.
(12)

(b) RdCov(Z1,Z2) = 0 if and only if Z1 and Z2 are indepen-
dent.

(c) RdCov(Z1,Z1) > 0.
(d) (Invariance) Suppose a1 ∈ R

d1 , a2 ∈ R
d2 and b1, b2 > 0.

Then, RdCorr(Z1,Z2) = RdCorr(a1 + b1Z1, a2 + b2Z2).
(e) Suppose that (Zn

1 ,Z
n
2) ∈ R

d1 ×R
d2 is a sequence of random

vectors that converge weakly to (Z1,Z2); here we assume
that Zn

1 and Zn
2 have absolutely continuous distributions

for all n. Then, RdCov2(Zn
1 ,Z

n
2) −→ RdCov2(Z1,Z2)

as n → ∞.

We would like to refer the interested reader to Móri and
Székely (2019) for an elaborate discussion on the importance of
these properties in a dependence measure.

Remark 3.3. Unlike distance covariance (see Székely, Rizzo,
and Bakirov 2007; Móri and Székely 2019), Lemma 3.1 does
not require any moment assumptions on Z1 and Z2. How-
ever, we do need absolute continuity of the underlying mea-
sures μ1 and μ2, an assumption which has been justified in
Remark 2.7.

Remark 3.4. In Székely, Rizzo, and Bakirov (2007, theor. 7),
a closed-form expression for distance covariance when (X,Y)

has a bivariate normal distribution, parameterized by corre-
lation ρ, is derived. Although for rank distance covariance
(as defined in (10)) such a closed-form expression is not
easy to obtain, we can readily approximate it using Monte
Carlo. In Appendix D.3 (see the supplement), we demonstrate
that, in this bivariate normal setting, the population distance
covariance and population rank distance covariance are both
monotone in |ρ| and essentially indistinguishable as functions
of ρ.

3.2. Rank-BasedMeasure for Two-Sample Goodness of Fit

We can use a similar approach as in Section 3.1 to come up with
a measure for multivariate two-sample goodness-of-fit testing.
Define Sd−1 := {x ∈ R

d : ‖x‖ = 1} and let κ(·) denote
the uniform measure on Sd−1. Further, assume Z1 ∼ μ1 and
Z2 ∼ μ2 are independent whereμ1,μ2 ∈ Pac(R

d). Then, using
the continuity and uniqueness of characteristic functions, it is
rather straightforward to check that μ1 = μ2 if and only if

a�Z1
d= a�Z2 for κ a.e. a (for more details see (Baringhaus

and Franz 2004, theorem 2.1)). Therefore, a natural way to
measure equality of distributionsμ1 = μ2 would be to compare
P(a�Z1 ≤ t) and P(a�Z2 ≤ t) for all a ∈ Sd−1 and all t ∈ R.
This provides the main motivation behind the energy measure
for two-sample goodness of fit (see Baringhaus and Franz 2004;
Székely and Rizzo 2013), which is defined as follows:

En(Z1,Z2)

:= γd

∫

R

∫

Sd−1

(

P(a�Z1 ≤ t) − P(a�Z2 ≤ t)
)2

dκ(a) dt

where γd :=
(

2�(d/2))−1√π(d − 1)�
(

(d − 1)/2
)

for d > 1
and γd := 1 for d = 1. It can be shown that En(Z1,Z2) is well-
defined if Z1 and Z2 have finite first moments (see Baringhaus
and Franz 2004, lem. 2.3). With the above discussion in mind,
we are now in a position to define the rank-based version of the
energy measure.

Definition 3.3 (Rank energy). Suppose that Z1 ∼ μ1 and Z2 ∼
μ2 are independent and μ1,μ2 ∈ Pac(R

d). Fix some λ ∈ (0, 1)
(prespecified). Also let Rλ(·) denote the population rank map
(see Definition 2.1) corresponding to the mixture distribution
λμ1 + (1 − λ)μ2. Then the rank energy (RE2λ) between Z1 and
Z2 is defined as follows:

RE2λ(Z1,Z2) := γd

∫

R

∫

Sd−1

[

P(a�Rλ(Z1) ≤ t)

− P(a�Rλ(Z2) ≤ t)
]2
dκ(a) dt. (13)

In other words, the rank energy between Z1 and Z2 is exactly
equal to the usual energy measure between Rλ(Z1) and Rλ(Z2).
Note that Equation (13) is well-defined without any moment
assumptions.

Remark 3.5. The choice of λ ∈ (0, 1) in Definition 3.3 may
seem subjective. However, in the kind of applications, we are
interested in, we will see that a natural choice of λ will surface
from the context of the problem itself.

Now, let us inspect the properties of RE2λ which make it a
desirable candidate for measuring two-sample goodness of fit.
The proof of the following result is given in Appendix F.5 (see
the supplement).

Lemma 3.2. Under the same assumptions as in Definition 3.3,
we have

(a) Suppose that Z1
1,Z

2
1 are iid with the same distribution as Z1,

and Z1
2,Z

2
2 are iid with the same distribution as Z2. Then,

RE2λ(Z1,Z2) = 2E‖Rλ(Z
1
1) − Rλ(Z

1
2)‖ − E‖Rλ(Z

1
1) −

Rλ(Z
2
1)‖ − E‖Rλ(Z

1
2) − Rλ(Z

2
2)‖.

(b) RE2λ(Z1,Z2) = 0 if and only if Z1
d= Z2.

(c) (Invariance) Suppose that a ∈ R
d and b > 0. Then

RE2λ(Z1,Z2) = RE2λ(a + bZ1, a + bZ2).
(d) Suppose that Zn

1 and Zn
2 are two independent sequences of

random vectors having absolutely continuous distributions

such that Zn
1

w−→ Z1 and Zn
2

w−→ Z2 as n → ∞. Then,
RE2λ(Z

n
1 ,Z

n
2) −→ RE2λ(Z1,Z2) as n → ∞.
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4. Distribution-FreeMultivariate Independence and

Equality of Distributions Testing

This section is devoted to developing the newmultivariate rank-
based distribution-free testing procedures for the nonparamet-
ric problems discussed in the Introduction.

4.1. Distribution-FreeMutual Independence Testing

Suppose that (X1,Y1), . . . , (Xn,Yn) are iid observations from
some probability distribution μ ∈ P(Rd1+d2) (here d1, d2 ≥ 1)
with marginals μX and μY. In this subsection, we assume that

(AP1) : μX ∈ Pac(R
d1) and μY ∈ Pac(R

d2).

We are interested in testing the hypothesis: H0 : μ = μX ⊗
μY versus H1 : μ �= μX ⊗ μY. The above is certainly
a classical problem in statistics and has received widespread
attention across many decades. One of the earliest approaches,
for d1 = d2 = 1, was through the introduction of Pearson’s cor-
relation (see, e.g., Pearson 1920), which was later modified into
rank-based correlation measures such as Spearman’s rank cor-
relation (see Spearman 1904) and Kendall’s τ (see Kendall 1938;
Kendall andGibbons 1990). For an overviewof other parametric
approaches to the above problem, see Wilks (1938) and Pillai
and Jayachandran (1967) and the references therein. However,
nonparametric testing procedures soon replaced parametric
ones as they do not require strong modeling assumptions and
are consequently more robust and generally applicable.

One of the first nonparametric approaches to the above
problem, when d1 = d2 = 1, was by Hoeffding (1948),
where the author proposed a test based on empirical dis-
tribution functions; also see Blum, Kiefer, and Rosenblatt
(1961). A “quadrant”-based procedure was introduced in the
late 1950s by Mosteller (see Mosteller 1946) and later ana-
lyzed in Blomqvist (1950); also see Gieser and Randles (1997).
A density estimation-based approach to independence testing
was proposed in Rosenblatt (1975). When either d1 > 1 or
d2 > 1, perhaps the most common approach historically used
coordinate-wise or spatial ranks and signs (see, e.g., Puri and
Sen 1971; Oja and Randles 2004; Oja 2010 and the references
therein). Such coordinate-wise rank-based extensions to Spear-
man’s rank correlation, Kendall’s τ and the quadrant statistic
(mentioned above) for testing independence, when d1 > 1
or d2 > 1, were proposed in Taskinen, Kankainen, and Oja
(2003), Taskinen, Oja, and Randles (2005). In Friedman and
Rafsky (1983), the authors presented a graph-based test of
independence. A density-based approach, involving the esti-
mation of mutual information has been used in Berrett and
Samworth (2019). Other proposals include the use of a maximal
(or total) information coefficient (see Reshef et al. 2016, 2018),
empirical copula processes (see Kojadinovic and Holmes 2009;
Quessy 2010), ranks of pairwise distances (seeHeller,Heller, and
Gorfine 2013), etc. A kernel-based method, namely the Hilbert-
Schmidt Independence criteria, which perhaps dates back to
1959 (see Rényi 1959) has also been recently studied in great
detail by Gretton, Fukumizu et al. (2008), Gretton, Bousquet,
et al. (2005), andGretton,Herbrich, et al. (2005). Given the huge
body of work in this area, we refer the reader to Drouet Mari
and Kotz (2001), Josse and Holmes (2016) for a survey on

other testing procedures existing in the literature. While some
of the tests discussed above guarantee consistency against fixed
alternatives, a recurrent problem with all these approaches is
that they lack the exact distribution-free property when either
d1 > 1 or d2 > 1.

The only distribution-free test in the context of mutual inde-
pendence testing was proposed in Heller, Gorfine, and Heller
(2012); also see Biswas, Sarkar, and Ghosh (2016), Heller and
Heller (2016). However, none of these tests come with any result
that guarantees consistency against all fixed alternatives.

Over the past 40 years or so, multivariate tests of indepen-
dence based on empirical characteristic functions have gained
some prominence, thanks to early works in Kankainen (1995),
Csörgő (1985), and Feuerverger (1993) and most significantly
due to the seminal work by Szekely and coauthors (see Bakirov,
Rizzo, and Székely 2006; Székely, Rizzo, and Bakirov 2007;
Székely and Rizzo 2009), where the notion of distance covari-
ance was introduced; recall that in Section 3.1 we have already
encountered the population version of this measure. Interest-
ingly, distance covariance can also be interpreted as a weighted
integral in terms of the difference between the joint empirical
characteristic function and the product of marginal characteris-
tic functions (see Székely, Rizzo, and Bakirov 2007). Distance
covariance also has interesting connections to kernel-based
methods; see for example, Sejdinovic et al. (2013). On account
of being simple to implement, easily explainable and provid-
ing consistency against any fixed alternatives (under suitable
moment assumptions), this testing procedure has attracted a lot
of attention, has inspiredmany applications, and is still a subject
of active research.

In this section, we introduce a distribution-free multivari-
ate rank-based version of the distance covariance test (see
e.g., Székely, Rizzo, and Bakirov 2007) and demonstrate its
appealing properties. We describe our method below. Let
μX
n and μY

n denote the empirical distributions on DX
n :=

{X1, . . . ,Xn} and DY
n := {Y1, . . . ,Yn}, respectively. Moreover,

letHd1
n := {hd11 , . . . , hd1n } andH

d2
n := {hd21 , . . . , hd2n } denote the

(fixed) sample of d1 and d2-dimensional ranks (analogous to ci’s
in (2)). For i = 1, 2, as in Section 2.2, we recommend the use
of a standard di-dimensional quasi-Monte Carlo sequence (see
Appendix E.3 in the supplement for a discussion) when di > 1
and the standard {i/n}i≤n grid when di = 1.Wewill work under

the following assumption onH
d1
n andH

d2
n :

(AP2): The empirical distributions onHd1
n andHd2

n converge
weakly to Ud1 and Ud2 , respectively.

Finally, we shall use R̂X
n (·) and R̂Y

n (·) to denote the empirical
rankmaps (see Definition 2.2) corresponding to the transporta-

tion of μX
n and μY

n to the empirical distributions on H
d1
n and

H
d2
n , respectively (see Equation (6)). Next, we define

RdCov2n := S1 + S2 − 2S3 (14)

where S1 :=
1

n2

n
∑

k,l=1

‖R̂X
n (Xk) − R̂X

n (Xl)‖‖R̂Y
n (Yk) − R̂Y

n (Yl)‖,

S2 :=

⎛

⎝

1

n2

n
∑

k,l=1

‖R̂X
n (Xk) − R̂X

n (Xl)‖

⎞

⎠
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×

⎛

⎝

1

n2

n
∑

k,l=1

‖R̂Y
n (Yk) − R̂Y

n (Yl)‖

⎞

⎠ ,

S3 :=
1

n3

n
∑

k,l,m=1

‖R̂X
n (Xk) − R̂X

n (Xl)‖‖R̂Y
n (Yk)

− R̂Y
n (Ym)‖.

Observe that the right-hand side of Equation (14) can be viewed
as an empirical version of population RdCov (see Equation
(10)) through its alternate expression as in Lemma 3.1 (part
(a)). RdCov2n can also be viewed as a rank-transformed version
of the empirical distance covariance measure as introduced
in (Székely, Rizzo, and Bakirov 2007, eqs. (2.9) and (2.18)).
By Székely, Rizzo, and Bakirov (2007, theor. 1), it is easy to see
that the right-hand side of Equation (14) is always nonnegative.
Moreover, note that, given the ranks, RdCov2n can be computed
in O(n2(d1 + d2)) steps (see Huo and Székely 2016). In the
following lemma,we demonstrate the distribution-free property
of RdCov2n (see Appendix F.6 in the supplement for a proof).

Lemma 4.1. Under assumption (AP1) and H0, the distribution
of RdCov2n, as defined in Equation (14), is free of μX and μY.

Distribution-free independence testing procedure: Given a (pre-
specified) Type I error level α ∈ (0, 1), let cn := inf{c > 0 :
PH0(nRdCov

2
n ≥ c) ≤ α}. Note that, under H0, RdCov

2
n is

distribution-free (by Lemma 4.1) and therefore, so is cn. In other

words, cn depends only on n, d1, d2,H
d1
n ,Hd2

n and α, and can
consequently be determined even before the data is observed.
Moreover, we show in Theorem 4.1 that, if assumption (AP2)
is satisfied then asymptotically cn does not even depend on

the particular choice of Hd1
n and H

d2
n . Given cn, our proposed

testing procedure rejects H0 if nRdCov
2
n ≥ cn and accepts H0

otherwise. By definition of cn, this is clearly a level α test.

Remark 4.1. The notion of rank-based distance covariance has
attracted some interest in the literature. For d1 = d2 = 1,
it has been discussed in Székely and Rizzo (2009), although
to the best of our knowledge, its theoretical properties have
not been analyzed. In the discussion, Rémillard (2009) based
on Székely andRizzo (2009), the author proposed using distance
covariance based on the vectors of component-wise ranks (for
general d1, d2). This idea also has connections with existing
copula-based approaches; see, for example, Kojadinovic and
Holmes (2009) for details. This approach however does not yield
a distribution-free test (if either d1 or d2 is> 1), neither for finite
n nor asymptotically. In that sense, our proposal provides the
“correct” version of rank-based distance covariance.

Remark 4.2. The computation of RdCov2n incurs a worst-case
complexity ofO(n3 + n2(d1 + d2)) which is larger thanO(n2)
complexity for kernel tests, (e.g., Gretton andGyörfi (2008)) and
O(kn log n) for k-nearest neighbor methods (e.g., Berrett and
Samworth 2019). This is a price that we are paying for getting
exactly distribution-free tests. Note that our proposed proce-
dure does not require any resampling methods to determine
cutoffs unlike kernel or nearest neighbor procedures.

One of the interesting features of our proposed statistic, that
is, RdCov2n, is that it has a close connection with the celebrated
Hoeffding’s D-statistic (see Hoeffding 1948)—one of the earliest
nonparametric approaches to testing for mutual independence
when d1 = d2 = 1. In fact, RdCov2n is exactly equivalent to
the statistic proposed in Blum, Kiefer, and Rosenblatt (1961)
(also see the right-hand sides of Equations (15) and (16) for
the population and the empirical versions, respectively), which
in turn is a modified version of Hoeffding’s D-statistic. The
following lemma (see Appendix F.7 in the supplement for a
proof) makes this connection precise (also see Weihs, Drton,
and Meinshausen 2018).

Lemma 4.2. Suppose that (X,Y) ∈ R
2 with bivariate distribu-

tion function (DF) FX,Y(·), and corresponding marginal DFs,
FX and FY . Assume that FX(·) and FY(·) are absolutely contin-
uous. Also suppose that random samples (X1,Y1), . . . , (Xn,Yn)

are drawn according to the same distribution as (X,Y). Further-
more, wewill useFX,Yn (·),FXn (·) andFYn (·) to denote the joint and
marginal empirical DFs of Xi’s and Yi’s, respectively. Then, the
following holds:

1

4
RdCov2(X,Y) =

∫

R2

(

FX,Y(x, y) − FX(x)FY(y)
)2

dFX(x) dFY(y) and, (15)

1

4
RdCov2n =

∫

(

FX,Yn (x, y) − FXn (x)FYn (y)
)2

dFXn (x) dFYn (y).

(16)

We are now interested in two fundamental questions about our
proposed test: (a) “What is the limiting distribution of our test
statistic?”; (b) “Is our test consistent against all fixed alternatives,
as the sample size grows?”.We investigate these two questions in
Theorems 4.1 and 4.2, respectively (see Appendices F.8 and F.9
in the supplement for the proofs).

Theorem 4.1. Under assumptions (AP1), (AP2) and under H0,
there exists universal nonnegative constants (η1, η2, . . .) such

that nRdCov2n
w−→

∑∞
j=1 ηjZ

2
j as n → ∞, where Z1,Z2, . . .

are iid standard Gaussian random variables. In fact, ηj’s do not

depend on the specific choice ofHd1
n orHd2

n as long as (AP2) is
satisfied.

Remark 4.3 (Limiting distribution). The limiting distribution
in Theorem 4.1 is exactly the same as that of usual distance
covariance (under H0) when μX = Ud1 and μY = Ud2

(see (Székely, Rizzo, and Bakirov 2007, theor. 5)).

Remark 4.4 (Distribution-freeness). Note that the asymptotic
distribution of the usual distance covariance statistic, given
in (Székely, Rizzo, and Bakirov 2007, theor. 5), depends on μX

and μY, which are unknown. As a result, even for large n, in
practice, one usually has to resort to resampling/permutation
techniques or further worst case approximations (see Székely,
Rizzo, and Bakirov 2007, theor. 6) to determine the critical value
of the test. Having finite sample (and asymptotic) distribution-
freeness avoids the need for such approximation techniques (for
small as well as large n). In Appendix D.4 (see the supplement),
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we discuss (computationally) how large n should be (depending
on d1 and d2) so as to use quantiles from the asymptotic dis-
tribution of nRdCov2n to approximate thresholds for our testing
procedure (see Tables D.4–D.7 in the supplement). In Table D.8
(in Appendix D.4 in the supplement), we provide the universal
asymptotic 0.95-quantiles as d1, d2 varies (for d1, d2 ≤ 8).

Remark 4.5 (Our proof technique). Observe that, contrary to
the study of the usual distance covariance Székely, Rizzo, and
Bakirov (2007) which can be analyzed using standard tech-
niques from empirical process theory (as in Székely, Rizzo, and
Bakirov 2007, theor. 5) or results fromdegenerateV-statistics (as
used in (Lyons 2013, theor. 2.7)), the study of RdCov2n is more
complicated as it involves dependent multivariate ranks. Our
main technique for proving Theorem 4.1 is to use Hoeffding’s
combinatorial central limit theorem (see, e.g., Chen and Fang
2015). In the process, we prove some results on permutation
statistics (see Lemma F.1 in the supplement) which may be of
independent interest.

The following result (proved in Appendix F.9 in the sup-
plement) shows that our proposed testing procedure yields a
consistent sequence of tests under fixed alternatives (i.e., the
power of our test converges to 1, as the sample size increases,
for any fixed alternative).

Theorem 4.2. Under assumptions (AP1) and (AP2),

RdCov2n
a.s.−→ RdCov2(X,Y) as n → ∞, where (X,Y) ∼ μ.

Moreover, P(nRdCov2n > cn) −→ 1, as n → ∞, provided
μ �= μX ⊗ μY.

Remark 4.6 (Minimal assumptions). The proof of Theorem 4.2
reveals that only the a.s.-convergence of empirical transport
maps in the L2-norm (see Theorem 2.1) is necessary. Therefore,
by resorting to a weaker form of convergence (as compared to
the L∞-convergence as in Chernozhukov et al. 2017; Ghosal and
Sen 2019; Hallin et al. 2021) we have effectively reduced the set
of assumptions needed on μX and μY for getting a consistent
sequence of tests (contrary to Ghosal and Sen 2019). More-
over we are able to establish consistency without any moment
assumptions (contrary to (Székely, Rizzo, and Bakirov 2007,
theor. 2)).

Remark 4.7 (Quasi-Monte Carlo sequence). Corollary E.1
ensures that assumption (AP2) is satisfied for quasi-MonteCarlo
sequences (see Appendix E.3 in the supplement for details and
examples).

Remark 4.8 (Invariance under coordinate-wise monotone trans-
formations). An alternate approach to testing mutual inde-
pendence would be to transform the observed data into their
marginal one-dimensional ranks first and then construct the
multivariate ranks based on this transformed data. Let us elabo-
rate on this briefly. Let uswriteXi = (Xi1,Xi2, . . . ,Xid1) in terms
of its univariate components, for 1 ≤ i ≤ n. For 1 ≤ j ≤ d1,
construct X̃i such that X̃ij equals the usual one-dimensional rank
of Xij among X1j, . . . ,Xnj. Repeat the same exercise with the
Yi’s to form Ỹi’s. Now, consider {(X̃i, Ỹi)}ni=1 and obtain mul-
tivariate ranks of X̃i’s and Ỹi’s using measure transportation as

described above (see Equation (7)). Finally, calculate a suitable
test statistic for independence (such as RdCov2n) based on these
ranks. This approach has natural connections to copula-based
methods (see Kojadinovic and Holmes 2009) and ensures that
the constructed tests will be invariant under coordinate-wise
monotone transformations of the data (see Lemma3.1, part (d)).
An analogous theoretical analysis can be carried out for this
modified procedure.

4.2. Distribution-FreeMultivariate Two-Sample Testing

Here, we shall consider the two-sample goodness-of-fit testing

problem in a multivariate setting. Suppose X1, . . . ,Xm
iid∼ μX

and Y1, . . . ,Yn
iid∼ μY (independent of the Xi’s), where we

assume that

(AP3) : μX,μY ∈ Pac(R
d).

We are interested in testing the hypothesis: H0 : μX =
μY versus H1 : μX �= μY. The two-sample problem (or
its multi-sample extension) has been studied in great detail over
the years. In this context, rank and data-depth-based methods
have mostly been restricted to testing against location-scale
alternatives, see, for example, Hettmansperger, Möttönen, and
Oja (1998), Randles and Peters (1990), and Möttönen and Oja
(1995). Distribution-free depth-based tests which are consistent
if restricted to the above class of alternatives are discussed in Liu
et al. (2010) and Rousson (2002). An alternative route for testing
against general alternatives includes graph-based tests such as
in Friedman and Rafsky (1979), where the authors constructed
a test based on the minimum spanning tree of a graph with
the data points as its vertices and pairwise distances as edge
weights. Various interestingmodifications and extensions to this
test have been proposed in literature, see, for example, Chen
and Friedman (2017), Henze (1988), Schilling (1986), and Petrie
(2016). Theoretical properties of all these tests can be studied
under a unified framework as shown in Bhattacharya (2019).

Asmentioned in the Introduction, there are only a fewmulti-
variate nonparametric distribution-free two-sample goodness-
of-fit tests. In Rosenbaum (2005) (also see Arias-Castro and
Pelletier 2016; Agarwal et al. 2019 for subsequent theoreti-
cal analysis), Rosenbaum constructed his distribution-free test
statistic from a minimum non-bipartite matching (see Lu et al.
2011) of the pooled sample of observations.

The recent article (Boeckel, Spokoiny, and Suvorikova 2018)
proposed a distribution-free two-sample goodness-of-fit test
using multivariate ranks (based on optimal transport). Thus,
their approach is quite similar to ours. However, the authors
constructed the empirical ranks by replacing the hi’s (fixed
quasi-Monte Carlo sequence) in Equation (7) with a random
draw of n iid uniforms which makes the test statistic random,
given the data (due to the external randomization). Further,
in Boeckel, Spokoiny, and Suvorikova (2018), the authors pro-
posed a test for the two-sample equality of distributions using
the Wasserstein distance, instead of the energy statistic that we
use. Their theoretical results requiremuch stronger assumptions
on the underlying distributions, for example, the assumption
that the data generating distribution be compactly supported in
addition to being absolutely continuous. Moreover, the authors
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do not develop the asymptotic null distribution theory of their
proposed test.

Yet another class of pairwise-distance-based tests use ideas
from reproducing kernel Hilbert spaces (RKHS), see, for exam-
ple, Gretton et al. (2009, 2012). The principle idea here is to
embed probability distributions in RKHSs through what are
called mean embeddings and measure goodness of fit between
two distributions by the Hilbert–Schmidt norm between the
correspondingmean embeddings. These kernel-basedmeasures
can alternatively be expressed as probability integral metrics
which equal 0 if and only if the underlying distributions are
exactly the same. In fact, the energy statistic (see Baringhaus and
Franz 2004; Székely and Rizzo 2013)—a popular and powerful
goodness-of-fit measure—can also be viewed as a special case
of kernel-based methods (see Sejdinovic et al. 2013). Due to
its simplicity, the energy distance has been studied and applied
extensively over the past decade, as we have already highlighted
in Section 1. However, note that a common disadvantage of
these kernel-based methods (including the usual energy statis-
tic) is that they are not exactly distribution-free.

In this subsection, we propose the rank energy statistic—a
distribution-free goodness-of-fit measure based on the energy
distance—for testing the equality of two multivariate distribu-
tions. We describe our method below. We will use μX

m and μY
n

to denote the empirical distributions on DX
m := {X1, . . . ,Xm}

and DY
n := {Y1, . . . ,Yn}, respectively. Let μX,Y

m,n := (m +
n)−1(mμX

n + nμY
n ) and let Hd

m+n := {hd1 , . . . , hdm+n} ⊂ [0, 1]d
denote the (fixed) sample multivariate ranks. We will further
work under the following assumption onHd

m+n:
(AP4)The empirical distribution onHd

m+n converges weakly
to Ud as min (m, n) → ∞. Note that choosing Hd

m+n to be
a d-dimensional quasi-Monte Carlo sequence, for d ≥ 2, and
{i/(m + n) : 1 ≤ i ≤ m + n} for d = 1, ensures that (AP4) is
satisfied (see Corollary E.1 for details).

Finally, we shall use R̂X,Y
m,n(·) to denote the joint empirical rank

map (see Definition 2.2) corresponding to the transportation of
μX,Y
m,n to the empirical distribution on Hd

m+n. The rank energy
statistic is defined as follows:

RE2m,n := 2

mn

m
∑

i=1

n
∑

j=1

‖R̂X,Y
m,n(Xi) − R̂X,Y

m,n(Yj)‖

− 1

m2

m
∑

i,j=1

‖R̂X,Y
m,n(Xi) − R̂X,Y

m,n(Xj)‖

− 1

n2

n
∑

i,j=1

‖R̂X,Y
m,n(Yi) − R̂X,Y

m,n(Yj)‖. (17)

Observe that the right-hand side of Equation (17) can be
viewed as an empirical version of RE2 (see (13)) through its
alternate expression as in Lemma 3.2 (part (a)). RE2m,n can
also be viewed as a rank-transformed version of the empirical
energy measure as in (Székely and Rizzo 2013, eq. (6.1)). Due to
space constraints, we will refer the interested reader to Székely
and Rizzo (2013) for further motivation of the energy statistic.
By Baringhaus and Franz (2004, eq. (5)), it is easy to see that the
right-hand side of Equation (17) is always nonnegative. Just as
RdCov2n (in Equation (14)), RE2m,n above can also be computed
in O(mnd) steps (see Zhao and Meng 2015) given the vector

of multivariate ranks. In the following lemma, we illustrate the
distribution-free property of RE2m,n (see Appendix F.10 in the
supplement for a proof).

Lemma 4.3. Under assumption (AP3) and under H0, the distri-
bution of RE2m,n, as defined in Equation (17), is free ofμX ≡ μY.

Distribution-free two-sample testing procedure: Given a (prespec-
ified) Type I error level α ∈ (0, 1), let cm,n := inf{c > 0 :
PH0(mn(m + n)−1RE2m,n ≥ c) ≤ α}. As RE2m,n is distribution-
free under H0 (by Lemma 4.3), so is cm,n. Given cm,n, our
proposed testing procedure rejects H0 ifmn(m+ n)−1RE2m,n ≥
cm,n and accepts H0 otherwise. This results in a level α test.

An interesting feature of our proposed statistic RE2m,n is its
equivalence with the celebrated Cramér-von Mises statistic for
two sample equality of distributions testing (see e.g., Anderson
(1962) and the right-hand side of Equation (18)) when d = 1.
The following lemma (see Appendix F.11 in the supplement for
a proof) makes this connection precise.

Lemma 4.4. For d = 1, let FXm, G
Y
n and HX,Y

m+n denote the
empirical distribution functions on {X1, . . . ,Xm}, {Y1, . . . ,Yn}
and the pooled sample, respectively. Then,

1

2
RE2m,n =

∫ (

FXm(t) − GY
n (t)

)2

dHX,Y
m+n(t). (18)

The right-hand side of Equation (18) is the exact Cramér-von
Mises statistic as in Anderson (1962). At the population level,
fix any λ ∈ (0, 1) and let FX , GY and HX,Y

λ be the distribution
functions associated with the probability measures μX , μY and
λμX + (1 − λ)μY . Assume also that FX and GY are absolutely
continuous. Then,

1

2
RE2λ(X,Y) =

∫ ∞

−∞

(

FX(t) − GY(t)

)2

dHX,Y
λ (t). (19)

Next we find the asymptotic distribution of RE2m,n in Theo-
rem 4.3 and prove the consistency of our proposed procedure in
Theorem 4.4; see Appendices F.8 and F.13 in the supplement for
their proofs.

Theorem 4.3. Suppose that min (m, n) → ∞. Under assump-

tions (AP3), (AP4) and under H0, we have mn
m+nRE

2
m,n

w−→
∑∞

j=1 τjZ
2
j as n → ∞, whereZ1,Z2, . . . are iid standard normals

and τj’s are fixed nonnegative constants. In fact, τj’s do not
depend on the specific choice of Hd

m+n as long as (AP4) is
satisfied.

Remark 4.9 (Limiting distribution). The limiting distribution
in Theorem 4.3 is exactly the same as that of the usual energy
statistic (under H0) when μX = μY = Ud (Baringhaus and
Franz 2004, theor. 2.3).

Theorem 4.4. Suppose that m/(m + n) −→ λ ∈ (0, 1).

Then, under assumptions (AP3) and (AP4), RE2m,n
a.s.−→

RE2λ(X,Y) as n → ∞, where X ∼ μX and Y ∼ μY

(note the connection with Remark 3.5). Moreover, P(mn(m +
n)−1RE2m,n > cn) −→ 1, as n → ∞, provided μX �= μY.
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The multivariate two-sample testing procedure described
above bears all the useful properties of our independence testing
procedure from Section 4.1. In particular, the proposed test is
distribution-free for each fixed m and n and also in an asymp-
totic sense. In Appendix D.4 (see the supplement), we study,
using simulations, how largem, n should be (depending on d) so
as to reasonably use quantiles from the asymptotic distribution
of mn(m + n)−1RE2m,n to determine thresholds for our testing
procedure (see Tables D.9–D.12 in the supplement). In Table
D.13 (in Appendix D.4 in the supplement), we provide universal
asymptotic quantiles (5%) up to d ≤ 8.

Our proposed test is also consistent against fixed alternatives
without any moment assumptions, as opposed to the usual test
based on the energy statistic (see Baringhaus and Franz 2004;
Székely and Rizzo 2013). Moreover, we are also able to reduce
the smoothness assumptions on the underlying measures μX

and μY necessary for consistency (cf. Ghosal and Sen 2019,
prop. 5.2; Boeckel, Spokoiny, and Suvorikova 2018, theor. 3.1).

4.3. Extensions to the K-Sample Problem

The methods we discussed in Sections 4.1 and 4.2 have natural
extensions to the K-sample setting; namely, testing for mutual
independence ofK random vectors, andmultivariate goodness-
of-fit testing for K populations (as mentioned in Section 1).
Using the same principles as above, we can again construct
exact distribution-free tests for the above problems that will be
consistent against all fixed alternatives. Due to space constraints,
we relegate a detailed discussion of this to Appendix E; in
particular, see Propositions E.1 and E.2 (in the supplement).

5. Discussion and Recent Developments

We have developed a framework for multivariate distribution-
free nonparametric testing using the method of multivariate
ranks defined using the theory of optimal transportation (moti-
vated from Hallin 2017; Hallin et al. 2021). We have illustrated
our general approach through two problems: (I) testing for
mutual independence of K (≥ 2) random vectors, and (II)
goodness-of-fit testing for K (≥ 2) multivariate distributions.
We show that our proposed tests are finite sample distribution-
free, consistent against all alternatives (under minimal assump-
tions), and are computationally feasible. In fact, the proposed
tests reduce to well-known one-dimensional tests for problems
(I) and (II). We further derive the asymptotic weak limits of our
test statistics, under the null hypotheses. In the process, we also
derive results on the asymptotic regularity of optimal transport
maps (aka multivariate ranks) which is of independent interest.
As far as we are aware, this is the first attempt to systematically
develop distribution-free multivariate tests that are consistent
against all alternatives and are computationally feasible.

Motivated by our framework, a number of articles have
subsequently been written in this active research area in the
last one and a half years since the first arxiv version of our
article was posted (as mentioned in Section 1, the article Shi,
Drton, and Han (2020) was posted a couple of days after ours).
Some of these include Hallin, La Vecchia, and Liu 2020a,b (in
time series applications), Shi et al. 2020; Deb, Ghosal, and Sen

2020 (in independence testing), andDeb, Bhattacharya, and Sen
2021 (in goodness-of-fit testing). In fact, these articles generalize
our strategy further by fixing a reference distribution (as we do
with Unif[0, 1]d as the reference distribution) and proposing
statistics based on score/kernel function-based transforms of
the obtainedmultivariate ranks (see, e.g., Shi et al. 2020, eq. 4.2),
leading to a larger class of tests. The most general approach in
this regard came recently in Deb, Bhattacharya, and Sen (2021)
where the authors allowed for flexible reference distributions in
addition to general score functions.

From a theoretical perspective, the past year has seen a num-
ber of important advancements in nonparametric distribution-
free testing using optimal transport. The first Hájek represen-
tation (see Hájek and Šidák 1967) result for a class of score-
function transformed multivariate rank statistics, under appro-
priate null hypothesis, was developed in Shi et al. (2020, theor.
5.1). Similar asymptotic representations for other statistics have
since been developed in Deb, Ghosal, and Sen (2020), Deb,
Bhattacharya, and Sen (2021), Hallin, La Vecchia, and Liu
(2020a), and Hallin, La Vecchia, and Liu (2020b). The stand-
ing problem of consistency of such tests under general fixed
alternatives has recently been resolved in Deb, Bhattacharya,
and Sen (2021, prop. 4.2). Further, in Deb, Bhattacharya, and
Sen (2021), the authors showed that the asymptotic relative
efficiency under local alternatives of certain multivariate-rank-
based tests against the Hotelling T2 test (see Hotelling 1931)
for goodness of fit is at least 1, across a large family of multi-
variate probability distribution, thereby making a strong case
in favor of such rank-based tests. Their work provides the first
multivariate, exactly distribution-free analogs of the classical
results inHodges and Lehmann (1956) andChernoff and Savage
(1958).

SupplementaryMaterials

The supplementary material, which is available online, contains proofs
of our main results, real data experiments and additional computational
studies.
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