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ABSTRACT

Monitoring large-scale datastreams with limited resources has become increasingly important for real-
time detection of abnormal activities in many applications. Despite the availability of large datasets, the
challenges associated with designing an efficient change-detection when clustering or spatial pattern exists
are not yet well addressed. In this article, a design-adaptive testing procedure is developed when only a
limited number of streaming observations can be accessed at each time. We derive an optimal sampling
strategy, the pattern-oriented-sampling, with which the proposed test possesses asymptotically and locally
best power under alternatives. Then, a sequential change-detection procedure is proposed by integrating
this test with generalized likelihood ratio approach. Benefiting from dynamically estimating the optimal
sampling design, the proposed procedure is able to improve the sensitivity in detecting clustered changes
compared with existing procedures. Its advantages are demonstrated in numerical simulations and a real
data example. Ignoring the neighboring information of spatially structured data will tend to diminish the
detection effectiveness of traditional detection procedures. Supplementary materials for this article are
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1. Introduction
1.1. Motivation and Model

Motivated by an empirical analysis of New York hourly traffic
data in Section 4.2, we study online monitoring of large-scale
datastreams. Such problems can be formulated as a change-
point detection as follows. Suppose that m streams of observa-
tions X; = (X1,- .., Xsm) | are collected over time, admitting a
change-point model

| ro(sy) + e, Tt = Vpoeunts 2

= [ul(stj)+erj, for t=7+1,..., *J= Lot
(1)

where 7 is an unknown change-point, e; = (e, . . ., o) 1 =

1,2,..., are independent and identically distributed (iid) ran-
dom vectors satisfying that E(e;) = 0, and po(-) and g, (-) are
the mean functions before and after the change point, respec-
tively. It is assumed that 1, (s) is not equal to po(s) in one or
more regions Q@ C T', the supportof s € R?, and their difference,
[1(8) — po(s), is (at least locally) smooth. Each datastream Xy
is associated with a d-dimensional auxiliary covariate s;; € S,
such as spatial information or other characteristic information,
where we assume that there are total m, possible covariates
S = {s;}¥, C T. Our goal is to raise an alarm as quickly as
possible after 7.

For the New York hourly traffic data, the s variable is the
location, which can be represented as a two-dimensional vector.

One would put a sensor at every intersection in a city to record
full information on the city’s traffic network and monitor con-
tinuously over time. For a big city like New York, this will def-
initely demand a huge storage space and computational power.
Thus, it is of great interest to select representative intersections
or locations in the city to monitor traffic network. This motivates
us to study how to dynamically sample a small portion of s’s from
all possible locations (i.e., m <« m,) so that we can carry out
real-time detection of abnormal activities or events.

With rapid advance of technology, this type of large-scale
datastreams arise in many applications. As another example,
wireless sensor networks provide us the capability to build large-
scale systems for real-time monitoring of environmental dis-
asters such as landslides. It is common that a large number
of sensors are installed in different locations of a mountain in
advance, each of which records a datastream measuring the
landslide movement or acceleration at its location. If there is an
emergency signal at some places, nearby sensors are more likely
to be affected than those that are spatially distant. Consequently,
only a small proportion of sensors or datastreams, spatially
adjacent, tend to be active or significant (Ciampalini et al. 2015).
Similarly, disease outbreaks tend to affect spatially contiguous
areas (Neill 2012), either because of contagion (e.g., human-
to-human transmission) or because the cases share a common
source (e.g., contaminated drinking water). Other examples
include earthquake detection and network flow surveillance
(Liu, Liu, and Ansari 2014).
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1.2. Challenges and Connections to Existing Works

A common feature for the aforementioned applications is the
clustering pattern among these massive datastreams; it is thus
anticipated that a location and its adjacent neighbors fall in a
similar type of region, either significant or insignificant. Also,
the number of affected datastreams by an event is usually not
large, that is, certain sparsity structure exists. Taking the moni-
toring of landslides as an example, X;; can be the sensor obser-
vation of landslide acceleration at the location sy and time f.
An emergency signal may result that 1, (-) differs from po(-) in
some small regions, namely, the nonzero components of 11, (-) —
1o(-) are clustered. Hence, our first task is to take into account
clustering structures in massive data.

Another major challenge in real-time detection of abnormal
activities for large-scale datastreams is the limited budgets avail-
able for online monitoring. The second task of this work is to
study how to optimally use a given budget to detect changes
in the process in (1). In general, there are two types of limited
budgets: computational and measurement budgets. The com-
putational budget is referred to as the computer memory and
storage space for real-time analysis of the large volume datas-
treams. The measurement budget is referred to the measure-
ment constrains or costs that make the collection of streaming
observations of all spatial points at each time impossible. For
example, researchers monitoring the landslides may be reluctant
to maintain all the sensors in operating conditions all the time
considering the power consumption and service life of sensors.
As a result, these constraints often enable us to obtain, at each
time point, only a limited number of streaming observations
Xij’s at a small subset of spatial locations s;s from a large pool
of given points to identity change signals. Therefore, it is crucial
to design a dynamic sampling strategy to automatically select m
informative points over time when m is significantly less than
the size of total possible points m,.

Recently, there is a great deal of effort to develop new meth-
ods for detecting change-points that can accommodate high-
dimensionality and dependence within components, but in a
nonsequential setting (see, e.g., Wang and Samworth 2018; Eni-
keeva and Harchaoui 2019, and the references therein). Some
authors adapt various sequential change-detection methods to
large-scale surveillance, such as Veeravalli (2001), Tartakovsky
etal. (2006), Zou and Qiu (2009), Mei (2010), Xie and Siegmund
(2013), Zou et al. (2015), and Li (2019), but they did not con-
sider the constraints on resources, which may greatly hamper
their applicability to massive data applications. A more related
work is Liu, Mei, and Shi (2015) which proposed a sampling
strategy assuming that only partial observations are available.
Their procedure is powerful in general but does not consider the
spatial structure of the anomalies. See also Xian et al. (2019) for
more discussions. Xian, Wang, and Liu (2018) and Wang et al.
(2018) further proposed sampling and detection schemes with
spatial information, but their test statistics are essentially in a
form of extreme value and thus may not be fully efficient for
the potentially clustered signals. Some works, for example, Yan,
Paynabar, and Shi (2018) among many others, proposed to use
dimension reduction techniques to deal with the spatiotemporal
correlation structure, but their settings are completely different
from ours.
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1.3. Our Contribution

In this article, we propose a new procedure that can optimally
detect changes in the process (1) under a given computation or
measurement budget at each time point. The proposed proce-
dure stems from a design-adaptive testing procedure, which is
to select the most informative sample points from the full set
of locations and then to construct a kernel-based model speci-
fication test statistic based on the selected observations. Under
mild conditions, we derive the optimal sampling strategy, the
pattern-oriented-sampling (POS), with which the proposed test
possesses asymptotically and locally best power under alterna-
tives. Then, the test is adapted to sequential change-point detec-
tion by using the generalized-likelihood-ratio-based scheme
(Siegmund and Venkatraman 1995). A data-driven approach to
dynamically estimate the optimal sampling is developed, giving
the proposed method an edge over conventional methods in
terms of the detection ability when clustering pattern exhibits.
The POS procedure addresses two key questions in a
unified framework: how to construct an efficient statistic via
aggregation of large-scale datastream observations, and how to
arrange limited resources to improve detection sensitivity with
a dynamic sampling strategy. Our simulation results clearly
demonstrate the superiority of the proposed procedure over
existing ones in terms of the finite-sample performance.

1.4. Organization

The remainder of this article is organized as follows. In Sec-
tion 2, we present the construction of optimal designs in the
context of a two-stage test and its theoretical properties. Exten-
sions to the sequential detection problem are given in Section 3,
along with detailed discussions on asymptotic optimality and
practical implementation. Numerical studies and a real-data
example are conducted in Section 4. Section 5 concludes the
article with some remarks, and theoretical proofs are delineated
in the Appendix. Some technical details and additional numer-
ical results are provided in the supplementary materials.
Notations. For a m x m matrix A, let ||A||s be its spectral
norm (largest eigenvalue in absolute value) and ||A[|r be its
Frobenius norm (the square root of the sum of the squared
eigenvalues), respectively. Let A,, ~ B, denote that there is a
constant C > 1 such that B,,/C < A,, < B,,C with probability
tending to 1. The A,, =~ B,, means that two quantities A,
and B,, are asymptotically equivalent, in the sense that both

A,,/Bn £ 1. Two diagonal matrices A,, =~ B,, are asymptot-
ically equivalent if and only if their diagonal components are
asymptotically and uniformly equivalent. We use diag(a) and
diag(A) to denote the m x m diagonal matrices with diagonal
entries a = (dy,...,d,) . and the m x 1 vector of diagonal
components of the matrix A, respectively.

2. Optimal Sampling Plan With Clustering Patterns

Given a measurement constraint, at time £, only m streaming
observations {Xj; }}'; , can be observed from a chosen subset of
entire sampling space, {s;}”; C S, where m < m,. To make
inference on the model (1), we start with the associated testing
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problem at a given time point. For simplicity, we suppress the
dependence on f which should not cause any confusion.

2.1. Kernel-Based Tests

Suppose that X = (Xj,... ,X,»)" is a random vector observed
with {s;}Z, by model (1). Con51der the following hypothesis
testing problem

H - {.L(Sj) = ;.L(](S}'} for a]l; <~ M, : J_L(Sj) = ;.LI(S}'), (2)

where p1(s) # po(s), for some s; € Q. As a convention in
the practice of monitoring problems, 1o(s) can be either user
specified or estimated by sufficiently large historical samples
prior to the surveillance procedure (Liu, Mei, and Shi 2015; Zou
et al. 2015). Hence, we assume jo(s) is known and particularly
po(s) = 0 without loss of generality. Our implicit assumption
is that for data with clustered signals, a location and its adjacent
neighbors have similar status, either having nonzero p,(s) or
not. Furthermore, the signal strength at one location is similar to
those at its adjacent neighbors. To utilize information within its
neighbors, assume . (s) is a smooth function of s. This assump-
tion enables us to construct a local aggregation of standardized
test statistics at points located adjacent to s; instead of using
the test statistics at s; only. In the same spirit of nonparametric
regression with fixed design, let us regard p(s) = E(X | s). It
is worth to clarify that our goal is to derive an optimal sampling
plan on spatial point s rather than the nonparametric regression
on p(s). Suppose that f(s) is the sampling density function of
the spatial point s. Our target is to find the optimal f(s) so that
our test for (2) has the best power under the alternative.

Intuitively, E{x?(s)} may be used to measure the derivation
of p(s) from o (s). Here, I is the expectation with respect to the
sampling density f (s). Note that E{u?(s)} = E{XE(X | s)} >
0. Our test can be based on E{XE(X | s)}, which is a popular
quantity in the context of model specification test (Guerre and
Lavergne 2005). For a given sampling density f, a nonparametric
approximation to mE{XE(X | s)} is

ZZ Ky (s — Sj)XkX
(m_ )} 1kt v T (s1)/ (Sj

where h > 0 is a bandwidth depending on the number of obser-
vations m, K(-) is a kernel function with Ky(-) = K(-,fh),/hd.
For notation simplicity, we suppress the dependence of Df on m
and h, but emphasize its dependence on f(-).

Under some mild conditions, it can be shown by theory
of U-statistics that Dy is asymptotically normal under the null
hypothesis, say

3)

= s — u™)/or £ N O, D), (4)

where ,u ) and o} are the asymptotic mean and variance of D
under ]HID, respectively. This is a well-known result if X;,j =
1,...,m are independent (see, e.g., Zheng 1996). More discus—
sions can be found in Proposition A.1 in the Appendix. Under
certain local alternatives, the asymptotic distribution of Df is
also a normal distribution but with a different mean, ,u,( ), which
depends on p(s) and f(s). It evokes some insight: if an appro-
priate sampling distribution f (s) can be chosen, the power of Dy

can be maximized. Next, we will present a result that sheds lights
on how to determine the optimal sampling distribution. First,
the following assumptions are needed to facilitate the derivation.

Assumption 1 (Spatial sampling points). The sampling density
of s, f(s), is bounded away from zero on the compact support I
and has bounded derivative.

Assumption 2 (Covariance structure). The noise e = Al2g,
wheree = (£1,...,6,) | and g/’s are independent variables with
mean zero and variance o2, A is a correlation matrix with the
components pj,j, = p (lIsj, —sj,1l/A) with some A > 0, where
p(-) is a continuous, nonnegative and nonincreasing function
on R with p(0) = 1 and fﬂm p(x)dx < oco.

Assumption 3 (Moments condition). For a fixed C < oo,
E(|egi]Y) < C < cowithy > 4.

Assumption 4 (Kernel function and bandwidth). K(-) is a Lips-
chitz continuous, nonnegative, symmetric and bounded kernel
function from R that integrates to 1 and has bounded deriva-
tives. The h and A satisfy h — 0 and mhd;‘(nm logm) — oo as
m—>o00, where 1,, = max(1, mA9).

Remark 1. Assumption 1 implies that the density function of
s is positive, which ensures that the denominator used in our
statistic Dy is bounded away from 0 with high probability. The
condition of bounded derivatives is not the weakest possible;
we only require f(-) to be Lipschitz continuous if some other
conditions are imposed. In the asymptotic analysis of conven-
tional model specification tests, the errors are usually assumed
to be independent, which is not always met in high-dimensional
settings. Assumption 2 allows the presence of spatial correla-
tions which widens the scope of applications of our method.
Assumption 3 is necessary in establishing asymptotic normality
of D¢. Assumption 4 is commonly used in kernel-based meth-
ods. The condition mhd,f (mlogm) — o0 is required due
to the presence of spatial-correlation. When mA%—0, say the
correlation is sufficiently small, this condition reduces to the
conventional one mh?/ log m— oo.

We consider a sequence of local alternatives

Hyp i po(s) = 8,l(s) for se T, (5)

where [(s) is a twice continuously differentiable function on I
and bounded away from zero on some 2 € I', and §,, — 0
as m — o0. Under (5), the difference between g (+) and pq(-),
quantified by é,,1(s), goes to zero as m—oc0.

Theorem 1. Suppose Assumptions 1-4 hold. Under the local
alternative (5) with 8,, = (mh%?/n,,)~1/2, the test based on
Dr reaches its asymptotic best power if the sampling density

f(s) o p?(s).

Under the local alternative (5), ]E(Df)é,u,?:r #}o) +
E¢{P(s)}, and its asymptotic variance o} does not depend on

I(s), so an explicit power expression, depending on ,u,( ), can be
obtained. Theorem 1 enlightens us to construct a loca]ly most
powerful kernel-based test by choosing the sampling distribu-
tion f(s) as a linear function of /2(s), that is, % (s).



2.2. Two-Stage Tests With Adaptive Sampling

In practice, the statistics D can be carried out with an estimated
f(s) if a two-stage procedure is used. The theory of two-stage
combination test can be described as follows: at the first stage,
compute the test statistic Ty, by (4) based on the observations
{s1)> Xi; }}’;1 , where {s; j};l come from a given distribution fi (s),
and then make an early decision by rejecting Hj, if Ty, > z,,
or otherwise continuing to test at the second stage if Ty, <
Za,. At the second stage, compute the test statistic T¢, based
on new observations {sy;, Xa;} jf"=1 and reject Hp if T, > zq,,
where {s; }"=1 are sampled from another distribution f,(s). The
constants ; and «; are subject to a control of the error rate at a
prespecified level, , by the test, and z,, (i = 1, 2) denotes the ;
upper quantile of the standard normal distribution.

Traditionally, one sets f2(-) = fi(-). However, Theorem 1
motivates us to sample from f5(s) o 1 (s) at the second stage.
A consistent estimator of j.(s) based on the first stage samples
is

Y = Kinliy; —B)Xy;
Y Kig(s1j—9)

ii(s) = (6)

where hg, is a prespecified bandwidth for estimation, satisfying
the condition hg — 0 and mhg — oo as m — oo. Then f,(s)
can be chosen as

() = max [t 42(9)} / f max (¢ 42(s)} s, (7)

where ¢, is fixed as O{n,(log m)"/(mhg)} for ¢ > 1. The use of
{m in (7) is to ensure that the estimated density is bounded away
from zero, especially under the null hypothesis where p.(s) =
0,Vs € I'. From Lemma A.2 in the Appendix, sup, |i(s)] =

op(;',,l,fz) under Hy, and consequently, with probability tending
to one f>(s) = 1/|I"|, that is, a uniform distribution. Hereafter,
we shall refer the testing method based on this sampling proce-
dure as POS-based test.

The next result shows that the effect of replacing p(s) by
appropriate estimators can be asymptotically negligible and the
efficiency of the locally most powerful test can still be achieved
under certain conditions.

Theorem 2. Consider the local alternative (5). Suppose Assump-
tions 1-4 hold. If (h%/h)#? /(log m)°— oo, the power function
of the POS test with f,(s) in (7) can be approximated by

Brgp =0 (—21) + P (21) P (—22),

wherez) = zg, —Eg, {I*(8)}/x (f1.T), 22 = 20, — { [ P'(9)ds/ [ P
(s)ds} /i (fr, ), fr(s) = P(s)/ [ *(s)ds,and for Q € T

2|Q| [ K2 (w)du, if mrAd—0,
K(f, Q) = {2 [ga K*(w)du

®f f ,fJ(u)d.’nf)2 JofP(s)ds, if m!—2¥ 3400,

In this result, we need to distinguish the two cases, mA9—0
or mA9— 0o, which correspond to the situation that the spatial-
correlation is negligible or nonnegligible, respectively. It is easy
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to verify that the power function of the two-stage test with
traditionally f>(s) = fi(s) is

Bifi = @ (—21) + @ (21) D (2o, + B {P(9)}/x(f1, 1))

Thus, using the estimated density f,(s) in (7) for sampling at
the second stage yields a more powerful test. For example, when
mA4—0 this is clear, because Eg, {(2(s)} < [ (s)ds/ [ P(s)ds;
see the Appendix for more detailed derivation.

Furthermore, it turns out that the advantage of the POS
test with the optimal sampling strategy could be much more
prominent when g(s) exhibits sparse and “clustered” pattern.
Consider a sequence of “singular” local alternatives

HY,, : u(s) = 8,,1(s) for s € 2y, (8)
where @,, C I satisfying |Q,,| = a, with a,,—0 being
a real deterministic sequence and I(s) is bounded away from
zero on 2, almost everywhere. In other words, I(s) = 0 for
s ¢ €, and the support of I(s) depends on m. The main
feature of these “singular” alternatives is that they have narrow
spikes as m increases. Loosely speaking, the I, can be thought
of as representing sparse alternatives, while the H,,, in (5) as
representing dense alternatives. We have the following result.

Corollary 1. Consider the local alternative (8) where 8, =
(20 /)12, am/h?—00 and infeeq, I(s) > I > O.
Suppose the conditions in Theorem 2 hold. If (h%/h)¥/?/
{aY 2(log m)°}— oo, the asymptotic power of the POS test with
f2(s) in (7) is not smaller than &; + (1 — a;)® (—23) , where

2y =20, — P/ Q2 [, s+ pP(W)du [pa K2 (w)du)'/2.

In this result, Assumption a,,/h%®—>oco implies that our
method could work well as long as £2,,,’s size goes to zero slower
than h as the number of observations m increases regardless
of number or shapes of change areas. By Theorem 2, we can
see that the two-stage test with a fixed sampling density f
on I' in both stages has nontrivial power (larger than the
size @1 + a2 — ajap) against a contiguous alternative of
order (mh?2a,, /n,,)~"/2 under H;, . In contrast, the test with
“optimal sampling” has nontrivial power provided that &/, is
as large as (mh/2al? /5,,)~\/2, resulting in an improvement.
This can be intuitively understood that we actually put much
more sampling points within the region 2, at the second
stage through “optimal sampling” In this situation, the POS test
would also outperform the one-stage test with the size m" = 2m
from the asymptotic viewpoint, if the same bandwidth is used.
An illustrative example can be found in the supplementary
materials.

Another benefit of the proposed test under this sparse alter-
native is that the assumptions imposed on hg are more relaxed
in Corollary 1 compared with that in Theorem 2. Consider the
following case. If mA%—0 and . (s) differs from 0 only in a small
region Q,, so that a,, = h%2, the optimal rate of nonparametric
estimation hg = O(m~'/“+9) can be allowed as long as the
bandwidth h used for testing satisfies mh>4+9/4 0,

Remark 2. To generate m samples at the second stage, one
can use acceptance-rejection algorithm to sample from the
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Method = POS -- FS —- 0S
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Figure 1. Power comparison under Scenario (I) when m = 200, 400 and errors follow A/ (0, 1) for the tests with different sampling methods at the second stage: our POS
procedure (POS; solid red line); fixed sampling procedure (FS; dot blue line); oracle sampling procedure (0S; dash green line).

estimated continuous density (Gilks and Wild 1992). Here,
we suggest to apply a discrete distribution to approximate the
sampling density f2(s). In particular, we estimate the sampling
probabilities by (7) for all m, possible design points in sample
space & and then draw m sampling points by a multinomial
distribution with probabilities {fz(sj)};’l‘l, wheres; € S.In
practice, this discrete approximation is sufficient for large m,
and is fast to implement with the computational complexity
O(mamhg). In this way, the computation of the two-stage
test with POS is O(m*h? + m,mh%), where O(m*h?) is the
complexity for computing Tf,.

We use a toy example to demonstrate the performance of
the proposed test. Suppose that p(s) = 6 exp(2s)lq(s), where
r = [0,1,8 = 0, 2 = [0.4,0.5] and I(-) is the indicator
function. We consider both independent and autoregressive
covariance structures; see Scenario (I) in Section 4 for details.
The significant levels «; and a for the two stages are equal
and the global significant level is controlled as « = 0.05.
Figure 1 compares the power curves of our proposed method,
POS, with two other two-stage tests. They differ only in their
sampling distributions at the second stage. FS uses a fixed
uniform sampling and OS uses the “oracle” sampling density
function pu?(s)/ [ p?(s)ds as if u(s) is known. At the first stage,
all three methods use uniform sampling. The improvement of
our adaptive-sampling-based test over FS is clear. The test with
“oracle” sampling has superior performance as expected, but the
difference between OS and POS becomes smaller as m increases,
which is consistent with the assertion in Theorem 2. Another
example in the supplementary materials shows the performance
of the proposed test under the “sparse local alternatives
in (8)”

3. Sequential Change Detection Based on Dynamic
Sampling

3.1. The Procedure

When data are collected over time, we have the random vector
X; of which the components are obtained at spatial points &; =
{s;}i", C S at time . For detecting changes under model (1),
we notice that

d | N@O,1), for = L.

L P e 9)

where 6; > 0, T, is the test statistic in (4) based on {X;, S;} and

the sampling density f;(-) and the Ly means asymptotically dis-
tributed. This motivates us to use a standard sequential change-
point detection approach based on the generalized likelihood
ratio (GLR) statistic, which is defined as

t

¥ T

i=k+1

Q: (10)

1
= max
0<k<t /t — k

The process triggers a signal if Q; > L, where L is chosen
to achieve a specified average run length (ARL) under the
null state. Generally speaking, the Q; can adaptively detect
the change-point r with large probability as ¢ — 7 becomes
large. Note that the original monitoring problem is analogous to
“high-dimensional” detection, the use of T}, plays an important
role of dimension reduction that exploits the clustering infor-
mation and casts all current observations into a univariate value,
facilitating the construction of change-detection procedure.

In fact, many methods in sequential change detection, like
the popular cumulative (CUSUM) or exponentially weighted
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Sampling Density

[0.3,0.4]U[0.6,0.7] and & = 5 when t = 7 and errors follow N (0, 1). Black dots stand

for sampling locations while the gray areas represent those in which change signals occur. Right: Corresponding sampling densities at each time point.

moving average charting schemes, can be used to detect T,’s
mean change. In particular, we notice that the signal magnitude,
6 in (9), is likely to be time-varying under the alternative condi-
tion and thus the GLR would not be optimal in terms of mean-
change detection. One workable alternative is to apply some
methods for detecting dynamic mean changes, such as Han
and Tsung (2006) which developed a reference-free procedure
that can trace and detect mean changes without knowing the
change pattern. Because the GLR detection procedure has the
robust performance without selecting tuning parameters and is
a diagnostic aid to identify the change point, we focus on GLR
method though our ideas are readily extended to other change-
point detection approaches.

We also generalize the two-stage adaptive sampling strategy
in Section 2.2 to a dynamic sampling strategy so that Tj,
would tend to automatically select the variables that have
changes with a high probability. Clearly, at time point ¢, an
ideal sampling distribution for the time point ¢ 4+ 1 would be
estimated by the whole observations under the alternative, that
is, {(X;11,8r41)s....X Sy} if t > 1. However, accurate
estimation of r is not feasible when the detection scheme is
ongoing. To this end, we suggest to obtain the estimators fi;(s)
by (6) based on the most recent « observations up to time point
t,say, {(X¢—w+1> St—w+1)s - - - » (X, Sp)}, and then combine them
together by

5

= 1 2
fof®) == ) (o),

i=t—w+1

(11)

where w is a pre-chosen window size. At least after the time point
t — @ + 1 time point, we will have “homogenous” samples to
estimate z¢(s). This choice may not be the best strategy but it is
sufficient for practical use due to its simplicity. Then, the Sy,
can be generated from a new sampling distribution by (7) based
on the estimator fi,,¢(s).

We use the example of Scenario (I) in Section 4 to illustrate
this procedure. Figure 2 presents the sampling locations and
the estimated sampling density at each time point with two
change areas Q@ = [0.3,0.4] U [0.6,0.7] and & = 5 when
the change-point is at t = 7 and errors follow A(0,1). It is
evident that the sampling locations do not exhibit any structure
before the change occurs, that is, f < 7. In contrast, most
locations selected after the change point are around € (the

gray areas). Accordingly, the estimated sampling density tends
to be bimodal around the two clustered areas after the change
point. In particular, within the time interval f € [7, 12], more
and more sampled locations gather in the areas with change
signals, because [i,,(s) is more and more accurately estimated.
The sampling points determined by this procedure perform rea-
sonably well as they can dynamically capture change patterns.
Two illustrative examples with d = 2 can be found in the
supplementary materials.

Our proposed procedure for online detection using POS is
outlined as follows:

Algorithm 1. (Online detection using pattern-oriented-sampling)

Step 1. At time point {, compute Tf, by (4) based on {X;, S;).

Step 2. Obtain Q; by (10). If Q¢ = L, stop; otherwise, go to
Step 3.

Step 3. Compute ji¢(s) by (6) based on {X;, S¢}, and then obtain
Jex1(s) by (7) with fi,,¢(s) in (11).

Step 4. Sample m covariates from f;;(s) as S¢y; and get X,y ;.
Return to Step 1.

To better understand the advantage of the proposed POS
procedure over the GLR method with the fixed-sampling strat-
egy, we discuss some asymptotic properties under the alter-
native conditions. Suppose a threshold Lgs is chosen so that
Pr(max; <y <¢ é[»‘ < Lgs) = 1 — « for some a € (0, 1), where
lHQt is the detection statistic similar to Q; in (10) but using the FS
strategy with a given density f on I

Theorem 3. Suppose Assumptions 1-4 hold.

(i) Underthenullstatet < r, Pr(maxj<y<t Q¢ < Lps)—1—«
as m—00.

(ii) Assume that after the change-point z, a change specified by
the alternative occurs in the process. If the conditions in
Corollary 1 are all satisfied, at any time point ¢ > t, the
power of POS is not smaller than that of the FS procedure.

The first part of this theorem claims that the POS and FS
procedures perform equivalently from asymptotic viewpoints
when the process is under the null state. Under the alternative
state, the proposed procedure would reject the null hypothesis
at the time t with a larger probability, which results in faster
detection than the method with a fixed-sampling density.
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Besides quickly detecting a process change, a by-product of
our proposed procedure is a diagnostic aid to identify when the
process change occurs after a signal is triggered at the time point
t = f;. The suggested change-point estimator is

Z Ty,

i=k+1

7, = argmax o, (12)

J_

Finally, we present an asymptotic result on the consistency of 7 ,
which ensures that it is asymptotically effective.

Corollary 2. Assume the conditions in Theorem 3(ii) all hold
and process stops at t,. Then, as m—o00 and t; — T—00, |T;, —
7| = 0p(1).

Some numerical results in the supplementary materials
demonstrate that 7, works reasonable well in finite-sample
settings.

3.2. Practical Guidelines

This section provides guidelines on how to design and imple-
ment the proposed scheme. Several practical issues are dis-
cussed, including the choices of bandwidths and determination
of the threshold L.

Like many other smoothing-based tests, the performance of
the proposed procedure depends on the bandwidth h in the
test statistic D and the hg in the density estimator (6). By
Lemma A.2 in the Appendix, the optimal kg for the estimator
[i(s) is of order O{(m/n,,)~/*+9}. We therefore consider to
use (m/logm)~1/“+4) a5 a rule of thumb when there is no
information about the magnitude of spatial correlation.

It is widely acknowledged that the optimal k for nonpara-
metric estimation is generally not optimal for testing (Hart
2013). The selection of h for optimal power is an open problem.
Asymptotically, a range of bandwidths that satisfy Assump-
tion 4 will maintain the consistency of the test, while a specific
bandwidth will maximize the power. The amount of smoothing
applied will affect the power of the test, but our simulations
demonstrate that the observed significance changes only mildly
over a wide range of values of k. In addition, a larger bandwidth
generally leads to higher power. This can be understood from
the power function given in Theorem 2. However, in practice,
the condition # — 0 will be violated if & is too large, and
an inappropriately large h will yield an excessive false alarm
rate. Based on our numerical experience, we recommend the

h“"( with some ¢ > 0 so that
1/2

empirical bandwidth h =
the condition (h%/h)¥/?/{a,," (logm)}—>co in Theorem 3 is
roughly valid. This formula works well for a wide range of
models and sizes, as shown in Section 4. Selecting an optimal
h warrants future attention.

It seems that determining L is nontrivial as its accurate value
depends on m, K(-), hand hg given an ARL under the null state.
Simulation- or resampling-based approaches (Chatterjee and
Qiu 2009) can be applied here but they usually require extensive
computation in massive data. As revealed by Theorem 3(i),
the distribution of Q; is asymptotically free of those quantities
and thus the corresponding L could be approximated by the
control limit Lrg designed for the GLR scheme with a simple ES

strategy. This Lgs can be found by either the simulation method
or large-sample approximation (Han and Tsung 2006). From
the simulation results in the next section, we can see that this
approximation method works reasonably well in most cases.

The optimal choice of the window size @ used in i, (s)
depends on the signal strength, say 8/, (or 8,,). A smaller w leads
to a quicker reaction to larger signals, while a larger » would
be more efficient when &, is small as more observations will
be collected to estimate j(s) after the change occurs. However,
our simulation results show that the performance of POS is not
affected by this value too much, and in general w < [5,10] is
suitable.

The GLR procedure may be computationally intensive when
t is very large because its complexity is linear with ¢. Conven-
tionally, a moving window of size wq is employed to alleviate
the computational burden, that is, building the GLR statistics as
Q; max;_g<k<t 1/v/t— Z, k1 Tt;. Generally, increasing
the value of wq could improve the ability of the GLR to detect
small signals (Hawkins and Zamba 2005). Some simulations
results in the supplementary materials appear that the proposed
method leads to similar detection abilities as long as wg >
50. We use Q; and choose wg = 50 in the simulation study.
In this case, the complexity of online search is bounded by
O(wq). Moreover, the POS procedure only needs to store wq test
statistics Tf, for computing Q; besides m observations collected
at each time point. This advantage of memory cost is crucial,
especially for online monitoring of large-scale datastreams.

(0)

For implementing the POS, we need to compute p;~ and orff.

It can be easily seen that ,u( = = tr(Vg) and Gfr =] 2tr(Vft),

where Vfr - dlag(lfﬁ;) A'2K, A diag (1/VE), K =
Kj Kh(si—s;) 5i)

(FoSR1G#£)) and f = {fi(su)s- - fi(sm)T- The A

can be estimated from a historical sample and accordingly ,u,(D)

and Jfr can be updated online once f;(-) is obtained.

As a side note, it is clear that better performances would be
expected when m is larger. Some examples can be found in the
supplementary materials. How large m is allowed depends on
practitioners’ resource constraints, such as the storage space,
computational power, and processing time.

3.3. Extensions to the Case With Sampling Cost

In some applications, practitioners may be reluctant to relocate
the sampling points frequently due to its complexity or high
setup cost. For example, in environmental surveillance, chang-
ing sampling locations requires redeployment of sensors and
resources. In such cases, we can simplify the detection procedure
via classifying the process into two statuses with a warning
threshold. That is, a fixed set of sample points is always used to
save sampling cost when the statistics are less than the warning
threshold, while a new set of sample points is selected adaptively
by our POS procedure to improve the monitoring efficiency
when the test statistic exceeds the warning threshold.

Specially, let Sy with | Sy| = m be the fixed design set,and L,,
is a suitable warning threshold to determine whether a dynamic
sampling is needed at the next time point. The modified POS
procedure for the case with sampling cost is outlined as follows.



Algorithm 2. (Modified POS (MPOS) procedure in the presence
of sampling cost)

Step 1. At time point ¢, compute T, by (4) based on {X;, ).

Step 2. Obtain Q; by (10). If Q; = L, stop; otherwise, go to
Step 3.

Step 3. IfQ; < Ly, let S;11 = Sp; if Q¢ € [Ly, L), obtain f;1(s)
by (7) with fi,(s) in (11), sample m covariates from
Ji+1(s) as Seyy.

Step 4. Get the corresponding Xy; at S¢yy, and return to
Step 1.

Determination of the warning threshold L,, is related to the
sampling cost. Let v be the unit sampling cost and accordingly
m x v is the cost of regenerating design at each time point.
Under the null state, the average cost can be expressed by
Pry, {Q: € [Lw, L)} x mv x ARLy, where ARLy is the nominal
ARL under the null state. Hence, one can decide a reliable L,,
according to a prespecified average cost under the null state.
In general, a smaller L,, tends to yield dynamic sampling more
often and consequently detect the change faster. In particular,
the procedures with L,, = 0 and L,, = L reduce to the POS
and FS methods, respectively. The MPOS adaptively selects m
most informative samples via altering sampling strategies when
the warning signal triggered, which is in a similar spirit to
traditional variable sampling schemes with sampling sizes or
sampling intervals in statistical process monitoring (Li and Qiu
2014).

It is worth pointing out that this modified procedure can
result in cost saving compared to the standard POS when the
process changes. For fair comparison, we may consider the POS
procedure with a size m" = |mPrg,{Q; € [Ly,L)}]. Accord-
ingly, the POS and its modified one, MPOS, would have the same
ARL and average cost under the null state. Denote ARLpps and
ARLpypos as the ARLs (after the change-point t) of the POS
and MPOS under the alternative state, respectively. Then, the
average costs of POS and MPOS would be m’v x ARLpos and
Pry, {Q: € [Lw, L)} x mv x ARLmpos, respectively. Thus, the
expected proportion of cost saving of the MPOS with respect to
POS is

_ Pry, {Q: € [Lw, L)} x ARLmpoS
Preg, {Qr € [Lw, L)} x ARLpos
With a larger subsampling size, ARLypos is likely to be much

smaller than ARLpgg, resulting in considerable savings. Some
numerical evidence can be found in Section 4.

4. Numerical Study

In this section, we conduct simulation study and use a real-
data example to examine the performance of our proposed POS
detection procedure.

4.1. Simulation Results

Consider the covariate space S C [0, l]d with m, = 10,000
possible sampling points generated uniformly. We follow model
(1) and set pp(s) = 0 without loss of generality. The num-
ber of sampling points is m = 200 at each time point. The
random error e; is a m-dimensional variable with mean zero
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and covariance matrix A. Two classes of A are investigated:
one is the identity matrix; the other one has the components
Pii» = exp(—|lsj — s;II/A) and A = 1/5m~*/%. We denote
these two as “IID” and “COR” cases, respectively. We consider
two cases for generating errors: one is that all the errors are from
N (0, 1); and the other one is a mixed one, in which the errors are
randomly from AN(0, 1), normalized chi-squared distribution
with three degrees of freedom ( x%) and normalized Student’s
t-distribution with five degrees of freedom (#5). Assume the
change point is T = 50 and €2 is the region where changes occur.
Three scenarios for 1 (s) are considered:

s Scenario (I):d = 1, u1(s) =
[0.4,0.5];

o Scenario (II): d = 1, u1(s) = (s + 0.5)’Ia(s) and Q@ =
[0.3,0.4] U [0.6,0.7];

« Scenario (III): d = 2, 1 (s) = 8(a's+2)%Iq(s),a’ = (1, —2)
and Q = {s: ||s||? € [0.4,0.5]}.

6 exp(2s)lq(s) and 2 =

All the simulation results are based on 5000 replications.

For the sake of simplicity and consistency with the literature,
the ARL (detection delay) is used to evaluate the performance
of monitoring scheme and ARLy is fixed as 200. As discussed
in Section 3.2, we consider the empirical bandwidth formula
hg = 1.5m~Y/#+d . sd(s) in the density estimator (6) and
h = k?’c’ in the test statistics Tt, for some ¢ > 0, where
sd(-) denotes the sample standard deviation. Table 1 reports
the ARL values of POS with different bandwidths when the
errors follow A(0,1). We observe that three different values
of ¢ € [0.05,0.2] present similar results and their ARLs are
not significantly different. Meanwhile, the POS is not affected
too much when the window size w used in fi,,,(s) is selected
in [5,10]. Hence, ¢ = 0.1 and @ = 5 are used in the rest
of simulations. Moreover, the POS procedure has satisfactory
ARL performances under the null state (close to the nominal
value 200 when & = 0) under all the three scenarios. In some
cases, the ARL values deviate a little from the nominal level, but
the deviations are generally in an acceptable range considering
we are using asymptotic approximation here. Our additional
results (not reported here) show that the deviation becomes
less pronounced as the m increases. These results together with
those provided in the supplementary materials for the other
error distributions demonstrate that the proposed method for
determining the threshold L is effective even with finite-sample
sizes.

We next compare the proposed scheme POS with three
related approaches. The first approach uses the fixed-sampling
(FS) strategy with the uniform distribution at each step. The
second one, named as TRAS proposed by Liu, Mei, and Shi
(2015), uses the sum of top-r local statistics to monitor and uses
the top-m local statistics to sample adaptively. Here, we choose
r = 5 for the method TRAS following the recommendation
made in thatarticle. The third one is Wanget al.’s (2018) SASAM
method which monitors a largest local statistic and updates
the observations with random sampling in the whole space in
conjunction with a directional sampling around the location
with the maximum statistic. Because both POS and SASAM
considered clustering information, we choose to use the same
bandwidth for them to have a fair comparison.
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Table 1. Average run lengths of POS with different bandwidths when the errors follow A/(0, 1).

IID case COR case
w Scenario N 0.05 0.1 0.2 0.05 0.1 0.2
0 203 (22 193(216) 200218, 194153, 200153, 197183,
(U} 0.2 89(53) 9.1(55) 10.1(5.4) 46.7 475 513475 53.5(505)
04 23011 230 2401 5.6(3.0) 5932 6.2(35)
0 203272) 193216) 200,718, 19413, 200(183) 197 (183)
5 (I 0.2 64.0(615) 65.0(623) 73.2q00) 132133, 142145, 136(134)
04 6.6(3.7) 6.739) 74(43) 349130.8) 38331 40.2(34.4)
0 191150y 203189 199187 205(19p) 20919 207 1)
am 0.2 264021 6) 312262 4090361) 327274 38.8(335) 55.5(40.4)
04 37016 3917 43019 39017 4108 4.802.1)
0 207 192y 214197y 204 18g) 199 1gs) 204 189) 201 1g5)
(U] 0.2 96(57) 10160 10.7 6.4 481453 50.4(476) 54.7(51.4)
04 2413 2413 2573 6.7 36) 6.93.6) 74309
0 20719 214197 204183 199(1gg) 204159, 201185,
10 (I 0.2 53.9(49.4) 59.8(55.9) 617581 146(141) 146145, 147 144
0.4 FAPEN 7.5(42) 825 336278 3440259 38.6(335)
0 22120 217199 211103 209195, 206(19) 20115
m 0.2 27518 30.50246) 384329 30.0246) 3430239 4550407
04 4407 4722 5205 4732 4974 5727

MNOTE: The his chosenas h = hé"'cr with ¢’ = 0.05, 0.1, 0.2. Numbers in parentheses are standard deviations of the run length.
Method === POS == FS =: TRAS == SASAM

Scenario (1) Scenario (Il) Scenario (lll)
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1 1 1 1 1 1 1 1 1 1 1 1
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i}

Figure 3. ARL comparisons (in log-scale) under three scenarios when errors randomly come from A/ (0, 1) or normalized t5 or _x-f. POS: the proposed method (solid red
line); FS: the detection scheme based on fixed sampling (dot blue line); TRAS: the top-r-based adaptive sampling scheme by Liu, Mei, and Shi (2015) with r = 5 (dash green
line); SASAM: the spatial-adaptive sampling and monitoring procedure by Wang et al. (2018) (long-dash purple line).

Figure 3 illustrates the ARL curves (in the log scale) against It outperforms the FS method uniformly, except for the very
different signal magnitudes # for the mixed errors. All plotsindi-  large 6. This is consistent with the asymptotic comparison. In
cate that the proposed POS is sensitive to the process changes. most cases, our method has smaller ARLs than the TRAS; the
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Figure 4. Boxplots of proportions of informative sampling points from the 35th time point to 70th time point. Dotted-line stands for the change point.

ARL curves of TRAS decline slowly as the abnormal signal
increases. This is not surprising, since the clustering structure
of the covariates is completely ignored in the construction of
TRAS test statistics. This can be better appreciated by comparing
FS and TRAS: even though without dynamic sampling, the
FS could be more efficient than TRAS, especially when the
abnormal signal is moderate or large, due to the use of the
local aggregation statistics Dy. When 6 is too small, the TRAS
performs better than POS. This can be understood that the
estimator fi,¢(s) may fail to capture the main feature if the
signal-to-noise ratio is not large, and accordingly the power
of the test statistic Tf, would be considerably compromised
due to local aggregation. In contrast, the TRAS extracts the
information on change from each individual marginally, and
thus could be more efficient in such cases. Despite utilizing
the spatial information to certain degree, the SASAM is not as
efficient as POS in terms of change detection when 8 is not
too small. The “optimal” sampling in POS allows us to take
better account of the clustering information than the SASAM
which roughly exploits some covariates information around
the one with the largest local statistics. Similar results with
N(0,1) distributed errors are provided in the supplementary
materials.

To evaluate the sampling performance of all methods, we
further compare the proportions of sampling points located in
the change regions at each time point. Figure 4 presents the box-
plots of the proportions of informative sampling points under
Scenario (I1I) with & = 0.2 when errors are from A (0,1). It
is evident that POS is able to deliver a more stable performance
than the competitors, implying that it tends to select more points
in the change regions after the change point r = 50.

Finally, we consider the extension MPOS in Section 3.3. We
consider POS with the subsampling size m" = 100 and MPOS
with the subsampling size m = 200 or 500. That is Pry, {Q; €
[Lw, L)} equals 0.5, 0.2 for MPOS, respectively. With this setting,
POS and MPOS would have the same average cost under the null
state. Figure 5 displays the comparison between POS and MPOS
in terms of ARLs and cost saving proportions. Clearly, with a
larger subsampling size at each time point, the MPOS system
can detect the changes faster, and consequently the cost saving
of MPOS relative to POS is quite substantial in most cases.

4.2. A Real-Data Application

It becomes increasingly important to monitor the real-time
traffic conditions for smart traffic management. In a typical
setting, sensors are installed at different segments to detect the
traffic volumes and average speed. These data provide useful
information in identifying congested areas, shifts in traffic pat-
terns, and abnormal events. However, transmitting the entire
city network with high sampling rate for real time analysis is
expensive, requiring exhaustive computation and communica-
tion resources. Alternatively, using our proposed POS proce-
dure can quickly detect changes in traffic patterns, and provide
information for quick traffic control and warnings for road
users. In this study, we demonstrate the POS procedure to mon-
itor the real traffic in New York City. The dataset was obtained
from New York City Hourly Traffic Data (Donovan et al. 2016).
We aim to monitor the average traffic volume, defined as the
average number of cars while passing a road junction within
a given time interval. For illustration, we consider the traffic
monitoring for Manhattan region, as shown in the left panel of
Figure 6.

In this example, we focus on m, = 2646 possible sampling
locations in the year of 2010 and fix m = 100 for each sampling
point. For the fixed sampling strategy, we choose 100 typical
locations to study the traffic situation of this area, which com-
pletely ignores the clustering information of traffic congestion
in practice. For the POS procedure, we set hg = 0.15, h =
0.02, and @ = 5 in the study. As a convention, we split the
dataset into two parts, the data before October as the training
data and the data from October to December for monitoring.
First, we remove the outliers based on the normalized training
data via a rule of thumb threshold, 4. Then we use the training
data to estimate the normal mean function rcy(s) as well as the
parameters y.g)) and of, under Hj. Following the GLR procedure
and dynamic sampling strategy, the test statistics of the POS and
FS procedures are plotted in the right panel of Figure 6. We can
observe that the two curves have similar trends, but the POS
triggers alarms since the 56th point but the FS method does not
produce sustained signals. Retrospective study suggested that
the change point could be caused by a blizzard hitting New York.
We present the sampling locations of our procedure during the
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Figure 5. Comparisons between POS and MPOS in terms of ARL and cost saving proportions under Scenarios (1) and (ll) when errors are independent from A/(0, 1). The
POS with m" = 100 (solid red line), MPOS with m = 200 (dot blue line) and MPOS with m = 500 (dash green line) are considered.
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Figure 6. Left panel: The map of Manhattan. The red points stand for the road junction nodes; right panel: the test statistics of the POS and FS procedures. For ease of
illustration, the values of test statistics minus the control threshold are plotted so that the “zero”line is the threshold for an alarm decision.

out of control period in Figure 7. It is clear that the locations
sampled by POS exhibit certain clustering pattern, and more
locations around Broadway region (top-left area) are selected.
Compared with the sampling locations from FS strategy, it is
not surprising to find that the FS strategy fails to detect the
change because only few junction nodes around Broadway were
chosen. These results indicate that the POS strategy is appealing
in the sense that, even with constraints on resources in practice,
it can still enable fast and accurate detection by efficiently using
clustering patterns.

5. Concluding Remarks

This article is designed for online detecting the mean function
change when limited resources can be used. However, the vari-
ances or the correlation structures of datastreams may change
over time in many applications. It requires more research to
extend our procedure to such problems, in which a new statistic
and the corresponding optimal sampling density are required.
Moreover, our method employs a kernel-based statistic under
the assumption that the difference between the mean functions



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 805

lon lon

Figure 7. Sampling locations selected by the POS and FS procedures from the 62nd time point to the 68th time point. Red circles stand for sampling locations by POS,

while blue triangles stand for the fixed junction nodes.

before and after the change point possess certain smoothness,
which may cause difficulties in detecting the scattered or isolated
changes. Hence, a robust method, which is able to automatically
adapt to both clustered and scattered changes, is of interest.

Another important problem is to identify those locations
whose datastream signals have changed, which amounts to con-
ducting a large-scale hypothesis tests for each individual datas-
tream simultaneously and sequentially. It is necessary to study
this dynamic testing problem with some error rate control when
the clustering or spatial pattern among datastreams exists. In
addition, we study the optimality of the sampling procedure
POS under the framework of two-stage test. Though our the-
oretical and numerical results demonstrate that this sampling
procedure works well for online detection, there is still a need
to further investigate its properties from the sequential view-
points, such as whether it possess certain optimality in terms
of expected delay.

Appendix: Proofs

Before we present the proofs of main theorems, we first state two lem-
mas whose proof can be found in the supplementary materials. A few
well-known theorems we will frequently use are also presented in the
supplementary materials. Throughout this discussion, unless otherwise
stated, sup, will be taken over the entire £ without the boundary. Let

i = (1), oo} T and Uy, = diag (1/vF) Kydiag (1/vF),
where K, = {kij(h)}mxm and f = {f(s1),. - of(sm)} T. Write

Df = sTVhs + ZeTAUzU;,u - ,uTU;,,u
= sTth + erjag(Vh)e + ZSTA”ZUhﬂ + ,uTU;,,u, (A.1)

where wh = V}l - djag(vh) = {wzj(h)}mxma and Vh =
diag(lfﬁ)AlfthAUZdiag(Uﬁ)_ Denote uﬁ = =y
b3 wé(h).

Lemma A.1. Suppose the conditions in Theorem 1 hold. We have:

(@) 1 Upi/ mh=42) & (£, T), where u(f,T) = E¢{B(s)}; (i)
vf!,"{h_dqfn} L) <2(f,T).

The next lemma is related to uniform convergence of Nadaraya—
Watson estimator under the spatial correlation structure we are con-
sidering.

Lemma A.2. Suppose the conditions in Corollary 1 all hold. The
Nadaraya-Watson estimator of p.(s) satisfies

. a log m
sup |a(s) — u(s)| = Op (hﬁa,’,, 4 [Fmim 8T ) :
s th

To prove Theorem 1, we will establish the asymptotic distribution
of Dy under the null and alternative hypotheses, respectively, given by
the next two propositions whose proof will be often referred. Lemma
S.3 which is concerned about the asymptotic normality of a quadratic
form of iid random variables, will be applied.

()
Proposition A.1. If Assumptions 1-4 hold, then Pr(Df_T’uf > Zw |
sl,...,sm)—‘u>a under Hy.

Proof. By (A.1), Wy, is symmetric with w;;(h) = 0 for all i
To apply Lemma S.3 to &' Wye, we will check the condition,

||Wh||§j||Wh||%£>0. Lemma S4 and Assumption 1 imply that
I diag (1;«/?) lls = Op(1). Note that

2

2 2
IKplls = max [[Kpul|” <

m
kii(h
=1 1?&""«;' 7

= max f3(s;) = Op(1),

1<i<m

where we used the Cauchy inequality and Lemma S.4 (implied by
Assumption 4). By the fact that [|AY/2K,AY2|2 < |A|2(IKp |12, we
can claim that

2
m
IWAIE < IVAIE = Op { | max 3 Ipgl | ¢ =1+ 0p0m*A%
_i_mjzl

where the second equality is due to Lemma S.5.
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Next, we analyze ||Wj, ||§,. Observe first that

{ 21y kg () l

”V’”‘"F_EZ FGsf )

i=1 j=1
2
m m m
+op(1) YD 1D puky ¢ -
i=1j=1 | I=1
Given s; and s;, we have as A /h—0,

> piky(h) ~
i

s
) f(s)ds

§; —8 5}'_

K2

/() (%

2d s; —$j + Au

= —_— gl ————
hﬂ'f ( n

Al — 8§
~ QK( - )f (s1) f p(u)du.

Accordingly, we have

2
m K2(si —s; 2
3 ok}~ ST 22 (f(s,-) f p{u)du) _
i (m—1)2

(A.3)

) p(llull)f(s; — Auydu

—dg2 (5§
statistics in Lemma S.2,

Pr Zzh —d
( wigme==3 1<i#j<m
2 (88 _ 2( 85
ot 6 e g B 1]
( 1(m—1)hdr2)
<2exp| ——————|—0,
2C 14t/3

for any t > 0 since mh?—s 0o. Because

hE {Kz ( _ )] fsz{u)f(s)f(s + hu)dsdu
= f K2 (u)du f f2(s)ds, i#],
when h—0 by the Lebesgue dominated convergence theorem, the

limit of m—2h—4y" Z:’} K2 (s—';i) is given by [ K%(u)du [ f2(s)ds.
Consequently, we can conclude that

< Ch—4, and the Bernstein inequality for U-

> t) (A.4)

IV4l2 =0, {h‘d (1 + mzlzd)] 0p(h ). (A5)

Using (A.3), we have ||diag(Vy,)||? 7= 0p(| V4l F)' Combining this with

(A.2) and (A.5), the condition [|Wp|I3/|Wp |12 £ 0 holds.
As a consequence, we have
Pr(eTthjv;, - o [ fmx

by Lemma S.3. Finally, it can be checked that & T diag(Vy,)e — }u}o) =
0p(vy,), from which the assertion of the proposition holds. O

Proposition A.2. If the conditions in Theorem 1 all hold, then

(0)
Df — g r(f,I) P
Pr (T | sl,...,sm) _(b(:c(f,l") —z,,)—>0.

Proof. Under the alternative, Df = &' Ve + 2¢ AV 2Upp +
uTUhu.. By Proposition A.1, Pr{{.&'TV;1 — ,u,(o)}s,*’v;, = om |
sl,...,sm}fnx. From Lemma A.1, LLTU}]LL)'V;I—},'J,G, D)/ (f,T).
Note that E {STAI'D'U},M. | (si,...,sm)l =0,and

var {sTAl’QUhu | (51,...,sm)l = u,TU;,AU;,,u

< T UpnllAllsIUnlls
= O(mh™ )0 (m)Op(1).

The last equality is based on [[Uls < [IK}|Islldiag (1 NF) lls. Thus,

eTAV2Upp /vy, = Op(h%/*). Simple algebra yields the conclusion.
a

Proof of Theorem 1. Under the local alternative hypothesis, Proposi-
tion A.2 revealed that the power of the test based on Dy depends only
on ﬂf(f: F);KO{’ r):

If mA9—0, we can see that «(f,T") is a constant not depending on
f(s) under a given kernel function K(-). By Cauchy-Schwarz inequality,

we can find that E{?(s)} < ,/[(s)ds [ f2(s)ds, and the equality

holds if and only if 2(s) = cf(s), where c is some constant. Thus,
if the sampling distribution of s is a linear function of (s), that is,
f(s) = Iz(s))’f (s)ds, the power can be maximized. If ma.9— oo, we
have

[ B(s)f(s)ds

J [ f2(s)ds .

Again, the locally best power is achieved by choosing f(s) =
E(s)/ [ E(s)ds. O

:Uf(fsr}f’c(f’l—‘) 8.8

Proof of Theorem 2. By the definition of the two-stage test, the power
conditioned on { Skj};'lpk = 1,2 is given by

Bty = Pr (Th, > 2a | o)) +Pr (T, < 2a | (51},
x Pr (sz > g, | {s)i ) k= 1,2) i
where we use the fact that Tg, is independent of Ty, conditioned on

{skj};.ll,k =12,
By Proposition A.2, we have

Pr (Tfl > Zy | {slj}’.’;l) —o(z)Bo.
By the proof of Theorem 1, we know that
Pr (sz > 2, | () k=1, 2) (-2 o,

Z) = 24, — Eg {2(s)}/x (f2, ). Using the uniform convergence given
in Lemma A.2, we have

Ef, [P (s)} —fr“(s)ds,fffz(s)dsilo,

provided that the order of signal strength is larger than that of the
maximum noise level, almost everywhere, say

(mh2 [y~ 12/ nmlogm .
it

The condition (h j’h)d" 2 /(log m)*— oo given in the theorem implies
this theorem holds O



Proof of Corollary 1. For simplicity, we assume that the number
of signal region is one, say 2, and the proof for the case with
more than one region is similar. By Lemma A.2 and the condition
(h'[’;.‘ / hyd/2 / {nﬁ,l,fr 2(log m)©}— oo, we can see that the Nadaraya—Watson
estimator of p(s) is still a uniformly consistent one except for the

boundary, in the sense that

. a log m
sup |u(s)|=op(/%),
s(T'\Qm)\By mh

a logm
sup  |i(s) — u(s)| = Op (hﬁa:,,+ Imlim 227), (a9)
s€Qpm\Bp mhg

where By, denotes a d-dimensional ball with radius A that is around the
boundary of €,. Thus,

f fZ(s)dS =1+ OP w ,
i mhg

Pr [fg(Szj) < {,:,KZ,VS%T' ¢ Qm U]Bh} — 1,

where ¢, is defined in (7).
Accordingly, using the same procedure in the proof of Proposi-
tion A.2, we can show that

Pr(Tg, > za, | {Skj}}lpk —:152)
— O (2 L)/ (22 Bm) — 2a) > 0,

where by (A.6)
(2, Q) ~ 2h—"'[Qm|fK2(u)du, if mad—so,

. _amM(f p(u)du)zf . f _
K“(f2, Qm) =~ hd(fgm B o)ds)? K*(u)du L (s)ds, if

mld—>oo,

and

P (s)f2(s)ds

m—h

w(f2, 2m) zf

2 (s)g(s)ds
Qm\By

~~ f I (s)ds/ P (s)ds
Qm\Bp Qm\By

%f fq‘{s}dsj’f P(s)ds.
Qm Qm

Finally, by the assumption that a,,— 0, we can see that the asymptotic
power of the two-stage test under mA9—0 is 1. The proof can be
completed by using the condition infscq, I(s) = I > 0 for the case
that mA9— oo. O

Proof of Theorem 3.

(i) First of all, by Proposition A.1, we have

sup |Pr(Ty, < x| Sp) — d()| < Op(r¥/?), 1<i=<t.
xcR

Note that T‘fl, s Tf‘r are independent. Thus, T’fi's are asymptoti-
cally equivalent to t iid A/(0, 1) random variables, provided that
th/8 0.
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On the other hand,
Br(lf 2% el =2 S

=Pr(Tf, < 5., T, < x [{SHL)Pr (Te,, <x 1 (SHH),
(A7)

where we use the fact that T is independent of {T¢};? | condi-
tioned on {S;} . By Lemma A.2, we know that

nm logm
s)—1=0, | [=——).
s elie - P(\/ = o

Thus, again we have

sup |Pr (wa <x| {3,-}?:1‘) = <I>(x)| < 0p(H/3).

xR
By iteratively using (A.7), we see that the joint distribution of Tt s
are also asymptotically equivalent to that of  iid N(0,1) random
variables. Notice that max; <y < Q¢ and max; ¢ ¢ Qp are con-
tinuous functions of { Ty, };_, and {T;}!_, , respectively. Hence, the
assertion holds immediately by the continuous mapping theorem.

(ii) Consider Qf = maxp<g—¢ ﬁ Z§=k+1 Z;, where

z-i»if} N(@©,1), for
: N@®;,1), for

and #; > 0. By induction, it can be seen that the distribution
function of Qf is nonincreasing in8;, i = t+1,. . ., t. Similar to the
proof of (i), we can show that the joint distributions of { T, } 521 and

{T,};_, are asymptotically equivalent to those of ¢ iid A/(6;, 1) and

=i (. .

fre=rpelnla sl a5

N (@;, 1) random variables, respectively. Thus, it suffices to show
that 6; > 6; fori > .

By Corollary 1, we know that; 1} = 8,4 ;. By Lemma A.2, we
can see that the p;(s),i > = + 2 has the following properties

R a logm
sup  |3i(s)| = Op ( [ % ) ;
se(T\Q2m)\By mig

> i—1t—1
sup  (pi(s) — Tu(s)

seQm\By,

1
:o,,(hg,s;ﬁ ) PR
mhg

Accordingly, by the same procedure used in the proof of Theorem 2
and Corollary 1, we can show that 6; = §; fori =t +2,...,t. The
theorem is proved.

O

Proof of Corollary 2. Consider a neighborhood of 7, [t — A, T + A] for
some A > 0. Denote R = ﬁ Z:‘:k 4 T 1 suffices to show that
Pr(R: — R+ A > 0)—1 for sufficiently large A, as m— o0 and t;—oc0.
We first consider R, 4 . By Corollary 1, we know that

T =Zi4+0+o0p(1), i=1+42,....1

under the alternative state, where E(Z;) ~ 0, var (Z;) =~ 1 and 6 > 0.
Furthermore, by the definition of Tf,, we have

ER;) = E{ER: | (S}, )} = VE—7 —16(1+0(1))
var (Ry) = Efvar (Re | {S}}2,, )} +0(1)

t
1
=— > var(Tg) +o(1) = 1 +o(1).
= gty




808 (&) H.RENETAL

Thus, we have
Pr(Rr — Ry4A > 0)
zPr[(Jts —T—1-Vik—t—A)8 > Op(/var Rr))
+0p(V¥ar Reya)) | -1,

as m—oo0 and A is sufficiently large. Similarly, we have Pr(R; —
R;_A > 0)—1 as well, from which we can complete the proof. O

Supplementary Materials

The supplementary materials contain some lemmas and additional simula-
tion results.
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