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ABSTRACT

Contemporary high-throughput experimental and surveying techniques give rise to ultrahigh-dimensional
supervised problems with sparse signals; that is, a limited number of observations (n), each with a very
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large number of covariates (p >> n), only a small share of which is truly associated with the response.

In these settings, major concerns on computational burden, algorithmic stability, and statistical accuracy
call for substantially reducing the feature space by eliminating redundant covariates before the use of any
sophisticated statistical analysis. Along the lines of Pearson’s correlation coefficient-based sure independence
screening and other model- and correlation-based feature screening methods, we propose a model-free
procedure called covariate information number-sure independence screening (CIS). CIS uses a marginal utility
connected to the notion of the traditional Fisher information, possesses the sure screening property, and
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is applicable to any type of response (features) with continuous features (response). Simulations and an
application to transcriptomic data on rats reveal the comparative strengths of CIS over some popular feature
screening methods. Supplementary materials for this article are available online.

1. Introduction

Contemporary high-throughput experimental and surveying
techniques employed in many scientific fields often generate
data on an enormous number of variables. This is the case, for
example, in the “Omics” sciences (Genomics, Transcriptomics,
Proteomics, Metabolomics, etc.) and in biomedical applications
involving imaging and/or the analysis of extensive electronic
medical records. Extracting meaningful and interpretable infor-
mation from these data often requires studying the association
of a response with thousands to millions of predictors (p)—
here and in the following, we use “feature,” “predictor,;” and
“covariate” interchangeably, all indicating a potential explana-
tory variable for the response. Even when these supervised
problems have what appears to be a large sample size (n),
this can in fact be orders of magnitude smaller than p. For
instance, in transcriptomic studies n may be in the hundreds,
but p may be in the thousands or tens of thousands. This
is commonly referred to as an ultrahigh-dimensional setting,
and often linked to the fact that p increases as a function
of n (collecting more observations produces more features).
Roughly speaking, one can have p =~ exp{O(n®)},é >
0 (Fan and Lv 2008). Importantly, in ultrahigh-dimensional
settings, association signals are often sparse, that is, only a
handful of predictors contribute to explaining variation in the
response.

When p exceeds n, computing or inverting sample covari-
ance matrices (3) to estimate dependencies among predictors
becomes very inaccurate, numerically unstable, or downright

unfeasible (Ledoit and Wolf 2004; Schifer and Strimmer 2005;
Bickel and Levina 2008; Chen, Chi, and Goldsmith 2015).
This, in turn, negatively affects regression model fitting, clas-
sification methods, and also techniques for supervised dimen-
sion reduction—in their standard versions, most of these tools
employ some versions of X or £ .

Popular methods such as LASSO (Tibshirani 1996), SCAD
(Fan and Li 2001), Elastic Net (Zou and Hastie 2005), and
MCP (Zhang 2010) use penalties to regularize supervised prob-
lems, performing feature selection and model fitting simulta-
neously (see Fan and Lv 2010 for a comprehensive overview).
In practice, many of these methods may successfully handle
p >  n scenarios, but they also deteriorate and might
not scale up in realistic time when p > n (see, e.g., Fan
and Lv 2008, Table 1, p. 862). Fan, Fan, and Wu (2011) fur-
ther discussed the challenges of high and ultrahigh dimen-
sion in classification. “Curse of dimensionality” issues includ-
ing computational burden, statistical inaccuracy, and algo-
rithmic instability call for alternative approaches in tackling
ultrahigh-dimensional supervised problems (Fan, Samworth,
and Wu 2009). One such approach is feature screening, pio-
neered by the development of sure independence screening
(SIS; Fan and Lv 2008) and extensively studied ever since, it
led to model-based, model-free, correlation-based, and distance-
based procedures for a variety of supervised problems includ-
ing regression, classification, discriminant analysis, survival
analysis, etc. Liu, Zhong, and Li (2015) provided a compre-
hensive overview of work prior to 2015 (we also provide a
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selected list of references in Section S5 of the supplementary
materials).

In this article, we propose covariate information number-sure
independence screening (CIS), a model-free feature screening
procedure based on a novel marginal utility called covariate
information number (CIN). For each covariate Xj, the CIN cap-
tures marginal association with the response Y without assum-
ing any specific underlying model, and can be interpreted in
terms of the traditional Fisher information in Statistics. CIN is
computed from the joint density of (Y, X;) employing kernels
to estimate marginal and inverse conditional densities within
response sub-populations that are naturally defined when Y is
categorical or discrete, and artificially generated by slicing the
range if Y is continuous. Thus, our approach can be employed
irrespective of the nature of the response and, in fact for con-
tinuous Y, it is robust to outliers (it uses only the ranks of the
Y values for slicing). Moreover, switching the roles of ¥ and
X; in computing the CIN, our approach can be utilized also to
screen discrete or categorical covariates—as long as the response
is continuous. Because of the way information on marginal and
conditional densities is used in the CIN calculation, in addi-
tion to being model-free, our approach does not require strong
assumptions on the predictors (the rationale is similar to that
discussed in Yao etal. (2019)). Under mild regularity conditions,
we show that the CIS procedure built upon the CIN marginal
utility possesses the sure screening property (Fan and Lv 2008).
Overall, we find that CIS is competitive with, and sometimes
better than, other popular feature screening procedures.

We compare CIS to five other procedures: (a) SIS (Fan and
Lv 2008), (b) high-dimensional ordinary least squares projection
(HOLP; Wang and Leng 2016), (c) sure independent ranking and
screening (SIRS; Zhu et al. 2011), (d) distance correlation-sure
independence screening (DC-SIS; Li, Zhong, and Zhu 2012), and
(e) martingale difference correlation-sure independence screen-
ing (MDC-SIS; Shao and Zhang 2014). SIS postulates a naive
linear regression model, and screens the predictors based on
the magnitudes of their Pearson correlations with the response.
It is intuitive, computationally straightforward, and possesses
the sure screening property. SIRS, DC-SIS, and MDC-SIS are
among the most popular model-free feature screening proce-
dures in the literature. Specifically, SIRS does not postulate a
specific underlying model but relies instead on a general frame-
work which includes many common parametric and semi-
parametric models. It possesses rank consistency, a stronger
property than sure screening, and allows both univariate and
multivariate responses. Moreover, similar to our CIS, it only
considers response ranks and is therefore robust to outliers.
DC-SIS screens the predictors based on their distance correla-
tions (Székely, Rizzo, and Bakirov 2007) with the response—
a measure of departure from independence for two random
vectors, built through characteristic functions. It possesses the
sure screening property, allows both univariate and multivari-
ate responses, and can also handle grouped predictors. MDC-
SIS uses martingale difference correlations, which are a natural
extension of distance correlations. It screens predictors that con-
tribute to the conditional mean of Y|X, and has the sure screen-
ing property. Notably, to tackle regressions with heteroscedastic
errors, the authors of MDC-SIS proposed an extension that
screens based on contributions to conditional quantiles. While

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1517

the feature screening procedures discussed above involve com-
puting the marginal utilities independently, HOLP involves a
joint estimation of these measures. HOLP is motivated by the
ordinary least squares estimator and ridge regression, straight-
forward and efficient to compute, and relaxes the often violated
assumption of strong marginal correlations between each truly
associated covariate and the response. However, similar to SIS,
HOLP also postulates a naive linear regression model. All pro-
cedures in (a)-(e), as well as CIS, allow p to grow exponentially
with n.

The rest of the article is organized as follows. Section 2
contains the details of our proposal—formulation, properties,
and implementation of the CIN; the CIS algorithm; and the
theoretical properties of CIS under appropriate assumptions.
Section 3 presents an extensive simulation study to compare
the performance of CIS to those of the five popular screening
procedures mentioned above. Section 4 presents an application
to transcriptomic data on Norway rats (GeneChip Rat Genome
230 2.0 Array Data; Scheetz et al. 2006). Concluding remarks
are provided in Section 5, whereas proofs of theoretical results,
full simulation results, details on the transcriptomic data appli-
cation, and some relevant additional information are provided
in an online supplementary materials (an “S” in the numbered
references below indicates sections, tables, and figures in the
supplementary materials).

2. CIN—Sure Independence Screening (CIS)

In this section, we describe our proposal. We introduce the
general setup, provide details on the formulation, properties,
and implementation of our CIN marginal utility, describe our
CIN-based screening algorithm (CIS) and discuss its theoretical
properties under appropriate assumptions. Notation is similar
to that in Zhu et al. (2011).

Consider a univariate response Y with support ®y and a p-
dimensional covariate vector X = (Xi,... ,X‘,,)T with p > n.
Let F(y|x) = P(Y < y|x) denote the conditional distribution of
Y given X = x in the following definitions of the two index sets:

A = {j : F(y|x) is functionally dependent on X; for some

y € Oy}
T = {j: F(y|x) is not functionally dependent on X; for any
y € Oy}
= {1 D A

A indexes predictors that are truly associated with the response;
it is called the active set. 7 indexes the remaining, inactive
predictors. Note that, in this definition, F(y|x) is completely
generic—no model form is specified. Let s = |.A| denote the
cardinality of .4; s out of p covariates are active, and therefore,
measures the sparsity level of the association between Y and
X. In any feature screening procedure, including our CIS, the
objective is to estimate A conservatively; that is, with a minimal
prevalence of false negatives.

2.1. CIN

Next, we expand upon the CIN, the marginal utility for our
proposed CIS. Some of the developments follow directly as
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special cases (p = 1) of those for the covariate information matrix
(Yao et al. 2019).

Let f(ylx;) and fi(x;), respectively, denote the conditional
density of Y given X; = x; and the marginal density of X;, and
assume that the standard regularity conditions for likelihood
analysis hold (see Section 2.6.1). Treating the observed x; as
a “parameter; we can use the traditional Fisher information
formulation to create the quantity

3 2
Ry = [ | o= a0 015 sompay
%

Capturing the information that f(y|x;) would carry about x;,
if it were in fact unknown, this provides a local measure of
association. Based on the bivariate joint distribution of (Y, Xj),
the CIN for covariate X; is then defined as the expected value of
this quantity; that is

wj = f]Fx}f,(xj)dxj (1)

Estimates of the scalars w;, j = 1,2. . ., p, which are theoretically
nonnegative by definition, are key components of the final form
of the marginal utilities (see below) we use for ranking the
covariates in our CIS screening procedure.

We next introduce two other quantities which are relevant
to our proposal. Here, we need to also consider fj(xj|y) and
f(y), the inverse conditional density of X; given Y = y and the
marginal density of Y, again with standard regularity conditions
(see Section 2.6.1). The density information (Hui and Lindsay
2010; Lindsay and Yao 2012; Yao et al. 2019) in the marginal
density of X; is defined as

5 2
Jx, :f[a—log(ﬁ(xj))] Ji(xj)dx;. (2)
Xj

Similarly, the density information in the conditional density of
Xj|Y = yis defined as

5 2
Ixjy=y = f I:E log(ﬁ(ley)):l fi(xjly)dxj,
j
and can be averaged to produce

Ixiy = f Ixiy=yf ()dy. (3)

The marginal utility which CIS uses for each covariate X,
j=12,...,p, is the CIN (w;) normalized by its density infor-
mation, that is, w}" = j/'JX}- The next theorem summarizes
some properties of w}" (proofs are in Section S1).

Theorem 2.1 (Properties of the normalized CIN).

(i) The normalized CIN w}‘ = 0 if and only if Y and X; are
statistically independent.

(ii) If (Y, X;) follows a bivariate normal distribution with cor-
relation coefficient p;, then the normalized CIN wj.* is a
monotonically increasing function of | ;.

(iii) w; can be expressed as w; = JX,-|Y -7 x;- Hence, the
normalized CIN w}" is

Jx;1v

=T, 1. (4)

J

Ixy — Jx
w’k - J J

J ']IX;

(iv) Ifa # 0 € R and b < IR are two constants and}?j = aXj+b,
then the normalized CIN of f{j is 66; = w}‘, the normalized
CIN for X;.

Henceforth, we will ignore the subtraction of 1 in (4) (which
J

has no effect in the ranking of the X;’s). We will consider —j’;ﬁ
and simply refer to it as the CIN. Properties (i) and (ii) moti-
vate its use as a marginal utility in feature screening: positive
values of @} correspond to statistical dependence between Y
and X; and, in a bivariate Gaussian scenario where the asso-
ciation is linear, wj?‘ increases with the absolute value of the

correlation coefficient. Notably, this fact implies that wj’." is a
more general measure of association than the marginal utility
employed by SIS (Fan and Lv 2008)—capturing also potential
nonlinear dependencies between Y and X;. (iii) reformulates the
CIN as the ratio of the average density information in fj(x;|y)
(inverse regression) to the density information in f;(x;), the
marginal density of the predictor X;. Following the argument
in Yao et al. (2019), the ratio in Equation (4) “cleanses” the
association signal from potential distributional peculiarities of
Xj, and renders ? effective also for “not well-behaved” covari-
ates. Finally, (iv) describes the effects of affine transformations
on w?.

Note that (3) can be easily adapted for a discrete or categorical
response by simply replacing the integral with an appropriate
sum. If Y e {y,...,yD} with Pr(Y = y®) = 7y, £ =
1,...,L, onehas

L
Ixiy = Y medgy—yo- (5)
=1

The ratio of (5) to (2) provides a straightforward definition of
the CIN in discrete regressions or classification problems.

2.2. Estimation of the CIN

Up to this point, we have defined and characterized the CIN
theoretically, at the population level. Next, we describe its esti-
mation for the practical implementation of our CIS procedure
on sample data.

Three facts are key: First, we write the CIN through (4),
which comprises two quantities, Jx;|y and Jx;. Second, regard-
less of the nature of the response, we write Jx;y through its
formulation in (5); if the response is continuous, we create an
approximate version with “sub-populations” defined by slicing
the range of Y. Notably, this slicing strategy is used by most suffi-
cient dimension reduction methods based on inverse regression,
for example, SIR (Li 1991), SAVE (Cook and Weisberg 1991),
SR (Wang and Xia 2008), and CIM (Yao et al. 2019). Third, we
estimate J 3 and the components J X1 Y=y®> i e s M 1
Jx;1y through kernels.

Let us drop the predictor index j to simplify notation (X
now stands for a generic predictor) and start with the esti-
mation of Jx. (2) expresses Jx as an expectation: Jy =
Ex [% log f (X)]2 = Ex[g(X)]. We therefore need to estimate
the density f(-) and the expectation of the function g(x) =



[£ logf(x)] ?. We use a kernel density estimator

n
fus ) = = Yy —x) with ki (6) = 2k (%) G
i=1
and replace the theoretical expectation by the sample average,
which gives Jx = Ex[g(X)] = 137 8(x;). Next, using
observations within slices (if Y is continuous) or natural sub-
populations (if Y is discrete or categorical), we produce each
Jxjy=y®> £ = 1,2,..., L in exactly the same way, and set 7; =
';—‘, £=1,2,...,L(whereng is the number of observations with
Y = y®). Thus, we estimate

L
Jxjy = Zﬁg‘]}my:},rt). (7)
=1

Finally, we compute a ratio to produce: E‘u}’ = jﬂf /Ix.

An important remark is for the case of a continuous response:
slices are customarily produced as to contain (approximately)
the same number of observations. Thus, the partitioning does
not use the observed values y;, i = 1,2,...,n, but rather their
ranks. Consequently, similar to SIRS (Zhu et al. 2011), our CIS
screening is robust to outliers in the response (see Model(4) in
Section 3.2).

2.3. Tuning Parameters

Following the description regarding (5) and in Section 2.2, when
the response is discrete or categorical, the number of “slices” L
is given. However, when the response is continuous, the choice
of L is critical. This is a well-recognized challenge in inverse
regression-based sufficient dimension reduction methods (see
Wang and Xia 2008; Yao et al. 2019). There is a tradeoff between
using more slices to achieve a more accurate approximation of
the overall object of interest (in our case, Jx|y) and using fewer
slices to have a sufficiently large number of observations for in-
slice calculations (in our case, the estimation of each J x| Y=y(f?)-
For simulations in Section 3, we used total sample sizes n =
200 and 600 and investigated the CIS screening performance
for L = 2,3,5,8,10,and 12. CIS performance does vary with L,
because we need a large enough sample size within each slice for
kernel density estimation to be reliable. We find that moderate
values (e.g., L = 3-8) work well in most cases, and that the effect
of L becomes negligible as the total n becomes larger and/or the
signal to noise ratio in the data becomes stronger (see Sections 3
and S3).

Another critical choice in our estimation is that of kernel and
bandwidth. In our implementation, we use a simple Gaussian
kernel for kj,(-) (kje (-) for sub-population with Y = y(®)
and Silverman’s rule of thumb for the bandwidth, which sets
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h = 1.06 x G,n Y% (h® = 1.06 x Exmnl_m; see Silverman
2018), where G (G« ) is the sample standard deviation of X
(X©. X-observations with Y = y(g)).

2.4. Computational Burden

Computational burden is an important consideration for any
feature screening procedure. In addition to the number of
covariates to be screened (p), it depends on the time needed to
calculate each marginal utility. Our CIN marginal utility (EJ;,’)
has a reasonable computational cost, making CIS viable also
in applications with large number of covariates (see Section 4),
and comparable to other model-free screens. For instance, we
performed a comparative study on the elapsed computation
times for CIS and five additional screening procedures (see
Sections 1, 3.2, and 4) for a simulation scenario with p =
2000 and n = 200 (this used Model(3)(a) with & = 0.5 and
rx = Eg); see Section 3.2). In this comparison, all methods
except HOLP were implemented using MATLAB (MATLAB
2020), version 9.9.0.1467703 (R2020b). HOLP was implemented
in R (R Core Team 2020), version 4.0.2, using the GitHub
R package screening available at https://github.com/wwrechard/
screening (see Section S6 for more details). All codes were run
on a MacBook Pro 2019 laptop with macOS Mojave Version
10.14.6, 2.3 GHz Intel Core i9 processor, and 16 GB 2400 MHz
DDR4 RAM.

Taking the medians over 100 simulation runs, CIS with L
= 5 slices took ~23.054 sec to compute all p = 2000 marginal
utilities (see also Table 1). This was higher but comparable to
the widely used model-free DC-SIS, that took ~1.222 sec. As
to be expected given the much simpler nature of their marginal
utilities, SIS and HOLP were much faster—taking, respectively,
~20.082 and =0.074 sec. SIRS and MDC-SIS, which are also
model-free, took, respectively, ~0.414 and =0.741 sec (see
Table S25 for run times with n = 600). Note that, except for
HOLP, since the utility of each covariate is computed marginally,
total computation time scales linearly with p. Extrapolating
from the calculations above, in an application with n = 200
and as many as p = 2,000,000 covariates, CIS would compute
all marginal utilities in ~50 minutes. Of course, computation
time could be vastly reduced implementing screens in more
efficient computer programming languages, such as C (Ritchie,
Kernighan, and Lesk 1988).

2.5. CIs Algorithm

Let (¥, xi),i = 1,2,...,n be a random sample from the distri-
bution of (Y, X). To implement CIS in practice, we proceed as
follows:

Table 1. Total computation time (seconds; median over 100 runs) required for computing p = 2000 marginal utilities (Model(3)(a) with Zx = E;n, o = 0.5,andn = 200)
for different screening procedures. NOTE: Number of slices (L) for CIS vary as indicated in the table. HOLP was run in R (R Core Team 2020; version 4.0.2) and the rest in

MATLAB (MATLAB 2020; version 9.9.0.1467703 (R2020b)).

SIS HOLP SIRS DC-SIS MDC-SIS

CIS3] CIS[s] ClS[8] cIs[iol Cisf12]

0.082 0.074 0414 1.222 0741

3.338 3.054 2.966 2.980 3.010
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=S 5y Jx,
1. For j = 1,2,...,p, compute Jx;y, Jx, and @] = -%(l—y
i
(Section 2.2). N
2. Order E’("l) > E‘u}“n s E)“('}J) and estimate A4 as the top
d ranking covariates.

The normalization in (1) ensures that all marginal utilities are
on the same density information scale. Moreover, by Theo-
rem 2.1(iv), the ratio expressing Z'o}* is invariant to affine trans-
formations of X;, for example, marginal centering and/or scaling
to unit variance.

The calculations in (1) involve the tuning parameters L
(number of slices, if the response is continuous) and h (band-
width used in kernel density estimation) discussed in Sec-
tion 2.3. Notably, (2) involves another crucial quantity that
plays a role possibly much more vital than those of tuning
parameters in the marginal utility calculation: the number d of
covariates retained in the screen. Following the literature (e.g.,
Fan and Lv 2008; Li, Zhong, and Zhu 2012; Shao and Zhang
2014), in our simulations we employ a hard threshold defined
asd = k x [%J with constant multiplier k = 1,2, or 3
(see Sections 3 and S3). However, this is an intriguing open
question for screening algorithms. For instance, Zhuetal. (2011)
showed that one can use a hard threshold, a soft threshold, or a
combination of both. How to select d in an effective and data-
driven fashion is beyond the scope of this article, but we hint at
the development of a potential diagnostics in Section 5.

2.6. Sure Screening Property of CIS

In this section, we establish the sure screening property (Fan and
Lv 2008) for our CIS, built upon the CIN marginal utility. At
the outset, we adjust the definition of the estimated active set as
follows:

AZ{j:?c)?ZCoﬂ_K,lEjEp}, (8)
wherecy > 0and 0 < ¥k < ¥ < % are given constants (see
below). In proving the sure screening property, we considered a
discrete or categorical Y with L distinct values or labels. Recall

that if Y is continuous, we operate with its “discretized” version
obtained through slicing (see Sections 2.2 and 2.3).

2.6.1. Assumptions and Regularity Conditions

In proving sure screening, we assume that all active covariates
Xj, j € A satisfy a minimum signal strength condition, and
specifically that:

. o] > 2con™", ©)
where¢g > 0and 0 < k < ¥y < % are the same constants
that appear in (8). Note that, here the minimum value for the
signals (the true marginal utilities) is twice con™ . As pointed
out in Liu, Li, and Wu (2014), this assumption bounds the
marginal utilities of active covariates away from 0 for any finite
n. However, as n increases, this minimum signal strength can
decrease, converging to 0 asymptotically. This fact indicates that,
when n is very large, our procedure with the sure screening
property can retain covariates whose marginal association with

Y is negligible, but are jointly associated with the response. This
assumption corresponds to Condition 3 in Fan and Lv (2008)
and is commonly used in the screening literature (see, e.g., Li,
Zhong, and Zhu 2012; Shao and Zhang 2014). Also note that,
while (9) states the assumption on the minimal signal strength
of the active covariates, we do not assume any condition on
the order of the maximum signal strength to establish the sure
screening property of CIS.

We also assume that the number of Y subpopulations
(or slices) L is finite, and impose some regularity conditions
on (i) kernel densities and associated bandwidths: k(-), h,
kpiey (), h®, ¢ 1,...,L, used for estimating each CIN
(see (6) and (7)); (ii) marginal and inverse conditional covari-
ate densities: f;(-) and f;(-|Y = y(g)), E = Ti25mnl;
and (iii) marginal and inverse density information: Jx and
Jxjy—yw.£ = 1,2,...,L These regularity conditions are
described below, neglecting again the covariate subscript j for
notational simplicity.

Kernel densities:

Cl. kp(-) and k0 (-), € = 1,2,.. ., L, have bounded variance.

C2h =0n7),0 <k <y < %andfor each £ =
L,2,....L, H® = O(ng_y), where ny is the number of
observations with ¥ = y(®.

C3. kp(-) and kyey (), £ = 1,2,. .., L, are order-1 kernels with
nonvanishing first derivatives (see Section S1.5).

C4. sup kj (x) and sup ko), € = 1,2,...,L, are bounded
xe) xey

above.
C5. the fth moments (1 < B < 2) of absolute values for the
kernel densities k() and ky) (), £ = 1,2,.. ., L, are finite.

Covariate densities:

C6. f2(-) and f2(-|Y = y®), £ = 1,2,...,L, are uniformly
bounded away from zero.

C7. f'(-)and f'(-]Y = y¥), £ = 1,2,...,L, belong to the
Holder class X(8,A) where1 < 8 < 2and A > 0 are
constants (see Section S1.5).

C8. sup f(x) and sup f(x]Y = y®), £ = 1,2,...,L, are
xe) xE)
bounded above.

C9. sup |f'(x)] and sup |[f'(x]Y = y®)|, £ = 1,2,...,L, are
xe) xe)
boundedzabove. n e

'(x)) '(x Y=y1D)) _

C10. JSCEEW and igw = 1,2,...,L, are
bounded above.

Density informations:

Cl11. min J X|Y=yO> and hence Jy|y, are uniformly bounded

1<é<L
away from zero.
12, Iz, mgle,]IXW:),fz;, and hence Jxjy, are uniformly
1<f<

boundgg_above (from C10).
C13. Jx and Jx are bounded away from zero.

In the context defined by the assumptions and conditions above,
we have the following theorem (additional details and proofs are
provided in Sections S1.6-51.8).



Theorem 2.2 (Sure screening property for CIS). Let £} and ¢g be
positive constants, « and y be constants such that0 <k < y <
3, and n(yy = 1mf3an£ be the size of the least numerous class (or

slice). Forj = 1,2,.

n"*n ¥
P(maxiw} — o] ¥ > con~ ”)EO npexp | — L ' :
1<j=<p g(]

where o] and @} are the true and the estimated CIN marginal

utilities, respectively. Moreover, using the definition of A'in (8)
and assuming the minimum signal strength condition in (9), we

have
nnl
(1)
3 (10)
& ))

where s, is the cardinality of the active set A.

..» P> we have

P(.ACA o I—Q(ns,,exp(—

Note that the cardinality of A in (10), s,, is indexed as to
indicate dependence on n: CIS guarantees sure screening when
the number of covariates (p) as well as the number of active
covariates grow as we gather more observations (see also Li,
Zhong, and Zhu 2012; Liu, Li, and Wu 2014; Shao and Zhang
2014). Concerning the way p grows with the sample size, the
exponent in (10) shows that CIS guarantees sure screening also
with a non-polynomial log(p) = o(n—”n{l}) 0(\(1) (1)
where 771y = “& is the smallest class proportion. Recall that,
when Y is continuous, 77(1) & % since we create slices containing
approximately equal numbers of observations (see Section 2.2).
Finally, we note that, similar to other model-free approaches
such as DC-SIS (Li, Zhong, and Zhu 2012), CIS guarantees sure
screening under much more generic conditions compared to SIS
(Fan and Lv 2008)—in particular, CIS does not require a linear
regression function for Y onto X.

3. Simulation Study

In this section, we present simulation results on the performance
of CIS in comparison to those of SIS (Fan and Lv 2008), HOLP
(Wang and Leng 2016), SIRS (Zhu et al. 2011), DC-SIS (Li,
Zhong, and Zhu 2012), and MDC-SIS (Shao and Zhang 2014).
Some of the simulation scenarios are adapted from Zhu et al.
(2011), Cui, Li, and Zhong (2015), and Chen, Fan, and Li (2018).

3.1. Summary Statistics to Assess Screening Performance

Because screening procedures are used as a preliminary step,
followed by modeling and fitting efforts in which predictors
are further assessed, their main priority is sensitivity; as we
separate active from inactive predictors, we want to minimize
false negatives; that is, cases in whichj € Abutj & A. Thus,
to measure performance, we consider two summary statistics
commonly used in the literature:

(a) For each simulated dataset, we compute the maximum rank
achieved by true predlctors Xj.j € A, or equwalently, the
minimum rank in A required to ensure 4 C A Following
Zhu et al. (2011), we denote this by R and call it the ranking
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measure. R close to s = |.A] is evidence of ranking con-
sistency, another important property for feature screening
procedures (see Zhu et al. 2011). In the result tables below,
we present the median (median absolute deviation in paren-
theses) of R over N = 1000 simulated datasets corresponding
to each simulation scenario. _

(b) For each simulation scenario, fixing d = |44 = k-
(n/log(n)) (k =1, 2, or 3; see Section 2.5), we compute the
proportion of simulated datasets (out of N) in which A €
A,. Following Shao and Zhang (2014), we denote this by P,,.
P close to 1 is evidence of sure screening for a procedure.
To further investigate which among the active predictors
are easier/harder to retain for a procedure, we also consider
predictor-specific inclusion proportions denoted by P;, j €
A. We call P, and the P;’s as inclusion measures.

3.2. Simulation Scenarios

We create simulation scenarios based on the elements described
below.

1. Sample size, number of predictors, and number of active
predictors (n, p, s). We use p = 2000, n = 200 and 600, and
s = | A| varying between 3 and 40 (this controls the sparsity
level; the smaller the s, the sparser the problem). As the only
exception, for Model(3)(d) we use n = 117 (see below).

2. Nature of the predictors. We simulate the p entries in the
covariate vector X with different schemes. We start by draw-
ing from a p-variate Gaussian X ~ N,(0, Xx) (see below
for covariance specifications) and: (i) we keep the vector
as drawn, to have p continuous predictors (Models(1), (2),
(3)(a), (4)-(5)); (ii) we replace 50% of the entries in X with
independently drawn binary predictors (Model(3)(b)); (iii)
we replace 50% of the entries in X with independently drawn
“perturbed” continuous predictors obtained from a Gaus-
sian Mixture spiked with a very high variance component
(Model(3)(c)). In addition, we consider (iv) predictors ran-
domly selected from the ones in our real data application in
Section 4 (Model(3)(d)).

3. Structure of the predictor covariance matrix. For (i)-(iii)
above, the multivariate Gaussian X ~ N,(0, Xx) has four

= [, the identity
{0y}, oy = 0.8, i,j =

different covariance specifications: (i) E%D
matrix (Independent); (ii) E(A)

2,...,p (Autoregressive); (iii) EJ((B) = {ojj}, 0ii = ;05 =
0.4 for i # j, i, jboth € A or both € 7; and oj; = 0.1 for
ie AjjeTorielje A i,j = 12,...,p (Block-
structure); and (iv) E}((C) = {oj}, 0 = 105 = 0.2 for
i#j, i,j=1,2,...,p (Compound-symmetric).

4. Response generating process. We generate a continuous Y <
R using single- or multi-index models. These comprise m =
1,2, or 3 indexes (i.e., linear combinations of the predictors
Xj, j € A) acting linearly or nonlinearly on the mean or the
variance of Y|X (Models (1)-(5)).

5. Nature of the error. We always use additive errors and con-
sider: (i) two homoscedastic cases, namely a Gaussian error
€1 ~ N;i(0,1) and a mixture of Gaussian errors ¢ ~ 0.5 x
Ni1(0,1) + 0.5 x N;(0,10%); and (ii) a heteroscedastic case,
namely a Gaussian error €3 ~ N; (0, g2 (o, ﬁTX)).
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6. Signal-to-noise ratio (SNR). We define SNR = %

When we use €, or €, all signal is contained in the mean
E(Y|X); var(Y|X) does not depend on X. In these cases, SNR
has the standard definition. When we use €3, var(Y|X) =
g%(o, BTX) itself contains “signal”; SNR benchmarks the sig-
nal in the mean to that in the variance. For the homoscedastic
cases, we vary a scalar multiplier ¢ in the mean functions
E(Y]X), and for the heteroscedastic case, theo ing?(o, B 5 50
as to obtain SNRs ranging between 0.05 and 20 (see below).

In more detail, for the response generating process, we consider
five models:

Model(1): Variation of Example 1 in Zhu et al. (2011).

Linear, single-index with homoscedastic additive error: Y =
o - (BIX) + € with B, = (1,0.8,0.6,0.4,0.2,0,...,0) . Here
m=1and A = {1,2,3,4,5} with s = 5. We use n = 200; X ~
N, (0, Zx) with both Eg‘) and EJ((B}; and o ranging between 0.34
and 2.02 to give rise to SNRs in the range =~ 0.8 (“low”) to ~ 20
(“high™). Given its underlying assumptions, we included HOLP
(Wang and Leng 2016) in our comparisons only for this model,
where its performance should be among the best.

Model(2): Variation of Example 3.b in Zhu et al. (2011).

Multi-index with homoscedastic additive error: Y = 87X +
exp(B1X) + ¢ with 8; = (2 — Uy,...,2 — Uy2,0,...,0)7,
By = (0,...,0,2 + Uyay1s-.-,2 + Us,0,...,0)7, and Ug’s
independently drawn from a uniform distribution on [0, 1].
Herem=2and A = {1,...,s}. Weuse s = 4,8,16,24,32, and
40; n = 200; and X ~ N,(0, £x) with both ") and £.

Model(3): Variation of Example 3.1 in Chen, Fan, and Li (2018).

Multi-index with homoscedastic additiveerror: Y = o-(X;+
0.75X3 + 2.25c0s(Xs)) + €. Here m =3 and A = {1,2,5}
with s = 3. For this model, we implement different specifications,
namely: (a) Continuous predictors. We use n = 200 and 600;
X ~ Np(0, Xx) with both Eg) and E%C) (the compound-
symmetric covariance should hinder screening, since the covari-
ates possess sizable and equal correlations within and between
A and 7); and 0 = 0.50,1.25,2.50, respectively, giving rise
to SNR =~ 0.8 (“low”™), &~ 5 (“moderate”), and = 20 (“high”).
(b) Mix of continuous and binary predictors. We use n = 200;
X ~ N,(0, Xx) with both E}({D and EJ((C), in which 50% of the
entries (X; and a random selection from X¢ — X5000) is replaced
with 0/1 entries drawn independently with success probabilities
equal to the sample gth quantiles of the X; being replaced, using
q from 0.30 to 0.70; and o = 1.5 and 2.1, respectively, giving
rise to SNR &~ 5 (“moderate”) and = 10 (“high”). (c) Mix of
continuous and “perturbed” predictors. We use n = 200 and 600;
X ~ Ny(0, £x) with both £ and £, in which 50% of
the entries (X; and a random selection from Xg — Xjg00) is
replaced with entries independently drawn from the univariate
Gaussian mixture 0.95 x N;(0,1) + 0.05 x N;(0,10%); and
o = 0.805 and 1.14, respectively, giving rise to SNR = 5
(“moderate”) and =~ 10 (“high”). (d) “Realistic” predictors. For
each simulation repetitions, we randomly sub-sample p = 2000
predictors from the set of 18,941 gene/probe ID expressions
in our transcriptomic application (see Section 4). We use the
sample size n = 117 of that application, and 0 = 1.25 and 1.77,

respectively, giving rise to SNR =~ 5 (“moderate”) and ~ 10
(“high”). Before generating the response Y, we standardize all
predictors marginally to have mean 0 and variance 1. Since the
sample size is smaller compared to the other simulation scenar-
ios, we only use CIS with a small number of slices (L = 2,3,
and 5). Finally, to account for the complexity of this “realistic”
predictor data, here we use the hard thresholds corresponding
to n = 600, that is, d = 93 (n/ log(n)), 187 (2n/ log(n)), and 281
(3n/ log(m)).

Model(4)

Same as Model(3)(a), but with a mixture of Gaussian errors
€:Y = o - (X; + 0.75X7 + 2.25c08(Xs)) + €. The mixture
induces heavier tails, and thus increased variance, for error (and
response) compared to previous models.

Model(5).

Multi-index with heteroscedastic error: ¥ = X; + X% + €3
with g(o, B7X) = exp{o|X,,|}. Here m = 3 and A = {1, 2,22}
with s = 3. We use n = 200 and 600; X ~ N, (0, Xx) with Xx =
E}((A); and o in the range 0.23-1.37, giving rise to SNRs in the
range 2-0.05. Recall that, instead of the standard definition, SNR
here benchmarks the strength of the mean signal to that of the
variance signal.

In addition to the above scenarios, all with a continu-
ous response, we also investigate scenarios with a categorical
response (see Model(6) in Section S3). For each of the scenarios
described above, we simulate N = 1000 datasets to compute
the performance summary statistics, and we assess the effect of
the number of slices on CIS screening for varying L between 2
and 12.

3.3. Simulation Results

Due to space constraints, here we present results only for
selected scenarios of Models (2) and (3)(a), and selected number
of slices (L) used in CIS. Full results for all models with all
scenarios and all choices of L are reported in Section S3.

Table 2 contains ranking measures (R) for Model(2), summa-
rizing performance under different predictor covariance struc-
tures and sparsity levels. Under the block covariance structure

E}({B), CIS and SIRS outperform all other procedures for all
values of s considered (s = 4-40 active predictors out of p
= 2000). Under the autoregressive covariance structure E}((A),
CIS and SIRS again outperform other procedures. However, as
sparsity decreases (s > 16), CIS deteriorates faster than SIRS. A
potential explanation is that under Egl), as the number of active
predictors s increases, more inactive predictors highly correlated
with their adjacent active ones confound the CIS ranking. On

the contrary, under E%B), the level of correlation between active
and inactive predictors is fixed at a relatively low 0.1. Notably,
SIS, DC-SIS and MDC-SIS perform very poorly—except under
E}({A) and very marked sparsity (s = 4).

Table 3 contains inclusion measures (P, and Pj,j € A =
{1,2,3,4}) for Model(2), again under both E)((A) and E}({B)—
but focusing on the s = 4 case. The excellent and comparable
performance of CIS and SIRS is evident from these inclusion
measures. Interestingly, the poorer performance of SIS, DC-SIS,



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1523

Table 2. Median (median absolute deviation) of the ranking measure R over N = 1000 simulated datasets. Model(2) with n = 200 and p = 2000. Sparsity (s) and the

predictor covariance structure (Zx) vary as indicated in the table. CIS results shown for L = 5 slices. Performance is better for values closer to s. Eg"} = autoregressive; E;B)
= block structure.
SIS SIRS DC-SIS MDC-5IS CIS[5] SIS SIRS DC-SIS MDC-SIS CIS[5]
s=4 s=24
E;m 30(25) 4(0) 9(5) 24(20) 4(0) 1852 (107) 29 (4) 1846 (111) 1860 (101) 84 (56)
Eég) 248 (231) 4(0) 59 (55) 254 (242) 4(0) 1427 (359) 24(0) 1351 (366) 1513 (355) 24(0)
s=8 b o s
A 679 (502) 9(1) 610 (454) 688 (519) 8(0) 1918 (58) 52(17) 1915 (62) 1917 (60) 382 (248)
Eim 692 (462) 8(0) 537 (403) 767 (502) 8(0) 1600 (286) 32(0) 1554 (287) 1644 (268) 33(1)
5=16 s=40
A 1694 (244) 18(1) 1644 (261) 1692 (241) 19(3) 1935 (45) 93 (43) 1931 (50) 1937 (46) 807 (403)
EIB) 1204 (456) 16 (0) 1130 (434) 1270 (450) 16 (0) 1695 (223) 40 (0) 1659 (241) 1723 (215) 41(1)

Table 3. Inclusion measures P, and ?3j, j = 1,2,3,4, over N = 1000 simulated datasets, provided at thresholds d = n/log(n), 2n/log(n), 3n/ log(n) (triplets in
parentheses). Model(2) with n = 200, p = 2000, and s = 4. The predictor covariance structure (Xy) varies as indicated in the table. CIS results shown for L = 5 slices.

Values are multiplied by 103; closer to 1K = 1000 indicate better performance. Eﬁm =

autoregressive; E,((B) = block structure.

s=4 slIs SIRS DC-SIS MDC-SIS CIS[5]
) ®) ) ®) ) ®) ) ®) D) ®)
Ty Zy Ey Ey Ey Zy Ey Ty Zy Zy
Py (572,697,730) (411,494,538) (1K, 1K, 1K) (1K 1K, 1K) (750,818,865 (593,679,733) (594,690,734) (426,498,538) (1K, 1K, 1K) (999,999, 1K)
P, (813,888,919) (406,488,548) (1K, 1K, 1K) (1K, 1K, 1K) (033,964,974) (603,678,721) (830,895,925) (415,498,546) (1K 1K 1K) (997,998, 998)
Py (997,1K,1K)  (939,967,978) (1K, 1K, 1K) (1K, 1K, 1K) (999, 1K, 1K) (993,995,996) (998, 1K, 1K)  (951,972,983) (1K, 1K, 1K) (1K, 1K, 1K)
Py (99,1K,1K)  (927,958,969) (1K1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)  (984,990,993) (997,1K,1K)  (943,965,977) (1K,1K,1K) (1K, 1K, 1K)
Ps (547,658,715) (238,315,367) (1K, 1K, 1K) (1K, 1K, 1K) (743,812,858) (434,538,588) (569,669,720) (242,315,363) (1K, 1K, 1K) (996,997, 998)

and MDC-SIS is driven by their inability to capture the active
covariates X; and X; involved in the first index, that is, the
linear component in E(Y|X) (see Model(2)). While predictors
acting linearly ought to be easy to identify, also with the Pearson
correlation-based SIS, the exponential scale possibly renders the
signals associated with X3 and X4 much stronger.

Table 4 contains ranking measures for Model(3)(a), summa-
rizing performance under different predictor covariance struc-

tures, SNR levels, and sample sizes. Under both Z}({D and

2O, the ranking performances of CIS, DC-SIS, and MDC-
SIS beat those of SIS and SIRS for all SNRs and sample sizes.
In particular, at moderate and high SNRs (5 and 20, respec-
tively), CIS, DC-SIS, and MDC-SIS successfully rank the three
active predictors as the top three. For higher sample size (n
= 600), this ranking performance improves even at low SNR
(0.8). Notably, although SIRS is a model-free procedure, it
fails for Model(3)(a) in all scenarios—most likely due to the
presence of m = 3 active indexes violating condition (C1) in
Zhu et al. (2011).

Tables 5 (n = 200) and 6 (n = 600) containing the inclusion
measures for Model(3)(a) support the sure screening property
of CIS, under both Eg) and E%C), and low, moderate, and
high SNRs. The excellent and comparable performance of CIS
(except for low SNR and sample size), DC-SIS, and MDC-SIS
is once again evident. The Pearson correlation-based SIS and,
interestingly, also the model-free SIRS fail to capture X, and
Xs—which are nonlinearly associated with Y. Notably, when n
= 200, CIS performs better with L = 3 (CIS[3]) than with L =5
(CIS[5]), likely due to more abundant observations available for

in-slice calculations. In fact, for n = 200, SNR = 5 and 20, and
EJ((C) (the compound-symmetric structure that ought to hinder
screening), the P,’s for CIS[3] are the highest.

The results described above represent only a small portion
of the extensive simulation experiments we conducted (see Sec-
tion 3.2). Below, we describe salient trends and observations
based also on the additional results presented in Section S3. CIS
exhibits promising performance in terms of sure screening as
well as rank consistency under a wide range of scenarios. Over-
all, as expected intuitively, CIS performs better at larger SNRs
and sample sizes, where it is less sensitive to the number of slices
(L) used for a continuous Y. In Model(1) scenarios, CIS shows
competitive sure screening and rank consistency performance
compared to that of other screening procedures (Tables S1 and
$2), especially for larger SNRs (5 and 20) and smaller L (3 and
5). In Model(2) scenarios, CIS does better than SIS, DC-SIS,
and MDC-SIS; performs very good when sparsity is high and,
while it tends to deteriorate at lower sparsity under one predictor
covariance structure, it remains stable across sparsity levels for
the other (Tables 2, 3, S3, and S4). In all the Model(3) scenarios
((a)-(d)) CIS does better than SIS and SIRS—which fail for
reasons similar to those articulated above for Model(3)(a). In
general, CIS has good performance at “moderate” and “high”
SNRs, and its deterioration at lower SNR can be counteracted
increasing the sample size and/or using a smaller number of
slices to guarantee a sufficient number of observations per slice
(Tables 4-6 and S5-S15). Moreover, the measures for inclu-
sion (P,) and ranking (R) provide empirical evidence for sure
screening and ranking consistency of CIS, respectively. This is
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Table 4. Median (median absolute deviation) of the ranking measure R over N = 1000 simulated datasets. Model(3)(a) with p = 2000 and s = 3. Sample size (n), SNR, and

M _

predictor covariance structure (Xy) vary as indicated in the table. CIS results shown for L = 5 slices. Performance is better for values closer to s = 3. Ty = independent,

Eiﬁ = compound-symmetric.

SIS SIRS DC-SIS MDC-SIS CIS[5] SIS SIRS DC-SIS MDC-SIS CIS[5]
n=200,SNR=0.8 n=600,SNR=0.8

E{D 1279 (406) 1425 (365) 28(19) 22(14) 148(127) 1333 (411) 1470 (358) 3(0) 3(0) 3(0)

Eiﬁ 1398 (379) 1451 (350) 80 (61) 65 (51) 190 (158) 1477 (352) 1474 (338) 4(1) 4(1) 3(0)

n=200,SNR=5 n=600,SNR=5

EF) 1230 (460) 1423 (375) 3(0) 3(0) 4(1) 1183 (473) 1513 (318) 3(0) 3(0) 3(0)

E{Q 1394 (382) 1485 (337) 10(7) 11(7) 5(2) 1493 (372) 1504 (321) 3(0) 3(0) 3(0)
n=200,SNR=20 n =600, SNR=20

Eg 1231 (465) 1414 (398) 3(0) 3(0) 3(0) 1246 (439) 1504 (335) 3(0) 3(0) 3(0)

Zy ) 1449 (379) 1562 (294) 6(3) 7(4) 3(0) 1561 (346) 1522(321) 3(0) 3(0) 3(0)

Table 5. Inclusion measures P and P}, j=1, 2, 5 over N = 1000 simulated datasets, provided at thresholds d = n/ log(n), 2n/ log(n), 3n/ log(n) (triplets in parentheses).
Model(3)(a) with p= 2000, s = 3, and n = 200. SNR and predictor covariance structure (Zy) vary as indicated in the table. CIS results shown for L =3 and 5 slices. Values are

multiplied by 103; closer to 1K = 1000 indicate better performance. E,((n =independent, E)(‘Q = compound-symmetric.

SNR~ 08 SNR~5 SNR~ 20
[U] (e} U] © U] (&}
n =200 El E: EI Ex Ex EI
Py (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)
SIS P2 (60,93,118) (49,76,104) (101,142, 185) (62,97,132) (111, 160, 207) (73,108, 144)
Ps (46,76, 109) (22,46,72) (60,100,132) (44, 66, 83) (72,106, 138) (49, 84,107)
Pa (3,9,11) 0,1,3) (6,18,29) (2,5,12) (3,13,25) (2,6,10)
Py (999, 1K, 1K) (999, 999, 999) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)
SIRS P (27,52, 89) (23, 44, 64) (36, 58, 86) (18,33, 50) (52,91,121) (27,45, 63)
Ps (36,71,94) (19, 39,62) (39, 62, 89) (25,46, 57) (41,75,93) (18, 39, 56)
Pa ©,1,7) (1,2,3) 2,47 (0,2,3) (0,6,11) ©22
Py (999, 1K, 1K) (999, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)
DC-SIS P (748,875, 915) (489, 642,734) (997, 1K, 1K) (840,911,948) (999, 999, 1K) (902, 949, 966)
Ps (818,923, 954) (582,735,812) (998, 1K, 1K) (932, 969, 980) (1K, 1K, 1K) (974,992, 998)
Pa (601, 804, 871) (314, 484,610) (995, 1K, 1K) (788, 886, 929) (999, 999, 1K) (879,941, 964)
P (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)
MDC-SIS P2 (810, 907, 946) (530, 688, 766) (998, 1K, 1K) (862,933, 955) (999, 1K, 1K) (914, 960, 977)
Ps (841, 940, 967) (582,750, 816) (1K, 1K, 1K) (901, 952, 973) (1K, 1K, 1K) (949, 980, 986)
Pa (671, 849,914) (331, 536, 639) (998, 1K, 1K) (780, 887,929) (999, 1K, 1K) (865, 940, 963)
P, (639,731,779) (591, 683, 740) (996, 998, 998) (990, 993, 994) (999, 999, 999) (1K, 1K, 1K)
ISI3] P (680, 749, 788) (610,701, 745) (942, 964, 973) (929, 950, 961) (960, 980, 985) (944, 962, 973)
Ps (787, 843,872) (735,799, 845) (984, 989, 993) (969, 979, 984) (997, 999, 1K) (993, 998, 999)
Pa (335, 455, 532) (245, 369, 454) (923,952, 965) (891,923, 939) (956, 978, 984) (937,960, 972)
P, (572,674,736) (538, 635,701) (989, 994, 997) (984, 992, 996) (1K, 1K, 1K) (1K, 1K, 1K)
CIs[s] P (628, 726, 766) (551,639, 697) (910, 943, 956) (899, 941, 957) (947, 965, 973) (927, 948, 956)
Ps (723,792, 825) (673,761, 802) (967, 977, 980) (958, 972, 980) (993, 995, 998) (987,991, 996)
Pa (235, 372,443) (184, 298, 380) (868,915,933) (843, 906, 933) (940, 960, 971) (914, 939, 952)

true when all predictors are continuous (Model(3)(a); Tables 4-
6, S5-57), but also in cases where continuous predictors are
mixed with categorical predictors (Model(3)(b); Tables S8 and
89), or with “perturbed” continuous predictors (Model(3)(c);
Tables S10-S13), and when predictors are sub-sampled from
real data (Model(3)(d); Tables S14 and S15). Notably, in the
latter “realistic” scenario, which carries substantial collinearities
(see Section 4 and Figure S1), CIS with L = 3 slices (CIS[3])
performs the best, beating also the otherwise strongest com-
petitor DC-SIS. CIS performs very well also with the heavier-
tailed error of Model(4) (Tables S16-S18; results are similar to
those for Model(3)(a)). When n = 200, almost all P,;’s for CIS[3]
beat those for DC-SIS and MDC-SIS under E}((C) and, with a
larger sample size (n = 600), CIS performs competitively with
these methods in all respects. SIS and SIRS fail in all Model(4)

scenarios for reasons similar to those discussed for Model(3)(a).
In Model(5) scenarios, where the error is heteroscedastic, CIS
and DC-SIS are the best overall performers (Tables $19-521).
When n = 200, ranking performance of CIS with L = 5 slices
(CIS[5]) is better than with smaller or higher L, likely due to
the added complexity of capturing signals in the variance (as
opposed to the mean). When n = 600, once again CIS performs
well, along with DC-SIS, across all L = 3-12 and SNR levels
less than 1. Notably, MDC-SIS always fails to capture the active
predictor X5, present in the variance component of the model
(Table S19). This is because its marginal utility is designed to
detect predictors contributing to the conditional mean of the
response (Shao and Zhang 2014). Finally, results for Model(6)
scenarios demonstrate that CIS performs quite well also in
problems with categorical responses (Tables $22-524).
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Table 6. Same as Table 5 for Model(3)(a), with sample size n = 600. Model(3)(a) with p = 2000, s = 3, and n = 200. SNR and predictor covariance structure (Xy) vary as

0 _

indicated in the table. CIS results shown for L = 3 and 5 slices. Values are multiplied by 103; closer to 1K = 1000 indicate better performance. Ly = Independent, Eiﬁ =

Compound-symmetric.

SNR~ 0.8 SNR~ 5 SNR 2 20
e S 50 5O 50 5O 5 5O

P (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)
s o (103,165, 231) (86, 142, 193) (168, 249, 307) (107,170, 213) (170, 234, 290) (125,187, 238)
Ps (66,121, 184) (72,132, 187) (122,187, 241) (89, 142, 188) (115,174, 237) (78,132, 182)

Pa (2,11,41) (7,16, 30) (22,53,81) (7,19, 36) (18,44, 68) (10, 22, 40)

P (885, 948, 975) (875, 942, 967) (997, 999, 1K) (998, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

i on (22,52, 86) (22, 58,95) (15,44, 74) (21,45, 83) (6, 28, 57) (16, 48,78)
Ps (77,138, 195) (82, 130, 185) (123,181, 230) (90, 157, 209) (106, 177, 226) (85, 136, 185)

Pa (0,4,14) (2,5,15) (1,7,19) (2,4,13) (2,7,14) (0,3,9)

o (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

DCSSIS P {15 1D (990,997, 999) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Ps (1K, 1K, 1K) (995, 999, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Pa (1K, 1K, 1K) (985, 996, 999) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

o (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

MDCSIS P2 (1K, 1K, 1K) (991, 998, 998) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Ps (1K, 1K, 1K) (994, 999, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Pa (1K, 1K, 1K) (985, 997, 998) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

s (994, 999, 999) (991, 996, 996) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Qs on (987,992, 995) (979, 993, 997) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Ps (1K, 1K, 1K) (998, 999, 999) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Pa (981,991, 994) (968, 988, 992) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

P (989, 992, 993) (986, 993, 996) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

asisi o (984, 992, 995) (976, 982, 988) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Ps (998, 998, 999) (997, 998, 999) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

Pa (971,982, 987) (959, 973, 983) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K) (1K, 1K, 1K)

4. Application to Transcriptomic Data

In this section, we analyze a transcriptomic dataset (Affymetrix
GeneChip Rat Genome 230 2.0 Array Data; Scheetz et al. 2006)
already used in feature screening and variable selection liter-
ature (Huang, Horowitz, and Wei 2010; Fan, Feng, and Song
2011; Wang, Wu, and Li 2012; Shao and Zhang 2014; Wang
and Leng 2016). The expression Quantitative Trait Loci (eQTL)
experiment in Scheetz et al. (2006) used gene transcription
measurements from 120 12-week-old male F2 Norway rats
(Rattus norvegicus) to better understand gene regulation in the
mammalian eye, with potential relevance to the study of human
eye disease. The dataset is publicly available at the NCBI Gene
Expression Omnibus with accession number GSE5680.
Following Shao and Zhang (2014), we preprocess the data
taking log transformations and eliminating all genes (more
accurately, probe IDs) that do not show sufficient variation
across rats—which leaves us with 18,976 genes. As in prior
screening exercises conducted on this dataset, we consider as
response the transcription of TRIM32 (probe ID: 1389163 _at),
a gene with a causal association with Bardet-Biedl syndrome
which affects multiple human systems (Chiang et al. 2006). As
a further preprocessing step, we identify outliers detected by
both the built-in R statistical software function boxplot() and
the “thrice median absolute deviation rule” (Barghash, Arslan,
and Helms 2016) (see for instance Figure S2). We eliminate
34 genes that contain more than 12 outliers (10% of the total
number of rats). Also, we omit three outliers detected for the
response. Thus, we eventually work with a dataset comprising
transcription levels for p = 18,941 genes (the predictors) and

transcription levels for TRIM32 (the response) measured on
n = 117 rats (the observations). On this dataset, we apply our
CIS with L = 3 slices (CIS[3]), as well as SIS, HOLP, SIRS,
DC-SIS, and MDC-SIS screening procedures, and GAMSEL
(Chouldechova and Hastie 2015)—a generalized additive model
selection procedure.

First, for each gene, we exclude outliers (12 or fewer values)
and compute marginal utilities for all screening procedures con-
sidered. Next, we focus on the top ranked d = 10 genes, which
differ substantially across procedures (Table S26)—likely due
to linear associations among predictors (the absolute values of
pair-wise Pearson correlations range between 0 and 0.9812; first
quartile 0.0847, median 0.1796, third quartile 0.3053) and/or
other complexities of the problem (e.g., level of sparsity, strength
and nature of the signals). Notably though, two of the top 10
CIS[3] genes (ranks 1 and 6) are also within the top genes
reported in Fan, Feng, and Song (2011). Also, the genes ranked
6 and 9 by CIS[3] are placed in the top 10 by all other procedures
(except HOLP). DC-SIS and SIRS also include the gene ranked
5 by CIS[3] in their top 10. Interestingly, none of the top 10
genes for HOLP overlap with the top 10 of any other procedure
considered.

Figure 1 illustrates the marginal associations between the
transcription of TRIM32 (response) and those of the top 10
CIS[3] genes (predictors). The panels for the genes ranked 5,
8, and 10 clearly show nonlinear relationships, supporting the
notion that our CIN, unlike the marginal utility used by SIS, is
a general measure of association. Preliminary queries indicate
that the top 10 CIS[3] genes do indeed have biological signif-
icance. Most of them are conserved in other mammalian and
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Figure 1. Scatterplots of transcription levels of TRIM32 against each of the top d = 10 genes identified by CIS[3]. Solid lines are LOESS smooths; dashed lines are 2-5D
prediction bands. Genes marked as ** are also among the top d = 10 of other screening procedures (Rank 5, DC-5IS and SIRS; Ranks 6 and 9, all but HOLP).

vertebrate species including human, chimpanzee, Rhesus mon-
key, dog, cow, mouse, chicken, zebrafish, and frog—suggesting
that they fulfill critical functions in the genome. K1hl7 (the gene
ranked 7), is involved in the eye disease Retinitis pigmentosa
(RP) in Norway rats; see the Rat Genome Database (RGD),
ID 1305564. According to the Online Mendelian Inheritance in
Man (OMIM) database, its human ortholog KLHL?7 also plays
a role in human RP (OMIM ID 611119; Friedman et al. 2009;

Wen et al. 2011). In addition, according to the Mouse Genome
Informatics (MGI) database, during wild-type mice develop-
ment K1hl7 is expressed in the retina (MGI ID 1196453), Rbfox1
(the gene ranked 8) in the retina ganglion cell layer (MGI ID
1926224), and Dr1 (the gene ranked 5) in the retinal inner and
outer layers (MGI ID 1100515). Mutations in Fam49b (the gene
ranked 2) are involved in abnormal retinal morphology in mice
(MGIID 1923520). Finally, not directly related to the eye, Gorab



(the gene ranked 4) plays a role in gerodermia osteodysplastica,
osteoporosis and skin abnormalities in Norway rats (RGD ID:
1564990).

When we increase d from 10 to 5000, the overlaps across the
top genes identified by various screening procedures increase
(e.g., the top 5000 CIS[3] and DC-SIS genes have ~272% overlap;
see Table 526). Following Wang and Leng (2016), we consider
the top 5000 genes produced by each screening procedure for
subsequent modeling. We marginally standardize each set of
5000 top-ranked predictors, as well as the response, to zero
mean and unit variance and employ GAMSEL (Chouldechova
and Hastie 2015), a penalized likelihood approach for fitting
sparse generalized additive models in high dimension, using the
CRAN package gamsel (Chouldechova, Hastie, and Spinu 2018).
We also apply GAMSEL directly on all (standardized) p = 18,941
predictors without any screening. We tune the overall penalty
parameter (A > 0) by 10-fold cross-validation, fixing the folds
across runs for reproducibility and selecting the largest A with
cross-validation error within 1 standard error of the minimum.
We set the penalty mixing parameter (0 < y < 1; values <0.5
penalize the linear fit less than the nonlinear fit) to y = 0.6 and
the degrees (the maximum number of spline basis functions to
use) to 5 for each predictor. All other parameters are left at their
default values.

Table 7 shows that CIS[3] leads to the highest deviance
explained (81.64%), followed by SIS (81.11%). Notably, GAM-
SEL applied to all p = 18,941 predictors leads to the lowest
deviance explained. To provide a benchmark, we create a “null”
distribution as follows: we select d = 5000 genes at random
1000 times, each time fitting GAMSEL and producing the cor-
responding deviance explained. The density plot in Figure 2
shows that the deviance explained with 5000 CIS[3]-screened
genes is significantly larger than those expected when randomly
selecting 5000 genes. In contrast, the deviance explained with
5000 HOLP-screened genes is not. Nor is the deviance explained
with GAMSEL applied to all genes.

Finally, we evaluate the out-of-sample performance of GAM-
SEL fits on the d = 5000 top ranked genes produced by each
screening procedure, as well as on all p = 18941 genes, and on a
random selection of 5000 genes for benchmarking. We produce
200 90%-10% training-validation random splits of the n = 117
observations. We run GAMSEL fits on the training sets, and
compute prediction errors on the corresponding validation sets.
Figures S3(a)-(c) display boxplots of, respectively, the training-
set deviance explained (in %), the number of nonzero training-
set coefficient estimates obtained with 10-fold cross-validated
A’s, and the validation-set root mean squared prediction error
(RMSPE). On the training sets, HOLP and GAMSEL applied to
all genes have similar median deviance explained (=:50%) and
number of nonzero coefficients (=15), which are comparable
to those achieved with a random selection of 5000 genes. All
other screening procedures lead to better fits (median deviance
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Density plot of deviance explained (%) from
GAMSEL fits on d=5000 randomly selected genes
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Figure 2. Density plot of deviance explained (%) from 1000 GAMSEL fits, each using
d=5000 randomly selected genes/probe IDs. Symbols mark performance achieved
with those identified by CIS[3], SIS, SIRS, DC-SIS, MDC-SIS, and HOLP screens or
directly applied to all p = 18,941 (*“GAMSEL"); empirical p-values in parentheses
in the legends.

explained in the range ~65%-70%) and larger gene sets (median
number of nonzero coefficient estimates =225). Perhaps not
surprisingly, given the small sizes of both training and validation
sets (106 and 11, respectively) compared to dimensionality (d
= 5000 for GAMSEL following screens, and p = 18,941 for
GAMSEL directly applied to all genes), for all procedures the
RMSPE’s computed on the validation sets are on par with those
obtained with a random selection of 5000 genes.

5. Concluding Remarks

In this article, we proposed CIS—a model-free feature screen-
ing procedure to reduce the predictor dimension in ultrahigh-
dimensional supervised problems prior to the use of other statis-
tical techniques for feature selection, dimension reduction, and
regression or classification modeling.

CIS is built upon the CIN, a novel marginal utility which is
essentially the univariate version of the covariate information
matrix (Yao et al. 2019) and has an appealing interpretation
in terms of the traditional Fisher information in statistics. It is
applicable to any type of response (features)—continuous, dis-
crete, or categorical—with continuous features (response), has a
reasonable computational burden, and possesses the important
sure screening property.

Our simulation results demonstrate that CIS is competitive
with, and in some cases superior to, popular feature screen-
ing procedures such as SIS, HOLP, SIRS, DC-SIS, and MDC-
SIS. CIS successfully identifies active covariates at all levels of
sparsity, with both continuous and categorical responses as well

Table 7. Deviance explained (%) and number of nonzero coefficient estimates selected by 10-fold cross-validated A (“lambda.1se”) from GAMSEL fits on the top d = 5000
genes/probe IDs ranked by different screens or directly applied to all p= 18,941 ("GAMSEL").

SIS HOLP SIRS DC-SIS MDC-SIS CIS[3] GAMSEL
Deviance explained (%) 81.11 56.04 70.88 67.83 64.32 81.64 47.76
# of nonzero coefficients 48 18 32 30 28 45 14




1528 @ D. NANDY, F. CHIAROMONTE, ANDR. LI

as categorical, “perturbed,” and “realistic” predictors. As to be
expected, it outperforms SIS in the presence of nonlinear signals
but, notably, it also outperforms DC-SIS and MDC-SIS in less
sparse settings (higher number of active covariates). Moreover,
it outperforms SIRS when active covariates affect the response
through more than two linear combinations (i.e., indexes in
multi-index models). Importantly, in addition to sure screen-
ing, our simulation results provide empirical evidence that CIS
possesses the ranking consistency property.

Like most procedures, the performance of CIS improves with
higher sample sizes and signal-to-noise ratios. The former is
particularly relevant because CIS calculations require a reason-
able number of observations per slice. Our general suggestion
is to employ a relatively small number of slices (say, L = 3-
8). Notably though, L ceases to affect CIS performance when
the sample size is sufficiently large. Switching to the case of
discrete or categorical responses, where L represents the number
of distinct Y values, we note that this (similar to the number
of active predictors and that of predictors overall) can increase
with n. We considered a finite L to theoretically establish the sure
screening property for CIS, but the proof could potentially be
generalized to a diverging L.

While the sure screening property addresses false negatives
concerns, screens can retain false positives in cases where cor-
relations between inactive and active covariates produce spu-
rious association with the response (Fan and Lv 2008). One
way to mitigate this issue is to use iferation. For example, an
iterative model-based screening procedure can be found in
Fan, Samworth, and Wu (2009). Iterative model-free screening
procedures also exist, and are often based on the notion of
predictor residual matrix. This was first introduced for iterative
SIRS in Zhu et al. (2011) and later used for iterative DC-SIS
(Zhong and Zhu 2015). An iterative CIS could be developed
as well. Of course, iteration increases computational burden.
In practice, an evaluation of the strength and structure of the
associations among covariates can help gauge whether such
burden is justified as a way to reduce potential false positives.
Further discussion on iteration can be found in Fan, Samworth,
and Wu (2009). The interested reader can also refer to univariate
penalization screening (UPS; Ji and Jin 2012), covariance assisted
screening and estimation (CASE; Ke, Jin, and Fan 2014), and
graphlet screening (Jin, Zhang, and Zhang 2014), among others,
for ideas on two-stage “screen and clean” procedures to tackle
potential false positives.

We foresee several additional avenues for future work. One is
combining different screening approaches. For instance, consider
a composite marginal utility of the form w(r) = rwsy) +
(1 — 7)ws(2), where S(1) and S(2) indicate two different screens
and T € [0,1] is a weighing parameter. w(7), especially with
an appropriate data-driven tuning of t, could combine the
strengths of different approaches. As another instance, consider
the selection of the threshold d used for separating active and
inactive covariates (both soft and hard thresholding rules are
discussed in the literature; see Fan and Fan 2008; Zhu et al.
2011; Li, Zhong, and Zhu 2012; Shao and Zhang 2014). Let
co(d) = @j(l) N .23(2” be the cardinality of the intersection of
the active sets estimated by two screens using d. By construction
c(d) = d;aplotof c(d) versusd, d = 1,2, ..., can be used as a
visual diagnostics to identify d* where c(d*) comes very close to

d*, that is, a threshold that guarantees high congruence between
screens. Both the composite marginal utility and the threshold
diagnostic plot, of course, could potentially combine more than
two screens.

Another interesting future avenue is investigating the per-
formance of CIS in the rare and weak signal regimes often
encountered in Genome Wide Association Studies (GWAS), and
in cases where the assumption that zero low-order marginal
correlations imply zero higher-order partial correlations (also
known as the “faithfulness” condition; Genovese et al. 2012) is
violated due to factors such as signal cancellation (Wasserman
and Roeder 2009). Procedures such as the covariance assisted
screening and estimation (Ke, Jin, and Fan 2014) and the graphlet
screening (Jin, Zhang, and Zhang 2014) address these issues.

We mentioned (Section 1) and demonstrated via numeri-
cal examples (Sections 3.2 and S3) that CIS can also be used
to screen discrete or categorical predictors—as long as the
response is continuous. Another important avenue for future
work is the extension of CIS to cases where both the response
and the covariates are discrete or categorical, as well as to cases
where the response is multivariate. Developments in the former
(e.g., Huang, Li, and Wang 2014; Cui, Li, and Zhong 2015) and
the latter (e.g., Zhu et al. 2011; Li, Zhong, and Zhu 2012; Shao
and Zhang 2014) directions already exist in the feature screening
literature.

Supplementary Materials and Codes

Proofs of theoretical results, full simulation results, details on the tran-
scriptomic data application, and some relevant additional information are
provided in an online Supplement. MATLAB (MATLAB 2020) and R (R
Core Team 2020) source functions for the implementation of CIS and
other feature screening procedures, codes for the numerical examples in the
simulation study, and the analyses of the transcriptomic data are publicly
available at the following link: bit.ly/CIS-Codes.
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