
ReViCe: Reusing Victim Cache to Prevent
Speculative Cache Leakage

Sungkeun Kim†, Farabi Mahmud†, Jiayi Huang†, Pritam Majumder†, Neophytos Christou§
Abdullah Muzahid†, Chia-Che Tsai† and Eun Jung Kim†

†Texas A&M University, §University of Cyprus
{ksungkeun84,farabi,jyhuang,pritam2309,abdullah.muzahid,chiache,ejkim}@tamu.edu, nio christou@hotmail.com

Abstract—Spectre and Meltdown attacks reveal the perils of
speculative execution, a prevalent technique used in modern
processors. This paper proposes ReViCe, a hardware technique
to mitigate speculation based attacks. ReViCe allows speculative
loads to update caches early but keeps any replaced line in the
victim cache. In case of misspeculation, replaced lines from the
victim cache are used to restore the caches, thereby preventing
any cache-based Spectre and Meltdown attacks. Moreover,
ReViCe injects jitter to conceal any timing difference due to
speculative lines. Together speculation restoration and jitter
injection allow ReViCe to make speculative execution secure.
We present the design of ReViCe following a set of security
principles and evaluate its security based on shared-core and
cross-core attacks exploiting various Spectre variants and cache
side channels. Our scheme incurs 2-6% performance overhead.
This is less than the state-of-the-art hardware approaches.
Moreover, ReViCe achieves these results with minimal area and
energy overhead (0.06% and 0.02% respectively).

Keywords—Transient-Execution Attacks, Cache Side-channel
Attacks, Hardware Mitigation

I. INTRODUCTION

Speculative execution [1]–[10] is integral to the perfor-
mance optimization of modern out-of-order CPUs. A CPU
can increase utilization by speculating uncertainties such
as branching, memory dependency or exception handling.
Recent Spectre [11] and Meltdown [12] vulnerabilities show
the danger of combining side channels with speculative
execution. Spectre attacks exploit speculative execution that
violates the program logic whereas Meltdown attacks bypass
hardware protections. Attackers can manipulate the CPU
to bypass security checks or jump to malicious gadgets in
order to trigger transient execution, a transient period before
squashing the execution, that leaks secrets via a side channel.
Even more devastating, various speculation can be combined
with different side channels, multiplying the variants of
Spectre and Meltdown [13]–[20].

Mitigation of Spectre and Meltdown is challenging. Ex-
isting software or firmware-level solutions are ad-hoc and
expensive [21]–[28]. Several recent papers proposed more
systematic hardware-based solutions. For example, InvisiS-
pec [29] is the first work to offer a solution by isolating cache
updates from transient execution. Follow-up works focus on
reducing the latency and space overhead of recovering from
squashed updates [30]–[32]. Other solutions are based on
either disabling speculation for leaky instructions or data
access [33]–[37] or blocking side channels between security
contexts [38], [39]. Existing solutions [33]–[39] either incur

BP LD BRRS

Early
Update

Delayed
Exposure

VP

Commit

BP LD BRRS

Delayed
Update

VP

(b) Undo (CleanupSpec, ReViCe)(a) Redo (InvisiSpec, Select. Delay)
Figure 1: After branch prediction (BP), the load (LD) and response (RS)
can occur before branch resolution (BR). Both Redo and Undo approaches
assume the cache update is safe at the visibility point (VP), which is BR,
but Redo’ing delays the actual update beyond the VP.

high performance overhead, require software modification,
or are unable to prevent attacks within the same context
or core. As a more efficient approach, InvisiSpec and its
follow-up works are based on either Redo’ing or Undo’ing
the side effects of transient execution in a microarchitectural
structure (e.g., caches). Both approaches need to ensure that
microarchitecture updates are only exposed to outside of the
transient execution at Visibility Point (VP) [29], i.e., when
the instructions cannot be squashed by prior operations. The
Redo approach, as in InvisiSpec [29] and Selective Delay [31]
propose to delay the update of caches after the VP. On the
other hand, the Undo approach, as in CleanupSpec [30],
applies the updates early but undo them at VP.

The distinction between Redo and Undo causes a signif-
icant difference in performance. Redo suffers higher over-
heads than Undo as a Redo’ing architecture such as Invi-
siSpec penalizes execution that is confirmed to be safe. The
distinction is demonstrated in Figure 1. Penalizing confirmed
execution is counter-intuitive since CPUs are generally op-
timized for executions where predictions are mostly correct
and exceptions are rare. For instance, in PARSEC, at least
82% of branches are predicted correctly, and ⇠80% of the
load instructions become safe without getting squashed. Both
InvisiSpec and Selective Delay procrastinate the update until
the VP; however, before exposing a cache line after the VP,
the CPU needs to reacquire the data from the cache hierarchy
to check for potential invalidation from other cores. The de-
layed exposure may stall subsequent instructions that depend
on the cache line. InvisiSpec also increases network traffic
in the cache hierarchy for reacquiring data. InvisiSpec incurs
13% and 16% slowdown to PARSEC [40] for mitigating
Spectre and Meltdown, respectively.

The Undo approach, as in CleanupSpec [30], incurs a
lower performance overhead as compared to all other solu-

1

tions, and thus, can be appealing to CPU vendors. However,
the design of the CleanupSpec has two major security flaws.
First, it can leak secrets to shared-core and cross-core
attackers. CleanupSpec cannot hide eviction of an L1 cache
line since the data is evicted for real. This allows a shared-
core attacker to launch an eviction-based attack such as
Prime+Probe. Moreover, a cross-core attacker can observe a
speculative load in CleanupSpec using invalidation. Second,
attacks to cache address randomization of CleanupSpec are
possible. CleanupSpec adopts CEASER’s [41] scheme to ran-
domize a mapping between address and cache sets. Bodduna,
et al. [42] shows that the block cipher of CEASER does not
randomize address mappings properly. Randomization does
not prevent an attacker from detecting the access of a shared
cache block by the victim. The security flaws in CleanupSpec
demonstrated the complexity of implementing the Undo’ing
approach. In this paper we focus on re-examining the prin-
ciples for Undo’ing scheme to ensure that a low-overhead,
secure Undo’ing scheme can be implemented in architecture.

This paper presents ReViCe, a microarchitecture that
safely hides and restores speculative cache updates in both
shared-core and cross-core scenarios. When an instruction
queue issues a load, ReViCe determines if the load is
speculative. If the load is speculative and causes a cache miss,
a new line is brought in to replace an existing line, changing
the cache state. The change is safe if the speculation is
later deemed correct. However, if the speculation is incorrect,
an attacker who can observe the change, can infer secrets
from access patterns. To prevent such leakage, the cache
needs to restore any change caused by a misspeculated
load. In ReViCe, we use a victim cache [43] to keep the
lines replaced by speculative loads. If a load is deemed
misspeculated, ReViCe can restore the replaced line from the
victim cache to its original location. Moreover, if multiple
accesses occur to the cache line while the line is speculative,
ReViCe adds jitters to prevent attackers from observing any
timing difference. With restoration and jitter, ReViCe hides
speculative cache changes to the attackers. To make ReViCe
free from security flaws, we propose four security principles.

We simulate ReViCe on Gem5 [44], for both x86 and
ARM. We show that with a relatively small victim cache,
ReViCe can mitigate Spectre and Meltdown with low perfor-
mance overheads. We use benchmark PARSEC in ReViCe,
InvisiSpec, Selective Delay, and CleanupSpec to show the
benefits of our design. We also performed a security analysis
on the defenses of ReViCe in various corner cases. We
attempted attacks on ReViCe with 4 Spectre variants, 3 cache
side channels [45]–[48], and 3 attack scenarios.

Our contributions are summarized as follows:
• A multi-core, microarchitecture design for mitigating

Spectre and Meltdown attacks by Undo’ing sensitive
cache updates from misspeculated execution. ReViCe
proposes a novel reuse of victim cache for hiding and
restoring cache states.

• Security principles for designing an Undo’ing microar-
chitecture with secure speculation and security analysis
based on shared-core and cross-core attacks.

• A performance analysis of ReViCe, which shows 2–6%
performance overhead in PARSEC and SPEC (compared
to InivisiSpec, a reduction of up to 15%).

The rest of the paper is structured as follows: The background
and threat model in Section II, main idea of ReViCe in Sec-
tion III followed by implementation in Section IV. Section V
evaluates ReViCe. The final section concludes the paper. We
also provide security analysis of CleanupSpec [30], detailed
operations of ReViCe, and security analysis with proof-of-
concept in Appendix A, B, and C, respectively.

II. BACKGROUND AND THREAT MODEL

A. Spectre and Meltdown
Spectre attacks [11], [13]–[15], [17], [20] exploit CPU

speculation (e.g., branch prediction) to execute malicious
logic which is not allowed in the victim program. The attacks
generally involve mistraining of the predictors to manipulate
the victim. The misspeculated execution then can leak secret
information via a microarchitecture side channel, before the
execution is squashed by the CPU. Meltdown attacks [12],
[16], [18], [19] exploit a different type of vulnerabilities, by
violating hardware protection such as page table or system
register protection. Meltdown exists due to inherent delay in
the exception delivery to be handled until retirement of the
faulty instruction; meanwhile, the faulting instructions can
still obtain protected data during the transient execution.

B. Threat Model and Attack Scenarios
We assume a typical threat model for Spectre and Melt-

down [11], [12], [29]. The attacker intends to retrieve secrets
from a victim program by manipulating CPU speculation in
the victim or bypassing hardware protection enforced by the
OS. The attacker has access to the source code of the victim
program and the OS. In addition, it also has knowledge about
the underlying microarchitecture. We assume that the CPU
and the OS are correct and trusted by the victim.

Our attack scenarios include three primary factors that can
be exploited by the attackers:

1) Speculation or Squashable Operations: Variants
of Spectre exploit misprediction on branch directions
(PHT [11]), branch targets (BTB [11]), return targets
(RSB [20]), or store-to-load dependency (STL [15]). Melt-
down, on the other hand, depends on exceptions, such as
page protection faults [12], device-not-available faults [16],
or terminal faults [18], [19].

2) Cache-based Side Channels: This paper focuses on two
types of cache timing channels as representative examples:

• Eviction-based attacks: Prime+Probe [45], [49]–[51]
can detect eviction of lines in the same cache set(s) as
the lines accessed by the victim.

• Reload-based attacks: Flush+Reload [46], [52]–[54]
and Evict+Time [45] relies on detecting whether a
shared line is recently accessed by the victim.

Cache timing attacks also include techniques that ex-
ploit cache replacement policies (e.g., PseudoLRU) [55] or
replacement in the cache directory [56]. Another type of
cache-based side channel attacks, such as Flush+Flush [48],

2

DAW
G

[38]

MI6 [39]

Cond. Spec. [33]

SpectreGuard [34]

STT
[36]

NDA
[35]

SpecShield [37]

InvisiSpec [29]

SafeSpec [32]

Select. Delay [31]

CleanupSpec [30]

ReViCe

PHT/BTB/RSB
STL # # F
Meltdown # # # F F
SMT/same-thread # # F F #
Shared-core G#
Cross-core - G#
Prime+Probe G#
Flush+Reload G#
#: No defense; G#: Partial defense; : Full defense; F: Possible defense

Table I: Comparison of the existing hardware mitigations.

mainly work across cores to detect the difference of invali-
dation latency. ReViCe currently does not handle these side
channels [48], [55], [56] and focus on inclusive caches, but
we leave the mitigation of these attacks as future work.

3) Shared-core vs. Cross-core: Depending on the side
channels, an attacker can potentially share the core with the
victim or run on a different core, to observe side channels
either before or after the malicious execution is squashed.

ReViCe only handles leakage from transient execution
based on cache timing channels. Software or hardware side
channels that exist without speculation is orthogonal to our
solution. Any execution that is speculated correctly or not
squashed for exceptions is trusted for not leaking any se-
cret. Other out-of-scope cases include: (1) Potential Spectre
and Meltdown variants based on other side channels, such
as TLB timing [57], cache directory timing [56], and branch
prediction histories [58], [59], and (2) Foreshadow [18], i.e.,
L1 terminal fault, that targets Intel SGX.

C. Existing Approaches
Many hardware solutions have tackled Spectre and Melt-

down using various kinds of approaches (listed in Table I):
1) Blocking Side Channels: DAWG [38] and MI6 [39]

partition caches or other hardware such as TLB, to block
side channels through resource isolation in general. But they
are limited to protecting domains across context switches.

2) Restricting Speculation: Conditional Speculation [33]
and SpectreGuard [34] use software hints to disable specu-
lation on sensitive instructions. This approach applies to all
side channels, but requires software annotations.

3) Restricting Data Propagation: SST [36], NDA [35],
and SpecShield [37] stall tainted, speculative instructions
that may leak information. This approach applies to all
side channels and requires no annotation, but incurs higher
performance overhead due to restricting speculation.

4) Delaying or Hiding Speculative Update: InvisiSpec
[29] and SafeSpec [32] isolate speculative loads until the
operations can be safely exposed. Selective Delay [31] also
uses value prediction to isolate the impact of speculative
loads in caches. On the other hand, CleanupSpec [30] and
ReViCe both allow speculative installation of the cache line,
keeping the operation hidden from the attacker until it is
safe. These approaches have low performance overhead,
but requires careful defense against various side channels

and attack scenarios. We observe several attacks against
CleanupSpec, which are describe in Appendix A.

III. SPECULATIVE CACHE SIDE-CHANNEL PREVENTION

ReViCe consists of two major ideas: (1) restoring cache
updates from misspeculated loads using a victim cache
(thereby, Undo’ing the effect of speculation) and (2) hiding
the timing difference of accessing a speculatively loaded line
by injecting jitters. In this section, we present the design
of ReViCe by first defining the terminologies, followed by
ReViCe’s workflow and hardware. More details of ReViCe’s
operations are described in Appendix B.

A. Terminologies

Speculation Source: If an instruction I causes a sub-
sequent instruction (in program order) J to execute spec-
ulatively, we refer to I as the Speculation Source (SS)
for J . Whether I can behave as a speculation source for
J depends on the threat model. When I is resolved and
the speculation turns out to be correct, I and subsequent
instructions commit from the processor pipeline as usual.
However, if I is misspeculated, all subsequent instructions
in the pipeline are squashed when I reaches the head of
the reorder buffer (ROB). Note that each SS has its own
condition of resolving the speculation. We list the SSes and
the resolution conditions for four Spectre variants as well as
all the Meltdown variants as below:

Attack variants SS Resolution
Pattern History Table (PHT) Conditional jump Branch resolved
Branch Target Buffer (BTB) Indirect jump Branch resolved
Return Stack Buffer (RSB) Function return SS retired
Store-to-Load (STL) Memory store Address resolved
Meltdown variants Mem. or reg. access SS retired

Table II: Speculative sources (SS) and resolution conditions.

Speculative and Non-Speculative Load: When a load
is preceded according to the program order by at least one
speculation source in the pipeline, the load executes and
accesses memory speculatively. Such a load is referred to as a
Speculative Load (SL). If all speculation sources are resolved
correctly, the SL cannot be squashed from the pipeline
anymore and becomes a Non-Speculative Load (NSL).

Victimize: When a newly brought cache line replaces an
existing line, the replaced cache line is kept in the victim
cache. We refer to this event as victimizing the replaced line.

Replace: When a cache line is evicted from both the
main cache and its associated victim cache, this cache line
is regarded as replaced in the current cache level. Such an
event is called replacement.

Restore and Confirm Messages When an speculation
source associated with an SL is misspeculated, ReViCe sends
a Restore message to the cache hierarchy to restore any
change caused by the SL. If all speculation sources are
resolved correctly, ReViCe sends a Confirm message to make
the change permanent i.e., visible globally (to other caches)
in the cache hierarchy.

3

B. Workflow of ReViCe
A ReViCe operation contains the following steps:
1) Determining speculative loads: In a processor pipeline,

only loads can speculatively update the cache. Therefore,
ReViCe adds a flag to each load instruction entry in the
pipeline to indicate whether it is speculative or not. The flag,
called Speculative Load Flag (SLF) indicates a load as an
SL if its value is 1. Otherwise, the load is an NSL. When a
load is issued, ReViCe hardware counts how many SS’s are
in the pipeline before the load. If there is at least one SS
before the load, its SLF is set to 1. As SS’s are committed
from the pipeline, SLF ’s of some later loads are cleared, if
there are no more SS’s in the pipeline before those loads.

2) Accessing the cache hierarchy: In case of an SL, the
cache checks if the SL causes a cache hit. If so, the cache
returns the data immediately. However, if it is a cache miss, a
request is sent through the cache hierarchy to bring the line.
The new line is kept in the cache and the victimized line (if
any) stays in the victim cache (as long as the load remains an
SL). The cache and victim cache keep information to track
the speculative line and the corresponding victimized line. A
NSL is handled without any alteration to the original cache
protocol, unless the line hits on a speculative line. In that
case, ReViCe adds some jitter to hide any timing difference.
In order to keep the caches free from security flaws, ReViCe
maintains the following four security principles:

Principle 1 (P1): A speculative line cannot replace an-
other speculative line. This prevents a chain of speculative
cache line replacing each other (which can potentially make
the cache susceptible to security flaws in some corner cases).

Principle 2 (P2): A restoration line cannot be removed
from the victim cache. This ensures that restoration from
misspeculation is always possible.

Principle 3 (P3): A speculative load cannot downgrade
the coherence state of either a non-speculative line or a
speculative line in another cache. This hides the effect of
the speculative line on other cache lines.

Principle 4 (P4): A non-speculative line cannot be
replaced by a speculative line without moving to the
victim cache.1

If ReViCe violates P1, there can be a scenario where a
sequence of speculative lines replaces one another, forming
a chain in the victim cache and making the restoration much
harder. In case of P2, if ReViCe removes a restoration line
from the victim cache, ReViCe loses the ability to restore. In
case of P3, if ReViCe allows a speculative load to downgrade
a non-speculative line (from Exclusive or Modified to Shared
state) or to downgrade a speculative line (from Exclusive
to Shared state, a speculative line cannot be Modified), not
only it complicates restoration but also creates a coherence
based side channel [60]. When there is possibility of violating
P1, P2 or P3, the associated SL is stalled until the violation
is no longer possible. Finally, P4 is necessary so that an

1The victim cache is used for both conventional purpose and mitigation of
cache side channel. SLs might indirectly evict NSLs from the victim cache.
To enforce stronger security, the victim cache can be used only for security
purpose with negligible performance overhead.

…

…

.

.

.. . .

.

…

…

Ins Queue

Fetched Ins

Int
RS

FP
RS Load

Queue

Functional
Unit

CDB

ROB

L1

L2

Victim
Cache

Victim
CacheMemory

Register File

Sp R STag VTag

ROB Ptr SLF

.

.

.

Figure 2: Additional hardware for ReViCe in a typical out-of-order ma-
chine. Additional hardware is shown in Blue. RS=Reservation Station,
CDB=Common Data Bus, ROB=Reorder Buffer.

NSL remains unaffected by an SL. These principles provide
required security properties of ReViCe (See Appendix C-A).

3) Restoration and confirmation: If an SL is misspec-
ulated, it gets squashed and sends a Restore message to
the cache. Upon receiving the Restore message, the cache
invalidates the speculative line and restores the victimized
line from the victim cache, giving an illusion that the SL
had never happened. On the other hand, if the speculation
is correct, the SL becomes an NSL and sends a Confirm
message to the cache to clear any information related to
speculation and the victimized line. The cache also delays
the updates to the LRU bits until speculation is resolved.

C. ReViCe Hardware

Consider a typical out-of-order multicore processor with
two levels of cache. The L2 is shared among cores, with a
directory implementing the cache coherence protocol. Each
cache has a victim cache. Figure 2 shows the hardware
extensions for ReViCe. The extensions are as follows:

1) Load Queue: Load queue has a new field in each entry
- SLF . It determines if a load is speculative or not.

2) L1/L2 Cache: A Sp (speculative) bit is added in each
line to indicate whether the line is brought by an SL.

3) Victim Cache: Figure 3 shows an extended victim
cache line entry. In a victim cache, each line v is identified
by a tag V Tag. ReViCe extends v with a bit R and another
tag STag; R indicates whether v has been victimized by a
speculative line s (i.e., one with Sp = 1) and thus can be
used for restoration. If v has R = 1, we call v a restoration
line. For such a line, STag contains the tag of the speculative
line s that initially victimized v.

R STag VTag Data

1 bit 48 bits 48 bits

R: Restoration Bit
STag: Tag of the speculative line s that victimized v
VTag: Tag of the line v that is victimized

Figure 3: Victim Cache Block.

4

D. Supporting Different Memory Models
The operation of ReViCe is described assuming a TSO

memory model. However, other memory models such as
Release Consistency (RC) [61] does not require any sig-
nificant change to accommodate ReViCe. Unlike TSO, RC
allows reordering of loads to different cache lines. Therefore,
ReViCe can support RC with the following changes:

• Whenever multiple loads are ready to send Restore or
Confirm messages, they can be sent in any order.

• For TSO, even if a speculation source is correctly
speculated, an SL needs to check if any earlier load
is misspeculated. If so, the SL needs to send a Restore
message. However, for RC, since any pair of loads can
be arbitrarily reordered, the SL does not need to check
misspeculation of earlier loads.

IV. IMPLEMENTATION DETAILS

In this section, we first show how to find a restoration
line from a speculative line. Then, we present the jitter
implementation, followed by the justification of our choice
of victim cache size as well the absence of deadlocks.

A. Restoration and Speculative Line Lookup
The victim cache is extended with additional tag (STag)

to facilitate a mapping between a restoration line, r and the
associated speculative line, s. To find r from s, STags of
the victim cache are selected to match the tag of s. r will be
the one with a valid matching. To find s from r, the main
cache is searched with STag using a normal lookup.

B. Implementing Jitter
Jitter is added in two cases to hide the existence of a

speculative cache line. First, a non-speculative access that
hits on a speculative cache line can be observed as a latency
difference in cache access time. To prevent, the response is
delayed by jitter. The length of jitter is based on the level of
the current cache and the state of the line (SL or NSL) in
the lower level caches. For example, in L1 cache, length of
jitter should be memory access latency if the corresponding
cache line in the lower level cache is an NSL. Otherwise,
L2 hit latency is used. Second, a write access to a shared
cache line could be a side channel by measuring the latency
difference. This is because invalidation is on the critical
path of write and invalidation of SL increases the latency.
This could be more prominent in a large scale system with
multiple cores distributed. For example, the non-speculative
sharer could be the next-hop neighbor of the writing node
whereas the speculative sharer could be the one at the furthest
side. ReViCe puts jitter to have the worst-case-latency of
invalidation for all writes requests regardless of any sharing
SL or NSL. Jitters for each case are fixed length in our
experiment and a variable length jitter could be implemented
by periodically sampling access latencies.

Figure 4 shows the implementation of the jitter in L2. We
augment each Transaction Status Holding Register (TSHR)
with a down counter for jitter. Note that TSHRs are L2
controller’s internal buffers that keep track of outstanding or

stalled transactions. When a non-speculative access hits on a
speculative line, for example, the counter associated with the
access’s TSHR is initialized with the jitter length provided
by the jitter generator. ReViCe decrements the jitter counter
every cycle and triggers a response when the counter is 0.

Status Src Addr Data Jitter

L2 Cache Controller

Request queue

Message
receive

Message
format & transmit

From network To network

V D Tag MESI SP

delay

Data

Transaction Status Holding Register
(TSHR)

L2 Cache

bypass

JitterGen

Figure 4: Implementation of Jitter mechanism.

C. Victim Cache Size

In order to find a suitable size for the victim cache, we run
experiments using a large (e.g., 1k entries) victim cache, and
sample victim cache occupancy every 100 cycles. We observe
that L1 victim cache holds 13 restoration lines at most
whereas for L2, this number is 5. 99% of the samples have
less than 4 restoration lines in the victim cache. Therefore,
we choose 16-entry victim cache for L1 and each L2 bank.
We use this configuration for multithreaded benchmarks,
PARSEC [40]. Since single threaded applications like SPEC
CPU2017 [62] are sensitive to victim cache size, we use 32-
entry victim cache for L1 and 64-entry victim cache for each
L2 bank.

D. Deadlock Freedom

ReViCe stalls speculative load accesses in 4 cases (Fig-
ure 8) but never stalls any non-speculative memory access.
To show that ReViCe is free of deadlock, we emphasize
on two properties: First, in cases when an SL is stalled,
the stalled SL never ends up stalling an NSL. That implies
that each processor can still make forward progress through
NSLs and other non-speculative instructions. Second, it is
safe to stall an SL. This is because the speculation sources
eventually get resolved and they either squash the stalled SL
or make it non-speculative. In the later case, the stalled load is
confirmed to become an NSL to proceed without any further
stall. Moreover, Restore and Confirm messages from either
case are never blocked inside any cache controller. Therefore,
a cache controller continues to operate on requests. In a
nutshell, the two properties together ensure that there will
not be a circular stalling scenario among a sequence of SLs
and NSLs, the processors will keep making forward progress
through NSLs and will eventually either squash the stalled
SLs or retry them as NSLs. Therefore, ReViCe cannot suffer
from any deadlock.

5

Parameter Value
Architecture 8 ARM cores for PARSEC, 1 X86 core for SPEC & PoC

Core
2GHz, Out-of-Order, no SMT,
32 Load Queue, 32 Store Queue entries, 192 ROB entries,
Tournament branch predictor, 4096 BTB entries, 16 RAS entries

L1-I Cache (Private) 32KB, 64B line, 4-way, 1-cycle round-trip lat, 1 port
L1-D Cache (Private) 64KB, 64B line, 8-way, 1-cycle round-trip lat, 3 Rd/Wr ports

L2 Cache (Shared) inclusive, Per core: 2 MB bank, 64B line, 16-way,
8 cycles RT local latency, 16 cycles RT remote latency (max),

Cache Coherence Directory based MESI
Cache Replacement Pseudo LRU
Network 4x2 MESH, 128 link width, 1 cycle latency per hop
DRAM Built-in memory model in Gem5 [65]

Victim Cache 64B lines, fully associative, 16 blocks in L1-D & L2 for PARSEC,
32, 64 blocks in L1-D & L2 for CPU2017, respectively.

Table III: Parameters of the simulated architecture.

 -

 0.50

 1.00

 1.50

 2.00

perlbench gcc mcf

cactuBSSN

xalancbmk
x264

leela nab

exchange2

geomean

IS-Sp IS-Md CS-Sp SD-Sp RV-Sp RV-Md

Figure 5: Normalized execution time for CPU2017.

V. EVALUATION

We evaluate performance, area and energy of ReViCe
and other techniques using Gem5 [44] with McPAT and
CACTI [63], [64] as shown in Table III. We run SPEC
CPU2017 [62] on a single core and the PARSEC [40] on
8 cores. For CPU2017, we use the reference input size and
run for 1 billions instructions after fast-forwarding 10 billions
instructions. For PARSEC, we use simmedium input size and
simulate the region-of-interest (ROI) until any thread reaches
500 million instructions.

The baseline is a conventional insecure processor. We com-
pare ReViCe against InvisiSpec (IS) [29], [66], CleanupSpec
(CS) [30], [67], and Selective Delay (SD) using Oracle value
predictor with 16% prediction rate [31].2 We use different
speculation sources for Spectre and Meltdown as described
in Section III-A. Speculation conditions for Spectre and Melt-
down are the same as described in Section III-B. Therefore,
we differentiate Spectre and Meltdown using short name Sp
and Md respectively.

Appendix C includes a security analysis on ReViCe, as
well as an evaluation using an attack suite with different
cache-based side channels and concurrency models.

A. Performance Evaluation
In this section, we summarize the results followed by an

in-depth analysis of performance overheads.
1) Execution Time: Figure 5 and 6 show the execution

time of different hardware defense mechanisms normalized
to the Base. In general, ReViCe incurs less performance
overhead than the other approaches. RV-Sp and RV-Md incur
only 4% and 6% overhead for CPU2017 and 4% and 2%
overhead for PARSEC on average compared to Base.

2) Comparison to Base: In ReViCe there are two factors
of performance overhead. First, ReViCe stalls and adds jitter
for some accesses. We profile jitter and stall cycles over the

2We use implementations of IS and CS from the authors’ git repository.
CS is modified because it does not support multi-core simulation. We could
not finish some benchmarks with IS due to one assertion failure.

 -
 0.50
 1.00
 1.50
 2.00
 2.50
 3.00
 3.50

blackscholes
canneal

dedup
facesim ferre

t

fluidanimate

freqmine

stre
amcluste

r

swaptions
x264

geomean

IS-Sp IS-Md CS-Sp SD-Sp RV-Sp RV-Md

Figure 6: Normalized execution time for PARSEC.

Components Area (mm2) Energy (nJ/access)
Base IS RV Base IS RV

L1 buffer 0.0343 0.0343 0.0409 0.0319 0.0319 0.0373
L2 buffer 0.0379 0.0824 0.0448 0.0328 0.0440 0.0388
LSQ 0.0698 0.0698 0.0835 0.6900 0.6900 0.8171

Table IV: Area and energy overhead.

load round-trip latency. We observe that across benchmarks,
it is only up to 0.01% of overhead. Second, ReViCe sends
additional Confirm and Restore messages which could cause
network congestion. Our experiment shows that RV-Sp and
RV-Md increase the average packet latency by 13% and 9%
compared to Base. However, the network is not congested
enough to degrade the performance.

3) Comparison to InvisiSpec: IS-Sp and IS-Md incurs
12% and 16% of average overhead for CPU2017 benchmarks,
and 12% and 30% for PARSEC benchmarks. This is 2.5⇥–
15⇥ more performance overhead compared to ReViCe. The
performance difference stems from shorter processing time of
Confirm compared to InvisiSpec’s Expose requests. Expose
message is processed as normal load request except when
data is stored in Speculative Buffer (SB). Due to early
update of ReViCe, it discloses the cache line by clearing
the Sp bit without incurring any coherence state transitions,
thereby reducing the overhead. Moreover, Exposure operation
increases the average packet latency by 13% and 30% for
SI-Sp and SI-Md, which is 3⇥ longer than ReViCe’s. This
is because of more data retrieval from the memory which
increase the number of packets. In addition, the delayed
update of InvisiSpec causes more blocking which reduces
issue rate of load operation in the processor pipeline to 81%
and 73% for CPU2017 and PARSEC, respectively.

4) Comparison to CleanupSpec: CleanupSpec [30] incurs
8% and 51% average performance overhead for CPU2017
and PARSEC, respectively. The overheads are 2⇥–12.8⇥
more than ReViCe. The difference is due to the different
ways in which speculative accesses are handled—ReViCe
uses jitter and Confirm/Restore coherence requests whereas
CleanupSpec sends out Dummy requests and uses a fixed
window size (200 cycles). Most of the speculation windows
are less than 200 cycles. ReViCe reduces the window size
by sending Confirm requests immediately. We observe that
CleanupSpec has 215 average cycles of speculation window
which is 7⇥ bigger than ReViCe. The experiment also
shows more coherence requests being stalled in CleanupSpec.
Unlike Dummy request, jitter just occupies one TSHR entry
and does not block incoming requests to the same cache line,
resulting in the reduction of pipeline stalls.

6

5) Comparison to Selective Delay: We re-implemented
Selective Delay [31] with an oracle value predictor with 16%
accuracy. Selective Delay incurs 9% average performance
overhead for CPU2017, which is 2⇥ more than ReViCe. This
is because SD-Sp flushes the CPU pipeline and re-executes
in case of misprediction. Selective Delay spends 22% more
cycles to squash instructions compared to ReViCe.

B. Area and Energy Estimations
RV-Sp and RV-Md incur minimal area and energy overhead,

(Table IV). The extra tag/entry (49 bits) added in victim
caches results in 19% and 18.1% area overhead in L1 and
L2 victim caches, respectively. Our techniques incur 16.9%
and 18.28% energy overhead compared to Base’s victim
cache. Additional bits added in load and store queue (LSQ)
(17bits/entry) incur 19.69% and 18.42% area and energy
overhead, respectively. As compared to the processor chip,
the additional area and energy overhead is less than 0.1%.

VI. CONCLUSIONS

The discovery of Spectre and Meltdown reveals the se-
curity risk of abusing speculative execution in CPUs. This
paper shows that microarchitecture can be designed with
both performance and defense in mind. ReViCe mitigates
speculation based attacks by allowing early updates while
delaying the actual exposure. ReViCe outperforms other
hardware solutions with minimal additional hardware. We
believe that our proposed Undo based solution lays down a
general foundation toward defending any microarchitecture
states against speculation based attacks in the future.

ACKNOWLEDGMENT

This work is supported by the startup package provided by
Texas A&M University and NSF under Grant No. 1652655.
The authors would like to thank the shepherd and anonymous
reviewers for their helpful comments and suggestions.

REFERENCES

[1] James E. Smith. A study of branch prediction strategies. In Proceed-
ings of the 8th Annual Symposium on Computer Architecture, ISCA
’81, pages 135–148, Los Alamitos, CA, USA, 1981. IEEE Computer
Society Press.

[2] George Z. Chrysos and Joel S. Emer. Memory dependence prediction
using store sets. In Proceedings of the 25th Annual International
Symposium on Computer Architecture, ISCA ’98, pages 142–153,
Washington, DC, USA, 1998. IEEE Computer Society.

[3] Daniel A Jiménez and Calvin Lin. Dynamic branch prediction with
perceptrons. In Proceedings HPCA Seventh International Symposium
on High-Performance Computer Architecture, pages 197–206. IEEE,
2001.

[4] Jason RC Patterson. Accurate static branch prediction by value range
propagation. In ACM SIGPLAN Notices, volume 30, pages 67–78.
ACM, 1995.

[5] Thomas Ball and James R Larus. Branch prediction for free, vol-
ume 28. ACM, 1993.

[6] James E Smith. A study of branch prediction strategies. In Proceedings
of the 8th annual symposium on Computer Architecture, pages 135–
148. IEEE Computer Society Press, 1981.

[7] Scott McFarling. Combining branch predictors. Technical report,
Technical Report TN-36, Digital Western Research Laboratory, 1993.

[8] Andreas Moshovos and Gurindar S Sohi. Memory dependence pre-
diction. PhD thesis, Ph. D. thesis, University of Wisconsin-Madison,
1998.

[9] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors.
In ACM SIGARCH Computer Architecture News, volume 25, pages
252–263. ACM, 1997.

[10] Alan Jay Smith. Sequential program prefetching in memory hierar-
chies. Computer, (12):7–21, 1978.

[11] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. arXiv preprint arXiv:1801.01203, 2018.

[12] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, et al. Meltdown: Reading kernel memory from user
space. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 973–990, 2018.

[13] CVE-2017-5754 (Rogue Data Cache Load). https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2017-5754, 2017.

[14] CVE-2018-3640 (Rogue System Register Read). https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-3640, 2018.

[15] CVE-2018-3639 (Speculative Store Bypass). https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-3639, 2018.

[16] CVE-2018-3665 (Lazy FP State Restore). https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-3665, 2018.

[17] CVE-2018-3693 (Bounds Check Bypass Store). https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-3693, 2018.

[18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel {SGX} kingdom with transient out-of-order execution. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 991–
1008, 2018.

[19] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F
Wenisch, and Yuval Yarom. Foreshadow-ng: Breaking the virtual
memory abstraction with transient out-of-order execution. https:
//foreshadowattack.eu/foreshadow-NG.pdf, 2018.

[20] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In 12th USENIX Workshop on Offensive
Technologies (WOOT 18), Baltimore, MD, 2018.

[21] Intel. Intel analysis of speculative execution side channels. https:
//www.intel.com/content/www/us/en/architecture-and-technology/
intel-analysis-of-speculative-execution-side-channels-paper.html.

[22] Liam Tung. Linux meltdown patch: ’up to 800 percent CPU overhead’,
netflix tests show. https://www.zdnet.com/article/linux-meltdown-
patch-up-to-800-percent-cpu-overhead-netflix-tests-show/, 2018.

[23] Greg Kroah-Hartman. Linux 4.14.11 meltdown mitigation us-
ing KPTI. https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-
4.14.11, 2018.

[24] [patch] d41723: Introduce the ”retpoline”. http://lists.llvm.org/
pipermail/llvm-commits/Week-of-Mon-20180101/513630.html.

[25] Spectre mitigations in msvc. https://devblogs.microsoft.com/cppblog/
spectre-mitigations-in-msvc/, Feb 2019.

[26] Speculation barrier for arm. https://github.com/ARM-software/
speculation-barrier.

[27] Lars Müller. Kpti a mitigation method against meltdown. Advanced
Microkernel Operating Systems, page 41, 2018.

[28] Speculative execution side channel mitigations. https:
//software.intel.com/security-software-guidance/api-app/sites/default/
files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf.

[29] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher Fletcher, and Josep Torrellas. Invisispec: Making speculative
execution invisible in the cache hierarchy. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 428–441. IEEE, 2018.

[30] Gururaj Saileshwar and Moinuddin K Qureshi. Cleanupspec: An undo
approach to safe speculation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 73–
86. ACM, 2019.

[31] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,
and Magnus Själander. Efficient invisible speculative execution through
selective delay and value prediction. In Proceedings of the 46th
International Symposium on Computer Architecture, ISCA ’19, pages
723–735, New York, NY, USA, 2019. ACM.

[32] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-

7

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3640
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3640
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3693
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3693
https://foreshadowattack.eu/foreshadow-NG.pdf
https://foreshadowattack.eu/foreshadow-NG.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-analysis-of-speculative-execution-side-channels-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-analysis-of-speculative-execution-side-channels-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-analysis-of-speculative-execution-side-channels-paper.html
https://www.zdnet.com/article/linux-meltdown-patch-up-to-800-percent-cpu-overhead-netflix-tests-show/
https://www.zdnet.com/article/linux-meltdown-patch-up-to-800-percent-cpu-overhead-netflix-tests-show/
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.14.11
https://cdn.kernel.org/pub/linux/kernel/v4.x/ChangeLog-4.14.11
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180101/513630.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20180101/513630.html
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://github.com/ARM-software/speculation-barrier
https://github.com/ARM-software/speculation-barrier
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf

Ghazaleh. Safespec: Banishing the spectre of a meltdown with leakage-
free speculation. pages 60:1–60:6, 2019.

[33] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng.
Conditional speculation: An effective approach to safeguard out-of-
order execution against spectre attacks. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pages 264–276. IEEE, 2019.

[34] Jacob Fustos, Farzad Farshchi, and Heechul Yun. Spectreguard: An
efficient data-centric defense mechanism against spectre attacks. In
DAC, pages 61–1, 2019.

[35] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and
Baris Kasikci. Nda: Preventing speculative execution attacks at their
source. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 572–586. ACM, 2019.

[36] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep
Torrellas, and Christopher W Fletcher. Speculative taint tracking
(stt): A comprehensive protection for speculatively accessed data. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 954–968. ACM, 2019.

[37] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu
Teodorescu. Specshield: Shielding speculative data from microarchi-
tectural covert channels. In 2019 28th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 151–
164. IEEE, 2019.

[38] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. Dawg: A defense against cache timing attacks
in speculative execution processors. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 974–
987. IEEE, 2018.

[39] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Srini-
vas Devadas, et al. Mi6: Secure enclaves in a speculative out-of-order
processor. arXiv preprint arXiv:1812.09822, 2018.

[40] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[41] Moinuddin K Qureshi. Ceaser: Mitigating conflict-based cache attacks
via encrypted-address and remapping. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 775–
787. IEEE, 2018.

[42] R. Bodduna, V. Ganesan, P. SLPSK, K. Veezhinathan, and C. Rebeiro.
Brutus: Refuting the security claims of the cache timing randomization
countermeasure proposed in ceaser. IEEE Computer Architecture
Letters, 19(1):9–12, Jan 2020.

[43] Norman P Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch buffers.
In ACM SIGARCH Computer Architecture News, volume 18, pages
364–373. ACM, 1990.

[44] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[45] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. In Cryptographers’ track at the RSA
conference, pages 1–20. Springer, 2006.

[46] Yuval Yarom and Katrina Falkner. Flush+reload: a high resolution,
low noise, l3 cache side-channel attack. In 23rd {USENIX} Security
Symposium ({USENIX} Security 14), pages 719–732, 2014.

[47] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE
Symposium on Security and Privacy, pages 605–622. IEEE, 2015.

[48] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 279–299. Springer, 2016.

[49] Colin Percival. Cache missing for fun and profit, 2005.
[50] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks

on aes, and countermeasures. Journal of Cryptology, 23(1):37–71,
2010.

[51] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V
Krishnamurthy. Papp: Prefetcher-aware prime and probe side-channel
attack. In Proceedings of the 56th Annual Design Automation Confer-
ence 2019, page 62. ACM, 2019.

[52] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–
bringing access-based cache attacks on aes to practice. In 2011 IEEE
Symposium on Security and Privacy, pages 490–505. IEEE, 2011.

[53] Berk Gülmezoğlu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. A faster and more realistic flush+ reload
attack on aes. In International Workshop on Constructive Side-Channel
Analysis and Secure Design, pages 111–126. Springer, 2015.

[54] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in paas clouds. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 990–1003. ACM, 2014.

[55] Wenjie Xiong and Jakub Szefer. Leaking information through cache
lru states. In Proceedings of the International Symposium on High-
Performance Computer Architecture, HPCA, pages 139–152, February
2020.

[56] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.
Fletcher, Roy H. Campbell, and Josep Torrellas. Attack directories,
not caches: Side channel attacks in a non-inclusive world. In IEEE
S&P 2019, 2019.

[57] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. Home-
Alone: Co-residency detection in the cloud via side-channel analysis.
In Proceedings of the 2011 IEEE Symposium on Security and Privacy,
SP ’11, pages 313–328, Washington, DC, USA, 2011. IEEE Computer
Society.

[58] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power
of simple branch prediction analysis. In Proceedings of the 2Nd ACM
Symposium on Information, Computer and Communications Security,
ASIACCS ’07, pages 312–320, New York, NY, USA, 2007. ACM.

[59] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. BranchScope: A new side-channel attack on
directional branch predictor. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, pages 693–707, New
York, NY, USA, 2018. ACM.

[60] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence
protocol states vulnerable to information leakage? In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 168–179. IEEE, 2018.

[61] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-
bons, Anoop Gupta, and John Hennessy. Memory consistency and
event ordering in scalable shared-memory multiprocessors. In [1990]
Proceedings. The 17th Annual International Symposium on Computer
Architecture, pages 15–26. IEEE, 1990.

[62] SPEC CPU2017. https://www.spec.org/cpu2017.
[63] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P

Jouppi. Cacti-p: Architecture-level modeling for sram-based structures
with advanced leakage reduction techniques. In Proceedings of the
International Conference on Computer-Aided Design, pages 694–701.
IEEE Press, 2011.

[64] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M
Tullsen, and Norman P Jouppi. Mcpat: an integrated power, area, and
timing modeling framework for multicore and manycore architectures.
In Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 469–480. ACM, 2009.

[65] Andreas Hansson, Neha Agarwal, Aasheesh Kolli, Thomas Wenisch,
and Aniruddha N Udipi. Simulating dram controllers for future system
architecture exploration. In Performance Analysis of Systems and
Software (ISPASS), 2014 IEEE International Symposium on, pages
201–210. IEEE, 2014.

[66] Mengjia Yan. Git hub repository of invisispec implementation. https:
//github.com/mjyan0720/InvisiSpec-1.0, 2019.

[67] Gururaj. Git hub repository of cleanupspec implementation. https:
//github.com/gururaj-s/cleanupspec, 2019.

[68] Moinuddin K Qureshi. New attacks and defense for encrypted-
address cache. In Proceedings of the 46th International Symposium
on Computer Architecture, pages 360–371. ACM, 2019.

[69] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O Myreen. x86-tso: a rigorous and usable program-
mer’s model for x86 multiprocessors. Communications of the ACM,
53(7):89–97, 2010.

[70] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution
attacks and defenses. pages 249–266, August 2019.

[71] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In 24th
{USENIX} Security Symposium ({USENIX} Security 15), pages 897–
912, 2015.

8

https://www.spec.org/cpu2017
https://github.com/mjyan0720/InvisiSpec-1.0
https://github.com/mjyan0720/InvisiSpec-1.0
https://github.com/gururaj-s/cleanupspec
https://github.com/gururaj-s/cleanupspec

APPENDIX A
SECURITY ANALYSIS OF CLEANUPSPEC

In this appendix, we describe several possible attack
scenarios on CleanupSpec [30], to help identify the key
requirements to designing a secure Undo-based solution.

A. Shared-Core Eviction Attacks in L1
Before undoing, CleanupSpec hides a speculative load by

sending a dummy request to L2 and waiting for its response.
However, if a line is speculatively evicted, CleanupSpec
cannot speed up a subsequent load to hide the eviction;
this allows a SMT or shared-thread attacker to potentially
steal the secret within the speculation window. Such a sce-
nario does not apply to shared-core attackers (but different
threads) as context switches in CleanupSpec will clean up all
speculatively-installed lines.

B. Shared Cache Lines
CleanupSpec defends against cross-core attacks using

Cache Address Encryption (CEASER [41]) in L2. This
approach stops attackers from identifying mutually evicted
lines, but does not prevent attacks that target a single line
shared between the attacker and the victim. Reload-based
attacks (Flush+Reload) or invalidation-based attacks (e.g.,
Flush+Flush) generally rely on shared lines, which can occur
with shared libraries or Kernel Same-page Merging (KSM),
or with a same-thread attacker.

 �
Write A=2

A=2

A=2B

A=1

 �
Evict

A

 ⇥
Spec
LD B

 ⇥
Restore A

 ⇤
LD A
Hit

 �
Write A=2

A=2

A=2B

 ⇤
Invalidate A

 ⌅
Undo LD B

A=1

Core 1
Attacker1 + Victim

Core 2
Attacker2

Core 1
Attacker1 + Victim

(a) Set(A) = Set(B) (b) Set(A) ≠ Set(B)

Core 2
Attacker2⌅

Spec
LD B

 ⇤
LD A
Miss

Figure 7: A cross-core invalidation attack on CleanupSpec [30]. (a) show a
victim’s line B evicts an attacker’s line A, with core 2 invalidating A. A
is eventually restored in core 1, causing the attacker to get a hit with A. In
(b), the attacker gets a miss because A is invalidated without eviction.

C. Cross-Core Invalidation Attacks
We can show a case where invalidation from another

core can cause different Undo results in CleanupSpec (see
Figure 7). Assume the victim evicts a cache line (line A)
of the attacker in L1. If another attacker writes to A on
a different core, A will be updated in L2 without sending
invalidation to the victim’s core. Later, after undoing, the
victim’s L1 will have the latest A, giving the attacker a cache
hit. If the victim never evicts A, and A is invalidated before
undoing, the attacker will get a cache miss in L1.

D. Algorithmic Attacks on L2 Randomization
CEASER [41] in CleanupSpec uses Cache Address En-

cryption to prevent the attacker from determining a set of
mutually evicting lines in L2. To disrupt brute-force attacks,
CEASER rotates the keys every 100 loads / line and uses two
keys for gradual remapping. A follow-up work [68] shows

that such a remap rate is insufficient, and proposes CEASER-
S, an additional skewed mapping scheme across cache ways
as a new mitigation. Budduna et al. [42] examined the
randomization scheme of CEASER and CEASER-S based
on Cache Address Encryption. They discovered that both
CEASER and CEASER-S use a low-latency block cipher
(LLBC) which generates encrypted output as linear functions
of the input and the key. As a result, the cipher does not
invalidate eviction sets even after key remapping.

E. Oracle Attacks on L2 Randomization
Even if CEASER could choose an encryption scheme that

invalidate eviction sets properly, we show that the key remap-
ping windows of CEASER and CEASER-S are not large
enough to be immune to oracle attacks. We discover that,
if the attacker can feed an input X to the vulnerable code (a
common scenario for Spectre), to cause out-of-bound access
to array[X] = Y , she can create an oracle by recording
which line is evicted in L2. Later, by observing the same
line being evicted, the attacker can infer secret = Y . This
attack is much faster than brute-force, since Prime+Probe for
one value only needs 2 loads / line. This attack cannot be
thwarted by CEASER-S since its skewed mapping scheme
only adds another layer of encryption to the output which is
still deterministic for the oracle attack.

APPENDIX B
DETAILED OPERATIONS OF REVICE

We show the detailed operations of ReViCe considering
the TSO memory model [69]. Section III-D explains how
other memory models can be supported.

Speculative Load

Cache
hit?

Place new
line, Sp=1

Yes

No

3

Start

End

Downgrade
possible?

Stall
request

Sp=1?

Add
jitter

Victim
cache hit?

Downgrade
possible?

Stall
request

Victimization?

Sp=1?

R=0
available?

Place new line,
Sp=R=1, init STag

Stall
request

Stall
request

Return
data

No

No

No

No
No

No

No

Yes

Yes

Yes

Yes
Yes

Yes

Yes

1 2
4

5

6

7

Figure 8: Flow of Speculative Load (SL). The shaded area applies to the
shared L2 cache.

A. Speculative Load Memory Access
Figure 8 shows how a memory request from an SL is

handled. Let us consider L1 cache first. If the request causes a
cache hit on speculative line, ReViCe adds some jitter (details
in IV-B) during the response to conceal the fact that cache

9

line has been already accessed speculatively (6). If it hits
on non-speculative line in the cache or victim cache, the data
is returned directly. In case of a miss, the cache controller
allocates a line in the main cache before bringing the new
line. If the allocation does not victimize any other cache line,
then the allocation succeeds and the cache controller sends
a miss request to the lower level. When the requested line
arrives, the cache controller places the line in the allocated
spot and marks it as speculative by setting Sp to 1 (4).
However, if the allocation victimizes any non-speculative
cache line (one with Sp = 0), ReViCe puts it in the victim
cache as a restoration line only if it does not evict any existing
restoration line, thereby maintaining P2 (1). In other cases,
the allocation tries to violate P1 or P2 and thus, ReViCe stalls
the SL (2 & 3).

A request from an SL is handled by L2 (shared cache) in a
similar fashion except for the following changes (highlighted
in Figure 8). If the request causes a downgrade of the cache
line in other caches, ReViCe stalls the SL maintaining P3
(5 & 7).

B. Non-Speculative Load Memory Access
Figure 9 shows how a request from an NSL is handled. The

figure is applicable for L1 or L2. If the memory access causes
a hit on a non-speculative line, cache returns the requested
data. However, if the hit occurs on a speculative line, there
are two options: (i) cache can return data immediately (as
if it were a regular cache hit) or (ii) cache can add jitter
before returning the data. In case of option (i) since a memory
access which would have been a cache miss in the absence
of any speculation becomes a cache hit, there will be a side
channel. Therefore, we adopt option (ii) (marked by 1 in
Figure 9) to disguise a cache hit on a speculative line as a
cache miss. Section IV-B explains how to choose jitter length
and implement it in hardware.

Non-Speculative
Load

Cache
hit?

Sp=1?

Add
jitter

Victim
cache
hit?

R=1?

Victimization?

Sp=1?

Swap with VC line,
Sp=R=0

Replace by VC
line, Sp=R=STag=0

Place VC
line, SP=0

Victimization?

Sp=1?

Swap with new
line, Sp=0, R=0

Replace by new
line, Sp=0

Place new
line, Sp=0

R=0
available?

Replace by new
line, Sp=R=STag=0

Return
data

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes

No

No No

No

No

No

No

No

No

1

2 3

4

5

6

7

8

Start

End
Figure 9: Flow of Non-Speculative Load. VC: Victim Cache.

If an NSL causes a cache miss, ReViCe checks in victim
cache. If the access request hits on a cache line in victim
cache, data is returned as usual. The cache line is then

brought back to the main cache only if it is not marked as
a restoration line (2 , 3 & 4). If the access request does
not cause a hit in victim cache, the requested cache line is
brought from lower level and placed in the main cache. If
the new cache line victimizes any other cache line, the other
cache line is either completely evicted from cache (6 & 7)
or put in the victim cache (5) depending on whether the
other line is speculative and the victim cache cache is full of
restoration lines, respectively.

C. Effect on Cache Coherence Protocol
The cache coherence protocol is modified in ReViCe to

accommodate speculative loads. Although we assume MESI
protocol here, other protocols can be similarly accommo-
dated. The changes to coherence protocols are as follows:

Case 1: Whenever a speculative load causes a cache
miss that requires a coherence transaction, the controller
issues a GetSp (Get Speculative) message (similar to In-
visiSpec [29]). This new message distinguishes a speculative
load miss from a non-speculative load miss.

Case 2: When the directory receives GetSp for a cache
line that is in (M)odified or (E)xclusive state in some other
cache, the controller stalls the request. This is to preserve
principle P3. There is no change in coherence protocol if the
line is in (S)hared state.

Case 3: When the directory receives GetSp, GetS or
GetX message (i.e., any load or store miss) for a line only in
speculative state in any other cache, the directory adds some
jitter before responding to the requester. This is to conceal
the fact that the line has been already brought to the shared
L2 cache by some SL. Section IV-B explains the details of
the jitter mechanism.

Any other case is handled without any change in cache
coherence protocol.

…RI …RI

Line s Line r
Cache set in L1/L2 Victim cache

Access from an NSLFind speculative line using STagUpdate RIs
1

2
3

Figure 10: Updating replacement info (RI) for an NSL.

D. Maintaining Replacement Policy
Any alteration in replacement states by misspeculated

loads can be exploited as a side channel [55]. Assume that
a speculative line s victimizes another line r that is now
moved to the victim cache as a restoration line. In order
to maintain the correct replacement states, ReViCe delays
any update to the replacement state of s (denoted by RIs)
until the speculation is confirmed. The load can then be
considered safe and RIs can be safely updated to reflect the
load. Figure 10 explains how an NSL access to r is handled.
ReViCe treats RIs as belonging to the restoration line r.
Therefore, it keeps updating RIs for each NSL access to the
restoration line. When the SL gets confirmed, RIs starts to
belong to s and reflect s’s LRU state (i.e., as if the load has
just occurred). If r is restored due to misspeculation of the
SL, r replaces s and inherits RIs as it is. Thus, both Restore
and Confirm operations maintain correct replacement states.

10

E. Restoration and Confirmation
After a memory access request is sent from the pipeline,

ReViCe decides whether and when to send a Confirm or
Restore message. When any speculation source resolves,
ReViCe checks if there is any later (with respect to the
speculation source) load in the ROB. If the speculation source
is misspeculated, ReViCe marks the load as requiring a
restore operation. Eventually, when the load does not have
any speculation source in front of it in the ROB, ReViCe
checks if the load is marked as requiring a restore operation.
If so, ReViCe sends a Restore message to the cache hierarchy.
Otherwise, ReViCe sends a Confirm message. If ReViCe
can send messsages for multiple loads at a particular cycle,
the messages are sent in program order (staring from the
oldest load). After a Confirm or Restore message is sent,
the processor pipeline can consider the confirm or restore
operation to be completed and does not need to stall for
any response from the cache hierarchy. The cache hierarchy
eventually completes the actual operation. This is reminiscent
of a store operation.

L1 and L2 cache controllers perform the actual Confirm
and Restore operation. If the speculative line corresponding
to an SL is not found in L1, L1 controller forwards them
to lower level cache. Otherwise, it proceeds to perform the
operation. In order to confirm an SL, L1 controller finds the
corresponding speculative and restoration line, and clears Sp
and R bits, respectively. Replacement bits of the speculative
line are updated as if the line is just accessed. In order to
restore an SL, L1 controller replaces the speculative line
with the corresponding restoration line. Sp bit is cleared and
replacement bits of the speculative line are inherited by the
restoration line. Meanwhile, L1 controller sends a Confirm
or Restore message to L2 controller.

When L2 controller receives a Confirm message and the
line is no longer speculative, it updates the replacement
bits and discards the message. Otherwise, L2 controller
performs the Confirm operation in the same way as the L1
controller. When L2 controller receives a Restore message,
it might happen that the line has been already confirmed
by a Confirm message from some other L1 cache. In that
case, the controller just updates the sharer bitmap of the
directory to indicate that the requesting L1 cache no longer
holds the line. However, if the line is still speculative when
L2 receives a Restore message, the controller first updates
the sharer bitmap. If the line is no longer present in any L1
cache, the controller replaces the speculative line with the
corresponding restoration line, clears Sp bit. Similar to L1
Restore operation, the replacement bits of the speculative line
are inherited by the restoration line. Thus, L2 performs the
Restore operation after it receives Restore messages from all
sharer L1 caches.

APPENDIX C
SECURITY ANALYSIS AND EVALUATION ON REVICE

In this appendix, we conduct a security analysis of ReViCe
and attempt various attack scenarios on ReViCe to show
proof-of-concept defense.

A. Security Analysis

We examine the security principles listed in Section III-B2
to verify that ReViCe mitigates Spectre and Meltdown. Since
such attacks rely on misspeculation, to fully mitigate them,
any execution that is eventually squashed must not expose
any cache state changes (we define as Property A). We
use Figure 8 and 9 to exhaustively examine the possible
cases (15 cases in total) to show ReViCe’s actions initiated by
SLs are not observable by attackers. We target speculation
based attack, so other cases that are only associated with
instructions that eventually retired are considered trusted
(we define as Property B) and are not inspected. The cases
are categorized into 4 types of final actions: Adding jitter:
There are two cases when jitter is used— 6 in Figure 8 and
1 in Figure 9. Both cases happen when a load hits on a
speculative line and adding jitter makes the latencies identical
to cache misses.

Stall: Stalls occur only for SL requests – 2 , 3 , 5 , and
7 in Figure 8. In case of correct speculation (Confirm), all
stalled loads are eventually retired (Property B). In case of
misspeculation, the stalled SL is eventually squashed and
nothing can be observed (Property A). If the stall condition
is resolved, the SL is processed by other cases.

A question is whether stalling can create any new side
channels for prior SLs. 5 and 7 require the possibility
of downgrading a line brought by NSL which overshadows
other SLs. 2 and 3 only stall when it needs to victimize a
speculative line or when the VC is full of restoration lines. It
is theoretically possible to use 2 or 3 to detect the existence
of some prior SLs, the attacker cannot distinguish from other
common cases where the pipeline is simply busy. Thus, this
side channel is difficult to exploit.

Installing a new line: 1 in Figure 8 and 5 , 2 in Figure 9
victimize one cache line and install a new line. In case
1 (Figure 8), accessing the victimized line has the same
latency as accessing from the main cache (Property A). Also,
other NSLs to the same line as newly installed are jittered
(Property A). Later, if the SL is squashed, the victimized line
is restored as the SL never exists (Property A). Otherwise,
the SL is eventually retired and considered safe (Property B).
2 (Figure 9) is not related to SLs. 4 in Figure 8 and 4
in Figure 9 install a new line without victimization and also
cannot be observed due to jittering and restoration.

Replacement: 3 , 6 , 7 in Figure 9 replace a line in
the main cache with a victimized line. In cases 3 and
7 , the speculative line previously brought by an SL is
replaced by the NSL, and the cache states are updated. In
case the previous SL gets confirmed to become NSL, the
cache changes are considered trusted (Property B) and cannot
be used to distinguish other prior SL. If the previous SL
is misspeculated (Restore), the replaced speculative line has
been invalidated from the main cache (Property A). 6 is
related only to NSLs, therefore it is safe (Property B).

In addition to examining the security principles, we also
show the safety from the cross-core invalidation attack sce-
nario that CleanupSpec cannot protect (See Appendix A).

11

The vulnerability comes from the different cache states for
memory A - LD A hit (5) in Figure 7.a or LD A miss(5)
in Figure 7.b. In stark contrast, ReViCe does not allow SL to
evict any cache line, so LD A always causes misses in both
Figure 7.a and Figure 7.b.

0

200

400

600

800

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1Ac

ce
ss

 La
te

nc
y (

Cy
cle

s)

Base - Case1 Base - Case 2 Base - Case 3

(a) Attack to Base

0

200

400

600

800

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

Ac
ce

ss
 La

te
nc

y (
Cy

cle
s)

ReViCe - Case1 ReViCe - Case2 ReViCe - Case3

(b) Attack to ReViCe
Figure 11: Access latency for the three test cases. The secret values of 50,
100, and 150 can be deduced in Baseline

B. Proof-of-Concept (PoC) Defense
We evaluate the security of ReViCe using a Spectre test

suite containing various attack proof-of-concepts. We assume
the attacker will explore as many variants of Spectre as
possible. We pick four Spectre variants, including PHT,
BTB, RSB, and STL [70]. We combine the variants with
three well-known cache side channels, Evict+Time [71],
Flush+Reload [48], and Prime+Probe [52]. Then, we exercise
the attacks in following three cases of concurrency between
the attacker and the victim:

Case 1: Leakage from L1 (Defended by Restore): We
implement this case by placing the attacker and the victim in
the same core. The attacker first trains the branch predictors,
runs the reset phase of the side-channel attacks, waits for
the victim, and then tries to retrieve the secret. As shown in
Figure 11a, the PHT attack succeeded to find the secret value
50 with Flush+Reload on the baseline CPU, but cannot leak
the secret in ReViCe as shown in Figure 11b. This is because
the secret loaded by misspeculation in L1 is invalidated by
Restore. All 12 combinations of variants are successfully
mitigated.

Case 2: Leakage from L2 (Defended by Restore) We
implement a cross-core attacker that observes the cache state
after the speculative execution in the victim. As shown in
Figure 11a and Figure 11b, the combination of PHT and
Flush+Reload on L2 cache succeeded in baseline CPU but
failed in ReViCe. Similar to Case 1, the secret loaded by
misspeculation in L2 is also invalidated by Restore. All 12
combinations of variants are successfully mitigated.

Case 3: Leakage from L2 (Defended by Jitter) We
implement a cross-core attack that observes the cache state
concurrently with the victim execution. For this attack,
we use Prime+Probe instead of Flush+Reload for the PoC
because clflush is too slow in a concurrent attack. As
shown in Figure 11a, the attacker observes the secret with
higher latency (miss in L2) on the baseline CPU, but cannot
observe any difference in ReViCe as jitter increased the
latency. All four Spectre variants are mitigated by ReViCe
with Prime+Probe.

12

	Introduction
	Background and Threat Model
	Spectre and Meltdown
	Threat Model and Attack Scenarios
	Speculation or Squashable Operations
	Cache-based Side Channels
	Shared-core vs. Cross-core

	Existing Approaches
	Blocking Side Channels
	Restricting Speculation
	Restricting Data Propagation
	Delaying or Hiding Speculative Update

	Speculative Cache Side-Channel Prevention
	Terminologies
	Workflow of ReViCe
	Determining speculative loads
	Accessing the cache hierarchy
	Restoration and confirmation

	ReViCe Hardware
	Load Queue
	L1/L2 Cache
	Victim Cache

	Supporting Different Memory Models

	Implementation Details
	Restoration and Speculative Line Lookup
	Implementing Jitter
	Victim Cache Size
	Deadlock Freedom

	Evaluation
	Performance Evaluation
	Execution Time
	Comparison to Base
	Comparison to InvisiSpec
	Comparison to CleanupSpec
	Comparison to Selective Delay

	Area and Energy Estimations

	Conclusions
	References
	Appendix A: Security Analysis of CleanupSpec
	Shared-Core Eviction Attacks in L1
	Shared Cache Lines
	Cross-Core Invalidation Attacks
	Algorithmic Attacks on L2 Randomization
	Oracle Attacks on L2 Randomization

	Appendix B: Detailed Operations of ReViCe
	Speculative Load Memory Access
	Non-Speculative Load Memory Access
	Effect on Cache Coherence Protocol
	Maintaining Replacement Policy
	Restoration and Confirmation

	Appendix C: Security Analysis and Evaluation on ReViCe
	Security Analysis
	Proof-of-Concept (PoC) Defense

