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ABSTRACT
We consider estimation and inference in a single-index regression model with an unknown convex link
function. We introduce a convex and Lipschitz constrained least-square estimator (CLSE) for both the
parametric and the nonparametric components given independent and identically distributed observations.
We prove the consistency and find the rates of convergence of the CLSE when the errors are assumed to have
only q ≥ 2 moments and are allowed to depend on the covariates. When q ≥ 5, we establish n−1/2-rate
of convergence and asymptotic normality of the estimator of the parametric component. Moreover, the
CLSE is proved to be semiparametrically efficient if the errors happen to be homoscedastic. We develop and
implement a numerically stable and computationally fast algorithm to compute our proposed estimator in
the R package simest. We illustrate our methodology through extensive simulations and data analysis.
Finally, our proof of efficiency is geometric and provides a general framework that can be used to prove
efficiency of estimators in a wide variety of semiparametric models even when they do not satisfy the
efficient score equation directly. Supplementary files for this article are available online.
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1. Introduction

Suppose we have n iid observations {(Xi, Yi) ∈ χ × R, 1 ≤ i ≤
n} from the following single-index regression model:

Y = m0(θ
�
0 X) + ε, (1)

where X ∈ χ ⊂ R
d (d ≥ 1) is the predictor, Y ∈ R is the

response variable, and ε satisfies E(ε|X) = 0 and E(ε2|X) < ∞
almost everywhere (a.e.) PX , the distribution of X. We assume
that the real-valued link function m0 and θ0 ∈ R

d are the
unknown parameters of interest.

Single-index models are ubiquitous in regression because
they provide convenient dimension reduction and interpretabil-
ity. The single-index model circumvents the curse of dimension-
ality encountered in estimating the fully nonparametric regres-
sion function E(Y|X = ·) by assuming that the link function
depends on X only through a one-dimensional projection, that
is, θ�

0 X; see, for example, Powell, Stock, and Stoker (1989).
Moreover, the coefficient vector θ0 provides interpretability Li
and Racine (2007) and the one-dimensional nonparametric link
function m0 offers some flexibility in modeling. The above
model has received a lot of attention in statistics in the last few
decades; see, for example, Powell, Stock, and Stoker (1989), Li
and Duan (1989), Ichimura (1993), Härdle, Hall, and Ichimura
(1993), Hristache, Juditsky, and Spokoiny (2001), Delecroix,
Hristache, and Patilea (2006), Cui, Härdle, and Zhu (2011),
Kuchibhotla and Patra (2020), and the references therein. The
above articles propose estimators for the single-index model
under the assumption that m0 is smooth (i.e., two or three times
differentiable).

CONTACT Rohit K. Patra rohitpatra@ufl.edu Department of Statistics, University of Florida, Gainesville, FL 32611-7011.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

However, quite often in the context of a real application,
qualitative assumptions on m0 may be available. For example,
in microeconomics, production and utility functions are often
assumed to be concave and nondecreasing; concavity indicates
decreasing marginal returns/utility (Varian 1984; Matzkin 1991;
Li and Racine 2007). In finance, the relationship between call
option prices and strike price is often known to be convex and
decreasing (Aït-Sahalia and Duarte 2003); in stochastic control,
value functions are often assumed to be convex (Keshavarz,
Wang, and Boyd 2011). The following two real-data examples
further illustrate that convexity/concavity constraints arise nat-
urally in many applications.

Example 1.1 (Boston housing data). Harrison and Rubinfeld
(1978) studied the effect of different covariates on real estate
price in the greater Boston area. The response variable Y was
the log-median value of homes in each of the 506 census tracts in
the Boston standard metropolitan area. A single-index model
is appropriate for this dataset; see, for example, Gu and Yang
(2015), Wang and Yang (2009), Wang et al. (2010), and Yu,
Mammen, and Park (2011). The above articles considered the
following covariates in their analysis: average number of rooms
per dwelling, full-value property-tax rate per 10000 U.S.D.,
pupil–teacher ratio by town school district, and proportion of
population that is of “lower (economic) status” in percentage
points. In the left panel of Figure 1, we provide the scatterplot
of {(Yi, θ̂�Xi)}506

i=1, where θ̂ is the estimate of θ0 obtained
in Wang and Yang (2009). We also plot estimates of m0
obtained from Kuchibhotla and Patra (2020) and Wang and
Yang (2009). The plot suggests a convex and nondecreasing
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Figure 1. Scatterplots of {(X�
i θ̂ , Yi)}n

i=1, where θ̂ is the estimator of θ0 proposed in Wang and Yang (2009). NOTE: The plot is overlaid with the smoothing and regression
spline-based function estimators of m0 proposed in Kuchibhotla and Patra (2020) and Wang and Yang (2009), respectively. Left panel: Boston housing data (see Section 6.1);
right panel: the car mileage data (see Section 6.2).

relationship between the log-median home prices and the index,
but the fitted link functions satisfy these shape constraints only
approximately.

Example 1.2 (Car mileage data). Donoho and Ramos (1983)
considered a dataset containing mileages of different cars. The
data contains mileages of 392 cars as well as the following
covariates: displacement, weight, acceleration, and horsepower.
Cheng, Zhao, and Li (2012) and Kuchibhotla and Patra (2020)
had fit a partial linear model and a single-index model, respec-
tively. In the right panel of Figure 1, we plot the estimators
proposed in Kuchibhotla and Patra (2020) and Wang and Yang
(2009). Both of these works consider estimation in the single-
index model under only smoothness assumptions. The “law of
diminishing returns” suggests m0 should be convex and nonin-
creasing. However, as observed in Figure 1, the estimators based
only on smoothness assumptions satisfy this shape constraint
only approximately.

In both of the examples, the smoothing-based estimators do
not incorporate the known shape of the nonparametric func-
tion. Thus, the estimators are not guaranteed to be convex (or
monotone) in finite samples. Moreover, the choice of the tuning
parameter in smoothness-based estimators is tricky as different
values for the tuning parameter lead to very different shapes.
This unpredictable behavior makes the smoothness-based esti-
mators of m0 less interpretable, and motivates the study of a
convexity constrained single-index model. We discuss these two
datasets and our analysis in more detail in Sections 6.1 and 6.2.

In this article, we propose constrained least-square estima-
tors for m0 and θ0 that is guaranteed to satisfy the inherent con-
vexity constraint in the link function everywhere. The proposed
methodology is appealing for two main reasons: (i) the estimator
is interpretable and takes advantage of naturally occurring qual-
itative constraints; and (ii) unlike smoothness-based estimators,
the proposed estimator is highly robust to the choice of the
tuning parameter without sacrificing efficiency.

In the following, we conduct a systematic study of the
computation, consistency, and rates of convergence of the
estimators, under mild assumptions on the covariate and error
distributions. We further prove that the estimator for the finite-
dimensional parameter θ0 is asymptotically normal. Moreover,
this estimator is shown to be semiparametrically efficient if the
errors happen to be homoscedastic, that is, when E(ε2|X) ≡ σ 2

a.e. for some constant σ 2. It should be noted that in the examples
above the link function is also known to be monotone. To keep
things simple, we focus on only convexity constrained single-
index model. However, all our results continue to hold under the
additional monotonicity assumption, that is, our conclusions
hold for convex/concave and nondecreasing/nonincreasing
m0. More generally, our results continue to hold under any
additional shape constraints; see Remarks 3.6, 4.3, and S.1.1 and
Section 6 in the article for more details.

One of the main contributions of this article is our novel geo-
metric proof of the semiparametric efficiency of the constrained
least-square estimator. Note that proving semiparametric effi-
ciency of constrained (and/or penalized) least-square estimators
often requires a delicate use of the structure of the estimator
of the nonparametric component (say m̂) to construct least
favorable paths; see, for example, Murphy, van der Vaart, and
Wellner (1999), (Bolthausen, Perkins, and van der Vaart 2002,
chap. 9.3), and Huang (1996) (also see Example 4.1). In contrast,
our approach is based on the following simple observation. For a
traditional smoothness-based estimator m̂, the path t 	→ m̂+ ta
will belong to the (function) parameter space for any smooth
“perturbation” a (for small enough t ∈ (−1, 1)). However,
this is no longer true when the underlying parameter space is
constrained. But, observe that the projection of m̂ + ta onto
the constrained function space certainly yields a “valid" path.
Our proof technique is based on differentiability properties of
the path t 	→ �(m̂ + ta), where � denotes the L2-projection
onto the (constrained) function space. This general principle
is applicable to other shape constrained semiparametric mod-
els, because differentiability of the projection operator is well-
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studied in the context of constrained optimization algorithms;
see Section 1.1 for a more detailed discussion. Also see Exam-
ple 4.1, where we discuss the applicability of our technique in
(re)proving the semiparametric efficiency of the nonparametric
maximum likelihood estimator in the Cox proportional hazard
model under current status censoring Huang (1996). To be more
specific, we study the following Lipschitz constrained convex
least-square estimator (CLSE):

(m̌L, θ̌L) := arg min
(m,θ)∈ML×�

Qn(m, θ), (2)

where

Qn(m, θ) := 1
n

n∑
i=1

{Yi − m(θ�Xi)}2

and ML denotes the class of all L-Lipschitz real-valued convex
functions on R and

� := {η = (η1, . . . , ηd) ∈ R
d : |η| = 1 and η1 ≥ 0} ⊂ Sd−1.

Here | · | denotes the usual Euclidean norm, and Sd−1 is the
Euclidean unit sphere in R

d. The norm-1 and the positivity
constraints are necessary for identifiability of the model.1

The Lipschitz constraint in Equation (2) is not restrictive
as all convex functions are Lipschitz in the interior of their
domains. Furthermore in shape-constrained single-index mod-
els, the Lipschitz constraint is known to lead to computational
advantages (Kalai and Sastry 2009; Kakade et al. 2011; Lim
2014; Ganti et al. 2015; Mazumder et al. 2019). Additionally
on the theoretical side, the Lipschitzness assumption allows us
to control the behavior of the estimator near the boundary of its
domain. This control is crucial for establishing semiparametric
efficiency. To the best of our knowledge, this is the first work
proving semiparametric efficiency for an estimator in a bundled
parameter problem (where the parametric and nonparametric
components are intertwined; see Huang and Wellner 1997)
where the nonparametric estimate is shape constrained and
non-smooth. Note that the convexity constraint in Equation
(2) leads to a convex piecewise affine estimator m̌L for the link
function m0; see Section 3 for a detailed discussion.

Our theoretical and methodological study can be split in two
broad categories. In Section 3, we find the rate of convergence
of the CLSE as defined in Equation (2), whereas in Section 4
we establish the asymptotic normality and semiparametric effi-
ciency of θ̌L. Suppose that m0 is L0-Lipschitz, that is, m0 ∈ ML0 .
If the tuning parameter L is chosen such that L ≥ L0, then under
mild distributional assumptions on X and ε, we show that m̌L
and m̌L(θ̌

�
L ·) are minimax rate optimal for estimating m0 and

m0(θ
�
0 ·), respectively; see Theorems 3.1 and 3.4. We also allow

for the tuning parameter L to depend on the data and show that
the rate of convergence of m̌L(θ̌L·) is uniform in L ∈ [L0, nL0],
up to a

√
log log n multiplicative factor; see Theorem 3.2. This

result justifies the usage of a data-dependent choice of L, such as
cross-validation. Additionally, in Theorem 3.5, we find the rate

1 Without any sign or scale constraint on � no (m0, θ0) will be identifiable.
To see this, fix any (m0, θ0) and define m1(t) := m0(−2t) and θ1 = −θ0/2,
then m0(θ�

0 ·) ≡ m1(θ�
1 ·); see Carroll et al. (1997), Cui, Härdle, and Zhu

(2011), and Gaïffas and Lecué (2007) for identifiability of the model (1). Also
see Section 2.2 for further discussion.

of convergence of m̌′
L. In Section 4, we establish that if L ≥ L0,

then θ̌L is
√

n-consistent and n1/2(θ̌L − θ0) is asymptotically
normal with mean 0 and finite variance; see Theorem 4.1. The
asymptotic normality of θ̌L can be readily used to construct
confidence intervals for θ0. Further, we show that if the errors
happen to be homoscedastic, then θ̌L is semiparametrically
efficient.

Our contributions on the computational side are 2-fold. In
Section S.1 of the supplementary file, we propose an alternating
descent algorithm for estimation in the single-index model (1).
Our descent algorithm works as follows: when θ is fixed, the
m update is obtained by solving a quadratic program with
linear constraints, and when m is fixed, we update θ by taking
a small step on the Stiefel manifold � with a guarantee of
descent. We implement the proposed algorithm in the R package
simest. Through extensive simulations (see Section 5 and
Section S.4 of the supplementary file), we show that the finite
sample performance of our estimators is robust to the choice
of the tuning parameter L. Thus, we think the practitioner can
choose L to be very large without sacrificing any finite sample
performance. Even though the minimization problem is non-
convex, we illustrate that the proposed algorithm (when used
with multiple random starting points) performs well in a variety
of simulation scenarios when compared to existing methods.

1.1. Semiparametric Efficiency and Shape Constraints

Although estimation in single-index models under smoothness
assumptions is well-studied (see, e.g., Li and Duan 1989; Pow-
ell, Stock, and Stoker 1989; Ichimura 1993; Härdle, Hall, and
Ichimura 1993; Hristache, Juditsky, and Spokoiny 2001; Dele-
croix, Hristache, and Patilea 2006; Wang and Yang 2009; Cui,
Härdle, and Zhu 2011 and the references therein), estimation
and efficiency in shape-restricted single-index models have not
received much attention. The earliest reference on this topic
we could find was the work of Murphy, van der Vaart, and
Wellner (1999), where the authors considered a penalized like-
lihood approach in the current status regression model (which
is similar to the single-index model) with a monotone link
function. Chen and Samworth (2016) considered maximum
likelihood estimation in a generalized additive index model (a
more general model than Equation (1)) and only prove con-
sistency of the proposed estimators. In Balabdaoui, Durot, and
Jankowski (2019), the authors studied model (1) under mono-
tonicity constraint and prove n1/3-consistency of the LSE of
θ0; however they do not obtain the limiting distribution of
the estimator of θ0. Balabdaoui, Groeneboom, and Hendrickx
(2019) proposed a tuning parameter-free

√
n-consistent (but

not semiparametrically efficient) estimator for the index param-
eter in the monotone single-index model.

In this article, we show that θ̌L is semiparametrically efficient
under homoscedastic errors. Our proof of the semiparametric
efficiency is novel and can be applied to other semiparametric
models when the estimator does not readily satisfy the efficient
score equation. In fact, we provide a new and general technique
for establishing semiparametric efficiency of an estimator when
the nuisance tangent set is not the space of all square integrable
functions. The basic idea is as follows. Suppose 	θ0,m0(y, x)
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represents the semiparametrically efficient influence function,
meaning that the “best” estimator θ̃ of θ0 satisfies the following
asymptotic linear expansion:

η�(θ̃ − θ0) = 1
n

n∑
i=1

η�	θ0,m0(Yi, Xi) + op(n−1/2), (3)

for every η ∈ R
d. A crucial step in establishing that θ̌L satis-

fies Equation (3) is to show for any η ∈ R
d,

n−1
n∑

i=1
η�	

θ̌L,m̌L
(Yi, Xi) = op(n−1/2),

that is, θ̌L is an approximate zero of the efficient score equa-
tion (Bolthausen, Perkins, and van der Vaart 2002, theor.6.20).
Because (m̌L, θ̌L) minimizes (m, θ) 	→ Qn(m, θ) over ML × �,
the traditional way to prove the approximate zero property is to
use the fact that ∂Qn(m̌L +ta, θ̌L +tη)/∂t|t=0 = 0 for all pertur-
bation “directions” (a, η) and find an a such that the derivative of
t 	→ Qn(m̌L + ta, θ̌L + tη) at t = 0 is n−1 ∑n

i=1 η�	
θ̌L,m̌L

(Yi, Xi);
see, for example, Newey and Stoker (1993). In fact, using this
method one can often show that the estimator satisfies the
efficient score equation exactly. If m̌L + ta is a valid path (i.e.,
m̌L + ta ∈ ML for all t in some neighborhood of zero) for
an arbitrary but “smooth” a then it is relatively straightforward
to establish the approximate zero property Newey and Stoker
(1993).2 However, this approach does not work when the non-
parametric function m0 is constrained. This is because under
constraints, m̌L + ta might not be a valid path for arbitrary
but smooth a. The novelty of our proposed approach lies in
observing that in contrast to t 	→ m̌L + ta, t 	→ �ML(m̌L + ta)

is always a valid path for every smooth a; here �ML(f ) is the
L2-projection of f onto ML. Thus, if t 	→ �ML(m̌L + ta)

is differentiable, then ∂Qn(�ML(m̌L + ta), θ̌L + tη)/∂t|t=0 =
0 for any perturbation (a, η). Then establishing that θ̌L is an
approximate zero boils down to finding an a such that

∂

∂t
Qn(�ML(m̌L + ta), θ̌L + tη)

∣∣∣
t=0

= n−1
n∑

i=1
η�	

θ̌L,m̌L
(Yi, Xi) + op(n−1/2).

Differentiability of projection operators is well-studied; see, for
example, Dharanipragada and Arun (1996), Fitzpatrick and
Phelps (1982), McCormick and Tapia (1972), Shapiro (1994),
and Sokolowski and Zolesio (1992) for sufficient conditions for
a general projection operator to be differentiable. The generality
and the usefulness of our technique can be understood from the
fact that no specific structure of m̌L or ML is used in the previ-
ous discussion; we elaborate on this in Section 4.2. On the other
hand, existing methods (see, e.g., Murphy, van der Vaart, and
Wellner 1999) require delicate (and not generalizable) use of the
structure of the nonparametric estimator to create valid paths
around the nonparametric function; see, for example, Murphy,

2As θ ∈ � is restricted to have norm 1, θ + tη does not belong to the
parametric space for t 
= 0 and η�θ 
= 0. However, this can be easily
remedied by considering another path that is differentiable and has the
same “direction;” we define such a path in Equation (11).

van der Vaart, and Wellner (1999) for semiparametric effi-
ciency in current status regression, and (Bolthausen, Perkins,
and van der Vaart 2002, chap. 9.3) and Huang (1996) for
efficiency in the Cox proportional hazard model with current
status data; see Example 4.1.

1.2. Organization of the Exposition

Our exposition is organized as follows: in Section 2, we intro-
duce some notation and formally define the CLSE. In Section 3,
we state our assumptions, prove consistency, and give rates of
convergence for the CLSE. In Section 4, we detail our new
method to prove semiparametric efficiency of the CLSE. We
use this to prove

√
n-consistency, asymptotic normality, and

efficiency (when the errors happen to be homoscedastic) of the
CLSE of θ0. We discuss an algorithm to compute the proposed
estimator in Section S.1. In Section 5, we provide an extensive
simulation study and compare the finite sample performance of
the proposed estimator with existing methods in the literature.
In Section 6, we analyze the Boston housing data Harrison and
Rubinfeld (1978) and the car mileage data Donoho and Ramos
(1983) introduced in Examples 1.1 and 1.2 in more details. In
both of the cases, we show that the natural shape constraint leads
to stable and interpretable estimates. Section 7 provides a brief
summary of the article and discusses some open problems.

Section numbers in the supplementary file are prefixed with
“S.” Section S.2 of the supplementary file provides some insights
into the proof of Theorem 4.1, one of our main results. Section
S.4 provides further simulation studies. Section S.5 provides
additional discussion on the identifiability of the parameters.
Sections S.7–S.12 contain the proofs of our results. Section S.10
completes our novel proof of semiparametric efficiency sketched
in Section 4.2.

2. Notation and Estimation

2.1. Preliminaries

In what follows, we assume that we have iid data {(Xi, Yi)}n
i=1

from Equation (1). We start with some notation. Let χ ⊂ R
d

denote the support of X and define

D := conv{θ�x : x ∈ χ , θ ∈ �},
Dθ := {θ�x : x ∈ χ}, and D0 := Dθ0 , (4)

where conv(A) denotes the convex hull of the set A. Let ML
denote the class of real-valued convex functions on D that are
uniformly Lipschitz with Lipschitz bound L. For any m ∈ ML,
let m′ denote the nondecreasing right derivative of the real-
valued convex function m. Because m is a uniformly Lipschitz
function with Lipschitz constant L, without loss of generality, we
can assume that |m′(t)| ≤ L, for all t ∈ D. We use P to denote
the probability of an event andE for the expectation of a random
quantity. For any θ ∈ �, let Pθ�X denote the distribution of
θ�X. For g : χ → R, define ||g||2 := ∫

g2(x)dPX(x). Let Pε,X
denote the joint distribution of (ε, X) and let Pθ ,m denote the
joint distribution of (Y , X) when Y = m(θ�X) + ε, where ε is
defined in (1). In particular, Pθ0,m0 denotes the joint distribution
of (Y , X) when X ∼ PX and (Y , X) satisfies (1). For any set
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I ⊆ R
p (p ≥ 1) and any function g : I → R, we define ||g||∞ :=

supu∈I |g(u)| and ||g||I1 := supu∈I1 |g(u)|, for I1 ⊆ I. The
notation a � b is used to express that a ≤ Cb for some constant
C > 0. For any function f : χ → R

r , r ≥ 1, let {fi}1≤i≤r denote
each of the components of f , that is, f (x) = (f1(x), . . . , fr(x))

and fi : χ → R. We define ||f ||2,Pθ0,m0
:=

√∑r
i=1 ||fi||2 and

||f ||2,∞ :=
√∑r

i=1 ||fi||2∞. For any function g : D → R and
θ ∈ �, we define (g ◦ θ)(x) := g(θ�x), for all x ∈ χ . We use the
following (standard) empirical process theory notation. For any
function f : R × χ → R, θ ∈ �, and m : R → R, we define

Pθ ,mf :=
∫

f (y, x)dPθ ,m(y, x).

Note that Pθ ,mf can be a random variable when θ or m or both
are random. Moreover, for any function f : R × χ → R,
we define Pnf := n−1 ∑n

i=1 f (Yi, Xi) and Gnf := √
n(Pn −

Pθ0,m0)f .

2.2. Identifiability

We now discuss the identifiability of m0◦θ0 and (m0, θ0). Letting
Q(m, θ) := E[Y − m(θ�X)]2, observe that (m0, θ0) minimizes
Q(·, ·). In fact we can show in Section S.5.1, that

inf{(m,θ): m◦θ∈L2(PX)
and ‖m◦θ−m0◦θ0‖>δ}

[
Q(m, θ) − Q(m0, θ0)

]
> δ2, (5)

for any δ > 0.
This implies that m0 ◦ θ0 is always identifiable and further,

one can hope to consistently estimate m0 ◦θ0 by minimizing the
sample version of Q(m, θ); see (2).

Note that the identification of m0 ◦θ0 does not guarantee that
both m0 and θ0 are separately identifiable. Hence, in what fol-
lows, when dealing with the properties of separated parameters,
we will directly assume:

(A0) The parameters m0 ∈ ML0 and θ0 ∈ � are separately
identifiable, that is, m ◦ θ = m0 ◦ θ0 for some (m, θ) ∈
ML0 × � implies that m = m0 and θ = θ0.

Ichimura (1993) had found general sufficient conditions on
the distribution of X under which 2.2 holds; these sufficient
conditions allow for some components of X to be discrete, also
see (Horowitz 1998, pp. 12–17) and (Li and Racine 2007, prop.
8.1). When X has a density with respect to Lebesgue mea-
sure, (Lin and Kulasekera 2007, theor. 1) find a simple sufficient
condition for (A0). We discuss and compare these two sufficient
conditions in Section S.5.2 of the supplementary file.

3. Convex and Lipschitz Constrained LSE

Recall that CLSE is defined as the minimizer of (m, θ) 	→
Qn(m, θ) over ML × �. Because Qn(m, θ) depends only on
the values of the function at {θ�Xi}n

i=1, it is immediately clear
that the minimizer m̌L is unique only at {θ̌�

L Xi}n
i=1. Since m̌L

is restricted to be convex, we interpolate the function linearly
between θ̌�

L Xi’s and extrapolate the function linearly outside the
data points.3 Thus, m̌ is piecewise affine. In Section S.7 of the

3Linear interpolation/extrapolation does not violate the convexity or the L-
Lipschitz property.

supplementary file, we prove the existence of the minimizer in
Equation (2). The optimization problem (2) might not have a
unique minimizer and the results that follow hold true for any
global minimizer.

Remark 3.1. For every fixed θ , m(∈ ML) 	→ Qn(m, θ) has
a unique minimizer. The minimization over the class of uni-
formly Lipschitz functions is a quadratic program with linear
constraints and can be computed easily; see Section S.11.

3.1. Asymptotic Analysis of the Regression Function
Estimate

In this section, we study the asymptotic behavior of m̌L ◦ θ̌L. We
will now list the assumptions under which we study the rates of
convergence of the CLSE for the regression function.

(A1) The unknown convex link function m0 is bounded by
some constant M0 (≥ 1) on D and is uniformly Lipschitz
with Lipschitz constant L0.

(A2) The support of X, χ , is a subset of Rd and supx∈χ |x| ≤ T,
for some finite T ∈ R.

(A3) The error ε in model (1) has finite qth moment, that is,
Kq := [

E(|ε|q)]1/q
< ∞ where q ≥ 2. Moreover,

E(ε|X) = 0, PX a.e. and σ 2(x) := E(ε2|X = x) ≤ σ 2 <

∞ for all x ∈ χ .

The above assumptions deserve comments. (A2) implies that
the support of the covariates is bounded. In Assumption (A3),
we allow ε to be heteroscedastic and ε can depend on X. Our
assumption on ε is more general than those considered in
the shape constrained literature, most works assume that all
moments of ε are finite and “well-behaved,” see, for example,
Balabdaoui, Groeneboom, and Hendrickx (2019), Hristache,
Juditsky, and Spokoiny (2001), and Xia et al. (2002).

Theorem 3.1 (proved in Section S.9.1) below provides an
upper bound on the rate of convergence of m̌L ◦ θ̌L to m0 ◦ θ0
under the L2(PX) norm. The following result is a finite sample
result and shows the explicit dependence of the rate of conver-
gence on L = Ln, d, and q.

Theorem 3.1. Assume (A1)–(A3). Let {Ln}n≥1 be a fixed
sequence such that Ln ≥ L0 for all n and let

rn := min

{
n2/5

d2/5Ln
,

n1/2−1/2q

L(3q+1)/(4q)
n

}
. (6)

Then for every n ≥ 1 and u ≥ 1, there exists a constant
C ≥ 0 depending only on σ , M0, L0, T, and Kq, and constant
C depending only on Kq, σ , and q, such that

sup
θ0,m0,ε,X

P

(
rn||m̌Ln ◦ θ̌Ln − m0 ◦ θ0|| ≥ uC

)
≤ C

uq + σ 2

n
,

where the supremum is taken over all θ0 ∈ � and all joint dis-
tributions of (ε, X) and parameters m0 for which Assumptions
(A1)–(A3) are satisfied with constants σ , M0, L0, T, and Kq. In
particular, if q ≥ 5, d = O(1), and Ln = O(1) as n → ∞, then
||m̌Ln ◦ θ̌Ln − m0 ◦ θ0|| = Op(n−2/5).
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Note that Equation (6) allows for the dimension d to grow
with n and θ0 to change with n. For example if Ln ≡ L for some
fixed L ≥ L0, then we have that ||m̌Ln ◦ θ̌Ln −m0 ◦θ0|| = op(1) if
d = o(n1−1/q). In the rest of the article, we assume that d is fixed.
In Proposition S.6.1 in Section 6.1, we find the minimax lower
bound for the single-index model (1), and show that m̌L ◦ θ̌L is
minimax rate optimal when q ≥ 5.

The next result shows that the rates in Theorem 3.1 are in
fact uniform (up to a

√
log log n factor) in L ∈ [L0, nL0]. This

uniform-in-L result is important for the study of the estimator
with a data-driven choice of L such as cross-validation or Lep-
ski’s method Lepski and Spokoiny (1997). Theorem 3.1 alone
cannot provide such a rate guarantee because it requires L to be
non-stochastic.

Theorem 3.2. Under the assumptions of Theorem 3.1, the CLSE
satisfies

sup
L0≤L≤nL0

min

{
n2/5

L
,

n1/2−1/(2q)

√
L

}
||m̌L ◦ θ̌L − m0 ◦ θ0||

= Op
(√

log log n
)

.

Remark 3.2 (Diverging L). The dependence on L in Theo-
rems 3.1 and 3.2 suggest that the estimator may not be consistent
if L ≡ Ln diverges too quickly with the sample size. The
simulation in Section 5.3 suggests that the estimation error has
negligible dependence on L and that the dependence on L in
Theorems 3.1 and 3.2 might be suboptimal. We believe this
discrepancy is due to the lack of available technical tools to prove
uniform boundedness of the estimator m̌n,L in terms of L. At
present, we are only able to prove that with high probability,
||m̌n,L||∞ ≤ LT + M0 + 1 for all L ≥ L0; see Lemma S.9.1.
If one can prove ||m̌n,L||∞ ≤ C for all L ≥ L0, with high
probability, for a constant C independent of L, then our proofs
can be modified to remove the dependence on L in Theorems 3.1
and 3.2.

3.2. Asymptotic Analysis of m̌ and θ̌

In this section, we establish the consistency and find rates of con-
vergence of m̌Ln and θ̌Ln separately. In Theorem 3.1, we proved
that m̌Ln ◦θ̌Ln converges in the L2(Pθ0,m0) norm but that does not
guarantee that m̌Ln converges to m0 in the ||·||D0 norm. A typical
approach for proving consistency of m̌Ln is to prove that {m̌Ln}
is precompact in the || · ||D0 norm (D0 is defined in Equation
(4)); see, for example, Balabdaoui, Durot, and Jankowski (2019),
Murphy, van der Vaart, and Wellner (1999). The Arzelà-Ascoli
theorem establishes that the necessary and sufficient condition
for compactness (with respect to the uniform norm) of an arbi-
trary class of continuous functions on a bounded domain is that
the function class be uniformly bounded and equicontinuous.
However, if Ln is allowed to grow to infinity, then it is not clear
whether the sequence of functions {m̌Ln} is equicontinuous.
Thus, to study the asymptotic properties of m̌Ln and θ̌Ln , we
assume that Ln ≡ L ≥ L0, is a fixed constant. For the rest
of article, we will use m̌ and θ̌ to denote m̌L (or m̌Ln ) and
θ̌L (or θ̌Ln ), respectively. The next theorem (proved in Section
S.9.4) establishes consistency of m̌ and θ̌ separately. Recall that

m′
0 denotes the nondecreasing right derivative of the convex

function m0.

Theorem 3.3. Suppose the assumptions of Theorem 3.1 and (A0)
hold. Then, for any fixed L ≥ L0 and any compact subset C in
the interior of D0, we have

|θ̌ − θ0| = op(1),
||m̌ − m0||D0 = op(1), and ||m̌′ − m′

0||C = op(1).

Fix an orthonormal basis {e1, . . . , ed} of Rd such that e1 =
θ0. Define Hθ0 := [e2, . . . , ed] ∈ R

d×(d−1). We will use the
following two additional assumptions to establish upper bounds
on the rate of convergence of m̌ and θ̌ .

(A4) H�
θ0
E

[
Var(X|θ�

0 X){m′
0(θ

�
0 X)}2]Hθ0 is a positive-definite

matrix.
(A5) The density of θ�

0 X with respect to the Lebesgue measure
is bounded above by Cd < ∞.

Assumption (A4), is used to find the rate of convergence for
θ̌ and m̌ separately and is widely used in all works studying
root-n consistent estimation of θ0 in the single-index model,
see, for example, Powell, Stock, and Stoker (1989), Ichimura
(1993), Kuchibhotla and Patra (2020), and Balabdaoui, Groene-
boom, and Hendrickx (2019); also see Remark 3.3. (A.5) is
mild, and is satisfied if X = (X1, . . . , Xd) has a continuous
covariate Xk such that (i) Xk has a bounded density; and (ii)
θ0,k > 0. Compare Assumption (A5) with Ichimura (1993),
Cui, Härdle, and Zhu (2011), and Balabdaoui, Groeneboom, and
Hendrickx (2019), Wang and Yang (2009), and Wang and Wang
(2015) where it is assumed that θ�X has a density bounded
away from zero for all θ in a neighborhood of θ0. Assumption
(A5) is used to find rates of convergence of the derivative of
the estimators of m0. In Theorem 3.4, we only use the fact
that θ�

0 X is absolutely continuous with respect to Lebesgue
measure. The following result (proved in Section S.9.5) estab-
lishes upper bounds on the rate of convergence of θ̌ and m̌,
respectively.

Theorem 3.4. If Assumptions (A0)–(A5) hold, q ≥ 5, and L ≥
L0, then we have

|θ̌ − θ0| = Op(n−2/5) and∫
(m̌(t) − m0(t))2dPθ�

0 X(t)dt = Op(n−4/5).

Remark 3.3. Note that, under homoscedastic errors in Equa-
tion (1), the efficient information for θ0 is a scalar multiple of
H�

θ0
E

[
Var(X|θ�

0 X){m′
0(θ

�
0 X)}2]Hθ0 =: I0; see Section 4.1. If

I0 is not positive definite, then there is zero information for θ0
along some directions. In that case, we can show that |I1/2

0 (θ̌ −
θ0)| = Op(n−2/5); see (E.68) in the supplementary file.

A simple modification of the proof of Proposition S.6.1 will
prove that m̌ is also minimax rate optimal. Under additional
smoothness assumptions on m0, in the following theorem
(proved in Section S.9.7), we show that m̌′, the right derivative
of m̌, converges to m′

0 in both the L2 and the supremum
norms.
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Theorem 3.5. Suppose assumptions of Theorem 3.4 hold and m′
0

is
1
2

-Hölder continuous on D0, then

||m̌′ ◦ θ0 − m′
0 ◦ θ0|| = Op

(
n−2/15) and

||m̌′ ◦ θ̌ − m′
0 ◦ θ̌ || = Op

(
n−2/15). (7)

Further, if m0 is twice continuously differentiable and Assump-
tion (A4) (in Section 4), then for any compact subset C in the
interior of D0, we have

sup
t∈C

|m̌(t) − m0(t)| = Op(n−8/(25+5β)) and

sup
t∈C

|m̌′(t) − m′
0(t)| = Op(n−4/(25+5β)). (8)

Remark 3.4. As in (7), (8) can also be proved under γ -Hölder
continuity of m′

0, but in this case the rate of convergence
depends on γ explicitly. Assumption (B2) allows for the density
of θ�

0 X to be zero at some points in its support; see Section 4 for
a detailed discussion. Further if the density of θ�

0 X is bounded
away from zero, then β can be taken to be 0.

Remark 3.5. The condition q ≥ 5 in Theorems 3.4 and 3.5 can
be relaxed at the expense of slower rates of convergence. In fact,
by following the arguments in the proofs, we can show, with
pn := max{n−2/5, n−1/2+1/(2q)} for any q ≥ 2, that |θ̌ − θ0| =
Op(pn), and

||m̌ ◦ θ0 − m0 ◦ θ0|| = Op(pn),

||m̌′ ◦ θ0 − m′
0 ◦ θ0|| = Op(p1/3

n ) and

||m̌′ ◦ θ̌ − m′
0 ◦ θ̌ || = Op(p1/3

n ).

Remark 3.6 (Additional shape constraints on the link function).
It might often be the case that in addition to convexity, the prac-
titioner is interested in imposing additional shape constraints
(such as monotonicity, unimodality, or k-monotonicity Gun-
tuboyina and Sen 2018) on m0. For example, in the datasets
considered in Examples 1.1 and 1.2, the link function is plausibly
both convex and monotone; see Chen and Samworth (2016)
for further motivation on additional shape constraints. The
conclusions (and proofs) of Theorems 3.1 and 3.2–3.5 also hold
for the CLSE under additional constraints on the link function.
An intuitive explanation is that the parameter space ML is only
reduced by imposing additional constraints on the link function
and this can only give better rates (if not the same). In case of
an additional monotonicity constraint on m0, one can modify
the proof of Proposition S.6.1 to show that the rate obtained in
Theorem 3.1 is in fact minimax optimal for the the CLSE (under
further monotonicity constraint).

4. Semiparametric Inference for the CLSE

The main result in this section shows that θ̌ is
√

n-consistent and
asymptotically normal; see Theorem 4.1. Moreover, θ̌ is shown
to be semiparametrically efficient for θ0 if the errors happen
to be homoscedastic. The asymptotic analysis of θ̌ is involved
as m̌ is a piecewise affine function and hence not differentiable
everywhere.

Before deriving the limit law of θ̌ , we introduce some nota-
tions and assumptions. Let pε,X denote the joint density (with
respect to some dominating measure on R × χ) of (ε, X).
Let pε|X(·, x) and pX(·) denote the corresponding conditional
probability density of ε given X = x and the marginal density of
X, respectively. In the following we list additional assumptions
used in Theorem 4.1. Recall D and D0 from Equation (4) and let
� denote the Lebesgue measure.

(B1) m0 ∈ ML0 and m0 is (1 + γ )-Hölder continuous on D0
for some γ > 0. Furthermore, m0 is strongly convex on
D, that is, there exists a κ0 > 0 such that m0(t) − κ0t2 is
convex.

(B2) There exists β ≥ 0 and Cd > 0 such that P(θ�
0 X ∈ I) ≥

Cd �(I)1+β , for all intervals I ⊂ D0.

For every θ ∈ �, define hθ (u) := E[X|θ�X = u].
(B3) The function u 	→ hθ0(u) is 1/2-Hölder continuous and

for a constant M̄ > 0 and every θ ∈ �,

E

(
|hθ (θ

�
0 X) − hθ0(θ

�
0 X)|2

)
≤ M̄|θ − θ0|. (9)

(B4) The density pε|X(e, x) is differentiable with respect to e for
all x ∈ χ .

Assumptions (B1)–(B4) deserve comments. (B1) is much
weaker than the standard assumptions used in semiparametric
inference in single-index models (Murphy, van der Vaart, and
Wellner 1999, theor. 3.2). Assumption (B2) is an improvement
compared to the assumptions in the existing literature. Assump-
tion (B2) pertains to the distribution of θ�

0 X and is inspired
by (Gaïffas and Lecué 2007, assump. (D)). In contrast, most
existing works require the density of θ�

0 X to be bounded away
from zero (i.e., β = 0); see, for example, Ichimura (1993,
assump. 5.3(II)), Cui, Härdle, and Zhu (2011, assump. (d)), Bal-
abdaoui, Groeneboom, and Hendrickx (2019, lem. F.3), Wang
and Yang (2009, assump. A2), and Wang and Wang (2015,
assump. A2). Our assumption is significantly weaker because
it allows the density of θ�

0 X to be zero at some points in its
support. For example, when X ∼ Uniform[0, 1]d, the density of
θ�

0 X might not be bounded away from zero (Gaïffas and Lecué
2007, fig. 1), but (B2) holds with β = 1. Assumption (B3) can
be favorably compared to those in Murphy, van der Vaart, and
Wellner (1999, theor. 3.2), Groeneboom and Hendrickx (2018,
assump. (A5)), Balabdaoui, Groeneboom, and Hendrickx (2019,
assump. (A5)), and Song (2014, assump. G2 (ii)). We use the
smoothness assumption (B3) when establishing semiparamet-
ric efficiency of θ̌ . The Lipschitzness assumption (4.1) can be
verified by using the techniques of Alonso and Brambila-Paz
(1998), when u 	→ hθ (u) is 1/2-Hölder continuous for all θ in
a neighborhood of θ0 and the Hölder constants are uniformly
bounded in θ .

In general, establishing semiparametric efficiency of an esti-
mator proceeds in two steps. Let ξ̂ and γ̂ denote the estimators
of a parametric component ξ0 and a nuisance component γ0
in a general semiparametric model. In a broad sense, the proof
of semiparametric efficiency of ξ̂ involves two main steps: (i)
finding the efficient score of the model at the truth (call it
	ξ0,γ0 ); and (ii) proving that (ξ̂ , γ̂ ) satisfies Pn	ξ̂ ,γ̂ = op(n−1/2);
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see (Bolthausen, Perkins, and van der Vaart 2002, pp. 436–437)
for a detailed discussion. In Sections 4.1 and 4.2, we discuss steps
(i) and (ii) in our context, respectively.

4.1. Efficient Score

In this subsection, we calculate the efficient score for the model:

Y = m(θ�X) + ε, (10)

where m, X, and ε satisfy assumptions (B1)–(B4). First, observe
that the parameter space � is a closed subset of Rd and the
interior of � in R

d is the empty set. Thus, to compute the score
for model (10), we construct a path on the sphere. We use Rd−1

to parameterize the paths for model (10) on � when θ0,1 > 0.
For each η ∈ R

d−1, s ∈ R, and |s| ≤ |η|−1, define the
following path, with “direction” η, through θ (which lies on the
unit sphere)

ζs(θ , η) :=
√

1 − s2|η|2 θ + sHθη, (11)

where for every θ ∈ �, Hθ ∈ R
d×(d−1) is such that for every η ∈

R
d−1, |Hθη| = |η| and Hθη is orthogonal to θ . Furthermore,

we need θ 	→ Hθ to satisfy some smoothness properties; see
Kuchibhotla and Patra (2020, lem. 1) for such a construction.
Note that, if θ0,1 = 0, then for any s in a neighborhood of zero,
there exists an η ∈ R

d−1 such that ζs(θ0, η) /∈ �. Thus, if
θ0,1 = 0, then θ0 lies on the “boundary” of � and the existing
semiparametric theory breaks down. Therefore, for the rest of
the article, we assume that θ0,1 is strictly positive.

The log-likelihood of model (10) is lθ ,m(y, x) = log[pε|X(y −
m(θ�x), x)pX(x)]. For any η ∈ Sd−2, consider the path defined
as s 	→ ζs(θ , η). Note that by the definition of Hθ , s 	→ ζs(θ , η) is
a valid path in � through θ ; that is, ζ0(θ , η) = θ and ζs(θ , η) ∈
� for every s in some neighborhood of 0. Thus, the score for the
parametric submodel is

∂ lζs(θ ,η),m(y, x)

∂s

∣∣∣∣
s=0

= η�Sθ ,m(y, x), (12)

where

Sθ ,m(y, x) := −p′
ε|X

(
y − m(θ�x), x

)
pε|X

(
y − m(θ�x), x

)m′(θ�x)H�
θ x.

The next step in computing the efficient score for model (10)
at (m, θ) is to compute the nuisance tangent space of the model
(here the nuisance parameters are pε|X , pX , and m). To do this
defines a parametric submodel for the unknown nonparametric
components:

ms,a(t) = m(t) − sa(t),
pε|X;s,b(e, x) = pε|X(e, x)(1 + sb(e, x)),

pX;s,q(x) = pX(x)(1 + sq(x)),

where s ∈ R, b : R × χ → R is a bounded function such that
E(b(ε, X)|X) = 0 and E(εb(ε, X)|X) = 0, q : χ → R is a
bounded function such that E(q(X)) = 0, and a ∈ Dm, with

Dm := {
f ∈ L2(�) : f ′(·) exists and

ms,f (·) ∈ ML for all
s ∈ B0(δ) for some δ > 0

}
.

Note that when m satisfies (B1) then Dm reduces to Dm = {
f ∈

L2(�) : f ′(·) exists}. Thus, linDm = L2(�). Newey and Stoker
(1993, theor. 4.1) (also see Ma and Zhu 2013, prop. 1) showed
that when the parametric score is η�Sθ ,m(·, ·) and the nuisance
tangent space corresponding to m is L2(�), then the efficient
score for model (10) is

1
σ 2(x)

(y − m(θ�x))m′(θ�x)H�
θ

×
{

x − E(σ−2(X)X|θ�X = θ�x)

E(σ−2(X)|θ�X = θ�x)

}
. (13)

Note that the efficient score depends on pε|X and pX only
through σ 2(·). However, if the errors happen to be homoscedas-
tic (i.e., σ 2(·) ≡ σ 2), then the efficient score is 	θ ,m(x, y)/σ 2,
where

	θ ,m(x, y) := (y − m(θ�x))m′(θ�x)H�
θ [x − hθ (θ

�x)]. (14)

As σ 2(·) is unknown we restrict ourselves to efficient estima-
tion under homoscedastic error; see Remark 4.2 for a brief
discussion.

4.2. Efficiency of the CLSE

The
√

n-consistency, asymptotic normality, and efficiency
(when the errors are homoscedastic) of θ̌ will be established
if we could show that

√
nPn	θ̌ ,m̌ = op(1) (15)

and the class of functions 	θ ,m indexed by (θ , m) in a “neigh-
borhood” of (θ0, m0) satisfies some technical conditions;
see, for example, Bolthausen, Perkins, and van der Vaart
(2002, chap. 6.5). As discussed in Section 1.1, because (m̌, θ̌ )

minimizes (m, θ) 	→ Qn(m, θ) over ML × �, the tradi-
tional way to prove Equation (15) is to use the fact that
∂Qn(m̌s,a, ζs(θ , η))/∂s|s=0 = 0 for any (a, η) such that
s 	→ (m̌s,a, ζs(θ , η)) is a valid path (i.e., a ∈ linDm̌). One
then finds (a, η) ∈ Dm̌ × R

d−1 such that the derivative
of s 	→ Qn(m̌s,a, ζs(θ , η)) at s = 0 is approximately
n−1 ∑n

i=1 η�	
θ̌ ,m̌(Yi, Xi); such an (a, η) is called the (approx-

imate) least favorable submodel; see Bolthausen, Perkins, and
van der Vaart (2002, sec. 9.2). In Section 4.1, we saw that if m is
strongly convex then linDm = L2(�). However, m̌ is piecewise
affine and we can only show that linDm̌ ⊂ L2(�). Thus,
s 	→ m̌s,a is valid path only if a ∈ Dm̌; see Murphy, van der Vaart,
and Wellner (1999) for another example where linDm̌ 
= L2(�).
In such cases, it is hard to find the least favorable submodel as
often the step to compute the least favorable model involves
computing projection onto linDm̌; see, for example, Newey
(1990). Thus, when linDm̌ is not L2(�) (or a very simple
subspace of L2(�)), the standard linear path arguments fail
to find the least favorable submodel. To overcome this, Murphy,
van der Vaart, and Wellner (1999) used a very complicated and
nonlinear path; see (Murphy, van der Vaart, and Wellner 1999,
sec. 6.2); also see Kuchibhotla and Patra (2020).

Our proposed technique crucially relies on the observation
that s 	→ �ML(m̌s,a) is a valid path for every a ∈ L2(�). Thus,
if s 	→ �ML(m̌s,a) is differentiable, then establishing that θ̌ is
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an approximate zero boils down to finding an a ∈ L2(�) such
that

∂

∂s
Qn(�ML(m̌s,a), ζs(θ , η))

∣∣∣
s=0

= n−1
n∑

i=1
η�	

θ̌ ,m̌(Yi, Xi) + op(n−1/2). (16)

for every η ∈ R
d−1. In Section S.10, we show s 	→ �ML(m̌s,a)

is differentiable if a ∈ Xm̌, where

Xm̌ := {
a ∈ L2(�) : a is a piecewise affine continuous function

with kinks at {ťi}pi=1
}

, (17)

and {ťi}pi=1 are the set of kinks of m̌. For a piecewise affine func-
tion, a kink is a point where the slope changes. Furthermore,
in Theorem S.10.1, we find an a ∈ Xm̌ that satisfies Equation
(16). The advantage of the technique proposed here is that the
construction of approximate least favorable submodel is analytic
and does not rely on the ability of the user to “guess” the least
favorable submodel; see, e.g., Bolthausen, Perkins, and van der
Vaart (2002, secs. 9.2 and 9.3) and Murphy, van der Vaart, and
Wellner (1999). The above discussion and Bolthausen, Perkins,
and van der Vaart (2002, theor. 6.20) led to our main result
(Theorem 4.1) of this section. Recall Sθ0,m0 and 	θ ,m defined
in Equations (12) and (14), respectively.

Theorem 4.1. Assume (A0)–(A5) and (B1)–(B4) hold. Let θ0,1 >

0, q ≥ 5, and L ≥ L0. If γ > 1/2 + β/8 and Vθ0,m0 :=
Pθ0,m0(	θ0,m0 S�

θ0,m0
) is a nonsingular matrix in R

(d−1)×(d−1),
then

√
n(θ̌ − θ0)

d→ N(0, Hθ0 V−1
θ0,m0

Iθ0,m0(Hθ0 V−1
θ0,m0

)�), (18)

where Iθ0,m0 := Pθ0,m0(	θ0,m0	
�
θ0,m0

). Further, if σ 2(·) ≡ σ 2,
then Vθ0,m0 = Iθ0,m0 and

√
n(θ̌ − θ0)

d→ N(0, σ 4Hθ0 I−1
θ0,m0

H�
θ0).

Remark 4.1. If m0 is twice continuously differentiable, then
γ = 1. Hence, γ > 1/2 + β/8 is equivalent to assuming
β ∈ [0, 4). Note that β > 0 allows for covariate distributions
for which the density of θ�

0 X can go to zero. In Theorem 4.1,
to keep notations in the proof simple, we assume that q ≥ 5.
However, by using Remark 3.5, this condition can be weakened
to q ≥ 4. In Section S.3, we show that the limiting variances in
Theorem 4.1 are unique and do not depend on the particular
choice of θ 	→ Hθ .

Sketch of the proof. The proof follows along the lines of
(Bolthausen, Perkins, and van der Vaart 2002, theor. 6.20). The
main novelty in the proof is a new mechanism to verify that the
estimator satisfies the score Equation (15). However to simplify
the algebra involved,4 we will work with

ψθ ,m(x, y) := (y − m(θ�x))m′(θ�x)H�
θ [x − hθ0(θ

�x)], (19)

4All the proofs will go through with 	θ ,m instead of ψθ ,m . However, usage of
	θ ,m will require more remainder terms to be controlled and thus will lead
to more tedious proofs.

a slight modification of 	θ ,m. The only difference between 	θ ,m
and ψθ ,m is the last term (hθ (θ

�X)). In Section S.2 of the
supplementary file, we show that

√
nPnψθ̌ ,m̌ = op(1), (20)

implies
√

nVθ0,m0 H�
θ0(θ̌ − θ0) = Gnψθ0,m0 +op(1+√

n|θ̌ − θ0|). (21)

The conclusion of the proof follows by observing that ψθ0,m0 =
	θ0,m0 . We will now give a brief sketch of the proof of Equation
(20). Define for every (m, θ), η ∈ R

d−1, a : D → R, and t ∈ R,

ζt(θ , η) :=
√

1 − t2|η|2 θ + tHθη and
ξt(u; a, m) := �ML(m − ta)(u).

Observe that (m̌, θ̌ ) is the minimizer of (m, θ) 	→ Qn(m, θ)

and t 	→ (ζt(θ̌ , η), ξt(u; a, m̌)) is a valid path in ML × �

through (θ̌ , m̌). Thus, t = 0 is the minimizer of t 	→
Qn(ζt(θ̌ , η), ξt(·; a, m̌)) for every η ∈ R

d−1 and a : D → R.
Hence, if t 	→ Qn(ζt(θ̌ , η), ξt(·; a, m̌)) is differentiable then

∂

∂t
Qn(ζt(θ̌ , η), ξt(·; a, m̌))

∣∣∣
t=0

= 0.

Furthermore, if functions a1, a2, . . . , aK (for some K ≥ 1) are
such that t 	→ Qn(ζt(θ̌ , η), ξt(·; aj, m̌)) is differentiable for all
1 ≤ j ≤ K, then

K∑
j=1

αj
∂

∂t
Qn(ζt(θ̌ , η), ξt(·; aj, m̌))

∣∣∣
t=0

= 0,

for any α1, . . . , αK ∈ R. Note that the proof of Equation (20)
will be complete, if we can show that for every η ∈ Sd−2, then
there exist a K ≥ 1 and functions aj : D → R, 1 ≤ j ≤ K such
that t 	→ �ML(m̌ − taj)(u) is differentiable and

η�
Pnψθ̌ ,m̌ =

K∑
j=1

αj
∂

∂t
Qn(ζt(θ̌ , η), ξt(·; aj, m̌))

∣∣∣
t=0

+op(n−1/2).

(22)
This means that it is enough to consider the approxima-
tion of η�

Pnψθ̌ ,m̌ by the linear closure of {∂Qn(ζt(θ̌ , η),
ξt(·; a, m̌))/∂t|t=0 : t 	→ Qn(ζt(θ̌ , η), ξt(·; a, m̌)) is differen-
tiable at t = 0}. Instead of fully characterizing the linear closure
set, we find a large enough subset that suffices for our purpose
using the following steps.

1. We find a set of perturbations a such that t 	→ ξt(·; a, m) is
differentiable. Recall Xm̌ defined in Equation (17). In Lemma
S.10.2 (stated and proved in the supplementary file), we show
that Xm̌ ⊆ {a : D → R | t 	→ ξt(·; a, m̌) is differentiable at
t = 0}.

2. For every such a ∈ Xm̌, in Lemma S.10.3, we show that

−1
2

∂

∂t
Qn(ζt(θ̌ , η), ξt(·; a, m̌))

∣∣∣
t=0

= Pn
[(

y − m̌(θ̌�x)
){

η�m̌′(θ̌�x)H�
θ̌

x − a(θ̌�x)
}]

.
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Thus, to prove Equation (22), it is enough to show that

inf
a∈lin(Xm̌)

∣∣∣η�
Pnψθ̌ ,m̌−

Pn
[
(y − m̌(θ̌�x)){η�m̌′(θ̌�x)H�

θ̌
x − a(θ̌�x)}]∣∣∣

= op(n−1/2),

where ψθ ,m is defined in Equation (19). In more general con-
straint spaces, one might need to use the generality of lin(Xm̌)

but in our case, it suffices to work with Xm̌; see Theorem
S.10.1.

Remark 4.2 (Efficiency under heteroscedasticity). It is impor-
tant to note that Equation (13), the efficient score, depends on
σ 2(·). Without additional assumptions, estimators of σ 2(·) will
have poor finite sample performance (especially if d is large)
which in turn will lead to poor finite sample performance of the
weighted LSE; see (Tsiatis 2006, pp. 93–95).

Remark 4.3 (Efficiency under additional shape constraints). As
discussed in Remark 3.6, it might be the case that the prac-
titioner is interested in imposing additional shape constraints
such as monotonicity, unimodality, or k-monotonicity (in addi-
tion to convexity). If m0 satisfies these constraints in a strict
sense (i.e., m0 is strictly monotone or k-monotone), then the
discussion in Section 4.1 implies that the efficient score (at the
truth) is still (13) even under the additional shape constraints.
This is true, because linDm0 = L2(�) even under these addi-
tional shape constraints on link functions, as m0 does not lie
on the “boundary” of the parameter space. In fact, under these
additional constraints, the proof of Theorem 4.1 can be used
with minor modifications to show that CLSE of θ0 satisfies Equa-
tion (18).

To further illustrate the usefulness of our new approach, we
discuss the proof of semiparametric efficiency in the Cox pro-
portional hazards model under current status censoring (Huang
1996; Bolthausen, Perkins, and van der Vaart 2002).

Example 4.1 (Cox proportional hazards model with current
status data). Suppose that we observe a random sample of size
n from the distribution of X = (C, �, Z), where � = 1{T ≤ C},
such that the survival time T and the observation time C are
independent given Z ∈ R

d, and that T follows a Cox propor-
tional hazards model with parameter θ0 and cumulative hazard
function �0; see, for example, Huang (1996, sec. 2) for a more
detailed discussion of this model. Huang (1996) showed that �̂,
the nonparametric maximum likelihood estimator (NPMLE) of
�0, is a right-continuous step function with possible disconti-
nuities only at C1, . . . , Cn (the observed censoring/inspection
times). Huang (1996) also proved that θ̂ (the NPMLE for θ0)
is an efficient estimator for θ0. However, just as in the single-
index model, the proof of efficiency is complicated due to the
fact that s 	→ �̂ + sh will not necessarily be a valid hazard
function for every smooth h(·).5 To establish Equation (15) for
the above model (Huang 1996, pp. 563 and 564), “guesses” an

5�̂+sh is not guaranteed to be monotone as �̂ is a nondecreasing piecewise
constant function and not strictly increasing.

approximately least favorable path (also see Bolthausen, Perkins,
and van der Vaart 2002, pp. 439–441). However, using the
arguments above we can easily see that s 	→ �(�̂ + sh) is
differentiable if h is a piecewise constant function with possible
discontinuities only at the points of discontinuities of �̂. Then
using the property that ||�̂ − �0|| = op(n−1/3), one can
establish a result similar to Equation (16). A similar strategy can
be used to establish efficiency in the current status regression
model in Murphy, van der Vaart, and Wellner (1999).

4.3. Construction of Confidence Sets and Validating the
Asymptotics

Theorem 4.1 shows that when the errors happen to be
homoscedastic the CLSE of θ0 is

√
n-consistent and asymp-

totically normal with covariance matrix:

�0 := σ 4Hθ0 Pθ0,m0[	θ0,m0(Y , X)	�
θ0,m0(Y , X)]−1H�

θ0 , (23)

where 	θ0,m0 is defined in Equation (14). This result can be
used to construct confidence sets for θ0. However since �0 is
unknown, we propose using the following plug-in estimator of
�0:

�̌ := σ̌ 4H
θ̌

[
Pn

(
	
θ̌ ,m̌(Y , X)	�

θ̌ ,m̌(Y , X)
)]−1H�

θ̌
,

where σ̌ 2 := ∑n
i=1[Yi − m̌(θ̌�Xi)]2/n. Note that Theorems 3.4

and 3.5 imply consistency of �̌.
For example one can construct the following 1 − 2α confi-

dence interval for θ0,i:[
max

{
−1, θ̌i − zα√

n

(
�̌i,i

)1/2
}

, min
{

1, θ̌i + zα√
n

(
�̌i,i

)1/2
} ]

, (24)

where zα denotes the upper αth quantile of the standard normal
distribution. The truncation guarantees that confidence interval
is a subset of the parameter set.

We now give an illustrative simulation example. We generate
n iid observations from the model: Y = (θ�

0 X)2 + N(0, .32),
where X ∼ Uniform[−1, 1]3 and θ0 = (1, 1, 1)/

√
3, for

n increasing from 50 to 1000. For the above model, �0
1,1 is

0.22.6 In the left panel of Figure 2, we present the Q–Q plot of√
n[�0

1,1]−1/2(θ̌1 −θ0,1) based on 800 replications; on the x-axis
we have the quantiles of the standard normal distribution. The
Q–Q plot validates the asymptotic normality and shows that the
sample variance of the CLSE converges to the limiting variance
found in Theorem 4.1. In the right panel of Figure 2, we present
empirical coverages (from 800 replications) of 95% confidence
intervals based on the CLSE constructed via Equation (24).

5. Simulation Study

In Section S.1 of the supplementary file, we develop an
alternating minimization algorithm to compute the CLSE (2).
In this section we illustrate the finite sample performance of the
CLSE using the implementation in the R package simest. We

6To compute the limiting variance in Equation (23), we used a Monte Carlo
approximation of Pθ0,m0 [	θ0,m0 (Y , X)	�

θ0,m0
(Y , X)] with sample size 2×105

and true (m0, θ0, PX ). The limiting covariance matrix �0 = 0.33I3 − 0.11J3,
where I3 is the 3 × 3 identity matrix and J3 is the 3 × 3 matrix of all ones.
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Figure 2. Summary of θ̌ (over 800 replications) based on n iid observations from the model 4.3. Left panel: Q-Q plots for
√

n
[
�0

1,1

]−1/2
(θ̌1 − θ0,1) for n ∈

{100, 500, 1000, 2000}. The dotted black line corresponds to the y = x line; right panel: estimated coverage probabilities and average lengths of nominal 95% confidence
intervals for the first coordinate of θ0.

also compare its performance with other existing estimators,
namely the EFM estimator (the estimating function method;
see Cui, Härdle, and Zhu 2011), the EDR estimator (effective
dimension reduction; see Hristache, Juditsky, and Spokoiny
2001), and the estimator proposed in Kuchibhotla and Patra
(2020) with the tuning parameter chosen by generalized
cross-validation (Kuchibhotla and Patra 2020; we denote this
estimator by Smooth). We use CvxLip to denote the CLSE.

5.1. Another Convex Constrained Estimator

Alongside these existing estimators, we also numerically
study another natural estimator under the convexity shape
constraint—the convex LSE—denoted by CvxLSE below. This
estimator is obtained by minimizing the sum of squared errors
subject to only the convexity constraint. Formally, the CvxLSE
is

(m†
n, θ†

n ) := arg min
(m,θ)∈C×�

Qn(m, θ) (25)

The computation of CvxLSE is discussed in Remark S.12 and
is implemented in the R package simest. However, theoretical
analysis of this estimator is difficult because of various reasons;
see Section S.14 of the supplementary file for a brief discussion.
In our simulation studies, we observe that the performance of
CvxLSE is very similar to that of CvxLip.

In what follows, we will use (m̃, θ̃ ) to denote a generic estima-
tor that will help us describe the quantities in the plots; e.g., we
use ||m̃ ◦ θ̃ − m0 ◦ θ0||n = [ 1

n
∑n

i=1(m̃(θ̃�xi) − m0(θ
�
0 xi))2]1/2

to denote the in-sample root-mean-squared estimation error of
(m̃, θ̃ ), for all the estimators considered. From the simulation
study, it is easy to conclude that the proposed estimators have
superior finite sample performance in the most sampling sce-
narios considered.

5.2. Increasing Dimension

To illustrate the behavior/performance of the estimators as d
grows, we consider the following single-index model Y =
(θ�

0 X)2 + t6, where θ0 = (2, 1, 0d−2)
�/

√
5 and X ∈ R

d ∼
Uniform[−1, 5]d, where t6 denotes the Student’s t-distribution

with 6 degrees of freedom. In each replication, we observe
n = 100 iid observations from the model. It is easy to see that
the performance of all the estimators worsen as the dimension
increases from 10 to 100 and EDR has the worst overall per-
formance; see Figure 3. However, when d = 100, the convex
constrained estimators have significantly better performance.
This simulation scenario is similar to the one considered in
Example 3 of (Cui, Härdle, and Zhu 2011, sec. 3.2).

5.3. Choice of L

In this subsection, we consider a simple simulation experiment
to demonstrate that the finite sample performance of the CLSE
is robust to the choice of tuning parameter. We generate an
iid sample (of size n = 500) from the following model:

Y = (θ�
0 X)2 + N(0, .12), where

X ∼ Uniform[−1, 1]4 and

θ0 = (1, 1, 1, 1)�/2. (26)

Observe that, we have −2 ≤ θ�X ≤ 2 and L0 :=
supt∈[−2,2] m′

0(t) = 4 as m0(t) = t2. To understand the effect
of L on the performance of the CLSE, we show the boxplot of∑4

i=1 |θ̌i − θ0,i|/4 as L varies from 3 (< L0) to 10 in Figure 4.
Figure 4 also includes the CvxLSE which corresponds to
L = ∞. The plot clearly show that the performance of CvxLip
is not significantly affected by the particular choice of the tuning
parameter. The observed robustness in the behavior of the
estimators can be attributed to the stability endowed by the
convexity constraint.

6. Real Data Analysis

In this following, we analyze the two real datasets discussed in
Examples 1.1 and 1.2.

6.1. Boston Housing Data

We briefly recall the discussion in Example 1.1. The Boston
housing dataset was collected by Harrison and Rubinfeld (1978)
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Figure 3. Boxplots of
∑d

i=1 |θ̃i − θ0,i|/d (over 500 replications) based on 100 observations from the simulation setting in Section 5.2 for dimensions 10, 25, 50, and 100,
shown in the top-left, the top-right, the bottom-left, and the bottom-right panels, respectively. The bottom-right panel does not include EDR as the R-package EDR does
not allow for d = 100.

Figure 4. Boxplots of 1
4

∑4
i=1 |θ̃i −θ0,i| (over 1000 replications) for the model (26)

(d = 4 and n = 500) CvxLip for L = {3, 4, 5, 7, 10} and CvxLSE (i.e., L = ∞).

to study the effect of different covariates on the real estate price
in the greater Boston area. The dependent variable Y is the
log-median value of homes in each of the 506 census tracts in
the Boston standard metropolitan area. Harrison and Rubinfeld
(1978) observed 13 covariates and fit a linear model after taking
log transformation for 3 covariates and power transformations

for three other covariates; also see Wang et al. (2010) for a
discussion of this dataset.

Breiman and Friedman (1985) did further analysis to deal
with multi-collinearity of the covariates and selected four vari-
ables using a penalized stepwise method. The chosen covariates
were average number of rooms per dwelling (RM), full-value
property-tax rate per 10, 000 U.S.D (TAX), pupil–teacher ratio
by town school district (PT), and proportion of population
that is of “lower (economic) status” in percentage points (LS).
Following Wang and Yang (2009) and Yu, Mammen, and Park
(2011), we take logarithms of LS and TAX to reduce sparse
areas in the dataset. Furthermore, we have scaled and centered
each of the covariates to have mean 0 and variance 1. Wang
and Yang (2009) fit a nonparametric additive regression model
to the selected variables and obtained an R2 (the coefficient of
determination) of 0.64. Wang et al. (2010) fit a single-index
model to this data using the set of covariates suggested in Chen
and Li (1998). In Gu and Yang (2015), the authors created 95%
uniform confidence band for the link function and reject the
null hypothesis that the link function is linear. In both Gu and
Yang (2015) and Wang et al. (2010), the fitted link function
is approximately nondecreasing and convex; see (Wang et al.
2010, fig. 2) and (Gu and Yang 2015, fig. 5). This motivates
us to fit a nondecreasing and convex single-index model to the
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Boston housing dataset. In particular, we consider the following
estimator:

(m̂L, θ̂L) := arg min
(m,θ)∈ML∩N×�

Qn(m, θ) (27)

where N is the set of real-valued nondecreasing functions on D.
Following the discussions in Remarks 3.6 and 4.3, we observe
that the results in this article also hold for (m̂L, θ̂L). The compu-
tation of the CLSE under the additional monotonicity constraint
is discussed in Remark S.1.1 and implemented in the accompa-
nying R package.

We summarize our results in Table 1. We call (m̂L, θ̂L),
the MonotoneCLSE. In Figure 5, we plot the scatterplot
of {(θ̂�

L Xi, Yi)}506
i=1 overlaid with the plot of m̂L(·) and the

regression spline-based estimator of Wang and Yang (2009).
For MonotoneCLSE and CvxLip, we chose L = 30 (an
arbitrary but large number). We also observe that the R2 for the
monotonicity and convexity constrained (MonotoneCLSE)
and just convexity constrained single-index models (CvxLip
and CvxLSE), when using all the available covariates, is
approximately 0.80. To further understand the predictive
properties of the estimators under different smoothness and
shape constraints, in Table 1, we report the 5-fold cross-
validation error averaged over 100 random partitions. The large
cross-validation error for the CvxLSE is due to over-fitting of
m†

n at the boundary of its support; see Figure S.1 (supplementary
material) for an illustration of this boundary effect.

6.2. Car Mileage Data

First, we briefly recall the discussion in Example 1.2. We con-
sider the car mileage dataset of Donoho and Ramos (1983) for
a second application for the convex single-index model. We
model the mileage (Y) of 392 cars using the covariates (X):
displacement (Ds), weight (W), acceleration (A), and horse-
power (H). Cheng, Zhao, and Li (2012) fit a partial linear model
to this this dataset, while Kuchibhotla and Patra (2020) fit a
single-index model (without any shape constraint). The “law of
diminishing returns” suggests m0 should be convex and non-
increasing. However, the estimators based only on smoothness
assumptions satisfy these shape constraints only approximately.
In the right panel of Figure 5, we fit a convex and nonincreasing
single-index model.

We have scaled and centered each of covariates to have
mean 0 and variance 1 for our analysis, just as in Section 6.1.
We performed a test of significance for θ0 using the plug-in
variance estimate in Section 4.3. The covariates A, Ds, and H
were found to be significant and each of them had p-value less
than 10−5. In the right panel of Figure 5, we have the scatterplot
of {(θ̂�

L Xi, Yi)}392
i=1 overlaid with the plot of m̂L(·) and regression

spline-based estimator obtained in Wang and Yang (2009); here
θ̂L is defined as in Equation (27) but N now denotes the class of
real-valued nonincreasing functions on D. Table 1 lists different
estimators for θ0 and their respective R2 and cross-validation
errors.

Table 1. Estimates of θ0 and generalized R2 for the datasets in Sections 6.1 and 6.2.

Method Boston data Car mileage data

RM log(TAX) PT log(LS) R2 CV-error Ds W A H R2 CV-error

LMa 2.34 −0.37 −1.55 −5.11 0.73 20.75 −0.63 −4.49 −0.06 −1.68 0.71 18.61
Smooth 0.44 −0.18 −0.27 −0.83 0.77 17.80 0.42 0.18 0.11 0.88 0.76 15.29
MonotoneCLSE 0.49 −0.21 −0.25 −0.81 0.80 17.93 0.44 0.17 0.13 0.87 0.76 15.34
CvxLip 0.48 −0.23 −0.26 −0.80 0.80 17.93 0.44 0.18 0.12 0.87 0.76 15.22
CvxLSE 0.43 −0.20 −0.28 −0.84 0.80 21.44 0.39 0.14 0.12 0.90 0.77 16.38
EFM 0.48 −0.19 −0.21 −0.83 – – 0.44 0.18 0.13 0.87 – –
EDR 0.44 −0.14 −0.18 −0.87 – – 0.33 0.11 0.15 0.93 – –

aLM denotes the linear regression model.
EFM and EDR do not provide a function estimator and hence we do not show an R2 value. CV-error denotes out of 5-fold cross-validation averaged over 100 random
partitions.

Figure 5. Scatterplots of {(X�
i θ̌ , Yi)}n

i=1 overlaid with the plots of function estimates proposed in Wang and Yang (2009) (red, dot-dashed) and monotonicity constrained
CLSE proposed in this article (blue, solid) for the two real datasets considered. Left panel: Boston housing data (Section 6.1), nondecreasing CLSE; right panel: the car
mileage data (Section 6.2), nonincreasing CLSE.
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7. Discussion

In this article we have proposed and studied a Lipschitz con-
strained LSE in the convex single-index model. Our estimator
of the regression function is minimax rate optimal (Proposition
S.6.1) and the estimator of the index parameter is semipara-
metrically efficient when the errors happen to be homoscedastic
(Theorem 4.1). This work represents the first in the literature of
semiparametric efficiency of the LSE when the nonparametric
function estimator is non-smooth and parameters are bundled.
Our proof of semiparametric efficiency is geometric and pro-
vides a general framework that can be used to prove efficiency
of estimators in a wide variety of semiparametric models even
when the estimators do not satisfy the efficient score equation
directly; see sketch of proof of Theorem 4.1 and Example 4.1 in
Section 4.2.

Theorem 3.1 proves the worst-case rate of convergence for
the CLSE. It is well known in convex regression that if the true
regression function is piecewise linear, then the LSE converges
at a much faster (near parametric) rate Guntuboyina and Sen
(2018). This behavior is called the adaptation property of the
LSE. It is natural to wonder if such a property also holds for
m̌ ◦ θ̌ . In Section S.4.3 of the supplementary file, we investigate
the behavior of m̌ ◦ θ̌ and θ̌ (as sample size increases) when m0
is piecewise linear. The simulation suggests that m̌◦ θ̌ converges
at a near parametric rate when m0 is piecewise linear. However,
a formal proof of this is beyond the scope of this article as
it requires different techniques. Furthermore, the asymptotic
behavior of θ̌ in this setting is an open problem.

Supplementary Material

The supplementary material contains a detailed discussion of the alternat-
ing minimization algorithm, some additional simulations, and the proofs
of all the results in the article.
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