
XMeter: Finding Approximable Functions
and Predicting Their Accuracy
Riad Akram,Member, IEEE, Shantanu Mandal,Member, IEEE,

and Abdullah Muzahid ,Member, IEEE

Abstract—Approximate computing has significant potential to improve the efficiency of a computing system. Numerous techniques have
been proposed in literature. Virtually, all of them require programmers to either experiment with every instance of a specific type of code
region exhaustively to find approximable code regions or annotate such regionsmanually. Both approaches are error-prone and can lead
tomissed opportunities. Therefore, we proposeXMeter to automatically find and quantify approximable code regions. XMeter, first,
analyzes the application code statically using a novel algorithm based onmemory location updates. Also, XMeter provides a deep
learning-based predictor to predict the accuracy of the application when different code regions are approximated. Our proposed scheme
does not require the programmer to experiment exhaustively for all possible error rates and types of approximation techniques. Moreover,
the scheme does not require any domain knowledge and is not specific to any approximation technique. Therefore, it is general enough to
be applicable for any approximation technique.We developed XMeter using LLVMand experimented with 10 applications.We analyzed
43 approximable functions and found 21 to be highly tolerant of errors.We validated our results using 4 well-known approximation
techniques and showed that XMeter can predict an application’s accuracy accurately.

Index Terms—Approximate computing, accuracy, static analysis, machine learning

Ç

1 INTRODUCTION

APPROXIMATE computing is a promising approach to
improve performance and energy efficiency. This style

of computing trades-off accuracy to gain those benefits.
Approximate computing lends itself to many application
domains that have an inherent tolerance towards inaccuracy.
For example, video encoders are designed to give up perfect
accuracy for faster encoding and smaller videos [1]. Machine
learning algorithms are designed to produce probabilistic
models that are not 100 percent accurate. Many scientific
computations (e.g.,n body simulations [2]) are inherently
inaccurate in that they are designed to produce an approxi-
mation to an ideal result.

Different approximation techniques have been proposed
in literature [3]. For example, loop perforation is an approxi-
mation technique to skip (occasionally) some iterations of a
loop in order to speed up the application [4]. Parrot trans-
formation skips an entire function execution and instead,
invokes a hardware neural network with the function’s
parameters to get an approximate result [5]. Paraprox repla-
ces a data parallel kernel with a parameterized approximate
kernel and tunes it at runtime to satisfy some quality met-
ric [6]. There are techniques such as barrier [7] and lock

approximation [8] that aim at reducing synchronization over-
head by relaxing some semantics (e.g.,allowing a long wait-
ing thread to skip a critical section). Besides these, there are
techniques that relax the accuracy of data itself. For example,
load value approximation learns general patterns of values of
some data, generates approximate values using the learned
patterns, and uses those values (instead of the original ones)
in order to speed up the application [9]. Approximate storage
proposes to store data approximately in solid state memories
to reduce the complexity and wear out of the underlying
memory cells [10]. Doppleganger cache groups tags of multi-
ple similar cache lines with a single data block in order to
reduce data storage [11]. Venkatagiri et al. [12] applied soft-
ware approximation techniques for summarizing videos in
unmanned aerial vehicles and showed that such techniques
can have minimal effect on the application’s resiliency to soft
errors (of hardware).

Various approximation techniques differ from each other
substantially. However, they all require the ability to find code
that is amenable to approximation. To find such code, some
existing proposals focus on every code region of a specific
type (e.g.,loop, critical section, barrier etc.) [4], [7], [8], [13].
Others require the programmers to annotate some potential
code based on domain expertise [5], [11], [14]. Programmers
need to experiment with each instance of the potential code
region exhaustively to find out the actual approximable code
regions and their accuracy characteristics. We argue that
such an approach is ad hoc, labor intensive, and not scalable
to larger programs. Moreover, programmers need to repeat
the process entirely for each new approximation technique.
Thus, in order to make approximation techniques practical
and usable, we need an approach that, given an application,
automatically finds code regions amenable to approximation,
can predict those regions’ accuracy characteristics without

! Riad Akram is with Intel Corporation, Santa Clara, CA 95054-1549 USA.
E-mail: riad.cse@gmail.com.

! Shantanu Mandal and Abdullah Muzahid are with the Department of
Computer Science and Engineering, Texas A&M University, College
Station, TX 77843 USA. E-mail: {shanto, abdullah.muzahid}@tamu.edu.

Manuscript received 19 Nov. 2019; revised 9 June 2020; accepted 10 June 2020.
Date of publication 25 June 2020; date of current version 9 June 2021.
(Corresponding author: Abdullah Muzahid.)
Recommended for acceptance by R. Wang.
Digital Object Identifier no. 10.1109/TC.2020.3005083

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 7, JULY 2021 1081

0018-9340 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8145-815X
https://orcid.org/0000-0001-8145-815X
https://orcid.org/0000-0001-8145-815X
https://orcid.org/0000-0001-8145-815X
https://orcid.org/0000-0001-8145-815X
mailto:riad.cse@gmail.com
mailto:shanto@tamu.edu
mailto:abdullah.muzahid@tamu.edu

exhaustive experimentation, and does not rely on the details
of any specific type of approximation technique.

Towards the aforementioned goals, we propose XMeter.
XMeter analyzes application code statically to find out
approximable code regions. The static analysis algorithm tra-
verses application’s call graph multiple times to find func-
tions where any approximation technique can be easily
applied. The analysis determines whether a function can be
easily approximated or not by checking thememory locations
that are updated inside the function. In addition, XMeter pro-
vides a deep learning based predictor that can be used to pre-
dict accuracy of the application when different code regions
are approximated. The predictor can predict accuracy based
on how the application behaves during a few (e.g., 3) error
rates at the approximable code region. The application’s
behavior during a few error rates is called theAccuracy Signa-
ture of the approximable code region. Thus, the predictor
does not require the programmer to experiment exhaustively
for all possible error rates and all possible types of approxima-
tion techniques. In other words, XMeter provides a general
predictor that can be used in the context of any approximation
technique. In essence, XMeter provides programmers the abil-
ity to go over a set of approximable code regions and use the
general predictor to determine the accuracy characteristics of
those regions for any error rate (which in turn can help pro-
grammers to decide the most suitable code region to approxi-
mate). Thus, XMetermakes the following contributions:

! Automatic Approach: XMeter can find approxim-
able functions automatically without any domain
knowledge.

! Novel Static Analyzer: XMeter proposes a novel
static analysis algorithm to find approximable func-
tions. The analysis is based on call graph traversals
and memory locations that are updated inside the
functions.

! General Predictor: XMeter provides a novel deep learn-
ing based predictor that can predict accuracy of an
application when a function is approximated. The
predictor takes the Accuracy Signature of the func-
tion and predicts application accuracy at any error
rate. The predictor is not specific to any particular
approximation technique. XMeter is the first tech-
nique to predict accuracy for approximable functions
using deep learning.

We developed XMeter using LLVM [15]. We evaluated it
using a total of 10 applications - seven from AxBench [16]
benchmark suit, Lulesh [17] andMILCmk [18] fromLawrence
Livermore National Lab, and gzip [19]. We analyzed 43 func-
tions in total. Our results showed that 21 functions are highly
tolerant of errors i.e.,the application accuracy does not drop
below 80 percent even at a high error rate in these functions.
We also found 12 functions not to be tolerant of any error at all
i.e.,the application accuracy drops below 50 percent even at a
very low error rate.We validated XMeter’s accuracy predictor
against 4 well known approximation techniques - function
memoization [20], loop perforation [4], task skipping [21],
[22], and precision reduction [23]. Our validation results
showed that XMeter is highly accurate and effective in pre-
dicting accuracy. especially for low to moderate approxima-
tion rates.

The rest of the paper is organized as follows: Section 2
describes some related work; Section 3 explains the main
idea; Section 4 provides implementation details; Section 5
discusses the results, and finally, Section 6 concludes.

2 RELATED WORK

Due to growing interest in the field of approximate comput-
ing, many techniques have been proposed to sacrifice accu-
racy for improved power, performance and scalability.
Loop perforation [4], for example, skips some iterations of a
loop to improve performance. Laurenzano et al. [13] use
canary inputs that are representations of the full inputs and
different approximation techniques to find the best approxi-
mation technique within an accuracy threshold. It does so
automatically.

A number ofwork uses dynamicmonitoring to keep accu-
racy within a limit. For example, SAGE [22] provides trans-
parent automated approximate programs using offline
compilation and run-time monitoring to keep output quality
within a certain limit. In the offline phase, approximate pro-
grams are created using different optimizations targeting
atomic operations, input data packing and thread fusion.
Mitra et al. [24] use tunable approximation levels in approx-
imable blocks of a program to find best performing approxi-
mation setting. But they have to rely on user to identify
approximable blocks. Sui et al. [25] address control problem
of tunable approximate programs, formulate the problem
and use machine learning technique to create error and cost
model and finally use this model to find best approximation
settings that improved performance or power. Rumba [26]
provides runtime detection and recovery modules to keep
output quality in check with performance improvement and
energy efficiency. Programmers have to annotate the code
that will be mapped to approximation accelerator. Mahajan
et al. [27] propose to classify dynamically whether approxi-
mating a function using neural networks can lead to unac-
ceptable output quality. If so, the technique refrains from
approximating the function. For the initial classification, a
tabular predictor or a neural network can be used. Hashim
et al. [28] propose ApproxHPVM, a portable compiler for
accuracy-aware optimizations. The key idea is tomap output
accuracy limit to accuracy limits for individual approxim-
able computations, autotune the code to satisfy the limits
using a combination of approximation techniques and hard-
ware. Our proposed approach could complement the auto-
tuning phase of ApproxHPVM.

Some approximation techniques only target data. For
exampe, Doppelg€anger [11] presents a cache that approxi-
mates similar values across cache to reduce cache size and
energy without performance degradation and too much
accuracy loss. Programmers have to annotate programs to
identify the data to be approximated. Miguel et al. [9] pro-
vide a load value estimator which provides estimated value
when there is a load cache miss for improved performance,
power with acceptable accuracy. Programmers have to
annotate program to mark the data that can be approxi-
mated. Boston et al. [29] provide programming language
support for programmers to specify probability of approxi-
mating a code region for improved performance within out-
put accuracy threshold. EnerJ [14] abandons automation as

1082 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 7, JULY 2021

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

programmers need to specify manually and explicitly which
part of programs can be approximated to gain energy effi-
ciency with inaccurate computations. ExpAX [30] provides
a framework to automate approximate programming by
allowing programmers to implicitly declare which data and
operations of programs are approximable by explicitly
declaring the acceptable output quality. It proposes a static
analysis based on the output expectation to determine safe-
to-approximate operations. ACCEPT [31] provides a com-
piler analysis based on data type annotations about whether
a data needs to be precise or not. The static analysis declares
a code as approximable if no modification to precise data is
visible outside. Thus, XMeter’s static analyzer has resem-
blance with both ACCEPT and ExpAX. However, we argue
that XMeter is more advanced than either of them because
XMeter does not require any prior knowledge about data
preciseness or expectations.

A large number of work target functions for approxima-
tion. Rely [32] requires programmers to manually specify
functions with reliability requirement to be approximated.
Axilog [33] provides a language annotations for designers to
approximate hardwire design for energy efficiency with
acceptable output loss. Esmaeilzadeh et al. [5] and Zhenghao
et al. [34] propose to approximate certain functions of a pro-
gramusing a neural network based hardware. Yazdanbakhsh
et al. [35] propose to use neural accelerator in GPU to approxi-
mate programs in order to gain performance by sacrificing
accuracy. In the last two work, approximable code regions
have to be annotated by programmers.

Approxilyzer [36] and gem5-Approxilyzer [37] are the
closest proposals to our scheme. They provide a framework
to quantify the impact of approximation automatically.
They quantify the effect of a single bit flip in a register oper-
and of an instruction. Different instructions are clustered
together based on their data and control flow. The techni-
ques experiment with one instruction per cluster to quantify
the output quality. Any other instruction from the same
cluster is predicted to have the same output quality. There
are two major differences between these techniques and our
proposed scheme, XMeter. First, both Approxilyzer techni-
ques find approximable instructions, and are, therefore, ISA
and architecture dependent. On the other hand, XMeter
finds approximable functions by statically analyzing the
code. Therefore, XMeter is architecture independent and
provides a higher level insight about approximable func-
tionalities of a program. Second, Approxilyzer techniques

provide a coarse grained prediction about whether an
approximable instruction leads to a detectable or silent data
corruption. In contrast, XMeter can predict the exact output
accuracy for a given error rate (thanks to the machine learn-
ing based accuracy predictor).

3 XMETER: MAIN IDEA

XMeter consists of three major components - Static Ana-
lyzer, Accuracy Signature Generator and Performance Pre-
dictor. The overall system diagram is shown in Fig. 1. Next,
we are going to elaborate on each component.

3.1 Static Analyzer
Static analyzer finds code regions whose computations can
be approximated. Designing such an analyzer requires us to
resolve two issues - (i) what is the granularity of code regions
to analyze, and (ii) what should be the properties of such
regions.

3.1.1 Granularity of Code Regions

A code region can be of different granularities. It can be a
sequence of instructions, basic block, loop, critical section,
function etc.We choose function as the code region granular-
ity because it provides the right balance between scope and
semantic boundary. Moreover, any approximation tech-
nique applicable to a smaller granularity (e.g.,loop, critical
section etc.) can be easily covered by this choice. For exam-
ple, if a particular function is approximable, we can apply
techniques such as loop perforation, barrier approximation,
lock approximation etc. to any loop, barrier or lock inside the
function. If the function has multiples loops, barriers or
locks, we can apply the approximation technique to all of
them or some of them. Similarly, techniques that relax data
accuracy can focus on the data accessed inside the function.

3.1.2 Properties of Code Regions

One of the goals of XMeter is to find functions whose com-
putations can be easily approximated. Let us consider a
function F . An approximation technique essentially repla-
ces F with F0 such that F0 computes similar results. Let us
assume that C is the set of communication points through
which F interacts with the rest of the program. If F is side
effect free (i.e.,it does not modify any non-local data and
communicates with its callers by returning some result),

Fig. 1. System diagram of XMeter.

AKRAM ET AL.: XMETER: FINDING APPROXIMABLE FUNCTIONS AND PREDICTING THEIR ACCURACY 1083

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

then C contains only the return value. If F modifies refer-
ence parameters, then C also includes the reference parame-
ters. If F modifies some arbitrary non-local data (that is not
passed as a reference parameter), then C includes that non-
local data too. If C is a large set containing many arbitrary
non-local data, the effect of approximation can permeate to
the rest of the program through any member of C. Such a
scenario makes it harder to constrain the application’s accu-
racy degradation. Therefore, many techniques (such as par-
rot transformation [5]) approximate F only if C does not
contain arbitrary non-local data. In other words, many tech-
niques choose to approximate F if C contains only return
value (in case of side-effect free function) or reference
parameters of F . Therefore, XMeter also focuses on such
F ’s only.

3.1.3 Detailed Algorithm

The formal algorithm is shown in Algorithm 1. At the high
level, the static analyzer of XMeter works by traversing the
call graph G of a program multiple times. During the first
traversal (Line 1-12), XMeter initializes various flags and
sets. For each function F , it keeps a flag, called Approxim-
able (AF). If F does any memory allocation, deallocation,
blocking system call or I/O activities, XMeter initializes
AF FALSE (Line 2-4). However, if F does not do any
such operation, XMeter first populates the communication
set CF (Line 8). CF contains all non-local variables that are
being modified inside F as well as its return value. XMeter
initializes AF TRUE if F does not write to any non-local
variable other than its reference parameters (Line 10). Oth-
erwise, XMeter initializes AF FALSE (Line 12). After the
first traversal, other traversals are done in Depth First
Search (DFS) order to reduce the total number of traversals.
During those traversals, XMeter updates AF by doing a log-
ical AND of approximable flags of all the functions called
by F (Line 19). In other words, XMeter keeps a function as
approximable if each of its called functions is also approx-
imable. Otherwise, XMeter updates the flag to make F non-
approximable. Communication set of F is also updated sim-
ilarly to include the communication set of each called func-
tion (Line 20). XMeter continues to traverse the call graph
until there is no change in any approximable flag (Lines 21-
22). A rough sketch to prove that Algorithm 1 is sound and
complete is provided in Section 3.4.

3.2 Accuracy Signature Generator
Static analyzer of XMeter provides a list of approximable
functions. One of the goals of XMeter is to predict applica-
tion accuracy for any arbitrary error rate at an approximable
function F . In order to facilitate the prediction process, we
introduce the notion of Accuracy Signature (ASF). Intui-
tively, ASF acts as a hint about how approximation of F
impacts application accuracy by providing accuracy corre-
sponding to a few error rates. Accuracy predictor takes ASF
to predict accuracy corresponding to any arbitrary error
rate at F . With this view in mind, we can define ASF as a
vector ½ai#ni¼1, where ai is the application accuracy when F is
approximated at an error rate ei. n is kept sufficiently small
(e.g., n ¼ 3 is found to be adequate in our experiments in
Section 5.4) so that XMeter does not amount to an exhaus-
tive experimentation technique at all possible error rates.

Algorithm 1. Find Approximable Functions of a Program

Input: Call graph G
Output: Approximable functions
1 for Each F in G do
2 if F contains memory (de)allocation, blocking system call or I/

O then
3 AF FALSE;
4 CF ;;
5 else
6 PF Reference parameters of F ;
7 RF Return value;
8 CF Variables of non local stores and return value;
9 if CF n ðPF [RF Þ ¼ f then
10 AF TRUE;
11 else
12 AF FALSE;
13 terminate FALSE;
14 while terminate ¼ FALSE do
15 terminate TRUE;
16 for Each F in G in DFS order do
17 CLF Functions called from F in G;
18 A0F AF ;
19 AF AF ^ ð

V
H2CLF AHÞ;

20 CF CF [ð
S
H2CLF ðCH n RHÞÞ;

21 ifA0F 6¼ AF then
22 terminate terminate ^ FALSE;
23 return

To generate ASF , XMeter emulates the behavior of an
approximation technique at F . Since F interacts with the
rest of the program with its communication set CF , the effect
of approximation can be emulated by injecting error at each
of the communication points in CF . This emulation tech-
nique makes XMeter a general approach that can be used in
the context of any approximation technique. Error injection
is done by adding some instrumentation code for each
member of CF . Recall that CF contains return value and/or
reference parameters that are modified inside F . In case of
the return value, an error is injected at the return statement
whereas for a reference parameter, an error is injected at the
last update of that parameter. Last update is determined by
the instrumentation code at runtime. To inject error ei at a
value v, XMeter replaces v with v' ð1(eiÞ. The final accu-
racy for ei is taken as the average from both error points. In
our experiments, error rate 1, 50 and 100 percent are found
to generate effective ASF that can boost prediction ability of
Accuracy Predictor. Thus, XMeter records application accu-
racy corresponding to low (1 percent), medium (50 percent),
and high (100 percent) error rate at F to generate ASF .
Finally, to ensure execution of error injection code, software
test fuzzing can be used [38].

3.3 Accuracy Predictor
Accuracy predictor is essentially a deep neural network with
an input layer followed by an embedding layer, h hidden
layers and an output layer (Fig. 2). The predictor takes ASF
and an error rate as inputs. Each input number is passed
through the embedding layer which converts it into a d
dimensional vector. The purpose of the converting each
input number into a d dimensional vector is to place similar
signature (or error rate) into nearby points in a d dimensional

1084 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 7, JULY 2021

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

space. Similar technique has been used in natural language
processing to capture semantic similarity among words [39].
d dimensional vectors are passed through h hidden layers
and finally an output layer. Each hidden layer consists of n
neurons. Since output layer produces a single value (i.e.,
accuracy prediction), it contains a single neuron. Hidden
layer neurons use hyperbolic tangent activation function [40]
while the output layer neuron uses ReLU activation function.
We choose these activation functions because they provided
the best accuracy in our experiments. Since predicting appli-
cation accuracy can be considered as a regression problem,
XMeter uses Mean Squared Error (MSE) as the loss function
for the predictor. Note that the choice of MSE as a loss func-
tion does not imply that an application’s accuracy degrada-
tion needs to be expressed in MSE. In fact, the choice of loss
function is orthogonal to the application’s accuracy metric.
In order to determine the value of h, n, d, we exhaustively
experiment with different combinations of values and pick
the network architecture that provides the best accuracy.
More on this in Section 5.4.

3.4 Proof Sketch
Here, we are going to show that Algorithm 1 is both sound
and complete.

Theorem 1. Algorithm 1 is sound i.e., if a function calls a
non-approximable function directly or indirectly, the
function will be marked as non-approximable.

Proof. We can prove this theorem using proof by contradic-
tion. Suppose, we have a call graph as shown in Fig. 3.
Here, Root represents the main function, and V0 repre-
sents another function that calls function Vn through a
chain of other functions such as V1. For the sake of contra-
diction, let us assume that the Algorithm 1 marks Vn as

non-approximable (i.e., AVn ¼ FALSE) but V0 as approx-
imable (i.e., AV0 ¼ TRUE). Since V0 can be marked as
approximable only if all of its called functions are approx-
imable (Line 17-19 in Algorithm 1), Vi is approximable.
Following the same argument, all of the called functions of
V1 should be marked as approximable. If we follow the
call chain from V1 to Vn and apply the same argument, Vn

should be marked as approximable. However, this contra-
dicts our initial assumption that Vn is non-approximable.
Thus, the algorithm must not mark V0 as approximable if
one of its called functions is non-approximable. In other
words, all the functions marked as non-approximable
by Algorithm 1 are correctly marked so. Therefore, the
remaining functions that are marked approximable are
correctly marked too. tu

Theorem 2. Algorithm 1 is complete i.e., if an approximable
function exists, the algorithm will find it.

Proof. We can prove the completeness of Algorithm 1 using
induction. Let us consider the call graph in Fig. 4. As
before, Root represents the main function. Assume that
for a node, d represents the longest distance (excluding
loop induced repetition) of that node from a leaf node in
the call graph. Thus, for a leaf node V0, we will have
d ¼ 0. Also assume that V1 and Vn have d ¼ 1 and d ¼ n
respectively. tu

Let us consider an arbitrary approximable function. It
could be a leaf or internal node in the call graph. In other
words, an approximable function can have d ¼ 0 or d > 0.
Without loss of generality, let us assume that V0 with d ¼ 0 is
an approximable function. Algorithm 1 will mark V0 as
approximable in Line 6-10 during the initial loop. Since V0 is
a leaf node, it will remain approximable during the iterations
of the second loop. Thus, Algorithm 1will find approximable
function V0.

Now, we will prove that Algorithm 1 can find an approx-
imable function even if its d > 0. Without loss of generality,
assume that both V1 and Vn are approximable (i.e., all of
their called functions are approximable too). During the tra-
versal of the call graph in DFS order, Line 17-19 will check if
the called functions of V1 are approximable. Since d ¼ 1 (i.e.,
V1 calls some leaf functions directly), Algorithm 1 will mark
it as approximable during the first iteration of the second
loop. Following same logic, if an approximable functions
has d ¼ 2, Algorithm 1 will mark it as approximable by at
most 2 iterations of the second loop. Continuing this way,
for the approximable function Vn with d ¼ n, Algorithm 1
will mark it as approximable by at most n iterations of the
second loop. Thus, Algorithm 1 can find an approximable
function for any value of d.

Fig. 2. Accuracy predictor of XMeter.

Fig. 3. An example call graph for Theorem 1.

Fig. 4. An arbitrary call graph with information about leaf node.

AKRAM ET AL.: XMETER: FINDING APPROXIMABLE FUNCTIONS AND PREDICTING THEIR ACCURACY 1085

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

4 IMPLEMENTATION DETAILS

Both the static analyzer and accuracy signature generator of
XMeter are written in C++ using LLVM [15]. Given an
application, the static analyzer provides a list of approxim-
able functions and their communication sets. The accuracy
signature generator iterates over each approximable func-
tion and injects errors at a number of different rates in each
communication point. This results in a number of different
versions of the source code - one for each approximable
function and error rate. XMeter compiles and executes each
such version and records the corresponding output accu-
racy. Thus, XMeter collects accuracy signature data for each
approximable function.

The accuracy predictor is written in Keras [41] with Ten-
sorFlow [42] as the back end. In order to generate training
data for the accuracy predictor, we randomly split all
approximable functions (found by the static analyzer) into
training and testing set. The training set contains 80 percent
approximable functions while the rest are in the testing set.
For each approximable function in the training set, XMeter
injects errors (similar to that of accuracy signature genera-
tor) from 1 to 100 percent with 1 percent increment. XMeter
collects application’s output accuracy corresponding to
each error rate. Thus, if we have x approximable functions
in the training set, we collect 100x accuracy data, which are,
then, used to generate the training data for the predictor.
After the accuracy predictor trains on the training data, vali-
dation is done to asses the prediction accuracy using the
testing set approximable functions. We plan to release our
code in a public repository after the paper is published.

Current implementation of XMeter excludes any func-
tion, F , that modifies arbitrary non-local data such as global
and static data. Such a function can be easily supported by
making the following changes. First, XMeter needs to use
points-to analysis [43] to determine the complete communi-
cation set, CF . Note that, CF will include the non-local com-
munication points of the callee functions too. Lines 5-12 of
Algorithm 1 will no longer be required. Second, XMeter
needs to inject errors at each of the communication points of
CF during the error injection process. The rest of the compo-
nents of XMeter can be applied without any modification.

5 EVALUATION

In this section, we will first outline the experimental setup
followed by the effectiveness of our static analyzer. Finally,
we will show some results related to the accuracy predictor
of XMeter.

5.1 Experimental Setup
We used ten applications for evaluation. Seven of them are
fromAxBench [16] benchmark suite, two applications (Lulesh
and MILCmk) are from Lawrence Livermore National
Lab [17], and the last one, Gzip [19], is an open source applica-
tion. AxBench is widely used in approximate computing
studies [5], [44]. Lulesh and MILCmk are high performance
computing benchmarks used in large supercomputers. Lastly,
Gzip is a large utility application used for compressing files.
Accuracy is calculated by comparing the final results of an
application with its golden results (i.e., results obtained from

the original program). The applications and their accuracy
metrics are shown in Table 1. Similar metrics have been used
in prior work [45]. For each application, we used two inputs
to demonstrate the generality of our findings. Default inputs
of AxBench are referred to as Input1 whereas Input2 refers to
manually generated second set of inputs. For Lulesh, we used
problem size 13 as Input1 and problem size 7 as the Input2. For
MILCmk, we used array lengths from 26 to 28 as Input1 and
from 26 to 211 as Input2. For Gzip, we used two random text
files - small one as Input1 and the other as Input2. All experi-
ments were performed on a 7 node cluster with 100 cores and
345 GBmemory. For training the accuracy predictor, we used
a learning rate of 0.001 with Adam optimizer. We trained up
to 200 epochs.We used 3 hidden layer neural networkwith 20
dimensional embedding layer in the front and an output layer
at the end as our accuracy predictor. Each hidden layer con-
tains 512 neurons. We used 3 error rates to generate accuracy
signatures. These parameters are chosen experimentally as
shown in Section 5.4.

5.2 Effectiveness of Static Analyzer
XMeter found a total of 43 approximable functions in 10
applications. A brief characterization of each application
and its approximable functions is provided below. Since dif-
ferent inputs tend not to affect the characterization much,
we omit input specificity in most cases.

5.2.1 Sobel

XMeter found two approximable functions - convolution
and makeOpMem (Figs. 5a and 5b). convolution is a side
effect free function that calculates the convolution of each
pixel. It shows almost a linear relationship between accuracy
and error. Therefore, this function can tolerate low-to-mod-
erate errors. The other approximable function, makeOpMem,
is not a side effect free function. It makes operational mem-
ory for each pixel using the surrounding pixels. Accuracy for
makeOpMem tends to decrease with increased error rate with
some irregularities. However, the accuracy plot of makeOp-
Mem is steeper than that of convolution. Therefore, make-
OpMem can tolerate less error than convolution.

TABLE 1
Accuracy Metric Used for Applications

Application LOC Description Accuracy Metric

Sobel 325 Sobel edge detector Image difference

Kmeans 495 K-means clustering of Image difference

pixels

Jpeg 1,320 Image encoding Image difference

Blackscholes 378 Financial modeling Mean relative

error

FFT 197 Fast Fourier Transform Mean relative

error

Inversek2j 137 Inverse kinematics Mean relative

error

Jmeint 741 Triangle intersection Miss rate

detection

Lulesh 7,240 Hydrodynamics simulation Mean relative

error

MILCmk 5,000 Quantum lattice Vector difference

Gzip 8,614 Compression algorithm Compression

ratio

1086 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 7, JULY 2021

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

5.2.2 Kmeans

XMeter found three approximable functions - euclidean-
Distance, assignCluster, and segmentImage (Figs. 5c
and 5d). euclideanDistance calculates euclidean distance

of a pixel from the center of a cluster and suffers no accuracy
loss except at 100 percent error rate. The other two approxim-
able functions call only side effect free functions and modify
their parameters. While assignCluster has high accuracy

Fig. 5. Accuracy versus error graphs for all approximable functions. I1 and I2 indicates input1 and input2, respectively.

AKRAM ET AL.: XMETER: FINDING APPROXIMABLE FUNCTIONS AND PREDICTING THEIR ACCURACY 1087

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

(above 80 percent) for up to 30 percent error rates, segment-
Image suffers from high accuracy loss (up to 40 percent) even
at a low rate. Thus, cluster assignment and euclidean distance
calculation can be approximated to a high degree without
compromising the final accuracy.

5.2.3 Jpeg

XMeter found five approximable functions in Jpeg applica-
tion (Figs. 5e and 5f). Among them, dspDivision is the
only side effect free function. Every function except make-
Grayscale shows almost fixed accuracy across different
error rates. makeGrayscale can cause accuracy degrada-
tion up to 40 percent for input1 and 20 percent for input2.
So, in general, the functions of Jpeg have a high tolerance
towards errors.

5.2.4 Lulesh

XMeter found 14 approximable functions (Figs. 5g, 5h, 5i
and 5j). CalcElemFBHourglassForce is the largest func-
tion (in terms of lines of code). The function calculates hour-
glass force for each element which is then applied to each
node’s forces. Intuitively, such a function should tolerate
inaccuracy. This intuition is supported in the graph also.
The function’s accuracy ranges from 99 to 95 percent across
different error rates. All functions except SumElemFace-
Normal exhibit similar behavior. SumElemFaceNormal

has a drastic drop in accuracy even at a low error rate.
Clearly, this function cannot tolerate any error at all. Among
the 7 approximable functions shown in Figs. 5i and 5j,
SumElemStressesToNodeForces and CalcElemVolu-

meDerivate have high tolerance towards errors. Init-
StressTermsForElems can suffer from up to 20 percent
loss in accuracy for up to 50 percent error rate. Thus, this
function has a moderate tolerance towards errors. Other
functions cannot tolerate error at all and suffer from rapid
degradation in accuracy.

5.2.5 Blackscholes

XMeter found two approximable functions (Figs. 5k and 5l).
CNDF is a side effect free function that calculates cumula-
tive distribution function of the standard normal distribution.
At a low error rate, it has high accuracy i.e., above 80 percent.
At higher error rates, accuracy drops to 20 percent. So, this
function cannot tolerate much error. BlkSchlsEqEuroNo-
Div is another approximable function which calls only side
effect free functions. Accuracy drops linearly for different
error rates. This implies that this function can tolerate only
low error rates.

5.2.6 FFT

XMeter found two approximable functions - fftSinCos
and radix2DitCooleyTykeyFft (Figs. 5m and 5n).
fftSinCos modifies two of its parameters. It calculates
twiddle factor in Fast Fourier Transform algorithm. The
accuracy quickly drops to below 20 percent. This is
true for both inputs. So, this function cannot tolerate any
error without significantly degrading the accuracy. radi-
x2DitCooleyTykeyFft is the second approximable
function that calls side effect free functions and modifies

five of its parameters. Similar to the previous function, this
function also causes a rapid drop of accuracy even at a
very low error rate.

5.2.7 Inversek2j

XMeter found two approximable functions - inversek2j
and forwardk2j (Figs. 5o and 5p). None of them are side
effect free functions. inversek2j calculates starting point
of a joint system based on the given end position. At a low
error rate, it has an accuracy of 90 percent. The accuracy
drops to 0 percent at higher error rates. Accuracy loss is
almost linear. So, this function can tolerate low error rates.
The other approximable function, forwardk2j, quickly
cause an accuracy drop to 0 percent. So, this function is not
tolerant to any error.

5.2.8 Jmeint

XMeter finds four approximable functions - COMPUTE_

INTERVALS, DOT, ISECT, and tri_tri_intersect

(Figs. 5q and 5r). Injecting errors to those functions does not
cause any drop of accuracy except at 100 percent error rate.
So, these functions are highly tolerant to errors.

5.2.9 MILCmk

XMeter finds 5 approximable functions (Figs. 5s and 5t).
Each of the functions are computing sums used in quantum
lattice calculation. Thus, intuitively, they should be able to
tolerate significant inaccuracy. This is clearly demonstrated
in the graphs. Except for sum_v, others are highly error tol-
erant. sum_v can tolerate low to moderate errors.

5.2.10 Gzip

We found 4 approximable functions in Gzip - bi_reverse,
gen_codes, make_table, and updcrc. However, none
of them are error tolerant. Even at a low error rate, Gzip
produces a compressed file which cannot be decom-
pressed. In other words, Gzip’s outputs are completely
corrupted.

Summarized Results

! We found 43 approximable functions.
! Among them, 21 functions are highly error tolerant

(i.e., they have over 80 percent accuracy even at a
high error rate) and 12 functions are not tolerant to
error at all (i.e., they have less than 50 percent accu-
racy even at a low to moderate error rate).

! Different inputs do not have any effect on how an
approximable function impacts application’s accu-
racy. So, approximation behavior is largely input
independent.

5.3 Effectiveness of Accuracy Predictor

5.3.1 Accuracy in Testing Set

Werandomly choose 7 approximable functions (i.e., 20 percent
of all approximable functions) as testing set. After training, we
used accuracy predictor to predict for each of those functions.
Fig. 6 shows the results. Accuracy predictor is quite accurate
for 4 functions - AreaFace, CNDF, Dot, and dspDivision.
The prediction error is 20 percent or less for these functions.

1088 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 7, JULY 2021

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

For fftSinCos and forwardk2j, the predicted graph fol-
lows the actual accuracy graph during lower error rates. At
higher error rates (such as 30 percent ormore), prediction error
is higher (as high as 30 percent). Among the seven functions,
makeOpMem suffers from the largest prediction error (as high
as 70 percent). For all functions, the prediction accuracy
remains unchanged across inputs. This is expected since accu-
racy behavior is largely independent of inputs.

5.3.2 Validation With Approximation Techniques

To validate XMeter’s prediction ability, we experimented
with 4 approximation techniques - function memoiza-
tion [20], loop perforation [4], task skipping [21], [22], and
precision reduction [23]. For each technique, we applied
high, medium, and low rates of approximation to the most
error tolerant approximable function of each application
and calculated the application’s output accuracy. Table 2
shows the selected functions. We compared the calculated
accuracy against XMeter’s predicted accuracy. Although we
experimented with both inputs, we show results only for
Input1 because Input2 produces similar results.

Function Memoization. To memoize a function F at a
rate of r%, we record the return value (or reference parame-
ters’ values, whichever is appropriate) from the last invoca-
tion of F , randomly r% of the times. During the next
invocation of F , the program uses the recorded value(s)
instead of executing the function. We calculate how much
error is injected due to memoization and what the final accu-
racy of the application is. We denote 90, 40, and 10 percent as
high, medium, and low rates of memoization. Figs. 7a, 7b,
and 7c show the results for different memoization rates.
Except for Sobel and Kmeans, XMeter is quite accurate in
predicting accuracy (less than 20 percent prediction error)
for different memoization rates. Prediction is more accurate
at low to moderate memoization rates. Sobel, Kmeans, and
MILCmk suffer from higher prediction error especially at
highmemoization rate.

Loop Perforation. To perforate a loop at a rate of r%,
we randomly drop r% iterations of the loop. We calcu-
late error injected due to the perforation and the corre-
sponding accuracy of the application. Note that loop
perforation is possible only if the approximable function
has a loop. We consider 10, 40, and 90 percent perfora-
tion rates as low, medium, and high respectively. We are
able to perforate loops in the error tolerant functions of
5 applications. Blackscholes, Inversek2j and Jmeint does
not have any loop in the most error tolerant approxim-
able functions. Figs. 7d, 7e, and 7f show the results.
At low and moderate perforation rate, XMeter predicts
fairly accurately (with less than 20 percent error) except
for FFT and Sobel. At high perforation rates, we observe
accurate prediction in 3 applications - Sobel, Kmeans,
and Jpeg.

In summary, XMeter’s prediction is quite accurate at low
and moderate perforation rates.

Fig. 6. Actual and predicted accuracy for testing set functions. I1 and I2 indicates input 1 and 2, respectively.

TABLE 2
Functions Used for Validating XMeter’s Prediction Ability

Application Function

Sobel Convolution
Kmeans euclideanDistance
Jpeg makeGrayScale
Blackscholes BlkSchlsEqEuroNoDiv
FFT fftSinCos
Inversek2j inversek2j
Jmeint DOT
Lulesh VoluDer
MILCmk sum_v

AKRAM ET AL.: XMETER: FINDING APPROXIMABLE FUNCTIONS AND PREDICTING THEIR ACCURACY 1089

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Graphs validating XMeter’s prediction against different approximation techniques.

Fig. 8. Mean absolute error in prediction for different neural network and accuracy signature configurations. Each network configuration is shown as
(hidden layers, neurons per hidden layer, dimension).

1090 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 7, JULY 2021

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

Task Skipping. We consider a function as a task. We can
skip a task randomly at a rate of r%. As before, we calculate
error injected due to skipping and the corresponding final
accuracy of the application.We consider 10, 40, and 90 percent
skipping rates as low, medium, and high respectively.
Figs. 7g, 7h, and 7i show the results. At low andmedium rates,
XMeter predicts fairly accurately (with less than 20 percent
difference) except for Sobel, Kmeans and Inversek2j. At high
skipping rate, XMeter predicts three of the applications (i.e.,
Sobel, Jpeg, and Lulesh) quite accurately while others suffer
from a significant prediction error.

Precision Reduction. We experimented by reducing
precision of floating point numbers. More specifically, we
reduce the number of digits after the decimal point. We
denote 9, 4, and 1 digit after the decimal point as low,
medium and high reduction of precision respectively. As
before, we calculate injected error and final accuracy of each
application. Figs. 7j, 7k, and 7l show the results for precision
reduction. Since the error tolerant functions of Sobel and
Jpeg do not return any floating point number, we do not
apply this technique to those two functions. XMeter has a
highly accurate prediction for every program at every reduc-
tion rate except for Jmeint at high reduction rate. For Jmeint,
prediction error is around 25 percent.

Summarized Results

! XMeter predicts quite accurately for low to medium
approximation rates. The results are consistent
across different approximation techniques and
inputs.

! XMeter suffers from high prediction errors at high
approximation rate. As before, this is true regardless
of approximation techniques and inputs.

5.4 Neural Network and Accuracy Signature
To determine the best configuration for our accuracy predic-
tor, we experiment with both the neural network and accu-
racy signature configuration. We vary the hidden layers (h)
from 1 to 5, the neurons per hidden layer (n) from 128 to 512
(with 128 increment) and the embedding layer dimension
(d) from 5 to 20 (with 5 increment). This leads to a total of 80
different network configurations. We vary the number of
error rates in the accuracy signature between 1, 2, 3, 4, and
11. The error rates are (1), (1, 10), (1, 50, 100 percent), (1, 25,
50, 100), and (1, 10, 20, 30, ...,100 percent) respectively. We
trained and tested each configuration with the same train-
ing and testing set used in Section 5.3.1. The mean absolute
error in predicting testing set is shown in Figs. 8a, 8b, 8c, 8d
and 8e. Each network is shown as ðh; n; dÞ. We observe that
more error rates in the accuracy signature leads to higher
prediction accuracy except in smaller networks. This is
because larger networks suffer from overfitting when there
is a lower number of error rates. We should note that more
error rates imply higher number of profiling runs for con-
structing the accuracy signature. Therefore, to strike a bal-
ance between accuracy and profiling, we choose 3 error
rates as our default accuracy signature configuration
(Fig. 8c). In that case, network (3, 512, 20) and (4, 512, 20)
provide the lowest mean absolute error which is 10.2. We

choose (3, 512, 20) as the default configuration of the accu-
racy predictor.

5.5 Approximation Technique Selection
XMeter can be an effective tool in selecting approximation
techniques. To demonstrate such a use, we show the pre-
dicted accuracy for different approximation techniques for
the approximable functions of Kmeans in Fig. 9.Wedraw sev-
eral conclusions. First, function memoization can cause the
least accuracy degradation. Second, euclideanDistance is
the most tolerant of errors irrespective of approximation tech-
niques., given a target accuracy, say at least 80 percent, we
can decide which function should be approximated and how.
For example, segmentImage is the largest function among
the three and it can be approximated using function memo-
ization at a rate as high as 90 percent.

5.6 Time
Training data generation requires collecting accuracy pro-
files from a number of approximable functions at multiple
error rates. Thus, multiple invocations of those functions
are needed. Fortunately, this step is done only once. In our
experiments, this step takes around a day to finish. The
accuracy predictor takes less than 15 minutes to train. After
training is complete, the accuracy predictor can be used just
by generating an approximable function’s accuracy signa-
ture. Accuracy signature generation and accuracy predic-
tion takes less than a minute to finish. Thus, XMeter can be
an effective tool to get a quick estimate about approximation
opportunity in an application.

Fig. 9. XMeter can be used to select an approximation technique.

AKRAM ET AL.: XMETER: FINDING APPROXIMABLE FUNCTIONS AND PREDICTING THEIR ACCURACY 1091

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

6 CONCLUSION

Approximate computing has a significant potential to
improve the power, performance, and scalability of a com-
puting system. However, prior work requires exhaustive
experimentation with every instance of a specific type of
code region for each approximation technique or manual
annotation of approximable code regions (which requires
domain expertise). Both approaches pose a non-trivial
impediment in widespread adoption of approximation tech-
niques. Therefore, we proposeXMeter to automatically iden-
tify code sections where approximation can be used and
predict corresponding accuracy. XMeter first identifies
potential approximable functions using a novel static analy-
sis algorithm and provides a deep learning based predictor
to predict accuracy for any arbitrary error rate. We analyzed
43 approximable functions in 10 applications. We found 21
functions to be highly tolerant of errors whereas 12 functions
are found to be not tolerant of any error at all. Other func-
tions have moderate tolerance towards errors. Our valida-
tion results showed that XMeter is accurate in predicting
accuracy especially at low to moderate approximation rates.
Thus, XMeter is a fast, effective and promising approach.We
believe that by relieving programmers the burden of finding
approximable code regions, XMeter can pave the way of
widespread adoption of approximation techniques.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for spending
their valuable time on this article and provide useful feed-
back. The authors would also like to thank the members of
PALab group. The collaboration and discussion among the
group members were invaluable for this project. Finally, this
work was supported by the startup package provided by
Texas A&MUniversity andNSF under Grant No. 1652655.

REFERENCES

[1] x264. [Online]. Available: http://www.videolan.org/x264.html
[2] S. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms.

Cambridge, U.K.: Cambridge Univ. Press, 2003.
[3] T. Moreau et al., “A taxonomy of general purpose approximate

computing techniques,” IEEE Embedded. Syst. Lett., vol. 10, no. 1,
pp. 2–5, Mar. 2018.

[4] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, andM. Rinard,
“Managing performance vs. accuracy trade-offs with loop perfo-
ration,” in Proc. 19th ACM SIGSOFT Symp. and the 13th Eur. Conf.
Found. Softw. Eng., 2011, pp. 124–134.

[5] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
acceleration for general-purpose approximate programs,” in Proc.
45th Annu. IEEE/ACM Int. Symp.Microarchitecture, 2012, pp. 449–460.

[6] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox:
Pattern-based approximation for data parallel applications,” in
Proc. 19th Int. Conf. Architectural Support Program. Lang. Operating
Syst., 2014, pp. 35–50.

[7] M. C. Rinard, “Using early phase termination to eliminate load
imbalances at barrier synchronization points,” in Proc. 22nd Annu.
ACM SIGPLAN Conf. Object-Oriented Program. Syst. Lang. Appl.,
2007, pp. 369–386.

[8] R. Akram, M. M. Ul Alam, and A. Muzahid, “Approximate lock:
Trading off accuracy for performance by skipping critical sections,”
inProc. IEEE 27th Int. Symp. Softw. Rel. Eng., 2016, pp. 253–263.

[9] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approx-
imation,” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2014, pp. 127–139.

[10] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate
storage in solid-state memories,” in Proc. 46th Annu. IEEE/ACM
Int. Symp. Microarchitecture, 2013, pp. 25–36.

[11] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger,
“Doppelg€anger: A cache for approximate computing,” in Proc. 48th
Annu. IEEE/ACM Int. Symp.Microarchitecture, 2015, pp. 50–61.

[12] R. Venkatagiri et al..,“Impact of software approximations on the
resiliency of a video summarization system,” in Proc. 48th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2018, pp. 598–609.

[13] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and
L. Tang, “Input responsiveness: Using canary inputs to dynami-
cally steer approximation,” in Proc. 37th ACM SIGPLAN Conf. Pro-
gram. Lang. Des. Implementation, 2016, pp. 161–176.

[14] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze,
and D. Grossman, “EnerJ: Approximate data types for safe and
general low-power computation,” in Proc. 32nd ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2011, pp. 164–174.

[15] The LLVM compiler infrastructure. [Online]. Available: http://
llvm.org

[16] A. Yazdanbakhsh, D. Mahajan, P. Lotfi-Kamran, and H. Esmaeil-
zadeh, “AxBench: A multi-platform benchmark suite for app-
roximate computing,” IEEE Des. Test, vol. 34, no. 2, pp. 60–68,
Apr. 2017.

[17] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 updates and
changes,” Lawrence Livermore National Laboratory, Livermore,
CA, Tech. Rep. LLNL-TR-641973, Aug. 2013.

[18] CORAL benchmarks. [Online]. Available: https://asc.llnl.gov/
CORAL-benchmarks/

[19] gzip. [Online]. Available: https://www.gzip.org/
[20] Approximate memoization. [Online]. Available: https://github.

com/IntelLabs/iACT
[21] A. Raha, S. Venkataramani, V. Raghunathan, and A. Raghunathan,

“Quality configurable reduce-and-rank for energy efficient approx-
imate computing,” in Proc. Des. Autom. Test Eur. Conf. Exhib., 2015,
pp. 665–670.

[22] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke,
“SAGE: Self-tuning approximation for graphics engines,” in
Proc. 46th Annu. IEEE/ACM Int. Symp. Microarchitecture, 2013,
pp. 13–24.

[23] T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel, and G. Reinman, “The
art of deception: Adaptive precision reduction for area efficient
physics acceleration,” in Proc. 40th Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2007, pp. 394–406.

[24] S. Mitra, M. K. Gupta, S. Misailovic, and S. Bagchi, “Phase-aware
optimization in approximate computing,” in Proc. Int. Symp. Code
Gener. Optim., 2017, pp. 185–196.

[25] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive con-
trol of approximate programs,” in Proc. 21st Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2016, pp. 607–621.

[26] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
online quality management system for approximate computing,”
in Proc. ACM/IEEE 42nd Annu. Int. Symp. Comput. Architecture,
2015, pp. 554–566.

[27] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and
H. Esmaeilzadeh, “Towards statistical guarantees in control-
ling quality tradeoffs for approximate acceleration,” in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Architecture, 2016,
pp. 66–77.

[28] H. Sharif et al., “ApproxHPVM:Aportable compiler ir for accuracy-
aware optimizations,” Proc. ACM Program. Lang., vol. 3, no. OOP-
SLA, 2019, Art. no. 186.

[29] B. Boston, A. Sampson, D. Grossman, and L. Ceze, “Probability
type inference for flexible approximate programming,” in Proc.
ACM SIGPLAN Int. Conf. Object-Oriented Program. Syst. Lang.
Appl., 2015, pp. 470–487.

[30] J. Park, X. Zhang, K. Ni, H. Esmaeilzadeh, and M. Naik, “ExpAX: A
framework for automating approximate programming,” Georgia
Tech, Comput. Sci., Tech. Rep. GT-CS-14-05, Jul. 2014.

[31] A. Sampson et al., “ACCEPT: A programmer-guided compiler
framework for practical approximate computing,” Univ. Wash-
ington, Comput. Sci. Eng., Tech. Rep. UW-CSE-15–01-01, 2015.

[32] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantita-
tive reliability for programs that execute on unreliable hardware,”
in Proc. ACM SIGPLAN Int. Conf. Object-Oriented Program. Syst.
Lang. Appl., 2013, pp. 33–52.

[33] A. Yazdanbakhsh et al.,“Axilog: Language support for approxi-
mate hardware design,” in Proc. Des. Autom. Test Eur. Conf. Exhib.,
2015, pp. 812–817.

[34] Z. Peng et al.,“AXNet: ApproXimate computing using an end-to-end
trainable neural network,” in Proc. IEEE/ACM Int. Conf. Comput.-
AidedDes., 2018, pp. 1–8.

1092 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 7, JULY 2021

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

http://www.videolan.org/x264.html
http://llvm.org
http://llvm.org
https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
https://www.gzip.org/
https://github.com/IntelLabs/iACT
https://github.com/IntelLabs/iACT

[35] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and
H. Esmaeilzadeh, “Neural acceleration for GPU throughput pro-
cessors,” in Proc. 48th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2015, pp. 482–493.

[36] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve,
“Approxilyzer: Towards a systematic framework for instruction-
level approximate computing and its application to hardware
resiliency,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2016, pp. 1–14.

[37] R. Venkatagiri et al.,“gem5-approxilyzer: An open-source tool for
application-level soft error analysis,” in Proc. 49th Annu. IEEE/
IFIP Int. Conf. Dependable Syst. Netw., 2019, pp. 214–221.

[38] J. Neystadt, “Automated penetration testing with white-box
fuzzing,” 2008. [Online]. Available: https://docs.microsoft.com/
en-us/previous-versions/software-testing/cc162782
(v=msdn.10)?redirectedfrom=MSDN

[39] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vec-
tors for word representation,” in Proc. Conf. Empir. Methods Natu-
ral Lang. Process., 2014, pp. 1532–1543.

[40] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn., 2010,
pp. 807–814.

[41] F. Chollet et al., “Keras,” 2015. [Online]. Available: https://github.
com/fchollet/keras

[42] M. Abadi et al.,“TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2016, pp. 265–283.

[43] B. Steensgaard, “Points-to analysis in almost linear time,” in Proc.
23rd ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang., 1996,
pp. 32–41.

[44] T. Moreau, F. Augusto, P. Howe, A. Alaghi, and L. Ceze, “QAPPA:
A framework for navigating quality-energy tradeoffs with arbitrary
quantization,” Carnegie Mellon Univ., Comput. Sci. Eng., Tech.
Rep. CMU/CSE-17–03-02,Mar. 2017.

[45] I. Akturk, K. Khatamifard, and U. R. Karpuzcu, “On quantifica-
tion of accuracy loss in approximate computing,” in Proc. 12th
Annu. Workshop Duplicating Deconstructing Debunking, 2015.

Riad Akram (Member, IEEE) received the PhD
degree in computer science from the University of
Texas at San Antonio, San Antonio, Texas, in
2017. He is a software engineer at Intel Corpora-
tion, Santa Clara, California. His research focuses
on approximate computing and its application in
parallel programs. He is currently working on per-
formance debugging of large scale software.

Shantanu Mandal (Member, IEEE) is working
toward the PhD degree with the Department of
Computer Science and Engineering, Texas A&M
University, College Station, Texas. His research
focuses on using machine learning to synthesize
programs automatically.

Abdullah Muzahid (Member, IEEE) received the
PhD degree in computer science from the Univer-
sity of Illinois, Urbana-Champaign, Champaign,
Illinois, in 2012. He has been serving as an assis-
tant professor with the Department of Computer
Science and Engineering, Texas A&M University,
College Station, Texas since Fall 2018. Before
that, he worked as an assistant professor with the
Department of Computer Science of the Univer-
sity of Texas at San Antonio, San Antonio, Texas.
His research broadly focuses on various aspects

of computer architecture and systems. More specifically, he is interested
in multiprocessor architecture, parallel programming, programming mod-
els, debugging, program analysis and synthesis. Recently, he is inter-
ested in applying machine learning to solve various system-related
issues. He received the NSF CAREER Award, in 2017 and Intel PhD Fel-
lowship, in 2010.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

AKRAM ET AL.: XMETER: FINDING APPROXIMABLE FUNCTIONS AND PREDICTING THEIR ACCURACY 1093

Authorized licensed use limited to: Texas A M University. Downloaded on July 30,2023 at 17:16:07 UTC from IEEE Xplore. Restrictions apply.

https://docs.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/software-testing/cc162782(v=msdn.10)?redirectedfrom=MSDN
https://github.com/fchollet/keras
https://github.com/fchollet/keras

