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ABSTRACT
Childhood trauma tends to influence cortisol stress reactivity through the mediating effects of DNA
methylation. Houtepen et al. conducted a study to investigate the role of DNA methylation in cortisol
stress reactivity and its relationship with childhood trauma. The study collected a dataset consisting of
385,882 DNA methylation loci, cortisol stress reactivity, one-dimensional score on a childhood trauma
questionnaire and several covariates for 85 healthy individuals. Of great scientific interest is to identify the
activemediating loci out of the 385,882 ones. Houtepen et al. conducted 385,882 linearmediation analyses,
in each of which one locus was considered, and identified three active mediating loci. More recently, van
Kesteren andOberski proposed a coordinate-wisemediation filter (CMF) and applied it to the same dataset.
They identified five active mediating loci. Unfortunately, the three loci identified by Houtepen et al. are
completely different from the five loci identified by van Kesteren and Oberski, probably because both
Houtepen et al. and van Kesteren and Oberski did not consider all loci jointly in their analyses. The high
dimensional DNA methylation loci indeed necessitate new techniques for identifying active mediating
loci and testing the direct and indirect effects of the early life traumatic stress on later cortisol alteration.
Motivated by the contradictory results in the aforementioned two scientific works, we develop a new
estimating and testing procedure, and apply it to the same dataset as that analyzed by the two works. We
identify three new loci: cg19230917, cg06422529 and cg03199124, and their effect sizes and p-values are
321.196 (p-value = 0.035965), 418.173 (p-value = 0.000234) and 471.865 (p-value = 0.001691), respectively.
These three loci possess both reasonably neurobiological interpretations and statistically significant effects
via our proposed tests. Based on our new procedure, we further confirm that the childhood trauma does
not have significant direct effects on cortisol change—it only indirectly affects cortisol through DNA
methylation, and the indirect effect is negative. Supplementarymaterials for this article are available online.
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1. Introduction

Childhood trauma plays a pivotal role in the development
of psychiatric disorders across life span (Burke et al. 2005;
Petrowski et al. 2013). Its persistently detrimental influence
is typically realized via altering neuroendocrine substances
like cortisol (Heim et al. 2000; Carpenter et al. 2007). Ever
since the pilot study conducted by Luecken (1998), researchers
thereof have sought for the mechanism relating cortisol
change to various circumstances of childhood trauma, such as
maltreatment (Carpenter et al. 2007), physical abuse (Heim et al.
2000; Bremner et al. 2003; Elzinga et al. 2010; Carpenter et al.
2011), early parental loss (Luecken 1998; Kraft and Luecken
2009), separation experience (Pesonen et al. 2010), among
others.

On finding such relations, the aforementioned works
nevertheless have not reached a concordant solution. This
pushes through deeper exploration toward epigenetic alteration
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involved in the traumatic stress. Convincingly demonstrated
by preclinical studies, childhood trauma tends to influence
neuroendocrine system in adulthood via altering DNA methy-
lation patterns. McGowan et al. (2009) studied the epigenetic
regulation of glucocorticoid receptor (NR3C1) in human
brain associated with childhood abuse. Perround et al. (2011)
showed that early life adverse events may permanently impact
on the Hypothalamus-Pituitary-Adrenal axis (HPAA) though
epigenetic modifications of NR3C1. Edelman et al. (2012)
demonstrated epigenetic changes at the GR exon 1F correlate
with HPAA reactivity measured by total cortisol (area under
curve). See Vinkers et al. (2015) for a comparative review
of literature regarding trauma-induced changes in DNA
methylation in humans.

These works mainly concentrated on single-layer linear
models, where effects of early life trauma on DNA methylation
and effects of DNA methylation on HPAA or cortisol alteration
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are separately evaluated. However, DNA methylation ought to
play a bridging role in the relation between childhood trauma
and cortisol stress reactivity. In addition, all of their scientific
findings are based on epigenetic modifications of a single gene.
In theory, this is unlikely to be the case and would result in
estimation bias. In sight of such issues, Houtepen et al. (2016)
conducted a genome-wide mediation analysis and identified a
locus on the KITLG gene thatmediates the relationship between
childhood trauma and cortisol stress reactivity. Although
starting at 385,882 DNA methylation loci, only the top three
loci were selected for further investigation by the QQ plot of
the p-values obtained from individual significance tests, with
a total discard of the dependence structure and joint effects of
DNAmethylation. To account for the between-loci dependency,
van Kesteren and Oberski (2019) proposed an embedding
algorithm called coordinate-wisemediation filter (CMF), which
consists of an inner loop and outer loop. A key strategy of CMF
to address dependency is the use of residuals and projection
when detecting loci in the inner loop. This CMF algorithm
targets dichotomous decisions—whether each of the DNA
methylation locus should be recognized as a mediator, while
offers no guarantee of either statistical significance or model
fits. Interestingly, van Kesteren and Oberski (2019) identified
completely different DNAmethylation loci fromHoutepen et al.
(2016), based on the same dataset but using the CMF algorithm.
In response to this contradiction, we in this article carry out
an in-depth mediation analysis for a thorough understanding
of how early life trauma affects cortisol stress reactivity in
adulthood via DNA methylation.

From a statistical point of view, this is a high dimensional
mediation problem, with DNAmethylation loci being potential
mediators, the vast majority of which though are supposed to
be inactive. Nothwithstanding no shortage of strategies dealing
with high dimensional mediators, including those in Houtepen
et al. (2016) and van Kesteren andOberski (2019), most existing
literature rely on the marginal screening or penalized regres-
sion for sparse estimation. See for instance Preacher and Hayes
(2008), Zhang et al. (2016), Serang et al. (2017), and so forth. A
pitfall of using these dimension reduction techniques in each or
either layer of mediation models lies in the pertinent difference
between penalizing paths and finding actual mediators. That is,
they choose paths instead of mediators. As a potential insight to
break through this obstacle, Zhou, Wang, and Zhao (2020) pro-
posed a debiased Lasso method that can integrate the two layers
of high dimensional mediationmodels, and they also developed
significance tests for both direct and indirect effects. However,
the method proposed in Zhou, Wang, and Zhao (2020) involves
high dimensionalmatrix estimation andoperation,whichmight
bring about a huge computational burden. In addition, the pro-
cedure penalizes all parameters, and the debiased step relies on
the entire covariance matrix. This leads to inevitable efficiency
loss of the estimators. More recently, Guo et al. (2021) observed
that despite of high dimensional mediators, the direct and indi-
rect effects are both low dimensional, with sum being the total
effect. They thereby proposed a partial penalized approach for
estimating the direct effects, which avoids high dimensional
matrix estimation and the debiased step, and thus, enhances

efficiency of proposed estimators. In spite of the plausible the-
ory and efficient algorithms, Guo et al. (2021) have not yet
explicitly elucidated the method with potential confounders,
which typically should be considered when studying traumatic
effects on cortisol alteration via DNA methylation, as in the
literature (Houtepen et al. 2016; van Kesteren and Oberski
2019). Therefore, we in this article extend the work of Guo
et al. (2021) to the models with confounders. Then we use our
new procedure to study the mediating role of DNAmethylation
relating childhood trauma and cortisol stress reactivity, with
several clinical variables involved as confounders. We further
develop relevant tests for the direct and indirect effects of the
early life trauma on cortisol stress reactivity.

Aside from the eight DNA methylation loci detected
by Houtepen et al. (2016) and van Kesteren and Oberski
(2019), we identify three additional loci on the RAB5IF gene
(cg19230917), the CPQ gene (cg06422529) and the AGPAT1
gene (cg03199124) as mediators. We look through existing
literature, and find reasonably neurobiological interpretations
toward these three genes, with details referred to Section 3.
Thus, our findings point out a potential direction for deeper
neurobiological and epigenetic investigation of the connection
between traumatic stress and cortisol alteration. From statistical
point of view, we perform several statistical tests, and the
results are also in support of the selected genes. According
to the tests for the direct and indirect effects proposed in
this article, the childhood trauma influences cortisol reactivity
only through DNA methylation, since the indirect effect is
negatively significant, yet the direct effect is not significant.
In the full model with all detected loci, those from the newly
identified genes are all significant, while the KITLG gene
(cg27512205) selected by Houtepen et al. (2016), the HNRNPF
gene (cg12500973) and the ZSCAN30 gene (cg16657538)
selected by van Kesteren and Oberski (2019) are no longer
significant. However, models with only the genes in Houtepen
et al. (2016) yield a contradictory conclusion that KITLG is
significant.

In Section 2, we introduce the statistical formulation of the
high dimensional mediation problem, including the mediation
models with confounders involved, the estimation for direct
and indirect effects, and the tests of significance of indirect and
direct effects. The detailed analysis is presented and discussed in
Section 3. We also conduct a thorough simulation study to val-
idate the finite sample performance of the proposed procedure
in Section 4. A brief summary and conclusion are provided in
Section 5.

2. Statistical Formulation: High Dimensional Linear

MediationModels with Confounders

In this section, we introduce the high dimensional mediation
models with confounders involved, as the statistical formulation
associating childhood trauma with cortisol stress reactivity via
altering DNA methylation. Then we extend the partial penal-
ization technique in Guo et al. (2021) to these models, for
estimating and testing the direct and indirect traumatic effects.

Let y be the response variable, m consist of p-dimensional
mediators, x consist of q-dimensional exposure variables, and z
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consist of d-dimensional confounding variables. In our study,
y is designated as the cortisol stress reactivity, x is childhood
trauma, and elements inm correspond toDNAmethylation loci
that potentially mediate relations between trauma and cortisol.
Moreover, we take several clinical variables as confounders in z,
with detailed descriptions in Section 3. Consider linear media-
tion models

y = αT
0m + αT

1 x + αT
2 z + ε1, (2.1)

m = �T
1 x + �T

2 z + ε2, (2.2)

where ε1 is a random error with Eε1 = 0 and var(ε1) = σ 2
1

and ε2 is a random error vector with E(ε2) = 0 and cov(ε2) =
�∗. Assume that ε1 is independent of m, x and z, and ε2 is
independent of x and z. Furthermore, assume that ε1 and ε2 are
independent.

Motivated by the real data analysis in Section 3, it is assumed
throughout this article that q and d have fixed and finite dimen-
sions, while p is high dimensional. Plugging (2.2) into (2.1), we
obtain

y = (α1 + β)Tx + (�2α0 + α2)
Tz + (αT

0 ε2 + ε1),
≡ γ T

x x + γ T
z z + ε3, (2.3)

where α1 and β = �1α0 are called the direct and indirect effect
of exposure x in mediation literature, respectively, and γ x =
α1 + β is called the total effect of x. Often of primary interest
from mediation point of view is to estimate and test α1 and
β . And these two parameters possess their own interpretations
as natural indirect effect and natural direct effect in causal
inference.

2.1. Natural Direct and Natural Indirect Effects

We link the parameters α1 and β with natural direct and natural
indirect effects on a causal diagram. Let y(x,m) denote the
potential outcome that would have been observed had x andm
been set to x andm, respectively, andm(x) denote the potential
mediator that would have been observed had x been set to x.
Following Imai, Keele, and Tingley (2010), Vanderweele and
Vansteelandt (2014), and others, for x = x1 versus x0, the
natural direct effect is defined as

E[y(x1,m(x0)) − y(x0,m(x0))],
while the indirect effect is defined as

E[y(x1,m(x1)) − y(x1,m(x0))].
The total effect is then naturally defined as the sum of natural
direct and indirect effects

E[y(x1,m(x1)) − y(x0,m(x0))].
Furthermore, the independence assumptions of random

errors in the mediation models (2.1) and (2.2) ensure the
following sequential ignorability conditions (Imai, Keele, and
Tingley 2010; Vanderweele andVansteelandt 2014; Huang 2019;
Zhou, Wang, and Zhao 2020).

(A1) x⊥⊥y(x,m)|z: that is, no unmeasured confounders
between the exposure and outcome.

(A2) m⊥⊥y(x,m)|(x, z): no unmeasured confounders between
the mediators and outcome.

(A3) x⊥⊥m(x)|z: no unmeasured confounders between the
exposure and mediator.

(A4) m(x̃)⊥⊥y(x,m)|z: no exposure-dependent confounders
between the mediators and outcome, where x̃ is the
realization of exposure at a different value from x.

Under these sequential ignorability conditions, Vanderweele
and Vansteelandt (2014) showed that

E[y(x1,m(x0)) − y(x0,m(x0))] = αT
1 (x1 − x0);

E[y(x1,m(x1)) − y(x1,m(x0))] = βT(x1 − x0).

Thus, α1 can be interpreted as the average natural direct effect,
and β = �1α0 can be interpreted as the average natural indirect
effect.

2.2. Identifying ActiveMediators

In this section, we introduce the procedure of identifying active
mediators in the mediation models (2.1) and (2.2), and estimat-
ing the direct effect α1 and indirect effect β that can get around
high dimensionalmatrix estimation. Suppose that {mi, xi, zi, yi},
i = 1, . . . , n is a random sample from (2.1) and (2.2). Let y =
(y1, . . . , yn)T , M = (m1, . . . ,mn)T , X = (x1, . . . , xn)T ,Z =
(z1, . . . , zn)T , andW = (X,Z).

Despite high dimensionality of m, model (2.3) is indeed a
fixed-dimensional model. Therefore, the coefficient of x, or say
the total effect γ x = α1 + β , could be naturally estimated via
the ordinary least squared estimator in model (2.3), that is,

γ̂ x = (Iq,Oq×d)(WTW)−1WTy, (2.4)

where Iq is q×q dimensional identitymatrix, andOq×d is a q×d
zero matrix.

Another key observation is that x and z in model (2.1) are
both fixed dimensional, thus, we opt not to impose sparsity on
α1 and α2. On the other hand, sparsity on α0, the coefficient
associated with the high dimensional mediator m, could be
naturally and reasonably assumed, as so in most existing high-
dimensional literature. Therefore, following Guo et al. (2021),
we apply the partial penalized least squaredmethod to fit model
(2.1) by only penalizing α0. That is, the objective function
subjected to minimization is

1
2n

‖y − Mα0 − Xα1 − Zα2‖2 +
p∑

j=1
pλ(|α0j|), (2.5)

where α0j is the jth element in α0, and pλ(·) is a penalty function
with tuning parameterλ. Throughout this article, wewill use the
SCAD penalty, whose first-order derivative is

p′
λ(t) = λ{I(t ≤ λ) + (aλ − t)+

(a − 1)λ
I(t > λ)},

and set a = 3.7 as suggested by Fan and Li (2001). The tuning
parameter λ is selected by HBIC (Wang, Kim, and Li 2013).
A numerical algorithm to solve this penalized least squares
problem is given in Section S.4 in the supplementary material
of this article. Denote the corresponding estimates to be α̂0, α̂1
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and α̂2. Further note that β = γ x − α1. Then we can estimate
the indirect effect β by β̂ = γ̂ x − α̂1. Let A = {j : α0j �=
0} and Â = {j : α̂0j �= 0}. Under suitable conditions, we
could obtain oracle property for our proposed estimates. That
is, with probability tending to 1, Â = A. Note that all truly
active mediators are included in A. This then implies that we
can identify all truly potential mediators. We will empirically
evaluate the performance of the partial penalized least squared
method in (2.5) in the simulation section.

2.3. Test of Direct Effect and Indirect Effect

In terms of further statistical inference, penalizing α0 gains
efficiency when estimating the coefficients, and hence, enhances
power toward the subsequential tests. Meanwhile, not penaliz-
ing α1 and α2 renders their respective estimators unbiasedness,
thus, there is no need for conducting any of the debiased, despar-
sified or decorrelated procedures (Zhang and Zhang 2014; Van
de Geer et al. 2014; Ning and Liu 2017; Zhou, Wang, and Zhao
2020), which admittedly correct estimation biases brought by
ordinary regularization methods yet sacrifice efficiency.

To develop tests for the direct effect α1 and indirect effect β ,
we first derive the asymptotic distributions of their estimators α̂1
and β̂ . Let w = (xT , zT)T , αw = (αT

1 ,αT
2 )T , �w = (�T

1 ,�T
2 )T

and βw = �wα0. Thus, models (2.1) and (2.2) can be rewritten
as

y = αT
0m + αT

ww + ε1, andm = �T
ww + ε2, (2.6)

which coincide with the causal mediation models considered in
Guo et al. (2021). Thus, incorporating the results in Corollary
1 of Guo et al. (2021), the asymptotic distribution of α̂1 and β̂

can be obtained in a similar fashion. Specifically, define mA to
be the subvector ofm corresponding toA = {j : α0j �= 0}. And
�MM = E(mAmT

A), �MW = �T
WM = E(mAwT), �WW =

E(wwT). Then
√
n(̂α1 − α1) → N(0, σ 2

1 (Iq,Oq×d)(�
−1
WW + Bw)(Iq,Oq×d)

T),
(2.7)√

n(β̂ − β) → N(0, (Iq,Oq×d)(σ
2
2 �−1

WW + σ 2
1 Bw)(Iq,Oq×d)

T),
(2.8)

where Bw = �−1
WW�WM(�MM − �MW�−1

WW�WM)−1�MW
�−1

WW and σ 2
2 = αT

0 �∗α0.
The asymptotic covariance matrices in (2.7) and (2.8) could

be estimated in the same routine as Guo et al. (2021), by replac-
ing quantities related to x in their workwith those related tow in
this article. These estimates lay the foundation of subsequential
tests.

For testing the direct effect α1 with hypotheses

H0α : α1 = 0, versus H1α : α1 �= 0,

we modify the F-type lack-of-fit test proposed by Guo et al.
(2021) by incorporating confounding effects. In model (2.1),
denote RSSf to be the residual sum of squares (RSS) in the full
model fitted by the partial penalized least squares method (2.5),
andRSSr to be the RSS in the reducedmodel with x deleted from

(2.1), obtained by the same partial penalized regression yet with
objective function

1
2n

‖y − Mα0 − Zα2‖2 +
p∑

j=1
pλ(|α0j|). (2.9)

The test statistic thereby is defined as

T = RSSr − RSSf
RSSf /(n − q − d)

,

which follows χ2(q), the chi-squared distribution with degrees
of freedom q, under the null hypothesis. And it possesses local
power for local alternatives which converge to the null at the rate
of n−1/2.

For testing the indirect effect β with hypotheses

H0β : β = 0, versus H1β : β �= 0,

we construct the Wald test statistic with the estimated covari-
ance matrices, namely,

S = nβ̂T{(Iq,Oq×d)(̂σ
2
2 �̂

−1
WW + σ̂ 2

1 B̂w)(Iq,Oq×d)
T}−1β̂ ,

where B̂w = �̂
−1
WW�̂WM(�̂MM − �̂MW�̂

−1
WW�̂WM)−1�̂MW

�̂
−1
WW . The hat versions are the sample counterparts of the

covariancematrices. The limiting null distribution of S is χ2(q),
and the statistic can also detect the local effects with root-n
convergence rate, as discussed in Guo et al. (2021). In addition,
the Wald test for H0β is based on the asymptotical normality
of β̂ . One may construct a Wald test for individual mediation
effectβj or a subvector ofβ based on theirmarginal asymptotical
normality.

3. A Case Study: Exploration of Mediating Effects of

DNAMethylation between Childhood Trauma and

Cortisol Stress Reactivity

This section is devoted to an empirical analysis of the same
dataset as that in Houtepen et al. (2016) and van Kesteren and
Oberski (2019), for studying how DNAmethylation plays a role
in the regulation of human stress reactivity. More specifically,
Houtepen et al. (2016) aimed to provide an unbiased investiga-
tion of the role of DNA methylation in cortisol stress reactivity
and its relationship with childhood trauma. The data can be
downloaded from the following website: https://www.ebi.ac.uk/
arrayexpress/experiments/E-GEOD-77445, and the dataset con-
sists of 385,882 DNA methylation loci and various variables
for 85 people. R markdown file for this analysis is available
at GitHub: https://github.com/zengmudong/High-dimensional-
mediation-analysis

Houtepen et al. (2016) performed a genome-wide DNA
methylation analysis for cortisol stress reactivity in healthy
individuals. Since the number of DNA methylation loci is
much greater than the sample size, Houtepen et al. (2016) first
ran 385,882 linear regression models—response being cortisol
stress reactivity, predictors being each out of the 385,882 DNA
methylation loci, respectively, and confounders being several
clinical variables. They reported 22,425 loci with p-values less
than 0.05, while no statistically significant loci at level 0.05 after
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adjustment for multiple testing. The authors then selected three
loci that stood out in the p-value distribution of the genome-
wide cortisol stress reactivity analysis. The three loci are
cg27512205 (denoted bym1), cg05608730 (m2) and cg26179948
(m3), based onwhich the authors further conducted amediation
analysis, and identified a locus on theKITLGgene (cg27512205)
that is not only associated to cortisol stress reactivity, but also
partly mediates the relationship between childhood trauma and
cortisol stress reactivity. More importantly, they replicated the
analysis using two independent samples from the whole blood
and buccal (cross-tissue) DNA, respectively, and concluded that
the KITLG locus is indeed a mediator.

More recently, van Kesteren and Oberski (2019) proposed a
coordinate-wise mediation filter (CMF), which aims to improve
the marginal screening method for linear mediation models
with high-dimensional mediators. They further applied CMF
for an empirical analysis of the same dataset as Houtepen
et al. (2016), and identified five loci as the mediators. The five
loci are cg16657538 (m4), cg25626453 (m5), cg02309301 (m6),
cg13136721(m7), and cg12500973(m8), which are completely
different from the three loci identified byHoutepen et al. (2016).
This contradiction motivates us to conduct a further analysis
using the new procedure for studying the mediating role of
DNA methylation that relates childhood trauma and cortisol
alteration.

3.1. Mediation Analysis via the Proposed Procedures

In our analysis, the exposure variable (x) is a one-dimensional
score on a childhood trauma questionnaire, and the outcome y
is the increased area under the curve (iAUC) in cortisol after
a stress test. We consider 385,882 DNA methylation loci in the
blood as potential mediators in m. Following van Kesteren and
Oberski (2019), we first carry out a screening step to retain
the top 1000 potential mediators by ranking the absolute value
of the product of two correlations—the correlation between x
and each element of m, and between y and each element of m.
This indeed is a marginal screening procedure based on Pear-
son correlation proposed by Fan and Lv (2008). They showed
that for linear models, under some regularity conditions, the
screening procedure possesses a sure screening property. We
also include the eight loci identified by Houtepen et al. (2016)
and van Kesteren andOberski (2019) as domain knowledge and
for comparison purpose. Furthermore, eight clinical variables
are involved, including age (Z1), sex (Z2), B cell proportion
(Z3), CD4 T cell proportion (Z4), CD8 T cell proportion (Z5),
Monocytes cell proportion (Z6), Granulocytes cell proportion
(Z7) and Natural Killer cell proportion (Z8), as confounding
variables. This leads to the linear mediation models (2.1) and
(2.2), where x (with dimension q = 1) and y are defined above;
the confounder vector z is z = (Z0,Z1, . . . ,Z8)T , with Z0 ≡ 1
to include an intercept in the model.

We apply the proposed procedure to analyze the data. In
the partial penalized least squares approach, we first select the
tuning parameter λ by HBIC, and λ̂ = 60.8163. The eight
loci m1, . . . ,m8 are treated as domain knowledge and are not
penalized. Aside from them, our proposed method selects
three additional loci cg19230917(m9), cg06422529(m10), and
cg03199124(m11). The estimated coefficients α̂0, α̂1, and α̂2,

Table 1. Estimated coefficients, SE, t-values and p-values.

Locus or Variable Coefficient SE t-value p-value

cg27512205(m1) −237.547 199.506 −1.191 0.238178
cg05608730(m2) −301.168 151.038 −1.994 0.050418
cg26179948(m3) −474.486 160.042 −2.965 0.004252

cg02309301(m4) 259.730 108.633 2.391 0.019759
cg12500973(m5) 30.029 116.354 0.258 0.797173
cg16657538(m6) 84.330 53.236 1.584 0.118104
cg25626453(m7) 369.183 97.988 3.768 0.000361
cg13136721(m8) 260.990 65.585 3.979 0.000179

cg19230917(m9) 321.196 149.918 2.142 0.035965
cg06422529(m10) 418.173 107.252 3.899 0.000234
cg03199124(m11) 471.865 143.943 3.278 0.001691

x 1.365 4.553 0.300 0.765240

Z0 −3110.834 3805.517 −0.817 0.416702
Z1 −1.864 2.056 −0.906 0.368135
Z2 349.037 82.811 4.215 0.000080
Z3 1843.451 3702.100 0.498 0.620228
Z4 406.642 3533.801 0.115 0.908748
Z5 781.938 3368.749 0.232 0.817189
Z6 967.962 3745.283 0.258 0.796890
Z7 123.714 3544.597 0.035 0.972266
Z8 341.974 3401.318 0.101 0.920229

along with their element-wise standard errors, t-values and p-
values are listed in Table 1. The estimated coefficients of �1
and �2, with their p-values, are listed in Table 2. It can be seen
from Table 1 that the p-values of the newly identified loci (i.e.,
m9,m10, andm11) are all less than 0.05, while the p-values ofm1,
m5, and m6 are greater than 0.10. Some significant effects are
positive, while others are negative. From Table 2, childhood
trauma x has significant effects on all the eleven mediators
m1, . . . ,m11 except for m8 at level 0.05. To sum up Tables 1
and 2, the newly identified loci m9,m10, and m11 should be
considered as mediators since their coefficients are significant,
and the coefficients of exposure variable on these loci are also
significant at level 0.05.

Table 3 presents the results for testing the direct and
indirect effects. The indirect effect is significant with p-value
0.0016, while the direct effect is insignificant since the p-
value is 0.7643. Further note that the estimate of the indirect
effect equals −17.3726 < 0. This implies that childhood
trauma influences the cortisol stress reactivity only through
the mediation mechanism of the DNA methylation, and the
indirect effect is significantly negative.

Table 4 lists the 11 DNA methylation loci together with the
genes to which they belong. It also provides some field knowl-
edge of these genes dug out from existing research, according
to which, the newly identified genes m9, m10, and m11 have
particularly interesting biological and genetical interpretations.
The locus m9 corresponds to the RAB5IF gene (cg19230917).
This gene modulates cell endocytosis process by which cells
engulf substances, such as hormones, from outside into the
cell (Ravikumar et al. 2008). Cortisol is a steroid hormone
produced by the adrenal glands, and it may signal the cells
through receptor for endocytosis. Thus, the RAB5IF gene likely
plays a mediator rule that transmits the epigenetic alterations
evoked by the traumatic stress. m10 belongs to the CPQ gene
(cg06422529), which is shown by Hauptmann et al. (2017) to
function in thyroid and tumor development. Peter (2011) testi-
fied this gene as a pathway from stress to cortisol level change
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Table 2. Estimated coefficients of �1 and �2 and their p-values.

x Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Estimated �1 and �2
m1 0.005 −2.999 0.000 0.016 0.870 0.197 −0.311 0.784 0.406 0.010
m2 0.007 −1.723 −0.002 0.013 1.479 0.032 0.693 0.602 0.935 1.448
m3 0.006 −3.566 −0.001 0.004 0.985 0.704 −0.809 0.840 0.567 −0.373
m4 −0.012 −9.222 0.007 −0.115 5.179 3.716 4.666 5.653 4.371 4.901
m5 −0.011 −3.974 0.004 −0.009 2.051 −2.022 −0.485 0.437 −0.860 −0.594
m6 0.023 0.322 0.003 0.403 −6.719 −5.542 0.115 −1.608 −5.701 −4.943
m7 −0.012 5.701 0.002 0.000 0.562 −0.290 0.552 −0.510 −0.285 −0.516
m8 0.012 1.093 0.001 0.083 −2.086 3.799 1.748 3.922 2.673 1.312
m9 −0.006 −2.009 0.001 0.018 1.257 −1.623 −1.448 −0.942 −1.181 −1.276
m10 −0.008 8.459 0.003 0.042 −7.930 −4.387 −2.036 −3.341 −4.408 −4.387
m11 −0.006 −5.736 0.003 −0.080 4.745 2.151 1.013 1.080 3.009 2.688

p-value of estimated coefficients of �1 and �2
m1 0.044 0.225 0.711 0.766 0.726 0.936 0.895 0.765 0.868 0.997
m2 0.016 0.568 0.145 0.848 0.627 0.992 0.811 0.851 0.755 0.613
m3 0.020 0.201 0.448 0.946 0.724 0.798 0.761 0.776 0.837 0.887
m4 0.004 0.025 0.001 0.202 0.205 0.356 0.230 0.191 0.277 0.203
m5 0.002 0.286 0.054 0.917 0.584 0.584 0.892 0.912 0.816 0.866
m6 0.004 0.968 0.490 0.026 0.406 0.487 0.988 0.850 0.474 0.515
m7 0.006 0.205 0.444 0.998 0.901 0.948 0.898 0.915 0.949 0.903
m8 0.056 0.865 0.861 0.563 0.748 0.554 0.777 0.568 0.676 0.830
m9 0.041 0.528 0.551 0.795 0.695 0.608 0.635 0.781 0.709 0.672
m10 0.048 0.044 0.223 0.646 0.060 0.288 0.608 0.449 0.286 0.266
m11 0.045 0.068 0.108 0.253 0.133 0.488 0.734 0.744 0.332 0.364

Table 3. The estimated coefficients, standard errors, test statistics values and p-
values.

Coefficient Estimated coefficient SE Test statistics p-value

α1 1.3653 4.5529 0.0899 0.7643
β −17.3726 5.4945 9.9971 0.0016

in fish. A further neurobiological exploration is worthwhile
to find out whether it has similar mediating effect in human
body. m11 is located in AGPAT1 gene (cg03199124), which is
involved in signal transduction and lipid biosynthesis for cre-
ating and storing body fat (Aguado and Campbell 1998). Some
existing literature (Gonzalez-Bono et al. 2002; Kuo et al. 2007;
Aschbacher et al. 2013) investigated the associations between
physical stress like trauma and fat tissue biosynthesis. Vicennati
et al. (2009) conducted a retrospective study and showed that
women weight gain caused by trauma stress is accompanied by
abnormal hormonal level such as cortisol. Our studywhich finds
gene AGPAT1 as a mediator relating trauma stress and cortisol
level therefore, may provide clues for such stress pathophysio-
logical mechanism research. In summary, there is a reasonable
conjecture that the identified loci, or their located genes, reg-
ulate neurobiological pathways and mediate the cortisol stress
reactivity in response to childhood trauma, as also indicated by
Table 3.

3.2. Some Comparisons

It is worth to compare our results with those in Houtepen
et al. (2016) and van Kesteren and Oberski (2019) from sta-
tistical point of view. Define m(1) = (m1,m2,m3)

T , m(2) =
(m4, . . . ,m8)

T and m(3) = (m1, . . . ,m8)
T . For the purpose

of comparison, we consider three linear mediation models by
replacing m in (2.1) and (2.2) with m(k), k = 1, 2, and 3. The
mediationmodels considered inHoutepen et al. (2016) coincide

Table 4. Annotation of the included mediators.

Locus Gene Field knowledge from literature

cg27512205(m1) KITLG Associated with germ cell and
neural cell development.

cg05608730(m2) C1QTNF2 Involved in regulation of insulin
action, sugar and fat

metabolisms (Lei and Wong
2019)

cg26179948(m3) JAZF1 Involved in regulation of glucose
and lipid homeostasis

(Liao et al. 2019)
cg02309301(m4) ARGLU1 Associated with sexual

development
cg12500973(m5) HNRNPF Involved in regulation of mRNA
cg16657538(m6) ZSCAN30 Involved in transcriptional

regulation
cg25626453(m7) PRRC2A Associated with the

age-at-onset of diabetes
cg13136721(m8) RPTOR Involved in regulation of cell

growth and survival
cg19230917(m9) RAB5IF Involved in endocytosis and

macroautophagy
(Ravikumar et al. 2008)

cg06422529(m10) CPQ Involved in thyroid development
and tumors

(Hauptmann et al. 2017)
cg03199124(m11) AGPAT1 Involved in signal transduction

and lipid biosynthesis
(Aguado and Campbell 1998)

with (2.1) and (2.2) wherem is taken to bem(1), and models in
van Kesteren andOberski (2019) correspond to those withm(2).
We further consider the mediation models with m(3), which
merges m(1) and m(2). The estimated regression coefficients
αj’s in model (2.1) are listed in Table 5. The estimated �1 and
�2 and their values coincide with those in Table 2 because
regressing the multiple responses m over the exposure variable
and confounding variables in linear model (2.2) coincides with
regressing individual mediator mj over the exposure variable
and confounding variables.
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Table 5. Estimated αj ’s and their SE and p-values

m(1) m(2) m(3)

Estimate(SE) p-value Estimate(SE) p-value Estimate(SE) p-value

m1 −590.5(251.4) 0.022 −296.4(245.9) 0.232
m2 −576.3(193.8) 0.004 −473.6(187.5) 0.013
m3 −560.3(217.6) 0.012 −535.6(202.2) 0.010

m4 283.2(152.2) 0.067 223.4(135.3) 0.103
m5 248.4(162.9) 0.132 156.0(144.3) 0.283
m6 98.66(75.04) 0.193 44.43(67.58) 0.513
m7 395.8(132.2) 0.004 321.5(121.2) 0.010
m8 280.0(92.06) 0.003 198.8(83.17) 0.020

x −5.487(4.916) 0.268 −10.71(6.310) 0.094 −2.933(5.791) 0.614
Z0 −4861(4853) 0.320 905.0(5260) 0.864 −3098(4698) 0.512
Z1 3.281(2.553) 0.203 0.8145(2.880) 0.778 0.3883(2.592) 0.881
Z2 370.3(106.6) 0.001 322.7(118.8) 0.008 356.8(104.7) 0.001
Z3 2471(4826) 0.610 −397.5(5186) 0.939 1096(4563) 0.811
Z4 526.3(4755) 0.912 −955.4(5090) 0.852 −483.1(4469) 0.914
Z5 1822(4584) 0.692 139.6(4880) 0.977 365.4(4292) 0.932
Z6 2473(5091) 0.629 −1254(5436) 0.818 284.8(4785) 0.953
Z7 991.9(4752) 0.835 −1202(5081) 0.813 −266.5(4465) 0.953
Z8 726.2(4544) 0.873 −821.0(4860) 0.866 −294.0(4278) 0.945

Table 6. The estimated coefficients, standard errors, test statistics values and p-
values.

Model Coefficient Estimated coefficient SE Test statistics p-value

m(1) α1 −5.487 4.916 1.246 0.2644
β −10.52 3.612 8.447 0.0037

m(2) α1 −10.71 6.310 2.882 0.0896
β −5.2946 4.913 1.161 0.2811

m(3) α1 −2.933 5.791 0.2565 0.6125
β −13.07 5.356 5.959 0.0146

Tables 1 and 5 both suggest that the direct effect of childhood
trauma, or say the coefficient of the exposure variable x, is
not significant in model (2.1). All confounding variables except
for Z2 (i.e., sex) are not significant. Mediators m5 and m6 are
not significant based on all belonging models under investi-
gation. Furthermore, comparing Tables 1 and 5, we observe
that the effect of mediator m1 may change from significance to
insignificance at level 0.05, after inclusion of other mediators
into the model. The reversal of test results for mediator m1,
as well as the insignificance of m5 and m6, motivates us to
explore the relationship among all the identified mediators.
Their pairwise correlations, partial correlations given x and z,
and several multiple regression models all reflect certain degree
of association among mediators, which further explain their
insignificance given other mediators included in the model. We
put the detailed discussion in the supplementarymaterial to save
space.

The estimated direct and indirect effects for these threemod-
els are presented in Table 6, together with corresponding sig-
nificance tests. This table indicates that the direct effect is not
significant and indirect effect is significant for models with
mediators m(1) and m(3), while both direct and indirect effects
are not significant for model with mediatorm(2).

4. Simulation Studies

We in this section conduct Monte Carlo simulation studies
to investigate the finite sample performances of the statistical

procedure described in Section 2, and compare it with the oracle
tests that know the true mediator set A, with statistics SO and
TO, and those in Zhou, Wang, and Zhao (2020), with statistics
denoted by SZ and TZ . The results are based on 500 replications
and significance level 0.05.

We set up the experiments to mimic the real data analyzed in
Section 3 to the utmost. The sample size is taken to be the same,
the dimension of potential mediators is 1000, corresponding to
the 1000 candidate DNA methylation loci, and the exposure
variable x and confounder z are directly extracted from the
dataset. Meanwhile, m is generated via model (2.2), since it
needs to be considered as random according to the mechanism
of mediation models. Then y is accordingly generated from
model (2.1). To accomplish this, we first draw Gaussian noise
ε1 ∼ N(0, σ̂ 2

1 ) in model (2.1), where σ̂ 2
1 is the estimated σ 2

1 in
Section 3. The multivariate noise in model (2.2) is generated
from ε2 ∼ N(0,	∗), where 	∗ is taken to be autoregres-
sive covariance matrix. That is, the (i, j)-element of 	∗ equals
ρ|i−j|, and ρ = 0.5. The true mediators in A are designed
in accordance with the 11 detected loci, m1, . . . ,m11, from the
real data. Their associated coefficients α0 in model (2.1) is
taken to be (1.0, 0.9, 0.8,−0.9,−0.8,−0.7, 0.6, 0.5, 0.4, 0.3, 0.2),
with signs of elements consistent with those in α̂0 estimated
in Section 3. Moreover, the direct effect α1 = c2, where c2 =
0, 0.1, . . . , 1.0, to capture the size and power curve of the test for
direct effect. For generating the indirect effect, the true value of
�1 is set to be �1 = c1�̂1, where c1 = 0,±0.1, . . . ,±1.0 and
�̂1 is the respective estimate from Section 3, thus, the indirect
effect β = �1α0 = c1�̂1α0 = −1.5977c1. As to the coefficients
of confounding variables, we design the following two scenarios
of models, without and with confounders, respectively.

4.1. Simulation StudiesWithout Confounding Variables

We first consider models without confounding variable z. That
is, α2 and �2 are both taken zero in model (2.1) and (2.2). We
evaluate the indirect effect tests, by fixing the direct effect α1 =
c2 = 0.5. The left panel of Figure 1 depicts the size (c1 = 0) and
power (c1 = ±0.1, . . . ,±1.0) for the three tests with statistics S,
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Figure 1. Left panel is the empirical sizes and powers of tests S, SO , and SZ at significance level 0.05 over 500 replications for testing indirect effect of mediation model
without confounding variables. Solid line, dash line and two-dash line represent the sizes and powers of S, SO, and SZ , respectively. Right panel is empirical sizes and powers
of tests T , TO , and TZ at significance level 0.05 over 500 replications for testing direct effect of mediation model without confounding variables. The solid, dash line and
two-dash line represent the sizes and powers of T , TO , and TZ , respectively.

Table 7. Estimated biases and standard deviations (in parentheses) of different methods with different c1 and c2 when there is absent of confounding variables.

Newmethod Oracle Zhou et al.’s method

c1 c2 α̂1 β̂ α̂O
1 β̂

O
α̂Z
1 β̂

Z

−0.8 0.5 0.28(9.14) −1.69(27.25) 0.23(8.95) −1.64(27.11) −8.29(15.7) 7.9(30.17)
−0.4 0.5 0.17(6.95) −1.58(26.48) 0.12(6.86) −1.53(26.42) −4.85(14.42) 4.44(26.31)
0 0.5 0.01(5.98) −1.00(26.10) 0.01(5.94) −0.82(26.02) −22.7(12.15) 19.29(28.83)
0.4 0.5 −0.22(6.87) −1.21(26.16) −0.09(6.69) −1.01(26.23) −25.04(7.65) 44.63(28.11)
0.8 0.5 −0.37(9.01) −1.01(26.68) −0.20(8.68) −0.99(26.23) −31.6(3.17) 51.17(27.27)
0.5 −0.8 −0.24(7.42) −1.9(26.72) −0.15(7.20) −1.29(26.34) 2.62(15.18) −3.03(26.77)
0.5 −0.4 −0.34(7.36) −1.7(26.69) −0.14(7.10) −1.56(26.11) 2.22(14.34) −2.63(27.02)
0.5 0 −0.23(7.29) −1.73(24.25) −0.12(6.93) −1.47(23.96) −9.82(7.05) 8.40(26.07)
0.5 0.4 −0.21(7.36) −2.03(25.47) −0.13(7.04) −1.98(25.32) −30.03(7.1) 19.62(28.03)
0.5 0.8 −0.18(7.47) −2.18(26.75) −0.16(7.11) −2.17(26.44) −50.92(8.79) 50.44(29.13)

NOTE: Except for c1 and c2, the values in this table equal 100 times of the actual ones.

SO and SZ . From this figure, powers of all three tests increase as
|c1| increases, and sizes are well controlled. Our proposed test S
performs as well as the oracle test SO, and is more powerful than
SZ . For instance, when c1 = 0.4, the empirical powers of S and
SO are 0.63, while that of SZ is 0.23.

We also consider testing direct effect α1 by holding c1 = 0.5,
corresponding to true value of indirect effect β = −0.7989.
Similarly, the right panel of Figure 1 shows the empirical size
(c2 = 0) and power (c2 = ±0.1, . . . ,±1.0) for the proposed
test T, the oracle one TO, and TZ proposed by Zhou, Wang, and
Zhao (2020). The powers of all three tests increase as the value of
|c2| increases.T performs closely with TO, and is more powerful
than TZ when c2 is positive. For instance, when c2 = 0.2, the
empirical power of T andTO can reach 0.78, while the empirical
power of TZ test is 0.06.

Moreover, we investigate the performances of the estimators
of direct effect α̂1 and indirect effect β̂ in terms of bias and
standard deviation. The results are reported in Table 7. From
this table, the biases of our proposed estimators α̂1, β̂ and oracle
ones α̂O

1 , β̂
O are very small, while the biases of α̂Z

1 are very large.
This in turn results in low power of SZ and TZ .

Table 8 depicts the sample standard deviations of the esti-
mates α̂1 and β̂ over 500 replications in the column with label

“std,” which can be regarded the true value of standard error of
the estimates. These sample standard deviations are also shown
in parentheses of Table 7. In the column with label “se(std)”
in Table 8, we report the sample average and sample standard
deviation of the 500 estimates of standard errors of α̂1 and β̂

based on the asymptotic covariancematrix formulas in (2.7) and
(2.8). Note that the R package “freebird” in Zhou, Wang, and
Zhao (2020) does not provide the estimated standard error of
α̂1. The difference between the column “std” and “se(std)” can
be used to gauge the performance of the standard error formula
based on the asymptotical covariance matrices. From Table 8,
both the newmethod and the oracle have smaller difference than
the method proposed by Zhou, Wang, and Zhao (2020).

4.2. Simulation Studies with Confounding Variables

Wenext examine the performances of the proposedmethods for
the models with confounding variables. In our simulation, we
set the associated coefficients α2 and �2 to be those estimated
from the real data.

Figure 2 shows the empirical sizes and powers of the tests S,
SO, and SZ for indirect effect, and the tests T, TO, and TZ for
direct effect. The left panel assesses the performance of tests for
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Table 8. Estimated standard deviations and average estimated standard errors with their standard deviations (in parentheses) over 500 replications with different c1 and
c2 when there is absent of confounding variables.

Direct effect (α̂1) Indirect Effect (β̂)

Newmethod Oracle Newmethod Oracle Zhou et al.’s method
c1 c2 std se(std) std se(std) std se(std) std se(std) std se(std)

−0.8 0.5 9.14 8.10(0.94) 8.95 7.91(0.94) 27.25 28.70(2.04) 27.11 28.70(2.04) 30.17 29.73(2.32)
−0.4 0.5 6.95 6.92(0.67) 6.86 6.19(0.68) 26.48 28.19(2.09) 26.42 28.18(2.09) 26.31 28.36(2.73)
0 0.5 5.98 6.18(0.54) 5.94 6.17(0.55) 26.10 28.01(2.11) 26.02 27.99(2.11) 28.83 28.69(3.12)
0.4 0.5 6.87 6.93(0.79) 6.69 6.92(0.71) 26.16 28.19(2.09) 26.23 28.18(2.1) 28.11 29.44(2.74)
0.8 0.5 9.01 8.79(0.98) 8.68 8.75(1.03) 26.68 28.70(2.06) 26.23 28.72(2.06) 27.27 29.25(2.42)
0.5 −0.8 7.42 7.36(0.77) 7.20 7.35(0.88) 26.72 28.28(2.19) 26.34 28.09(2.08) 26.77 29.17(2.6)
0.5 −0.4 7.36 7.31(0.76) 7.10 7.12(0.78) 26.69 27.58(2.12) 26.11 27.58(2.03) 27.02 28.23(2.6)
0.5 0 7.29 7.30(0.72) 6.93 7.38(0.75) 24.25 25.98(2.09) 23.96 24.87(2.00) 26.07 28.21(2.70)
0.5 0.4 7.36 7.32(0.74) 7.04 7.21(0.77) 25.47 27.08(2.13) 25.32 26.11(2.09) 28.03 29.01(2.64)
0.5 0.8 7.47 7.34(0.76) 7.11 7.29(0.79) 26.75 27.84(2.17) 26.44 27.50(2.19) 29.13 28.19(2.73)

NOTE: Except for c1 and c2, the values in this table equal 100 times of the actual ones.

Figure 2. Left panel is the empirical sizes and powers of S, SO , and SZ at significance level 0.05 over 500 replications for testing indirect effect of mediation model with
confounding variables. Right panel is empirical sizes and powers of T , TO , and TZ at significance level 0.05 over 500 replications for testing direct effect of mediationmodel
with confounding variables. Caption is the same as that in Figure 1.

the indirect effect, holding c2 = 0.5 as constant. From Figure 2,
S performs as well as SO, while SZ exhibits a shifting power curve
to the right and the minimum of the curve is not attained at
the null hypothesis (c1 = 0). For testing the direct effect α1,
we hold c1 = 0.5 and hence, β = −0.7989. The values of c2
vary from −1 to 1. The results are shown in the right panel
of Figure 2. Not surprisingly, T performs as well as TO, while
TZ suffers from an even more severe shifting power curve than
SZ for the indirect effects. For instance, when c2 = 0.4, the
empirical power of Zhou, Wang, and Zhao (2020) is only 0.024,
while the empirical powers of our test and the oracle are 0.986
and 0.992, respectively.

To understand in depth the abnormal behavior of the power
curves of Zhou, Wang, and Zhao (2020)’s tests, we investigate
the performance of estimated direct effect α̂1 and indirect effect
β̂ in terms of bias and standard deviation, as reported in Table 9.
The biases of Zhou,Wang, and Zhao (2020)’s estimates are fairly
large compared to the proposed estimators α̂1, β̂ and oracle
ones α̂O

1 , β̂
O. When holding c2 = 0.5, the bias of α̂Z

1 increases
dramatically as c1 increases. Similar phenomenon occurs when
holding c1 = 0.5, where the bias of β̂Z changes substantially. The
bias of estimated αZ

1 and βZ results in the shifted curves shown

in Figure 2. The large bias of Zhou, Wang, and Zhao (2020)’s
estimates and the low power of their tests are possibly due to the
penalization on direct effect in the scaled lasso, as also pointed
out in Zhou,Wang, and Zhao (2020) (see the discussion in their
sec. 7). The penalization on direct effects would make sense
when the direct effects are expected to small. This is another
main merit of applying partial penalized method toward this
problem setting.

We explore Zhou, Wang, and Zhao (2020)’s method more
to understand its inferior performance. Note that the proposed
method does not penalize the direct effect α1, while Zhou,
Wang, and Zhao (2020)’s method does penalize the direct effect
in fitting scaled lasso (Sun and Zhang 2012). This leads to a
larger estimated error variance σ̂ 2

1 than the proposed method
and the oracle estimator. Figure 3 compares the estimated σ̂1
of the proposed estimate, oracle estimate and Zhou, Wang, and
Zhao (2020) when confounding variables are involved in the
mediation model. From Figure 3, we can observe that when c1
or c2 changes from negative to positive, Zhou, Wang, and Zhao
(2020)’s estimated σ̂1 dramatically increases, while the proposed
method and oracle estimate do not. The increasing trend of
variance estimation results in large biases of initial estimates
used in Zhou,Wang, and Zhao (2020), making the debiased step
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Table 9. Estimated biases and standard deviations (in parentheses) of different methods with different c1 and c2 when confounding variables involved.

Newmethod Oracle Zhou et al.’s method

c1 c2 α̂1 β̂ α̂O
1 β̂

O
α̂Z
1 β̂

Z

−0.8 0.5 0.23(9.75) −1.35(30.39) 0.08(9.48) −1.2(30.25) −2.64(17.97) 1.54(25.84)
−0.4 0.5 0.14(7.63) −1.27(29.58) 0.02(7.44) −1.14(29.56) −1.87(15.81) 0.74(22.85)
0 0.5 −0.2(6.91) −0.64(29.60) −0.17(6.70) −0.67(29.57) −21.03(14.00) 20.18(21.69)
0.4 0.5 −0.45(7.88) −0.39(29.68) −0.34(7.57) −0.5(29.74) −45.44(7.84) 44.58(27.02)
0.8 0.5 −0.5(9.96) −0.27(30.30) −0.36(9.59) −0.40(30.38) −53.09(5.79) 52.31(29.18)
0.5 −0.8 −0.19(8.25) −0.93(29.36) −0.12(7.91) −1.00(29.42) 7.48(18.33) −8.59(21.14)
0.5 −0.4 −0.18(8.26) −0.95(29.36) −0.12(7.91) −1.00(29.42) 5.70(15.61) −6.81(22.62)
0.5 0 −0.08(8.32) −0.35(29.79) −0.03(8.04) −0.40(29.85) −9.98(7.07) 9.55(28.13)
0.5 0.4 −0.08(8.31) −0.35(29.79) −0.03(8.04) −0.40(29.85) −40.65(6.85) 40.23(28.06)
0.5 0.8 −0.18(8.27) −0.95(29.36) −0.12(7.91) −1.01(29.42) −71.1(8.51) 69.97(26.48)

NOTE: Except for c1 and c2, the values in this table equal 100 times of the actual ones.

Figure 3. Left panel is the estimated σ̂1 of our proposed new method using (2.5), oracle and Zhou, Wang, and Zhao (2020) (i.e., the scaled Lasso proposed by Sun and
Zhang (2012)) over 500 replications by fixing c2 = 0.5 when the mediation model contains confounding variables. Green, red and blue boxes represent the estimate of
new method, oracle and Zhou, Wang, and Zhao (2020), respectively. Right panel is the estimated σ̂1 of our method using (2.5), oracle and Zhou, Wang, and Zhao (2020)
over 500 replications by fixing c1 = 0.5 when the mediation model contains confounding variables. Green, red and blue boxes represent the estimate of new method,
oracle and Zhou, Wang, and Zhao (2020), respectively.

Table 10. Estimated standard deviations and average estimated standard errors with their standard deviations (in parentheses) over 500 replications with different c1 and
c2 when confounding variables involved.

Direct effect (α̂1) Indirect Effect (̂β)

Newmethod Oracle Newmethod Oracle Zhou et al.’s method

c1 c2 std se(std) std se(std) std se(std) std se(std) std se(std)

−0.8 0.5 9.75 9.58(1.12) 9.48 9.71(1.11) 30.39 31.94(2.38) 30.25 31.93(2.38) 25.84 30.88(2.60)
−0.4 0.5 7.63 7.67(0.83) 7.44 7.77(0.82) 29.58 31.41(2.43) 29.56 31.4(2.43) 22.85 30.17(2.87)
0 0.5 6.91 6.93(0.7) 6.70 7.03(0.70) 29.6 31.21(2.45) 29.57 31.19(2.46) 21.69 29.22(3.22)
0.4 0.5 7.88 7.69(0.86) 7.57 7.79(0.88) 29.68 31.39(2.44) 29.74 31.37(2.45) 27.02 29.69(3.01)
0.8 0.5 9.96 9.6(1.18) 9.59 9.71(1.19) 30.3 31.94(2.44) 30.38 31.94(2.44) 29.18 30.31(2.84)
0.5 −0.8 8.25 8.08(0.93) 7.91 8.19(0.94) 29.36 31.52(2.43) 29.42 31.5(2.43) 21.14 29.87(3.02)
0.5 −0.4 8.26 8.08(0.93) 7.91 8.19(0.94) 29.36 31.52(2.43) 29.42 31.5(2.43) 22.62 29.9(3.00)
0.5 0 8.32 8.04(0.90) 8.04 8.16(0.91) 29.79 31.41(2.42) 29.85 31.40(2.42) 28.13 30.03(2.90)
0.5 0.4 8.31 8.04(0.90) 8.04 8.16(0.91) 29.79 31.41(2.42) 29.85 31.4(2.42) 28.06 29.86(2.91)
0.5 0.8 8.27 8.08(0.93) 7.91 8.19(0.94) 29.36 31.52(2.43) 29.42 31.5(2.43) 26.48 29.48(3.00)

NOTE: Except for c1 and c2, the values in this table equal 100 times of the actual ones.

more challenging. In addition, as c1 or c2 increases, estimating
� through ‖D̂ − �̂	̂UU‖ ≤ τ , where 	̂UU = uuT , u =
(mT ,wT)T , andD and� are defined following Zhou,Wang, and
Zhao (2020), requires larger tuning parameter τ , corresponding
to more penalization on parameters and hence, further biases as
well. Moreover, the power loss in the debiased step is attributed
in part to multicollinearity, which also increases with c1 and c2,
and when more confounders are involved.

As in Table 8, we report the empirical standard deviation of
the 500 estimates and the average of 500 estimated standard
errors over the 500 replications in Table 10 to examine the

accuracy of variance estimation. For the newmethod and oracle,
the standard errors estimated by Monte Carlo simulations are
close to those calculated from formulas; while the empirical
standard deviation and the average standard error of Zhou,
Wang, and Zhao (2020) have a large gap.

5. Conclusion

Early life trauma plays a critical role in developing psychi-
atric disorders, typically via altering certain neuroendocrine
substances like cortisol. Various researches thus, have been
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conducted to understand the mechanism relating cortisol
change to different circumstances of early life trauma. Along
with such prolific research output, scientists gradually realized
the bridging role of DNA methylation toward the relation
between childhood trauma and cortisol stress reactivity. On
genome-wide level, Houtepen et al. (2016) conducted a study
to investigate how DNA methylation affects cortisol stress
reactivity and its relationship with childhood trauma. They
identified three top-rated DNAmethylation loci by ranking the
p-values in an increasing order, one of which, on the KITLG
gene (cg27512205), was shown not only to associate with
cortisol change, but also partlymediate the relationship between
childhood trauma and cortisol stress reactivity. Another study
by van Kesteren and Oberski (2019), however, yielded a
completely different set of loci, based on the same dataset while
using their proposed CMF algorithm.

Motivated by such contradictory results in Houtepen et al.
(2016) and van Kesteren and Oberski (2019), in which the
authors did not consider the potentially active mediating loci
jointly, we propose a partial penalized least squared method for
linear mediation models with high-dimensional mediators in
the presence of confounders. We further develop relevant tests
for the direct and indirect effects in such high-dimensional lin-
ear mediationmodels. Simulation studies validate the capability
of the proposed approach for efficiently estimating and testing
the direct and indirect effects, and the numerical comparisons
also imply that the proposed procedure outperforms the debi-
ased method advocated by Zhou, Wang, and Zhao (2020).

We use this partial penalized least squares method and test-
ing procedures to investigate the high dimensional mediating
effects of DNAmethylation loci to relate childhood trauma and
cortisol stress reactivity, with confounding variables involved.
For comparison purpose, we analyze the same dataset as Houte-
pen et al. (2016) and van Kesteren and Oberski (2019). We
choose to include the eight DNA methylation loci discovered
by these two papers in the model as domain knowledge. Using
the proposed approach, we identified three new loci, on the
RAB5IF gene (cg19230917), the CPQ gene (cg06422529) and
the AGPAT1 gene (cg03199124), respectively, that actively play
themediator role.We compare our findingswithHoutepen et al.
(2016) and vanKesteren andOberski (2019) from statistical per-
spectives, where tests and related analyses are all in favor of the
three newly identified loci. Furthermore, we estimate and test
the direct and indirect effects for childhood trauma on cortisol
change, and conclude that the early life trauma affects cortisol
only indirectly throughDNAmethylation and the indirect effect
is negative, while the direct effect is insignificant.

From domain knowledge in existing literature, we also
provide biological and genetical interpretations for the three
selected loci and their belonging genes. The RAB5IF gene
takes charge of cell endocytosis process, by which cells engulf
substances like cortisol, thus, reasonably serves as a mediator
which transmits the hormone change brought by the traumatic
stress. As to the CPQ gene, previous research has verified
it as a pathway from stress to cortisol change in fish. Thus,
incorporating our findings, an neurobiological exploration
toward its role in human is worthwhile. The AGPAT1 gene,
on the other hand, was shown to control fat tissue biosyn-

thesis; while some retrospective studies demonstrated that fat
biosynthesis and storage caused by trauma stress is accompanied
with abnormal hormonal level such as cortisol. Therefore, our
findings may offer potential clues for such pathophysiological
mechanism research. In short, statistical tests and scientific
interpretations both show convincing evidence that the newly
identified three DNA methylation loci, or their located genes,
should be considered as active mediators that relate childhood
trauma and cortisol stress reactivity.

Supplementary Materials

The supplementary materials consist of detailed explanations of con-
founders and relationship among the mediators for the empirical analysis
in Section 3, and additional numerical comparison with the global test
(Djordjilović et al. 2019).
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