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ABSTRACT
In this article, we propose a new projection test for linear hypotheses on regression coefficient matrices
in linear models with high-dimensional responses. We systematically study the theoretical properties of
the proposed test. We first derive the optimal projection matrix for any given projection dimension to
achieve the best power and provide an upper bound for the optimal dimension of projection matrix.
We further provide insights into how to construct the optimal projection matrix. One- and two-sample
mean problems can be formulated as special cases of linear hypotheses studied in this article. We both
theoretically and empirically demonstrate that the proposed test can outperform the existing ones for
one- and two-sample mean problems. We conduct Monte Carlo simulation to examine the finite sample
performance and illustrate the proposed test by a real data example.
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1. Introduction

High-dimensional data have been collected in a wide range of
studies and applications from various fields such as genomics,
finance, social science, and signal processing. Over the last
two decades, one-sample and two-sample mean testing for
high-dimensional data received considerable attentions in the
literature. For fixed or low-dimensional data, the Hotelling
T2 test (Hotelling 1931) for the one-sample and two-sample
mean problem is the uniformly most powerful test invariant
under affine transformations. When the dimension p of
observations is greater than the sample size n, the Hotelling
T2 test becomes inapplicable because of the singularity of
the sample covariance matrix. To deal with the singularity,
various tests for high-dimensional one- and two-sample mean
testing have been proposed. Bai and Saranadasa (1996) first
studied the impact of dimensionality on two-sample mean
testing, and advocated sum-of-square-type statistics on the
mean difference while ignoring correlation matrices. Their
test avoids the problem caused by the rank deficiency of the
sample correlation/covariance. Also see Chen and Qin (2010),
Srivastava and Du (2008), and Zhang et al. (2020) for further
study and extension. To deal with sparse alternatives, Cai,
Liu, and Xia (2014) proposed a supremum-type statistic, and
Chen, Li, and Zhong (2019) proposed a sum-of-square-type
statistic together with a hard-threshold method. Furthermore,
Fan, Liao, and Yao (2015) proposed a power enhancement
principle in high-dimensional testing problems, especially for
sparse alternatives. Also see Kock and Preinerstorfer (2019)
for further discussion and extension. To achieve high power
against various alternatives, Xu et al. (2016) proposed a sum-
of-power-type statistic on the mean difference with an adaptive
power index, and He et al. (2021) further proposed an adaptive
testing procedure which combines p-values computed from the
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U-statistics of different orders. Regarding to covariance
structures, Aoshima and Yata (2018) and Wang and Xu
(2018) proposed tests specifically designed for strongly spiked
covariance structures based on eigenvalue decomposition of the
sample covariance. Xue and Yao (2020) proposed a distribution
and correlation-free two-sample mean test, which is built upon
a two-sample central limit theorem in high dimensions. To
incorporate covariance structures into the test statistics, Lopes,
Jacob, and Wainwright (2011), Thulin (2014), and Srivastava,
Li, and Ruppert (2016) proposed various random projection
methods. Although these tests are quite powerful under certain
scenarios, they do not fully use the information of correlation
among the variables. The proposals in Bai and Saranadasa
(1996), Srivastava and Du (2008), and Chen and Qin (2010)
ignore information of the correlation. The methods proposed
in Cai, Liu, and Xia (2014), Xu et al. (2016), Aoshima and Yata
(2018), Wang and Xu (2018), and Chen, Li, and Zhong (2019)
can only utilize some particular kinds of covariance structures
by data transformation methods or eigenvalue decomposition
approaches, while the procedures developed in Lopes, Jacob,
and Wainwright (2011), Thulin (2014), and Srivastava, Li, and
Ruppert (2016) only use part of the correlation information
preserved randomly.

This article aims to develop tests for the linear hypothesis in
the following linear model.

Y = XB + E, (1)

where Y is an n × p high-dimensional response matrix, that
is, p is large, X is an n × d design matrix whose dimension d
is fixed, B is a d × p regression coefficient matrix, and E is an
n × p error matrix with mean zero and cov(vec(E)) = In ⊗ �

for a positive definite matrix �. Here and hereafter vec(A) =
(aT1 , . . . , aTn )T for A = (a1, . . . , an)T . That is, we vectorize A by
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its rows rather than its columns. We are interested in testing the
following linear hypothesis with high-dimensional p.

H0 : A0B = 0 versus H1 : A0B �= 0, (2)

where A0 is anm × d known constant matrix,m is fixed as well
as d, and A0 is of full row rank, which implies m ≤ d. With
properly specifying X and A0, the one-sample and two-sample
mean tests can be formulated as special cases of (2). Thus, the
proposed procedure in this article is directly applicable to the
one-sample and two-sample mean problems.

In this article, we propose a projection test for (2) under the
setting (1). The projection test uses the correlation information
to improve the power of the test. To construct the projection
test, we first project the data into low dimension and then carry
out the test on the projected data. We show that there exist
low-dimensional projectionmatrices which use the information
of covariance to make the power of projection tests optimal.
We prove that the dimension of the optimal projections is not
greater than m, and further derive the m optimal projection
directions to achieve the best power. To carry out projection
tests, we can use a sample-splitting procedure, in which we
use the first part of the sample for estimation of projection
matrices and the second part for testing. We further propose
U-projection tests to improve the power of the test based on
the sample-splitting procedure by constructing a U-type test
statistic using all samples. We establish the theoretical prop-
erties of the U-projection test. For the one- and two-sample
mean problems, we show that by using correlation information,
the U-projection test can be much more powerful than some
existing two-sample tests in the presence of high correlation
like compound symmetry covariance structures theoretically.
We also show that the U-projection test has the same asymp-
totic power with the test proposed in Chen and Qin (2010)
in the presence of low correlation among variables. In addi-
tion to one-sample and two-sample mean problems, the pro-
posed U-projection test can be directly applied to other testing
problems such as multi-sample mean testing and predictor sig-
nificance testing in high-dimensional settings, which are also
important statistical problems. We examine the finite sample
performance of the proposed U-projection test via Monte Carlo
simulation studies, and illustrate the proposed methodology by
an empirical analysis of a gene expression microarray dataset
of murine heart under the conditions of cigarette smoke and
obesity.

The remaining of the article is organized as follows. In
Section 2, we propose the projection test with the optimal
projection direction, and further propose the framework of
the U-projection test and establish its asymptotic properties.
In Section 3, we evaluate the performance of the proposed
U-projection test on various simulated and real datasets. A brief
discussion is given in Section 4, and technical proofs are given
in the online appendix.

2. Projection Test on Linear Hypothesis

Consider model (1) and linear hypothesis (2). For n > p, we
can carry out tests like the likelihood ratio test (LRT) under
normality assumption on E. However, for p � n, the LRT

cannot be applied directly. A natural way to accommodate this
is to project Y into low dimensional space and then to carry on
the test on the projected data.

2.1. Optimal Projection Direction

Let P be a p × r full column rank matrix with r � p and r < n,
consider the P-projected model:

Y� = XB� + E�, (3)

where Y� = YP, B� = BP, and E� = EP, which is the n × r
projected error matrix withmean zero and cov(vec(E�)) = In⊗
(PT�P) .

The corresponding projected hypothesis becomes

H0P : A0B� = 0 versus H1P : A0B� �= 0, (4)

and the projected test statistic is

� = |GP|
|GP + HP| , (5)

where GP is the residual sum of squares under H1P, GP + HP
is the residual sum of squares under H0P. More specifically,
GP = PTYT(In−PH1)YP, PH1 = X(XTX)−1XT , andGP+HP =
PTYT(In − PH0)YP, PH0 = XA1(AT

1XTXA1)
−1AT

1XT , and A1 is
a d× (d−m)matrix defined byA1 = (AT

0 )⊥, which means that
(AT

0 ,A1) forms an orthogonal matrix. The test is the LRT under
normality assumption and is equivalent to many useful test in
various cases, like Hotelling T2 in the one-sample mean testing.

The projected null hypothesis H0P is rejected for small �,
and H0 is rejected if H0P is rejected. In general, H0 and H0P are
not equivalent. In this article, we will show that there exists an
optimal projection direction P which makes H0P equivalent to
H0 and also maximizes the power of the test (5). See Remark 1
for more details.

The problem how to construct an optimal direction can be
divided into two subproblems: one is to find the dimension
r of the optimal projection direction P, and the other is to
find the optimal P of a particular dimension. These issues are
addressed in Theorem 1. We assume the following conditions
on themultivariate linear model (1) to derive the asymptotically
optimal projection direction matrix.

Condition 1: There exists a positive constant C1 such that
‖XXT‖∞ < C1, where ‖A‖∞ = maxi,j |ai,j| for A = (ai,j)i,j.

Condition 2: The limit limn→∞ n−1(XTX) = MX exists, where
MX is a nonsingular d × dmatrix.

Condition 3: There exists a positive constant C2 such that
E(E4ij) < C2, i = 1, . . . , n, j = 1, . . . , p for elements Ei,j
in the error matrix.

Conditions 1–3 are quite mild and are used to guarantee
asymptotic normality of least squares estimate in linear models.
For example, Conditions 1 and 2 hold in the one-sample mean
testing problem automatically, and they also hold in the two-
sample mean testing problem if n1

n1+n2 → κ ∈ (0, 1), where
n1 and n2 are sample sizes of the first and the second samples,
respectively. See Example 2 in this section.
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Theorem 1. Under Conditions 1–3, the following statements are
valid.

(A) Suppose that the error matrix E follows a matrix normal
distribution.

(A1) Let W = �−1/2BTXT(In − PH0)XB�−1/2, where
PH0 = XA1(AT

1XTXA1)
−1AT

1XT , and A1 is a d ×
(d − m) matrix which is defined by A1 = (AT

0 )⊥.
W is a p × p matrix of rank m. Suppose W admits
the eigenvalue decomposition W = ∑m

i=1 λ0iRiRTi ,
where 0 < λ0m ≤ · · · ≤ λ01 are m nonzero eigen-
values, and Ri, i = 1, . . . ,m, are the corresponding
orthogonal eigenvectors. Then for any given r ≤ m,
P0 = �−1/2 (

R1, . . . ,Rr
)
is the projection direction

matrix which is optimal among all p × r matrices for
the hypothesis testing problem (4).

(A2) The optimal dimension of projection matrix is less
than or equal tom for the hypothesis testing problem
(4).

(A3) Set r = m, �−1BTAT
0 is the projection direction

matrix which is optimal among all p × m matrices
for the hypothesis testing problem (4).

(B) Without normality assumption, the statements in (A1)–
(A3) are still valid in asymptotic sense by changing opti-
mal projection to asymptotically optimal projection which
maximizes the asymptotic local power.

Theorem 1(A1) gives the form of the optimal projection
direction matrix of a given dimension. Theorem 1(A2) tells us
there is no need to use projection direction matrices of more
than m columns. Theorem 1(A3) gives a simple form of the
optimal p × m projection direction matrix. When m is small
as in the one-sample and two-sample mean testing problems
(m = 1), we advocate to set r = m, and use the projection
direction�−1BTAT

0 provided byTheorem1(A3). Theorem1(B)
confirms that even without the multinormality assumption, the
results in Theorem 1(A) are still valid asymptotically.

Remark 1. From Theorem 1(A3), the optimal project direction
P = �−1BTAT

0 when r = m. Then the linear hypothesis
in (4) becomes H0P : A0B�−1BTAT

0 = 0 versus H0P :
A0B�−1BTAT

0 �= 0. Since �−1 is supposed to be positive
definite, the linear hypothesis in (4) with the optimal projection
direction is equivalent to the original linear hypothesis (2).

In the following examples, we want to apply Theorem 1 in
several specific types of hypothesis testing.

Example 1 (One-sample mean testing). For one-sample mean
testing, suppose we have n samples Y from a p-dimensional
multivariate distribution with mean μ and covariance �, and
we want to test whether μ = 0. It is easy to reformulate the
problem as

Y = 1nB + E, (6)
where 1n is a column vector full of 1 of length n, B = μT , E is the
n×p random errormatrix, and the null hypothesis becomesH0:
B = 0. In this problem, A0 = 1 is of rank 1. By Theorem 1, the
optimal projection dimension is 1 and the optimal projection
direction is �−1μ.

Example 2 (Multi-samplemean testing). Formulti-samplemean
testing problem, suppose for k = 1, 2, . . . ,K, we havenk samples
Yk from a p-dimensionalmultivariate distribution Fk withmean
μk and covariance �, and we want to test whether μ1 = μ2 =
· · · = μK . The problem can be reformulated as⎛

⎝Y1
· · ·
YK

⎞
⎠ =

⎛
⎝1n1 0 · · ·

· · · · · · · · ·
0 · · · 1nK

⎞
⎠B + E, (7)

where B = (μ1, . . . ,μK)T , and E is the (
∑K

k=1 nk) × p random
error matrix. We want to test H0: A0B = 0, where A0 =
{aij}1≤i≤K−1,1≤j≤K with aii = K − 1 and aij = −1, i �= j. In
this problem, A0 is of rank K − 1. By Theorem 1, the optimal
projection dimension is less than or equal to K − 1 and the
optimal p× (K − 1) projection direction matrix is K�−1(μ1 −
μ̄,μ2−μ̄, . . . ,μK−1−μ̄), where μ̄ = 1

K
∑K

k=1 μk. In particular,
when K = 2, the optimal projection dimension is 1 and the
optimal projection direction is �−1(μ1 − μ2).

Example 3 (Testing of significance of predictors). Consider the
linearmodel (1). Of interest is to test the significance of a certain
predictor, X(i). That is, consider

H0 : A0B = 0 H1 : A0B �= 0, (8)

where A0 = eTi and ei is a d-dimensional column vector with
the ith element one and other elements zero. Note that in the
normal case, testing whether the regression coefficients equal to
zero or not is equivalent to testing of conditional independence,
so the above hypothesis testing problem is also testing for the
conditional independence of Y and X(i) given other (d − 1)
predictors under normality assumption. From Theorem 1, the
optimal projection dimension is 1 and the optimal projection
direction is �−1BTei.

2.2. Estimation of Optimal Projection Direction

Theorem 1 provides us insights into how the optimal projection
direction depends on � and B. We will develop an estimation
procedure for the optimal direction. For hypothesis (2) with
small m, as for the one-sample and two-sample mean testing
problems, we advocate set k = m, and the optimal projection
direction is �−1BTAT

0 according to Theorem 1 (A2) and (A3).
The optimal projection matrix can be estimated column by
column as follows.

P0,k = �−1BTAT
0,k, for k = 1, . . . ,m, (9)

whereA0,k is the kth row ofA0, and P0,k is the kth column of P0.
So without loss of generality, in this subsection we assumem =
1 and treat A0 and P0 as vectors. Hence, we focus on estimating
the optimal projection direction P0:

P0 = �−1BTAT
0 . (10)

A natural approach for estimating the optimal projection direc-
tion is to use estimators B̂ and �̂ instead of B and �:

P̂ = �̂−1B̂TAT
0 . (11)

However, P̂ in (11) is not well defined when �̂ is singular as in
the case of sample covariance when p is larger than n. To deal
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with this problem, we can use a shrinkage method similar to
ridge regression:

P̂ridge = (λ0Ip + �̂)−1B̂TAT
0 , (12)

where λ0 > 0.
Projection test provides us with much flexibility in choosing

B̂ and �̂. If we have some prior knowledge on B or �, we
can use the prior knowledge to estimate them efficiently to
construct a good estimate of the optimal projection direction
and a powerful projection test. Here if we do not have any prior
knowledge on the linear regression coefficient B, we use the least
squares estimator B̂LS as follows:

B̂LS = (XTX)−1XTY . (13)

If we do not have any prior knowledge on �, we use the sample
covariance of the residuals to estimate � given B̂, so

�̂ = 1
n − d

(Y − XB̂)T(Y − XB̂), (14)

where n is the sample size. This choice makes our conclusion
robust to the assumptions on �. Moreover, we have

�̂LS = 1
n − d

(Y − XB̂LS)T(Y − XB̂LS). (15)

Although it can bring more power to the test by having prior
knowledge onB and� and using particular estimators for them,
we propose using the general estimators ofB and� in this article
to reflect the general case. From B̂LS, �̂LS, we have

P̂LS = (λ0Ip + �̂LS)
−1B̂TLSA

T
0 , (16)

whereλ0 > 0 and n is the sample size. It is of interest to establish
the theoretical properties of P̂LS. But this would require very
technical treatments using high-dimensional random matrix
theory, and is beyond the scope of this article. In general, P̂LS
might not be a consistent estimator for the optimal projection
direction in high-dimensional settings. However, as shown in
Theorem 2 in the next section, tests based on P̂LS have the
potential to bring power improvements under high correlation
covariance structures.

2.3. Sample-Splitting Projection Test andU-Projection Test

In her unpublished dissertation, Huang (2015) introduced a
sample-splitting method for estimating the optimal projection
direction for one-sample and two-sample mean testing. The
sample-splitting method randomly partitions the data into two
parts, one part for the projection direction estimation, and
the other part for the projection test. Since the data used for
estimation of the projection direction is independent of the data
for the projection test, the resulting projection test retains Type
I error rate very well. The sample-splitting method may be used
for our current setting, but there are several disadvantages of
the sample-splitting projection test. (a) Even for a given sample,
the sample-splitting projection test is random in nature because
of the sample splitting procedure. (b) In sample splitting, we use
part of the samples to estimate the projection direction and then
use the projection test on the remaining samples. We have some

power loss because of sample splitting. (c) The sample-splitting
portion is hard to determine in general, because it requires the
knowledge of the unknown true parameter. To deal with these
issues, we propose the U-projection test. The key idea is to
construct a test statistic similar to U-statistic with the kernel of
the sample-splitting projection test statistic. We first construct
the U-projection statistic in the one- and two-sample mean
testing problems, and then we will construct the U-projection
statistic in the general case similarly.

2.3.1. High-Dimensional One- and Two-SampleMean
Problems

Suppose there are n independent samples from a population F
and Y is the n × p data matrix. We want to test H0 : μ = 0p
versus Ha : μ �= 0p. The sample-splitting test procedure
randomly partitions the data into two parts Y1 and Y2, whose
sample sizes are k and n − k, respectively. The first sample is
used to obtain an estimator of the optimal projection direction
P̂Y1 , which is a vector in the one-sample mean testing problem.
We can then conduct a test for H0 : μ = 0 based on the
projected second sample YT

2 P̂Y1 . Note that t-test is equivalent to
the likelihood ratio test for univariate normal mean test. Thus,
onemay directly apply the t-test for the projected second sample
to test H0 : μ = 0.

The main drawbacks of the sample-splitting test are related
to the random sample-splitting part. To overcome this issue,
we can construct a statistic similar to U-statistic, which is the
average of all possible sample-splitting test statistic with a fixed
k. This results in the proposed U-projection statistic in the one-
sample mean problem:

UP = 1(n
k
) ∑

γ∈�

ȲT−γ P̂Yγ , (17)

where � is the collection of all size-k subsets of {1, 2, . . . , n},
and Yγ , Y−γ are subsamples of Y with and without index γ ,
respectively. In the construction of UP, we use the projected
sample mean instead of the LRT statistic (or equivalently t-
statistic) based on the projected sample. This will be applied for
two-sample mean testing problems below, and leads to a better
performance than the projected LRT. See more details in the
discussion after Equation (18).

From the construction of the sample-splitting test statistic
and the U-projection statistic (17), it can be seen that the
expectation of these two statistics should be same and that the
variance of the U-projection statistic (17) should be smaller
than or equal to that of the sample-splitting test statistic with
the same k as the U-projection statistic UP. In fact, var(UP) ≤
1

(nk)

∑
γ∈� var(ȲT−γ P̂Yγ ) = 1

(nk)

∑
γ∈� var(SP) = var(SP),

where SP = ȲT−γ P̂Yγ , which is the sample splitting test statistic
with the same k asUP. By taking the average of sample-splitting
test statistics, the U-projection statistic (17) solves the issues of
the sample-splitting projection test, that is, its randomness and
loss of power due to sample splitting. Thus, it is expected that
the U-projection test is more powerful than the sample-splitting
projection test.

Similarly, we have the U-projection statistic for two-sample
mean testing problems. Supposewe have n1 samplesY1 from the
first population, n2 samples Y2 from the second population, and
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Table 1. Empirical Type I error rates and powers of two-sample mean tests with compound-symmetry covariances (in percentage).

θ ρ n p BS CQ SD CLX CLZ XLWP LJW XY HXWP New

0 0.5 50 500 4.0 4.4 4.5 4.3 4.3 4.3 6.0 4.4 6.4 5.7
100 500 4.9 4.8 4.6 5.0 5.4 5.3 6.9 4.3 6.6 4.3
50 1000 5.6 5.6 5.7 4.7 5.7 5.2 4.4 3.8 6.0 3.5
100 1000 3.5 3.7 3.9 4.4 3.8 4.1 6.3 4.9 6.6 3.9

0 0.8 50 500 5.2 5.1 5.1 5.6 4.7 5.2 4.7 5.2 6.1 7.0
100 500 4.6 4.1 4.6 4.5 4.6 4.6 4.8 4.0 5.6 5.1
50 1000 4.2 3.9 4.2 4.5 4.3 4.1 6.9 4.9 6.0 5.4
100 1000 3.3 3.9 3.8 3.8 4.0 4.2 6.4 5.2 7.1 4.6

0.5 0.5 50 500 7.5 8.3 7.7 19.1 8.1 17.0 44.1 18.1 9.8 100.0
100 500 5.4 5.7 5.8 16.1 5.8 14.3 66.7 19.1 11.1 99.8
50 1000 8.1 7.3 7.7 19.3 7.4 16.7 43.4 18.0 9.1 100.0
100 1000 7.4 7.1 7.4 20.8 7.4 17.1 61.0 20.7 12.6 100.0

0.5 0.8 50 500 6.4 6.8 6.6 20.7 7.0 18.2 87.6 22.7 12.9 100.0
100 500 6.3 6.3 5.8 22.2 5.8 20.0 99.3 19.9 10.7 100.0
50 1000 5.9 5.6 6.0 22.2 6.3 20.8 87.2 26.3 15.3 100.0
100 1000 6.3 6.0 5.9 23.8 6.2 20.9 99.1 25.6 15.5 100.0

Table 2. Empirical Type I error rates and powers of two-sample mean tests with autoregressive covariances (in percentage).

θ ρ n p BS CQ SD CLX CLZ XLWP LJW XY HXWP New

0 0.5 50 500 6.0 5.5 5.0 4.7 5.7 5.6 3.1 5.2 6.0 4.9
100 500 4.1 4.4 4.2 4.2 5.2 4.5 4.6 4.3 6.7 5.8
50 1000 4.2 4.5 4.4 4.2 4.4 4.6 5.0 5.6 6.3 3.9
100 1000 4.8 4.7 5.2 4.6 5.3 4.8 4.1 4.9 6.8 4.2

0 0.8 50 500 5.8 5.4 5.5 5.1 5.0 4.6 5.3 5.2 6.6 4.8
100 500 5.0 5.1 5.3 4.6 4.8 5.4 5.5 5.3 7.4 6.4
50 1000 4.3 4.2 4.3 5.7 5.0 5.1 4.7 5.4 5.3 3.6
100 1000 5.2 5.7 4.6 5.3 4.8 4.3 5.7 4.5 7.1 5.7

0.5 0.5 50 500 88.2 88.0 87.0 19.4 73.6 75.1 21.3 19.9 64.7 88.2
100 500 87.4 87.4 87.4 21.5 75.3 73.2 32.0 22.1 66.5 88.1
50 1000 99.5 99.6 99.2 22.1 95.7 97.3 19.8 22.8 91.4 98.4
100 1000 99.2 99.3 99.4 23.0 95.9 96.6 26.7 26.7 93.0 98.4

0.5 0.8 50 500 51.5 52.9 52.5 21.6 39.6 34.2 26.4 25.1 30.9 94.0
100 500 51.9 52.0 52.4 23.6 41.5 36.7 59.3 22.7 32.1 99.6
50 1000 79.1 79.1 79.2 24.4 67.4 60.2 21.7 24.2 52.2 94.9
100 1000 79.6 78.4 78.8 27.0 65.4 59.4 44.0 27.1 55.2 99.9

all samples are independent. Furthermore, supposewe choose ki
samples fromYi for i = 1, 2 to estimate the projection direction,
the two-sample U-projection statistic becomes

UP = 1(n1
k1

)(n2
k2

) ∑
γ1∈�1

∑
γ2∈�2

(ȲT−γ1,1 − ȲT−γ2,2)P̂Yγ1,1,Yγ2,2
, (18)

where for i = 1, 2,�i is the collections of all subsets of {1, . . . , ni}
with size ki, Yγ ,i and Y−γ ,i are subsets of Yi with and with-
out index γ correspondingly, and P̂Yγ1,1,Yγ2,2

is the projection
direction estimated using Yγ1,1 and Yγ2,2. Similar toUP for one-
sample mean problem, we use the projected sample mean in
the construction of UP instead of the t-test statistic based on
the projected sample. From our simulation, we find this UP
has slightly higher power than the LRT based on the projected
sample under most scenarios in Tables 1–3.

We next study the asymptotic properties of U-projection test
statistic and its connection to other testing methods for the
one- and two-sample mean testing problems. In the two-sample
mean testing problem, suppose we use the projection direction

P̂LS = (λ0Ip + �̂)−1B̂TLSA
T
0 = (λ0Ip + �̂)−1(Ȳ1 − Ȳ2), (19)

the U-projection statistic becomes

ULS = 1(n1
k1

)(n2
k2

) ∑
γ1∈�1

∑
γ2∈�2

(ȲT−γ1,1 − ȲT−γ2,2)

×
{
λ0Ip + (k1 − 1)SYγ1,1

+ (k2 − 1)SYγ2,2

k1 + k2 − 2

}−1

× (Ȳγ1,1 − Ȳγ2,2),

(20)

where for i = 1, 2, ki is the number of independent samples
from Yi to estimate the projection direction, �i is collections
of all subsets of {1, . . . , ni} with size ki, and Yγ ,i and Y−γ ,i
are subsets of Yi with and without index γ correspondingly.
Under the special case that � = Ip, the optimal projection
direction �−1(μ1 − μ2) = μ1 − μ2, and it is natural to
estimate the optimal projection direction by P̂N = Ȳ1 − Ȳ2.
Furthermore, with the projection directionPN, theU-projection
statistic becomes

UN = 1(n1
k1

)(n2
k2

) ∑
γ1∈�1

∑
γ2∈�2

(ȲT−γ1,1 − ȲT−γ2,2)(Ȳγ1,1 − Ȳγ2,2),

(21)
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Table 3. Empirical powers of two-sample mean tests with sparse alternatives and ρ = 0.8 and θ = 1.0 (in percentage).

� s n p BS CQ SD CLX CLZ XLWP LJW XY HXWP New

CS 0.4 50 500 5.4 5.5 5.5 12.5 5.3 11.5 10.6 13.8 7.5 47.1
100 500 5.8 5.8 5.5 14.2 6.0 13.0 14.6 13.5 9.0 39.6
50 1000 5.4 4.6 4.4 12.3 4.7 11.8 9.6 12.0 7.3 42.8
100 1000 5.1 5.2 5.3 11.9 5.0 10.6 11.1 11.8 8.1 44.5

0.7 50 500 6.3 6.6 6.2 37.2 6.2 32.6 59.7 38.0 22.3 100.0
100 500 4.3 4.6 4.6 35.0 3.9 32.6 87.0 38.4 24.6 100.0
50 1000 4.4 5.0 4.8 37.3 5.0 33.7 49.0 41.3 25.5 100.0
100 1000 5.7 5.3 6.0 37.8 5.7 34.8 76.2 39.8 26.0 100.0

AR 0.4 50 500 7.9 7.2 7.2 8.0 7.3 7.7 7.1 9.1 8.1 10.8
100 500 7.1 6.6 6.2 8.9 6.2 7.4 8.7 8.5 8.5 13.5
50 1000 5.9 6.8 6.0 7.8 5.5 7.0 5.2 8.9 8.9 8.1
100 1000 5.5 4.8 5.2 7.7 5.6 7.0 6.3 7.7 8.5 7.0

0.7 50 500 26.8 26.3 26.4 25.1 26.1 25.1 18.4 28.6 21.9 63.9
100 500 28.8 27.7 27.4 28.4 26.6 27.4 34.5 27.0 24.2 91.2
50 1000 31.2 31.0 30.6 24.8 27.4 27.8 12.5 27.5 26.1 48.8
100 1000 33.1 34.3 33.4 28.0 31.7 29.4 20.2 28.1 28.8 71.4

which can be shown to be the same two-sample statistic TCQ in
Chen and Qin (2010). Hence, the test in Chen and Qin (2010)
can be viewed as a U-projection test by pretending �̂ = Ip.

While Chen and Qin (2010) showed that TCQ is quite pow-
erful when the covariance is of low correlation structures as
required by the condition that tr(�4) = o(tr2(�2)), power
of TCQ can be diminished by the presence of high correlation
in �. From Chen and Qin (2010), we know that tr(�2)

n2 =
O(var(TCQ)) and E(TCQ) = ‖μn‖2, where μn is the mean
difference. Let an � bn stand for that a and b have the order
(i.e., an/bn = O(1) and bn/an = O(1)). Under the high
correlation case that λmax � p, and local alternative hypothesis
that ‖μn‖2 = o(p/n), it is easy to show that E(TCQ) =
o(

√
var(TCQ)), which suggests thatTCQ has no nontrivial power

beyond the significance level under this high correlation sce-
nario asymptotically. Unlike TCQ, our proposedULS utilizes the
covariance information, and Theorem 2 establishes the asymp-
totic normality of ULS under certain high correlation covari-
ance structures and shows that the test based on ULS can be
quite powerful under the high correlation covariance structure.
Besides the advantage ofULS in certain high correlation settings,
Theorem 3 shows that the test ULS and the test TCQ in Chen
and Qin (2010) have the same asymptotic power under low
correlation covariance in high-dimensional settings.

For asymptotic normality of ULS, we assume the following
conditions on the error matrix E in the linear model (1):

Condition 4

Ei = �Zi for i = 1, . . . , n, (22)

where � is a p × t matrix with some t ≥ p such that ��T =
�, and Zi = (Zi,1, . . . ,Zi,t) are t-variate independent and
identically distributed random vectors satisfying E(Zi) = 0,
var(Zi) = It , E(Z3

i,k) = 0, E(Z6
i,k) is uniformly bounded, and

E

(
Zα1
i,l1Z

α2
i,l2 · · ·Zαs

i,ls

)
= E

(
Zα1
i,l1

)
E

(
Zα2
i,l2

)
· · ·E

(
Zαs
i,ls

)
,
(23)

for a positive integer s such that
∑s

l=1 αl ≤ 8 and l1 �= l2 �=
· · · �= ls.

Condition 5‖A0B‖2F = o(p/n).

Condition 4 is similar to conditions (3.1) and (3.2) in Chen
and Qin (2010) under the linear model setting (1). Equation
(22) says that the error matrix E can be expressed as a linear
transformation of a randomvectorZ of length t (which is greater
than or equal to p) with zero mean and unit variance, which
allows a variety of structures for the covariance �. Equation
(23) says that each vector Zi has a kind of pseudo-independence
among its elements, and the equationwill be satisfied if elements
of Zi are independent. Condition 5 can be seen as the local
alternative assumption under the linear model setting (1). In
two-sample mean testing problems, it is easy to verify that
Condition 5 is equivalent to ‖μn‖22 = o(p/(n1 + n2)), where
μn is the two-sample mean difference and ni, i = 1, 2 are two
sample sizes.

For high correlation covariance � with eigenvalues λ1 ≥
· · · ≥ λp, we assume the following condition:

Condition C1 There exists a uniformly bounded positive inte-
ger q < p such that

√
nλq

tr(�)
→ ∞ and λq+1 is uniformly

bounded from above. The smallest eigenvalue λp is uni-
formly bounded from below.

The spiked covariance models studied in Johnstone (2001),
Baik and Silverstein (2006),Wang and Fan (2017), and Donoho,
Gavish, and Johnstone (2018) satisfy Condition C1, but � sat-
isfying Condition C1 can be more general than the spiked
models. For example, Condition C1 may be satisfied by the
linear positive combination of compound-symmetry covariance
and autoregressive covariance. Also note that the situation that
λmax � tr(�) which diminishes the power of TCQ against local
alternatives is also included in Condition C1.

Theorem 2. Suppose the covariance � satisfies Condition C1.
Under high-dimensional settingn1+n2 = o(tr(�)), Conditions
3, 4, 5, and conditions that ki/ni → γi ∈ (0, 1) for i = 1, 2,
n1/(n1+n2) → κ ∈ (0, 1), thenULS has an asymptotically nor-
mal distribution with a uniformly bounded positive λ0. More
specifically, we have

λ0(ULS − E(ULS))

σn

d→ N(0, 1), and

λ0E(ULS) − ‖Wq+1μn‖22 = o(‖Wq+1μn‖22), (24)
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where q is the number of divergent eigenvalues of� as specified
in Condition C1,Wq+1 is the projection matrix onto the linear
span of eigenspaces of � corresponding to the smallest p − q
eigenvalues, λq+1, λq+2, . . . , λp,μn is the mean difference of the
two populations, and σ 2

n = ( 2
n21

+ 2
n22

+ 4
n1n2 )

∑p
i=q+1 λ2i .

The condition ki/ni → γi ∈ (0, 1) for i = 1, 2 means that
enough samples need to be used for covariance estimation in
the U-projection test. From the formula of σ 2

n in Theorem 2, we
can see that under local alternatives and high correlation covari-
ances as in Condition C1, the divergent eigenvalues of� do not
contribute to the asymptotic variance of ULS, which is contrary
to the case ofTCQ since var(TCQ) � tr(�2)/(n1+n2)2. Itmeans
that the high correlation structures specified in Condition C1
inflate the variance of TCQ but not that of ULS, which shows
the advantage ofULS under this high correlation scenario. From
Theorem 2, we can calculate the asymptotic power of ULS for
local alternatives such that ‖μn‖22 = o(p/(n1 + n2)) by

βn(μn) = �

(
−ξα + ‖Wq+1μn‖22

σn

)
, (25)

where α is the size of the test, and � is the standard normal
distribution function. From Condition C1, we have σn �

√p
n1+n2

and it is easy to show thatULS is consistent against local alterna-
tives that satisfy (n1+n2)‖Wq+1μn‖22√p → ∞ under the conditions
imposed by Theorem 2.

For low correlation covariance �, we assume the following
condition:

Condition C2 tr(�4) = o(tr2(�2)).

Condition C2 is the same condition on the correlation structure
as in Chen andQin (2010) when the two population covariances
are the same. While Condition C2 is satisfied by low correlation
covariance structures like autoregressive matrices where the
maximum eigenvalue is bounded, the condition is not satis-
fied by high correlation covariance structures like compound-
symmetry ones. Furthermore, Condition C2 cannot be satisfied
by the high correlation covariance as specified by Condition C1
under the high-dimensional regime n1 + n2 = O(tr(�)). In
fact, under Condition C1 and n1 + n2 = O(tr(�)), we have
tr(�2) = O(p) + ∑q

i=1 λ2i = O(
∑q

i=1 λ2i ) = O(

√∑q
i=1 λ4i ) =

O(
√
tr(�4)), which is the opposite of Condition C2.

Theorem 3. Suppose the covariance � satisfies Condition C2.
Under high-dimensional setting n1 + n2 = O(tr(�)), Condi-
tions 3–5, and conditions that ki/ni → γi ∈ [0, 1) for i = 1, 2,
n1/(n1 + n2) → κ ∈ (0, 1), and

(k1 + k2) = o(tr(�)/λmax(�)2), (26)

where λmax(�) is the largest eigenvalue of �, λ0ULS is asymp-
totically normally distributed and has the same asymptotic vari-
ance and similar expectation with TCQ,

λ0(ULS − EULS)√
varTCQ

d→ N(0, 1), and

|E(λ0ULS − TCQ)| = o(ETCQ), (27)

and ULS and TCQ have the same asymptotic power, βULS(μ1 −
μ2) − βTCQ(μ1 − μ2) → 0.

The condition (26) restricts the product of k1 + k2 in the
U-projection test and the largest eigenvalue of the covariance
matrix. Under high correlation structures like the compound
symmetrymatrix, where the largest eigenvalue is of order tr(�),
there is no k1 and k2 satisfying the condition (26). Under low
correlation covariance structures like autoregressive matrices,
where the maximum eigenvalue is of order O(1), the condition
(26) can be satisfied by k1 +k2 = o(tr(�)), which is always true
in the high-dimensional setting n1 + n2 = o(tr(�)).

From Theorem 3, it can be seen that under the low cor-
relation case, the U-projection test cannot provide substantial
improvement since its asymptotic power is the same with tests
like Bai and Saranadasa (1996) and Chen and Qin (2010). To
further appreciate Theorem 3, notice that for the low correlation
structures, Ip can be a better estimation for � than the sam-
ple covariance. For example, in the high-dimensional setting
n = o(p), when � = {ρ|i−j|}1≤i,j≤p, ρ ∈ (0, 1), which is of
autoregressive structures, then ‖�−Ip‖F√p = O(1) while ‖�−�̂‖F√p
goes to infinity, where ‖ · ‖F is the Frobenius norm. Hence,
μ1 − μ2 can be more similar to the true optimal direction
�−1(μ1−μ2) than (λ0Ip+�̂)−1(μ1−μ2) in direction, andTCQ
can use PN = Ȳ1− Ȳ2 as an estimator for the optimal projection
direction �−1(μ1 − μ2) without much power loss.

2.3.2. U-Projection Test for General Cases
Now we can construct our U-projection statistic in general
cases, which is an extension from the U-projection statistic (17)
in the one-sample mean testing problem. Similar to the one-
sample problem, it is helpful to consider the sample-splitting
projection test statistic first. Consider the general multivariate
linear model (1) and the hypothesis (2). From Theorem 1,
P0 = �−1BTAT

0 is the asymptotic optimal projection matrix
of dimension p × m. The null hypothesis of the projection test
with direction P0 is H0P : A0BP0 = A0B�−1BTAT

0 = 0. Since
A0B�−1BTAT

0 is positive semidefinite, it is equivalent to the test
H0P : tr(A0BP0) = tr(A0B�−1BTAT

0 ) = 0. Following the
sample-splitting test procedure, we split the data (X,Y) into two
parts (X1,Y1) and (X2,Y2). The sample sizes ofX1, Y1 are k, and
the sample sizes of X2, Y2 are n − k. The first sample is used
to obtain an estimator P̂(X1,Y1) of the m-dimensional optimal
projection direction P0. The sample-splitting test statistic on the
projected second sample is calculated as follows:

tr
(
A0B̂(X2,Y2)P̂(X1,Y1)

)
= tr

(
A0(XT

2 X2)
−1XT

2 Y2P̂(X1,Y1)
)
.
(28)

Note that for P̂(X1,Y1) and B̂(X2,Y2) to exist, X1 and X2 have to be
of full column rank. Similar to the construction of UP for the
one-sample and two-sample mean problems, we do not directly
use the likelihood ratio test based on the projected sample to
constructUP. Instead,we constructUP via the estimate ofA0BP0
based on the projected sample.

From the construction of U-projection statistic (17) in the
one sample problem, we can construct the statistic for U-
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Table 4. Type I errors and empirical powers of U-projection test in multi-sample mean testing (in percentage).

� = {ρ|i−j|}i,j � = (1 − ρ)Ip + ρ1p1Tp
θ ρ n p =125 250 500 1000 125 250 500 1000

0 0.5 50 6.0 6.3 4.4 4.8 4.6 5.0 5.3 4.9
100 6.0 5.7 7.0 5.0 4.7 5.2 5.7 4.9

0 0.8 50 5.3 4.6 5.6 4.7 4.7 5.3 6.2 3.8
100 3.7 5.2 4.6 4.4 5.0 5.3 4.9 5.0

0.5 0.5 50 90.4 97.2 99.8 100.0 98.9 100.0 100.0 100.0
100 96.3 99.3 99.9 100.0 99.3 99.9 100.0 100.0

0.5 0.8 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 5. Type I errors and empirical powers of U-projection test in predictor significance testing (in percentage).

� = {ρ|i−j|}i,j � = (1 − ρ)Ip + ρ1p1Tp
θ ρ n p =125 250 500 1000 125 250 500 1000

0 0.5 50 4.9 4.3 4.4 5.1 3.9 4.0 3.9 5.8
100 4.7 4.7 5.0 4.8 5.7 5.4 4.7 5.1

0 0.8 50 5.3 5.4 5.3 4.5 4.5 4.9 5.2 4.9
100 3.6 4.6 4.9 5.9 4.8 4.7 4.1 5.4

0.5 0.5 50 25.4 36.7 52.7 74.4 41.5 62.5 79.5 90.8
100 33.7 45.2 64.3 88.3 46.6 72.4 94.8 99.6

0.5 0.8 50 13.2 14.4 13.6 17.3 40.6 61.5 79.4 88.6
100 34.0 28.7 24.4 29.4 52.9 73.9 95.1 99.3

projection test in general cases similarly as follows:

UP = 1
|�|

∑
γ∈�

tr
(
A0(XT−γX−γ )−1XT−γY−γ P̂(Xγ ,Yγ )

)
, (29)

where � = {γ | γ ⊂ {1, 2, . . . , n}, |γ | = k, rank(Xγ ) >

d, rank(X−γ ) ≥ d}, and Xγ , Yγ , X−γ Y−γ are subsamples
of X and Y with and without index γ , respectively. From our
simulation study, we find that the UP defined in (29) performs
slightly better than the likelihood ratio test based on projected
sample under most scenarios in Tables 4 and 5.

The calculation of the U-projection statistic is illustrated in
Algorithm 1.

Algorithm 1 General U-projection statistic
Input: n× d dimensional matrix X, n× p dimensional matrix
Y ,m × d dimensional matrix A0, and d < k ≤ n − d.
Let i = 0; U = 0.
for γ ⊂ {1, 2, . . . , n} and |γ | = k do
if Xγ are of rank greater than d and X−γ are of rank no less
than d then
Estimate the projection direction P̂(Xγ ,Yγ ) using Xγ and
Yγ .
Calculate U = U +
tr

(
A0(XT−γX−γ )−1XT−γY−γ P̂(Xγ ,Yγ )

)
.

i = i + 1.
end if

end for
Calculate the U-projection statistic by UP = U/i.

Note that in Algorithm 1 we loop over size-k subsets γ of
{1, 2, . . . , n}, so the algorithm will always end after finite itera-
tions. We next study the asymptotic properties of U-projection
test statistic in general cases.

Theorem 4. Consider H0 : A0B = 0 under model (1). Let

hP(Z1,1, . . . ,Zk+d,1;Z1,2, . . . ,Zk+d,2)

= 1
|�|

∑
γ∈�

diag
(
A0(ZT−γ ,1Z−γ ,1)

−1ZT−γ ,1Z−γ ,2P̂(Zγ ,1,Zγ ,2)

)
,

(30)
where −γ = {1, . . . , k + d}\γ , � = {γ , γ ⊂ {1, 2, . . . , k +
d}, |γ | = k, rank(Zγ ,1) > d, rank(Z−γ ,1) = d}; Zγ ,i, Z−γ ,i
are samples of Z...,i with and without index γ for i = 1, 2;
and P̂(Zγ ,1,Zγ ,2) is the projection direction estimated with
(Zγ ,1,Zγ ,2). Then with the conditions that k is fixed and that
Etr

(
cov(hP(Z1,1, . . . ,Zk+d,1;Z1,2, . . . ,Zk+d,2))

)
< C0 for some

fixed C0 > 0 and (Zi,1,Zi,2), i = 1, . . . , k + d iid from the
distribution of (X,Y), we have asymptotic normality of the
general U-projection statistic (29):

√
n(UP − EUP)

d→ N(0, (k + d)21Tm�11m), (31)

where 1m is a vector full of one with lengthm, and

�1 = cov(hP(Z1,1,Z2,1, . . . ,Zk+d,1;Z1,2, . . . ,Zk+d,2),
hP(Z1,1,Z′

2,1, . . . ,Z
′
k+d,1;Z1,2,Z

′
2,2, . . . ,Z

′
k+d,2)

(32)
for (Zi,1,Zi,2), i = 1, . . . , k + d and (Z′

i,1,Z
′
i,2), i = 2, . . . , k + d

iid from the distribution of (X,Y). Furthermore, under the null
hypothesis, we have EUP = 0.
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2.4. p-Value FromRandomization Test

Although the asymptotic distribution of U-projection statistic
can be derived under certain conditions as in Theorems 2–
4, it may not be very useful here because of several reasons:
(a) The sample size n could be quite small which makes the
asymptotic distribution far from the actual distribution. (b) The
relationship between the asymptotic variance under the null
and the covariance � is quite complex in general. For example,
Theorem 2 and 3 provide different formulas to calculate the
asymptotic variance under different structures of covariances.
(c) The (asymptotic) distribution of the statistic also depends
on the estimation method of the projection direction. If we use
different estimation methods of the projection direction, the
distribution will also change. Thus, the flexibility of choosing
projection direction estimation method brings lots of difficulty
to the distribution derivation of the U-projection statistic in
(29). Table S.6 in the supplementary materials shows the empir-
ical Type I error rates of the U-projection test for two-sample
mean testing under two different covariance structures using
asymptotic distributions derived from Theorems 2 and 3, and
the details of the simulation settings are the same as described
in Section 3.1. Due to the limitations of the asymptotic distribu-
tions, it is more appropriate to use the randomizationmethod to
calculate the p-value in the U-projection test. The randomiza-
tion method relies on few assumptions on the distribution, and
it also provides us the flexibility in choosing the kernel size and
in choosing the estimation method of the projection direction.
Algorithm 2 summarizes the p-value calculation procedure by
randomization methods.

Algorithm 2 p-value calculated from randomization
Input: n× d dimensional matrix X, n× p dimensional matrix
Y , m × d dimensional matrix A0, d < k ≤ n − d, and
randomization times N.
Calculate the U-projection statisticU0 on the original dataset
X and Y .
Let i = 0.
for j = 1 : N do
Do randomization, get X′ and Y ′.
Calculate the U-projection statistic U ′ on the randomized
dataset X′ and Y ′.
if U ′ ≥ U then
i = i + 1.

end if
end for
Calculate the p-value from p = i/N.

The randomization method to generate distribution under
the null hypothesis depends on the hypothesis testing problem.
For example, under the null hypothesis in the one-sample mean
testing problem, −Yi has the same mean as the original sample
Yi. Thus, we can flip Yi to −Yi randomly to generate randomly
distributed dataset following the null distribution. In the two-
sample or multi-sample mean testing problem, a permutation
on the group can be used as the randomization method. In the
predictor significance testing, a random shuffle on the index of
response variable Y can be used as the randomization method.

3. Numerical Studies

In this section, we assess the finite sample performance of the
proposed U-projection test via Monte Carlo simulation studies.
In Section 3.1, we conduct numerical comparisons between
the proposed test and existing ones for the two-sample mean
problem.We examine the Type I error rate and power for multi-
sample mean problem and test of significance of predictor in
Sections 3.2 and 3.3, respectively.

To apply the U-projection test, we need to choose k1, k2,
and λ0 to use. We study how to select these parameters in the
supplementary materials. In all the simulations and real data
example, we take ki = �0.9ni� for i = 1, 2 for two-sample mean
testing problems and k = �0.9n� for all other testing problems,
where �x� is the largest integer smaller than or equal to x.
Furthermore, we set λ0 = 1√

n1+n2−2 in the two sample mean
testing simulations and λ0 = 1√

n−d in other testing problems
where n is the sample size and d is the number of columns
of X.

3.1. Two-SampleMean Testing

We compare the performance of the proposed U-projection test
with that of existing tests for the two-sample mean problem: Bai
and Saranadasa (1996), Srivastava andDu (2008), Chen andQin
(2010), Lopes, Jacob, and Wainwright (2011), Cai, Liu, and Xia
(2014), Xu et al. (2016), Chen, Li, and Zhong (2019), He et al.
(2021), and Xue and Yao (2020), which are abbreviated as BS,
SD, CQ, LJW, CLX, XLWP, CLZ, HXWP, and XY, respectively.
Note that the test XLWP proposed by Xu et al. (2016) and the
test HXWP proposed by He et al. (2021) are adaptive testing
procedures which combine p-values of testing statistics of dif-
ferent orders. Following Xu et al. (2016) and He et al. (2021),
we use statistics of orders (1, 2, . . . , 6,∞) and the minimum p-
value combination method for the XLWP and HXWP tests in
our numerical comparisons. To this end, we generate random
matrices Yk, k = 1, 2, from Nnkp(1nkμT

k , Ink ⊗ �) and consider
test H0 : μ1 = μ2 versus Ha : μ1 �= μ2. In this simulation,
we set n = n1 = n2 = 50, 100 and the dimension p =
500, 1000. We consider two covariance structures for �: (1)
compound-symmetry structure �1 = (1 − ρ)Ip + ρ1p1Tp
with ρ = 0.2, 0.5, 0.8 and (2) autoregressive structure �2 with
(i, j)-element being ρ|i−j| and ρ = 0.2, 0.5, 0.8. To make the
problem challenging, we focus on local alternatives. Also, we
will use both dense and sparse local alternatives to check the
performance of the proposed U-projection test under various
types of alternatives. Note that the samples in this simulation
are generated from multivariate normal distributions, and we
have also carried out simulations under non-Gaussian settings
for both dense and sparse local alternatives. The corresponding
non-Gaussian simulation results are put into Tables S.7–S.14
in the supplementary materials to save space. The simulation
results under the non-Gaussian setting have similar patterns to
those under the Gaussian setting.
Dense signal: For the dense type of local alternatives, we generate
μk from a multivariate normal distribution in each simulation.
That is,

μk ∼ Np(0p, (θ2/n)Ip) (33)
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for k = 1, 2. We set θ = 0 to examine Type I error and θ = 0.5
and 1.0 to examine empirical power.

Type I error rates and empirical powers for compound-
symmetry covariance and autoregressive covariance based on
1000 replications are depicted in Tables 1 and 2, respectively. To
save space, we present results with θ = 0, 0.5 and ρ = 0.5, 0.8
in these two tables. Results for other scenarios are reported
in Tables S.1 and S.2 in the supplementary materials of this
article. Since the proposed U-projection test is performed using
a randomizationmethod, other existing tests are also performed
using a randomization method for a fair comparison. The top
two panels of Table 1 depict empirical Type I error rates at level
0.05 for the compound-symmetry covariance, and imply that
with permutation test approaches, the proposed U-projection
test and the other existing tests retain Type I error rates reason-
ably well across different sample sizes and dimensions under the
compound-symmetry covariance, including the BS test, the CQ
test, the SD test, the CLX test, the CLZ test, the LJW (random
projection) test, the XLWP test, the XY test, and the HXWP test.
Under the condition of same covariance, the BS test and the CQ
test are actually the same test, and they had similar simulation
results. From the bottom twopanels of Table 1, it can be seen that
under the compound-symmetry covariance, the U-projection
test is much more powerful than the tests including BS, CQ, SD,
CLX, CLZ, XLWP, LJW, XY, and HXWP. It illustrates that the
U-projection test utilizes the correlation information, and can
have good powers under high correlation cases. In Table 1, we
can also notice that the power of the LJW (random projection)
test is between the power of the other existing tests and that of
the U-projection test. It implies that the LJW test only utilizes
part of the correlation information by the random projection.
Althoughwith amuch larger projection dimension, which is the
integer part of (n1+n2−2)/2 as suggested by Lopes, Jacob, and
Wainwright (2011), the LJW test is still not as powerful as theU-
projection test, which projects the high-dimensional data onto
only one dimension for the two-sample mean testing problem.
The top two panels of Table 2 depict empirical Type I error rates
at level 0.05 for the autoregressive covariance. It implies that the
proposed U-projection test and the other existing tests retain
Type I error rates reasonably well across different sample sizes
and dimensions under the autoregressive covariance. From the
bottom two panels of Table 2, it can be seen that the tests of BS,
CQ, SD, CLZ, XLWP, HXWP, and the proposed U-projection
test all have relatively good powers when ρ = 0.5 except the
CLX, the LJW, and the XY tests. The CLX test and the XY
test only pick up the most significant difference between means
and loses information in the dense alternative setting in the
simulations here. The LJW test also losses information due to
the random projection. Hence, it is expected that the CLX, the
XY, and the LJW tests are not as powerful as other tests. From
Table 2, we can also notice that the powers of tests of BS, CQ,
SD, CLZ, XLWP, and HXWP shrink significantly (although not
at the same level) as the correlation goes from low to high, for
example, from ρ = 0.5 to 0.8; while the proposed U-projection
test has consistently good powers for both low level and high
level of correlation. Also notice that when ρ = 0.5, the power
of U-projection test is comparable with the power of the BS test
and the CQ test, which is expected from results in Theorem 3. In
summary, the proposedU-projection test can retain Type I error

rates well, is quite robust for different levels of correlation, has
comparable powers in low correlation cases as other tests like
BS and CQ, and can be muchmore powerful in high correlation
cases.
Sparse signal: For the sparse type of local alternatives, we gener-
ate μk, k = 1, 2, from a two-step procedure as follows.

1. We first generate the index Ak of the nonzero elements of μk
as a simple random sample of size �ps� without replacement
from {1, 2, . . . , p}, where s ∈ (0, 1] controls the sparseness
of the signal. In our simulations, we set s = 0.4, 0.7 for very
sparse and moderately sparse signals, respectively.

2. After generation of Ak, we generate μk by μk,−Ak = 0 and

μk,Ak ∼ Np(0�ps�, (θ2/n)I�ps�), (34)

where μk,Ak and μk,−Ak are the vectors formed by elements
in μk with and without index Ak, respectively. Also, we set
θ = 1 to examine empirical power.

Empirical powers for compound-symmetry covariance and
autoregressive covariancewith sparse alternatives based on 1000
replications are depicted in Table 3. To save space, we present
results with ρ = 0.8 in the table. Results for other scenarios are
reported in Table S.3 in the supplementarymaterials of this arti-
cle. From the comparison of Table 3 and Tables 1 and 2, we can
notice that the powers of CLX, CLZ, XLWP, XY,HXWP improve
relatively compared to BS and CQ since the former methods
are derived with special considerations for sparse alternatives.
However, from Table 3, it can be seen that the U-projection
test is still more powerful than the tests including BS, CQ, SD,
CLX, CLZ, XLWP, LJW, XY, and HXWP under high correlation
covariance structures for the sparse local alternatives.

3.2. Multi-SampleMean Testing

We now examine the proposed U-projection test for the multi-
samplemean problem.We generate independent simulated data
Ykj from Np(μk,�), for k = 1, . . . ,K, and j = 1, . . . , nk. The
multi-sample mean problem is to test H0 : μ1 = · · · = μK .
Simulation results under non-Gaussian settings are summarized
in Tables S.14 and S.15 in the supplementary materials to save
space. From Tables S.14 and S.15, we can see that the simulation
results under non-Gaussian settings and Gaussian settings are
similar. In this simulation, we take K = 4 and set n = n1 =
n2 = n3 = n4. We set n = 50, 100 and the dimension p =
125, 250, 500, 1000. As in Section 3.1, we consider both autore-
gressive and compound symmetric covariance structure for �,
and we generate μk from a multivariate normal distribution in
each simulation:

μk ∼ Np(0p, (θ2/n)Ip) (35)

for k = 1, 2, 3, 4. We take θ = 0, 0.5 and 1.0 to examine Type
I error and empirical power. The simulation results based on
1000 simulations are summarized in Table 4 and Table S.4 in the
supplementary materials. The top two panels in Table 4 depict
the empirical Type I error rates for the proposed method at
level 0.05 and implies that the proposedU-projection test retains
Type I error rates reasonably well across different sample sizes,
dimensions, and structures of covariance matrices. The empir-
ical powers are reported in the bottom two panels in Table 4.
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Comparing the panels of the autoregressive and compound-
symmetry covariancematrices, we can see that the proposed test
is powerful for different structures of covariancematrices. It can
also be seen that the U-projection test is more powerful as the
correlation ρ increases, which illustrates the utilization of the
correlation information of the U-projection test. In summary,
the proposed test can retain the Type I error rates well, and it is
powerful under the alternative hypothesis, especially in the high
correlation cases.

3.3. Testing of Significance of Predictors

In this section, we examine the performance of the proposed U-
projection test for testing the significance of predictors in the
linear model with high-dimensional responses:

Y = B0 +
K∑

k=1
Xkβ

T
k + E, (36)

where Y is the n × p response matrix, B0 is the n × p intercept
matrix, Xk, k = 1, . . . ,K are K predictors, each of which is
a column vector of length n, βk, k = 1, . . . ,K, are K coef-
ficients, each of which is a column vector of length p, and E
is the random error matrix and follows a multivariate normal
distribution vec(E) ∼ Nn×p(0, In ⊗�). Suppose we want to test
the significance of the predictor Xi0 , then we haveH0: βi0 = 0p,
and we choose i0 = 1 in the simulations, that is, we want to
test the significance of the predictorX1. Simulation results under
non-Gaussian settings are summarized in Tables S.17 and S.18
in the supplementary materials to save space. The simulation
results under the non-Gaussian and Gaussian settings are sim-
ilar. In the simulations, we choose the sample size n = 50, 100,
the dimension p = 125, 250, 500, 1000, and the number of
predictors K = 5. And we set � as autoregressive structure
� = {ρ|i−j|}i,j with ρ = 0.2, 0.5, 0.8 or compound-symmetry
structure� = (1− ρ)Ip + ρ1p1Tp with ρ = 0.2, 0.5, 0.8. In each
simulation, we generate X from a multivariate normal distribu-
tionNn×d(0nd, In ⊗�X), where�X is assumed to follow similar
structures as �, that is, autoregressive structures or compound-
symmetry structures with ρ = 0.2, 0.5, 0.8. We set B0 = 0
and generate βk, k = 2, 3, 4, 5, iid from normal distribution
N(0p, 1n Ip), and we generate β1 from distribution N(0p, θ2

n Ip).
Type I error rates are examined when θ = 0 and empirical
power rates are checked when θ �= 0. In the simulations, we
set θ = 0, 0.5, 1.0. The simulation results are summarized in
Table 5 and Table S.5 in the supplementary materials. The top
two panels with θ = 0 in Table 5 summarize Type I error
rates for the U-projection test, and imply that the proposed U-
projection test retains Type I error rates reasonably well across
all different scenarios. The empirical powers are listed in the
bottom two panels in Table 5. We can notice that the power of
the test increases when the sample size n increases from 50 to
100. From the comparison of the panels of autoregressive� and
compound symmetry�, the proposedU-projection test is pow-
erful for different structures of covariance matrices. Also note
that since �X has the same structure as � in the simulations,
the larger ρ is, the more correlated the predictors are, and the
more difficult the testing problem is, which is reflected in the fact
that the empirical power of the U-projection test decreases with

increase in the correlation within the same n, p, and structure
of covariance matrices. In summary, in the hypothesis testing
problem in the multivariate linear regression model, the pro-
posedU-projection test can retain the Type I error rates well and
is powerful under the alternative hypothesis for different sample
sizes, dimensions, and structure of covariance matrices.

3.4. Real Data Analysis

We now apply the tests on a gene expression microarray dataset
of murine heart under the conditions of cigarette smoke and
obesity. The dataset was analyzed by Tilton et al. (2013) and
is publicly available from Gene Expression Omnibus (GEO)
under the serial number GSE47022. The dataset consists of
22,690 gene expression levels of 45 mouse subjects, including
23 regular weight (RW) mice and 22 diet-induced obese (DIO)
mice. Themice in each groupwere divided into three subgroups
with size 6–8 and were exposed to either filtered air (sham con-
trols, SC), mainstream (MS) cigarette smoke or sidestream (SS)
cigarette smoke. The MS group mimicked the smoker while the
SS group mimicked environmental exposure through second-
hand smoke.

Using the dataset, we want to investigate three problems:
the first one is a two-sample testing problem between RW and
DIO mice, the second one is a three-sample testing problem
between mice that received filtered air, MS and SS cigarette
smoke, and the third one is to analyze linear regression models
with main effects of weight and cigarette smoke and also the
interaction between weight and cigarette smoke. While the BS,
CQ, SD, CLX, CLZ, XLWP, LJW, XY, HXWP, and U-projection
tests are all applicable on the two-sample testing problem, the
U-projection test can also deal with the three-sample testing
problem and the testing problem in linear regression models.

Instead of functioning individually, genes work in groups to
perform various biological functions. Gene Ontology system
assigns genes into different gene-sets (also called GO terms)
depending on their functional characteristics, see Ashburner
et al. (2000) for more details. There are 9440 GO terms in total
for genes from the original dataset, and we assign the 22,690
genes into the GO terms. We further remove the GO terms
with less than 100 genes to accommodate high dimensionality
setting, and there are still 246 GO terms left. On each GO set,
we will carry on the tests as aforementioned. Since there are 246
GO sets, we will use the false discovery rate (FDR) controlling
procedure (Benjamini and Hochberg 1995) to find out the sig-
nificant GO terms. Note that since the correlation between GO
sets are unknown and some GO sets have overlapping genes, we
will use the general FDR procedure proposed in Benjamini and
Yekutieli (2001) to account for unknown dependencies between
GO sets.

In the U-projection test, we use k = �0.9n�, where �x� is the
largest integer smaller than or equal to x. For choosingλ0, we use
gene expressions which are not included in the 246 GO sets to
simulate the situations for the 246GOsets. There are 4,996 genes
not contained in the 246 GO sets. We divide them randomly
into 50 groups, and each group has approximately 100 genes.
We run U-projection tests with λ0 from 0.0005 to 0.5 on the 50
groups and we choose λ0 with the lowest average p-value, which
is approximately 0.002.
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Table6. Number of significantGO terms in RWversusDIOmiceusingdifferent tests
with different false discovery rates q.

q BS CQ SD CLX CLZ XLWP LJW XY HXWP New

0.001 0 0 220 224 235 232 61 220 223 245
0.002 142 144 231 236 240 233 78 236 223 246
0.005 163 166 239 241 244 239 96 237 227 246
0.01 177 181 242 242 245 239 117 239 227 246
0.02 191 195 243 243 245 242 149 239 230 246
0.05 209 210 245 243 245 246 183 240 238 246

In the two-sample mean testing problem, we apply the BS,
CQ, SD, CLX, CLZ, XLWP, LJW, XY, HXWP, and U-projection
tests to check the equality of gene expression means in RW and
DIOmice. The numbers of significant GO sets of each test using
FDR procedure with different false discovery rates are listed in
Table 6, from which it can be seen that the factor of obesity is
quite significant in most of the GO terms in heart cells. The
BS and CQ tests perform similarly. And the BS, CQ, and LJW
tests are not as powerful as other tests. The performances of
SD, CLX, CLZ, XLWP, XY, and HXWP tests are similar, and
they all declare most of the GO terms to be significant. Across
different false discovery rates, it can be seen that the proposedU-
projection test is one of the most powerful tests in this example:
the U-projection test only drops one GO term at a very small
false discovery rate q = 0.001. The numerical result supports
our findings that the proposed U-projection test retains high
power by using the information provided by covariance.

In the multi-sample mean testing problem, we test the equal-
ity of gene expression means of SC, MS and SS mice. If the U-
projection test is carried out on all the gene expressions, then
a p-value less than 0.0001 is obtained, and we can see there is
a significant difference between gene expressions of the three
populations. However, if the U-projection test is carried on
each GO set and an FDR procedure is used, then there is no
significant GO set found even when FDR rate is set to 0.05. It
suggests that even the three groups are significantly different
overall, but the difference is not significant when coming to
individualGO sets, which also follows the analysis in Tilton et al.
(2013) that the factor of cigarette smoke is not as important as
the weight factor in the heat cells. Also, it can be seen in the
next problem of testing on linear regression coefficients that
the cigarette factor is significant on many GO terms when the
weight factor is also considered.

In the testing for the linear regression model, we build a
model of the obesity factor DIO, the cigarette smoke factors MS
and SS, the interaction of DIO×MS, and the interaction of DIO
× SS. The numbers of significant GO sets of each factor using
FDR procedure with different false discovery rates are listed in
Table 7. From the table, it can be seen that the factor DIO, SS
and the interaction between DIO and SS are significant in most
of the GO terms (246 in total) in heart cells; and the factor MS
and the interaction between DIO and MS are also significant in
some of the GO terms, but not as many as DIO, SS, and DIO
× SS, which is also in agreement with the findings from Tilton
et al. (2013).

In summary, it can be seen that the proposed U-projection
test retains high power by using the covariance information
and can deal with important high-dimensional testing problems
including one- and two-sample mean testing.

Table 7. The number of significant GO terms in linear models of DIO, MS, SS, DIO×
MS, DIO× SS with different false discovery rates q.

q DIO MS SS DIO×MS DIO× SS

0.001 229 60 240 16 235
0.002 229 60 240 16 235
0.005 229 60 240 16 235
0.01 241 60 243 16 242
0.02 244 94 244 16 245
0.05 246 136 246 16 246

4. Discussions

In this article, we proposed a new testing procedure for the linear
model with a high-dimensional response vector. The proposed
testing procedure can be directly applied for one-sample, two-
sample, or multi-sample mean problems. For one-sample and
two-sample mean testing problems, our theoretical analysis and
numerical results show that under the low correlation condition,
the power of the proposed test is similar to some of the exist-
ing tests, while the proposed test can have substantial power
improvements in the presence of high correlation among the
variables.

In this article, we focused on the asymptotic regime where
p and n go to infinity while d and m are fixed. An interesting
possible future extension is the more general asymptotic regime
with d and m also diverging. Theorem 1 established an upper
bound for the optimal dimension to bem, and we advocated to
use the optimal projection matrix of dimension m when m is
small. However, ifm also goes to infinity, then it may be benefi-
cial to further reduce the dimension of the projection matrix,
and it will be quite important to understand the asymptotic
behavior of the proposed U-projection test with diverging m.
A related insightful study is He et al. (2019), which considered
the LRT for the general linear hypothesis under the general
asymptotic regime with n, p, d,m → ∞. More specifically,
He et al. (2019) studied the asymptotic boundary where the
classical LRT fails and developed the limiting distribution of the
LRT for a general asymptotic regime, which can provide a great
insight for the asymptotic behavior of the U-projection test with
divergingm.

Supplementary Materials

The online appendix consists of proofs of theorems in the paper. The sup-
plementary materials consist of additional simulation results and technical
details for proofs in the online appendix.
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