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Confounds in the Data—Comments on
“Decoding Brain Representations by
Multimodal Learning of Neural Activity
and Visual Features”
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Abstract—Neuroimaging experiments in general, and EEG experiments in
particular, must take care to avoid confounds. A recent TPAMI paper uses data that
suffers from a serious previously reported confound. We demonstrate that their
new model and analysis methods do not remedy this confound, and therefore that
their claims of high accuracy and neuroscience relevance are invalid.
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1 INTRODUCTION

A recent paper [8] presents a novel neural-network architecture,
EEGChannelNet, for determining object class from EEG signals
recorded from human subjects observing ImageNet [1] images as
stimuli. Inter alia, it claims:

1. EEGChannelNet can decode object class from EEG signals
better than prior work.

2. A training regimen that jointly fine tunes an image classi-
fier while training EEGChannelNet, using a triplet loss that
associates both positive and negative image samples with
EEG samples, leads to an improved EEG classifier.

Here, we present novel evidence to refute these claims. We note

that prior work [6] has already demonstrated other problems, namely:

a. Thedata used in [8] (from Spampinato ef al. [9]) suffers from a
confound (training and test samples coming from the same
block with stimuli from a single class) and thus exhibits
abnormally high classification accuracy with many different
classifiers. When analyzed across subjects to eliminate this
confound, accuracy degrades to chance.

b.  New data collected with a block design also exhibits abnor-
mally high classification accuracy with all of the same clas-
sifiers. Accuracy degrades to chance when this new data is
bandpass filtered. Likewise, accuracy degrades to chance
with new data collected to eliminate the confound:
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randomized trials and trials where the training and test
data have different class presentation order.
Li et al. [6] also noted the well-documented slow spectral change
in EEG. No amount of filtering can remove the confound.
Here, we document problems with the classifiers and training
regimen:

I. Their new classifier EEGChannelNet exhibits the same
flawed characteristics as the LSTM used in Spampinato
et al. [9], addressed in [6]. This refutes claim 1.

II. Two additional classifiers evaluated by Palazzo et al. [8],
EEGNet [5] and SyncNet [7], also exhibit the flawed
characteristics.

III.  The joint training regimen exhibits the same flawed charac-
teristics. This refutes claim 2.

All remaining claims [8] are contingent on the confounded data,

which results in refutation of the entire paper.

2 MEeTHOD

We attempted to follow the experimental method in [8] and [6] as
closely as possible. The appendix in the supplementary material,
which can be found on the Computer Society Digital Library at
http:/ /doi.ieeecomputersociety.org/10.1109/ TPAMI.2021.3121268,
available online, presents the details. In all cases, we report the aver-
age of accuracy on the validation and test sets after the full training
regimen.

3 RESULTS

We report below the new results from EEGNet, SyncNet, and EEG-
ChannelNet (abbreviated below as EEGCN) along with the results
from Li et al. [6]." We first replicate the experiment of Spampinato
et al. [9] on the block-design data collected by them with their origi-
nal splits where the test sets come from the same blocks as the
training sets.”

Table subject LSTM kNN SVM MLP 1DCNN  EEGNet SyncNet — EEGCN
1 94.7%* 422%%  944%* 45.8%%  96.7%* 79.2%*  828%*  65.0%"
+Inception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image EEG image
1 26.4%* 68.4%*  27.7%* 522%%  27.4%* 322%%  25.8%* 1.5%

The numbers differ somewhat from [9] and [8] as we use a dif-
ferent code base. Nonetheless, the numbers are qualitatively simi-
lar in that all classifiers exhibit high EEG classification accuracy.
We next replicate the experiment of [9] on the block-design data
collected by them with different splits in a leave-one-subject-out
cross-validation paradigm. This allows the test sets to come from
different blocks than the training sets.

Table subject LSTM k-NN SVM MLP  1IDCNN EEGNet SyncNet EEGCN
8 2.7% 3.6%*  3.0%*  37%* 3.3%* 2.5% 3.8%*  2.6%
+Inception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image EEG  image
8 2.5% 56.0%%  33%*  464%* 3.6%* 34.4%* 32%*  25%

1. All code and raw data that produced these results is available at http://dx.
doi.org/10.21227 /x2gf-5324.

2. All tables below report results only for image stimuli, 440ms windows, and
the full set of channels. The first column gives the corresponding table from [6],
some of which are in the supplementary material, available online. The first por-
tion of each table reports results when training an EEG classifier in isolation. The
second portion of each table reports results when jointly training EEGChannelNet
on EEG together with various image classifiers on the EEG stimuli taken from
ImageNet using triplet loss. Starred values indicate above chance (p < 0.005) by
a binomial cmf.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Note that accuracy drops to chance for all classifiers. The 1 bject LSTM £NN  SYM  MLP IDCNN EEGNet SyncNet EEGCN
remaining tables .report analyse.s done with our own collected 'data o 5 Tent 277 28%  29%  S01%°  200%¢ 182%°  33%
[6]. First, we replicate the experiment of [9] on data collected witha s 3 64%*  23%  22%  32% 514%% 135%F 192%* 42%*
. . . 53 4 16.0%*  23%  48%* 52%* 483%* 205%* 24.8%* 6.8%*
block design on six new subjects. 54 5 35.8%*  34%  93%* 93%* 713%* 441%* 402%* 87%*
11 6 72%%  2.8% 29%  29%  312%*  73%*  91%*  32%
Table subject LSTM kNN ~ SVM  MLP 1DCNN EEGNet SyncNet EEGCN +Inceptionv3[10] ~ +ResNet-101[2] ~+DenseNet-161 [3] _ +AlexNet [4]
EEG image EEG image EEG image EEG  image
31 1 67.9%*  100.0%* 100.0%* 215%* 823%* 583%* 77.4%* 93.8%* _ .
32 2 673%*  99.8%* 100.0%* 29.1%* 723%* 56.8%* 73.6%"* 89.9%* 51 2 50%*  859%% 51%* 594%* 41%*  707%*  47%* 61%*
33 3 71.8%*  99.8%* 100.0%* 37.3%* 95.8%*  89.0%* 929%* 97.8%* 52 3 37%* 862%*  31% 539%* 37%* 685%*  28%  6.1%*
34 4 720%*  99.8%* 100.0%* 36.0%* 89.6%* 837%* 78.6%" 954%* 53 4 50%*% 829%* 44%* 587%* 45%*  65.6%* 49%* 6.0%*
35 5 83.8%%  99.0%*  99.9%* 653%* 99.5%* 96.8%* 97.6%* 98.5%* 54 5 74%%  845%%  74%* 57.8%* 71%*  68.0%* 73%* 55%*
6 6 701%*  972%%  99.9%* 387%* 952%*  862%* 934%* 96.5%* 1 6 45%*  85.8%* 48%* 60.6%* 4.6%*  693%* 49%* 6.3%*
+Inception v3 [10] +ResNet-101 [2]  +DenseNet-161 [3] -+AlexNet [4]
EEG image EEG image EEG image EEG image
31 1 503%*  90.3%*  45.8%* 684%* 487%* 91.1%* 483%"* 585%* )
» ) B 905%F  380UF  ersat 3879 9029F  3819F  ssoqt Table subject LSTM kNN  SVM  MLP 1DCNN EEGNet SyncNet EEGCN
33 3 702%*  91.3%*  66.8%* 69.5%* 67.6%* 902%* 67.0%* 60.2%* 12 6 131%*  2.8% 33%  4.3%* 39.2%* 144%*  17.0%*  52%*
34 4 625%*  89.8%*  58.0%* 68.6%* 59.4%* 91.6%* 57.0%* 59.6%*
35 5 909%*  90.6%*  90.1%* 663%* 903%*  92.0%* 904%* 65.1%* +Inception v3[10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
6 6 652%*  89.9%%  62.9%* 709%* 625%* 91.0%* 62.0%* 56.6%* EEG  image  EEG  image EEG image EEG  image
12 6 54%*  80.6%* 53%* 567%*  56%* = 66.5%*  53%*  68%*

Palazzo et al. [8], Table 2 bottom and Table 3, claim that EEG-
ChannelNet obtains higher classification accuracy than [9], EEG-
Net, and SyncNet on that experiment. The above demonstrates

Accuracy drops to chance for all classifiers. We next report analy-
ses performed on data collected with randomized trials both with

that all classifiers can obtain high classification accuracy on data  Tuble subject LSTM  &-NN SVM MLP 1DCNN EEGNet SyncNet EEGCN
collected with a block design. We collected two runs of block data 3, 1 21%  22%  34%  26%  26%  26%  25%  17%
from subjects 2-5 and three runs of block data from subject 6. Next, 27 2 28% 2.6% 25% 22% 2.9% 2.6% 21%  2.0%
t the data f th d 28 3 29% 22% 2.9% 2.7% 22% 2.6% 24%  23%
wereport the data Irom the secon 29 4 25% 22% 22% 24%  27% 21% 25%  22%
30 5 25% 21% 2.8% 33% 21% 25% 26%  2.6%
5 6 25% 25% 24% 32% 23% 2.9% 26%  28%
Table subject LSTM kNN SVM MLP  IDCNN EEGNet SyncNet EEGCN
+Inception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
55 2 704%*  984%* 100.0%* 42.9%*  98.8%* 92.7%* 92.8%*  94.3%* EEG image EEG image EEG image EEG image
56 3 847%*  992%* 1000%* 614%%  985%*  97.8%*  97.6%* 98.0%*
57 4 638%*  998%* 1000%* 17.8%%  924%*  89.7%*  86.6%* 93.9%* 26 1 29%  783%*  21%  517%*  26%  656%°  25%  57%*
58 5 769%%  991%* 1000%* 49.9%%  957%*  87.2%*  958%* 965%* 27 2 24%  786%F  20%  551%%  23%  645%*  22%  67%"
* * * * * * * * 28 3 20%  823%*  28%  568%*  23%  65.0%*  3.6%*  61%*
13 6 764%*  98.0%*  99.9%* 457%*  97.5% 04%*  945%*  97.3%
29 4 23%  826%*  27%  558%%  21%  663%*  24%  7.6%*
+Inception v3[10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4] 30 5 2.7% 77.6%* 2.5% 56.9%* 2.2% 66.7%* 2.7% 5.5%%*
EEG  image EEG  image  EEG image EEG  image 5 6 24%  762%*  18%  501%*  28%  675%*  22%  59%*
55 2 756%%  908%*  741%*  736%%  764%*  90.1%*  71.8%* 548%*
56 3 932%%  878%%  924%* 701%%  918%*  909%*  91.9%* 615%*
57 4 59.8%%  898%F  5B7%*  701%*  572%F  905%*  542%*  60.1%* and without
58 5 824%*  911%*  80.6%* 703%*  813%*  91.6%*  788%* 59.2%*
* * * * * * * *
13 6 8L2%%  920%7  800%7  728%"  80.5% 89.7%"  809%7  564% Table subject LSTM  &NN  SVM MLP IDCNN EEGNet SyncNet EEGCN
36 1 09% 13% 33% 1.1% 24% 12% 21%  25%
37 2 20% 21%  3.6%" 12%  36%*  45%*  32%  25%
and third 38 3 12% 1.9% 25% 1.3% 30%  38%*  31%  23%
39 4 16% 13%  3.6%* 1.1% 22% 29% 22%  2.0%
40 5 13% 22% 25% 1.5% 2.8% 1.7% 21%  25%
Table subject LSTM kNN  SVM  MLP 1DCNN EEGNet SyncNet EEGCN 7 6 12% 1.6% 29% 1.0% 27%  46%*  25%  21%
14 6 915%* 961%* 999%* 850%*  991%*  97.6%* 983%* 96.9%* fInception v3[10]  +ResNet-101[2] ~ +DenseNet-161[3]  +AlexNet [4]
+Inception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4] EEG rmage EEG rmage EEG rmage EEG mage
EEG  image  EEG  image EEG image  EEG  image 36 1 08%  706%*  06%  633%*  07%  681%*  06%  9.6%*
37 2 09%  769%F  16%  556%*  12%  681%*  17%  67%*
* * * * * * * o7, %
14 6 868%* 873%* 863%* 651%%  857% 90.6%%  87.3%* 48.7% 38 3 0en  7asat  10%  moat 119 eront 079 eon*
39 4 14%  768%F  11%  569%*  15%  662%*  10%  6.9%*
40 5 09%  768%F  05%  592%*  06%  691%*  04% = 9.4%*
7 6 12%  760%*  11%  599%*  11%  674%*  11%  72%*

block runs. These concur with the third table above. As dis-
cussed in Li et al. [6], the analyses in [9] erroneously omitted
the bandpass filtering described in that paper. We next repeat
the analyses in the above three tables with bandpass filtering
added, respectively.

bandpass filtering. Note that accuracy is at chance for all classifiers.
We next report an analysis on data collected with randomized tri-
als, where the trial labels are replaced with block indices instead of
object class, both with

Table  subject LSTM k-NN SVM MLP 1DCNN EEGNet SyncNet EEGCN Table subject  LSTM kNN SVM MLP 1DCNN EEGNet SyncNet EEGCN
21 1 21.0%* 2.5% 4.1%* 32%  627%*  334%* 287%%  4.9%* 41 1 8.4%™* 2.6% 2.5% 2.4% 50.1%*  151%*  19.9%*  3.6%"
22 2 10.4%* 2.7% 3.0% 2.7%  507%*  18.0%* 209%* = 3.3% 42 2 5.7%* 1.8% 2.5% 2.9% 52.2%* 8.9%* 20.0%* 3.2%
23 3 6.0%* 3.0% 3.3% 25%  504%*  148%* 207%*  4.1%* 43 3 16.0%* 2.2% 2.5% 3.3% 54.8%*  152%*  285%*  3.8%"
24 4 15.2%* 3.4% 4.8%*  48%*  48.1%* 184%* 228%* 63%* 44 4 6.3%™* 2.3% 2.9% 32% 19.2%* 84%* 7.9%* 3.4%
25 5 267%*  3.9%* 88%*  8.6%* 705%* 43.0%* 35.6%* 13.0%* 45 5 45.2%* 3.0%  105%* 101%*  84.1%*  70.6%*  525%% 15.1%*
4 6 16.5%* 2.1% 3.1% 33%  378%* 135%* 15.6%* 5.6%" 9 6 22.7%* 59%* 113%* 9.0%*  59.6%*  357%* 285%*  9.8%*
+Inception v3 [10] +ResNet-101[2]  +DenseNet-161 [3] +AlexNet [4] +Inception v3 [10] ~ +ResNet-101 [2] ~ 4DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image EEG image EEG image EEG image EEG image EEG image
21 1 64%*  835%*  65%* 557%% 62%*  682%" 56%"  6.0%* 41 1 3.2% 75.7%*  37%*  52.6%" 3.3% 65.6%" 3.8%* 54%*
22 2 51%*  837%*  45%* 618%* 55%*  669%" 47%*  6.1%* 42 2 3.4% 81.0%*  35%* 59.6%*  4.0%* 67.6%* 3.5%* 6.3%"
23 3 51%*  84.8%*  48%* 59.4%*  48%*  675%"  40%*  68%* 43 3 3.7%* 79.1%*  39%* 547%*  4.0%* 67.2%* 4.7%* 54%*
24 4 71%*  82.0%*  69%* 592%* 67%*  69.5%*  53%*  57%* 44 4 5.2%* 80.8%* 53%* 59.7%*  52%* 67.5%* 4.8%* 7.7%*
25 5 61%*  84.6%*  54%* 56.9%% 6.0%*  669%"  48%"  5.9%* 45 5 8.6%™* 822%*  8.1%* 554%*  9.4%* 67.5%* 8.1%* 5.8%*
4 6 49%*  855%*  58%* 589%* 5.0%*  663%* 50%*  63%* 9 6 7.3%* 81.5%*  7.5%* 533%*  7.9%* 67.7%* 7.2%* 6.2%™*
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and without

Table subject LSTM k-NN SVM MLP  1DCNN EEGNet SyncNet EEGCN
46 1 78.3%* 99.8%*  100.0%* 39.2%* = 99.6%* 98.6%*  97.7%*  98.5%*
47 2 94.6%* 954%*  100.0%* 883%* 100.0%*  99.6%* = 99.9%*  93.8%*
48 3 87.7%* 99.7%*  100.0%* 81.7%*  98.7%* 99.7%*  99.9%*  99.4%*
49 4 90.7%* 948%*  99.8%*  78.3%* = 99.7%* 99.2%*  99.5%*  79.8%*
50 5 69.7%* 99.7%*  100.0%*  42.9%*  94.5%* 90.0%*  952%*  97.2%*
10 6 95.2%* 99.2%* 100.0%* 89.4%* 100.0%*  99.6%*  99.8%*  96.0%*
-FInception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image EEG image
46 1 82.1%* 88.1%*  78.3%*  66.8%*  80.2%* 91.2%*  774%*  622%*
47 2 82.9%* 80.9%*  821%*  68.0%*  85.3%* 89.6%*  84.6%* 352%™
48 3 97.8%* 85.0%*  97.4%*  64.9%*  97.5%* 91.7%*  97.3%*  59.9%*
49 4 71.2%* 84.8%*  68.7%*  64.8%*  77.3%* 85.8%*  74.6%*  22.3%*
50 5 77.6%* 87.1%*  755%*  67.6%*  77.9%* 91.4%*  742%* 583%™
10 6 91.7%* 89.0%*  91.6%*  66.5%*  93.4%* 89.9%*  93.1%*  47.1%*

bandpeass filtering. In other words, all stimuli in the first block are labeled
with class 1, even though they reflect different object classes, all stimuli in
the second block are labeled with class 2, even though they reflect differ-
ent object classes, and so forth. Note that classification accuracy is high
for all classifiers, without bandpass filtering, suggesting that they are
classifying a spurious correlation between the EEG signal and the block,
not the stimulus category. This can be unduly high even with bandpass
filtering, as is often the case. The remaining tables report cross-block clas-
sification. For subjects 2-6, the first and second block runs presented the
stimuli in the same order. For subject 6, the third block run presented the
stimuli in a different order. First, we report the average results of training
on the first block run and testing on the second, and vice versa, both with

Table subject LSTM k-NN SVM MLP  1DCNN EEGNet SyncNet EEGCN
63 2 32%* 2.6% 2.5% 2.7% 5.3%* 2.9% 42%* 2.8%
64 3 2.4% 2.4% 2.4% 2.7% 3.4%* 4.0%* 2.6% 2.4%
65 4 3.6%* 3.7%* 3.2% 2.7% 41%* 3.9%* 4.0%* 34%*
66 5 2.7% 2.2% 2.0% 2.3% 2.3% 2.6% 1.8% 21%
18 6 2.3% 2.5% 2.5% 2.4% 4.0%* 3.7%* 34%* 3.0%
+Inception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image EEG image
63 2 2.8% 89.5%* 2.7% 66.5%* 2.8% 76.5%* 2.7% 5.8%*
64 3 3.0% 89.3%* 3.0% 64.2%* 2.9% 71.2%* 2.6% 5.4%*
65 4 2.8% 87.3%* 3.1% 62.8%* 34%* 77.7%* 3.0% 49%*
66 5 1.7% 89.6%™* 1.9% 68.8%™ 1.9% 78.9%* 1.8% 51%*
18 6 2.7% 92.5%* 3.1% 59.4%* 31% 76.6%* 3.2% 64%*
and without
Table subject LST™M kNN SVM MLP 1IDCNN EEGNet SyncNet EEGCN
59 2 25.9%* 229%*  269%*  63%* 6.7%* 1.8% 5.0%* 9.1%*
60 3 6.7%* 81%*  8.0%* 50%* 4.7%* 2.6% 2.5% 5.9%*
61 4 37.7%* 42.3%%  405%*  65%* 13.4%* 5.0%* 9.5%* 11.2%*
62 5 3.3%* 2.5% 22% 2.9% 3.8%* 1.4% 2.5% 2.8%
15 6 27.9%* 329%* 277%*  7.0%* 42%* 21% 1.7% 10.0%*
+Inception v3[10]  +ResNet-101[2] ~ +DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image EEG image
59 2 151%%  934%* 159%* 785%* 150%*  97.0%*  155%*  48.9%*
60 3 92%*  95.0%% 84%* 759%*  74%*  97.0%*  89%*  64.3%*
61 4 20.4%* 97.1%*  21.9%* 76.6%*  19.9%* 95.8%*  193%*  56.2%*
62 5 3.1% 93.7%*  34%*  75.8%* 34%* 96.9%* 4.1%* 61.5%*
15 6 13.5%* 96.9%* 151%* 762%*  144%* 9.1%*  144%*  55.1%*

bandpass filtering. These report analyses between different runs
with the same stimulus presentation order. Note that classification
accuracy with all classifiers is significantly lower than within-block
analyses, but can be above chance. Finally, we report the corre-
sponding results for the first and third block runs,

Table  subject LSTM kNN SVM MLP IDCNN  EEGNet SyncNet EEGCN
19 6 2.3% 2.8% 2.6% 2.3% 22% 22% 2.4% 2.6%
+Inception v3 +ResNet-101 +DenseNet-161 [3] +AlexNet [4]
[10] [2]
EEG image  EEG image EEG image EEG image
19 6 2.7% 9R2.1%*  24%  60.6%* 24% 77.7%* 2.7% 6.1%*
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Table subject LSTM kNN SVM MLP IDCNN EEGNet SyncNet EEGCN
16 6 2.9% 6.7%* 3.3%* 2.4% 3.0% 0.9% 2.0% 1.9%
+Inception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image EEG image
16 6 2.7% 96.5%* 22% 72.7%* 22% 96.4%* 1.3% 43.2%*
and for the second and third block runs.
Table subject LSTM k-NN SVM MLP  1DCNN EEGNet SyncNet EEGCN
20 6 2.5% 21% 2.4% 2.4% 2.8% 21% 22% 2.6%
+Inception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image EEG image
20 6 3.0% 90.0%* 2.5% 69.3%* 2.3% 78.9%* 2.6% 53%*
Table subject LSTM k-NN SVM MLP IDCNN  EEGNet SyncNet EEGCN
17 6 3.7%* 6.3%* 2.7% 0.8% 0.2% 1.0% 1.2% 29%
+Inception v3 [10] +ResNet-101 [2] +DenseNet-161 [3] +AlexNet [4]
EEG image EEG image EEG image  EEG  image
17 6 2.3% 94.1%* 2.9% 69.2%* 3.2% 96.8%* 19%  482%*

These report analyses between different runs with different
stimulus presentation order. Note that classification accuracy
with all classifiers is at chance. These results demonstrate that
there is a confound not only between training and test samples
collected in close temporal proximity within the same block,
there also is a second confound between samples collected in
different runs but with the same temporal offset from the begin-
ning of the run. Collectively these results demonstrate that EEG-
Net, SyncNet, and EEGChannelNet exhibit exactly the same
flawed pattern of behavior as the LSTM model from Spampinato
et al. [9]. To summarize, the only experiment designs among
those considered above that do not suffer from one or both con-
founds are the ones with randomized trials (the ninth and tenth
tables) and cross-block with different stimulus presentation
order (the fifteenth through eighteenth tables). EEGChannelNet
accuracy is at chance on these. Since all of the analyses in [8]
use the same flawed data as in [9], everything that follows from
those analyses is suspect.

Palazzo et al. [8] compare EEGChannelNet with EEGNet [5] and
SyncNet [7] and claim improved accuracy. The tables above dem-
onstrate that any relative performance difference is artifactual as
EEGNet and SyncNet exhibit the same characteristics as EEGChan-
nelNet on faulty data. We make no claim about EEGNet or Syn-
cNet themselves or the experiments reported in Lawhern et al. [5]
and Li et al. [7]. Our concerns arise solely for the use of EEGNet or
SyncNet as described in [8] for analyzing the flawed data from [9].
It is interesting to note that the tenth table above indicates that
EEGNet, along with the SVM and 1D CNN, achieve accuracy
slightly above chance on randomized trials.

For joint training, the resulting image classifier always performs
above chance, usually highly above chance, but the resulting EEG
classifier exhibits the same broad characteristics as all other classi-
fiers, namely high classification accuracy on designs that exhibit a
confound (all tables above except the ninth, tenth, and fifteenth
through the eighteenth) and chance on designs that do not (the
ninth, tenth, and fifteenth through eighteenth tables).

4 CONCLUSION

We demonstrate here that the claims 1 and 2 in Palazzo et al. [8]
cannot be maintained because they rely on the flawed dataset from
Spampinato et al. [9]. Further, the classification experiments therein
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fail when repeated on properly collected data without this con-
found (the ninth, tenth, and fifteenth through eighteenth tables).
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