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ABSTRACT
The Population-based HIV Impact Assessment (PHIA) is an ongoing project that conducts nationally rep-
resentative HIV-focused surveys for measuring national and regional progress toward UNAIDS’ 90-90-
90 targets, the primary strategy to end the HIV epidemic. We believe the PHIA survey offers a unique
opportunity to better understand the key factors that drive theHIV epidemics in themost affected countries
in sub-Saharan Africa. In this article, we propose a novel causal structural learning algorithm to discover
important covariates and potential causal pathways for 90-90-90 targets. Existing constraint-based causal
structural learning algorithms are quite aggressive in edge removal. The proposed algorithm preserves
more information about important features and potential causal pathways. It is applied to the Malawi
PHIA (MPHIA) dataset and leads to interesting results. For example, it discovers age and condom usage
to be important for female HIV awareness; the number of sexual partners to be important for male HIV
awareness; and knowing the travel time to HIV care facilities leads to a higher chance of being treated for
both females and males. We further compare and validate the proposed algorithm using BIC and using
Monte Carlo simulations, and show that the proposed algorithm achieves improvement in true positive
rates in important feature discovery over existing algorithms. Supplementary materials for this article are
available online.
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1. Introduction

In 2014, theUnitedNations Joint Programme onHIV andAIDS
(UNAIDS) set the 90-90-90 targets as the primary strategy to
end the HIV/AIDS epidemic (Joint United Nations Programme
on HIV/AIDS 2014), which includes identifying 90% of people
living with HIV through expanded testing, placing 90% of posi-
tively identified individuals on antiretroviral therapy, and ensur-
ing that 90% of those on therapy can achieve undetectable viral
loads by 2020. Considerable progress has been made toward
Tri90 (Gaolathe et al. 2016; Gisslen et al. 2017; Joint United
Nations ProgrammeonHIV/AIDS 2016, 2017;Marukutira et al.
2018). Yet, as of 2019, there was a significant gap; instead of
the targets of 90-90-90 (Tri90), it was 81-67-59 globally (Joint
United Nations Programme on HIV/AIDS 2020a); and now
the COVID-19 crisis has the potential to undermine existing
efforts toward the HIV/AIDS epidemic (Joint United Nations
Programme on HIV/AIDS 2020b).

To end HIV/AIDS epidemic, we shall learn from the past
efforts toward Tri90 and identify important features that could
guide more targeted and effective health policies. Novel datasets
and sophisticated modeling tools are needed to enhance our
understanding of Tri90 achievements. The Population-based
HIV Impact Assessment (PHIA) survey is a nationally represen-
tative HIV-focused survey that started data collection in 2015. It
is designed to measure the reach and impact of HIV programs.
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We believe it offers a unique opportunity to better understand
the key factors that drive theHIV epidemics in themost affected
countries in sub-Saharan Africa. In this article, we propose a
novel causal structural learning algorithm to discover important
covariates and potential causal pathways for the Tri90. Causal
structural learning aims to build a directed acyclic graph (DAG)
that shows direct causal relations among variables of interest in
a given domain. The resulting DAG helps us to understand the
mechanism behind data.

Many classical structural learning algorithms are constraint-
based, such as the PC algorithm (Spirtes and Glymour 1991),
the PC-stable algorithm (Colombo andMaathuis 2014), and the
MMPC algorithm (Tsamardinos, Aliferis, and Statnikov 2003b).
The constraint-based algorithms learn graphical structures by
d-separation set searching. D-separation is an important graph-
ical concept for causal structural learning (Geiger and Pearl
1990; Geiger, Verma, and Pearl 1990), where the “d” stands
for dependence or directed. Roughly speaking, in a directed
acyclic graph (DAG), two vertices X and Y are d-separated
by a set of vertices Z = {Z1, . . . ,Zd} if and only if all the
paths/information between X and Y are blocked by vertices in
Z (see Section 2.1 for a rigorous definition of d-separation).
The d-separation relationship in a DAG can be related to the
conditional independence through the Markov condition and
the faithfulness assumption (Spirtes 2010) (see definitions in
Section 2.1). That is to say, vertices X and Y are d-separated by
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a vertex set Z = {Z1, . . . ,Zd} is equivalent to the conditional
independence of the corresponding variables X and Y given
the corresponding set of variables Z = {Z1, . . . ,Zd} under the
Markov condition and the faithfulness assumption.

However, existing constraint-based structural learning algo-
rithms can be quite aggressive in edge removal: if a Type II error
is made such that two connected covariatesX and Y are thought
to be conditionally independent given someZ, the edge between
X and Y is removed mistakenly, and useful information about
important features and possible causal pathways get lost during
this edge removal process. Especially in the case of categorical
variables and relatively small sample sizes, the conditional inde-
pendence tests used by structural learning algorithms can have
high Type II error rates that lead to many false edge-removals
and a severe information loss. As illustrated in the PHIA data
analysis, very few features are connected by using the constraint-
based structural learning algorithms. Results and discussions in
detail can be found later in Section 3.

In literature dealing with the unreliable conditional inde-
pendence tests, most literature focuses on their negative effects
in the orientation procedure but much less on those in the
skeleton learning procedure, with a few exceptions. Bromberg
and Margaritis (2009) proposed a method to resolve the incon-
sistencies in the conditional independence tests in the skeleton
learning procedure. Their idea is to deduce a “preference” score
on the conditional independence test results froma certain set of
axioms, such as Pearl’s axioms (Dawid 1979; Pearl 1988), which
all true conditional independence relationships should follow.
These axioms can be seen as integrity constraints that can avoid
certain inconsistent test outcomes. However, the computational
complexity of the algorithm proposed by Bromberg and
Margaritis (2009) significantly increases as the number of
vertices increases. Thus, the algorithm cannot be employed
on the MPHIA dataset for which the graph is not sparse
enough.

In this article, we propose a new causal structural learning
algorithm that aims to preserve more information on important
features and potential causal pathways. We apply the proposed
algorithm on the Malawi PHIA (Ministry of Health, Malawi
et al. 2017) dataset, which we refer to as MPHIA, and obtain
interesting findings related to Tri90 pathways. We further com-
pare and validate the proposed algorithm with some classical
structural learning algorithms using information criteria and
simulations.

The remaining part of the article is organized as follows.
In Section 2.1, we provide definitions for important concepts
in causal structural learning, such as d-separation, and also a
basic summary for the graphical notations used in the arti-
cle. In Section 2.2, we use a simple example to illustrate the
problem of aggressive edge removal of existing structural learn-
ing algorithms. In Sections 2.3–2.6, we propose a new causal
structural learning algorithm to overcome the aggressive edge
removal issue. In Section 3, we apply the proposed algorithm
on the MPHIA dataset, compare the results obtained from the
proposed algorithm with those of the existing algorithms in
Section 3.1, and discuss the discovered Tri90 pathways in detail
in Section 3.2. In Section 4, we compare the numerical per-
formance of the proposed algorithm with classical structural
learning algorithms in simulation studies. Section 5 provides a

summary and discussion for the article. To save space, technical
details, additional numerical results, and the relevant codebooks
are provided in the supplementary materials.

2. Method

In this section, we propose our causal structural learning algo-
rithm. We first provide definitions for important concepts in
causal structural learning, such as d-separation, and also a basic
summary for the graphical notations used in the article in
Section 2.1. We then discuss the problem of aggressive edge
removal of existing structural learning algorithms with a sim-
plified example in Section 2.2. To deal with this problem, we
propose our new algorithm and provide a high-level overview
of the algorithm in Section 2.3. The proposed algorithm consists
of two main steps, the forward step and the maximization step,
which are explained in detail in Sections 2.4 and 2.5, respec-
tively. Section 2.6 provides the orientation procedure of our
proposed algorithm and also summarizes the proposedmethod.

2.1. Preliminaries

Suppose G is a directed acyclic graphical (DAG) model which
represents the joint probability distribution over the vertex set
V with directed edges and no directed loop. Each vertex in the
graph represents a variable. We use variables X, Y , etc., to refer
to the variables corresponding to the vertices X, Y , etc., and use
the edge X → Y or Y ← X to refer to the directed edge from
X to Y , where X is a parent vertex of Y , and Y is a child of X.
X − Y denotes an undirected edge that could be either X → Y
or Y → X. We use a path to refer to an acyclic sequence of
adjacent vertices and a causal path from X to Y to refer to a path
that all arrows are pointing away from X and into Y . If there is
a causal path from X to Y , we say that X is an ancestor of Y and
that Y is a descendant of X.

Next, we provide the formal definition of d-separation
(Geiger and Pearl 1990; Geiger, Verma, and Pearl 1990). A
collider is a vertex on a path with two incoming arrows. More
specifically, a vertex Z is a collider (v-structure) on a path U if
and only if the path U contains a subpath X → Z ← Y . For
vertices X, Y and a vertex set Z which does not contain X and
Y , X is d-connected to Y given Z if and only if there is an acyclic
path U between X and Y such that every collider on U is either
a member of Z or an ancestor of a member of Z, and no non-
collider onU is inZ.X is d-separated fromY givenZ if and only
if X is not d-connected to Y given Z. As a simple illustration,
suppose that Z is the only vertex in Z and U. X and Y are d-
connected given Z for X → Z ← Y ; X and Y are d-separated
given Z for X → Z → Y , X ← Z ← Y , and X ← Z → Y .

Moreover, a set of variables V is causally sufficient if and
only if no variable outside V is a direct cause of more than one
variable in V. For a causally sufficient set of variables V with
probability distribution P(V), the Markov condition assumes
that the d-separation in the DAG G implies conditional inde-
pendence in P(V), that is, if X is d-separated from Y by Z in G,
then X is independent of Y conditional on Z in P(V); and the
faithfulness assumption assumes that every conditional inde-
pendence relationship in P(V) is entailed by the d-separation
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relationship for the causal DAG G, that is, if X is independent of
Y conditional on Z, then X is d-separated from Y by Z. There-
fore, the d-separation in the graph is equivalent to conditional
independence in the distribution under the Markov condition
and the faithfulness assumption. See Spirtes (2010) for a more
detailed introduction and discussion. In this article, we always
assume the causal sufficiency, the Markov condition, and the
faithfulness assumption.

2.2. AMotivation Example

In the MPHIA dataset, classical constraint-based structural
learning algorithms discover very few important features for
Tri90, as shown later in Section 3. In this section, we explain
the main cause of the problem and illustrate the motivation of
our method with a simplified example from theMPHIA data. A
complete analysis of the MPHIA data can be seen in Section 3.

Example 1. Suppose our graph contains only three verticesX,Y ,
and Z, andX is Tri90Aware, the indicator variable for awareness
of the HIV positive status, which is one of the variables in which
we are mainly interested in our Tri90 goal study. We want to
check whether Y (AlcoholFrequency, an ordinal variable for
alcohol drinking frequency) and Z (WealthQuintile, an ordinal
variable for the wealthiness) are neighbors of X (Tri90Aware).
That is to say, we are interested in whether the wealthiness and
alcohol drinking frequency have direct causal relationships with
the awareness of the HIV positive status. We have the following
four (conditional) independence test results among X, Y , and Z
for a confidence level α = 0.05 in the MPHIA dataset of males
who are included in the Tri90 study.

X ⊥ Y is rejected, and X ⊥ Z is rejected,
X ⊥ Y|Z is not rejected, and X ⊥ Z|Y is not rejected.

(1)

Since both Y (AlcoholFrequency) and Z (WealthQuintile)
are not independent with X (Tri90Aware) marginally from the
testing results, they should be connected to X (Tri90Aware)
either directly or indirectly, according to the Markov condi-
tion. However, based on the faithfulness assumption, neither Y
(AlcoholFrequency) nor Z (WealthQuintile) should be a neigh-
bor of X (Tri90Aware) since X (Tri90Aware) is conditionally
independent with Y (AlcoholFrequency) given Z (WealthQuin-
tile) and X (Tri90Aware) is conditionally independent with Z
(WealthQuintile) given Y (AlcoholFrequency). Those four test-
ing results lead to contradicted conclusions under the Markov
condition and the faithfulness assumption. Existing structural
learning algorithms, such as the PC-stable algorithm, remove
both the edge between Tri90Aware and AlcoholFrequency (X−
Y) and the edge between Tri90Aware and WealthQuintile (X −
Z) from the conditional independence testing results and con-
clude that there are no neighbors of X (Tri90Aware), which
might be too strict in detecting edges.

Many covariates in the MPHIA data are categorical. When
used as the conditional set, those categorical covariates lead
to relatively high Type II error rates for the conditional inde-
pendence tests. In addition, triples (X,Y ,Z) with contradic-
tory/inconsistent testing results such as Equation (1) are quite
common in the MPHIA data. Such contradiction/inconsistency

also leads to aggressive edge-removal for the constraint-based
causal structural learning algorithms. To solve the false edge-
removal issue, we propose a new graphical structural learning
algorithm, and we illustrate how the new algorithm successfully
finds more edges later in Example 2.

2.3. Method

In a directed acyclic graph (DAG) G with vertex set V and X ∈
V. Suppose N = (N1,N2, . . . ,Nq) is the parents and children
set ofX, then under the faithfulness assumption and theMarkov
condition, respectively, we have

X �⊥ Ni|S for any S ⊆ (N\{Ni}), i = 1, . . . , q, (2)

X ⊥ Mi|Si for some Si ⊆ N, i = 1, . . . , r, (3)

whereM = {M1,M2, . . . ,Mr} = V\(N ∪ {X}), which is the set
of vertices not connected to X. Furthermore, under the Markov
condition and the faithfulness assumption, suppose a variable
setN satisfies the conditions (2) and (3), then it is easy to verify
that N is the set of parents and children of X.

For each vertex X, we want to get the best subset of V that
fulfills the conditions (2) and (3). Our procedure consists of two
steps: a forward step and a maximization step. The forward step
finds all setsN that satisfy (2) for vertex X and will be illustrated
in Algorithm 1 in Section 2.4. The maximization step picks the
best set that fulfills (3) among those sets found by Algorithm 1
and will be provided in Section 2.5.

Before deriving the details of the algorithms, let us come back
to Example 1 and see how algorithms based on (2) and (3) can
solve the problemof aggressive edge removal that presents in the
existing classical structural learning algorithms.

Example 2. Same as Example 1, suppose our graph only contains
three vertices X (Tri90Aware), Y (AlcoholFrequency), and Z
(WealthQuintile). Further, assume that we have the same (con-
ditional) independence test results as in Example 1. Although
the four testing results in (1) are incompatible under theMarkov
condition and the faithfulness assumption, it is possible to have
a valid graphical structure with only three of them. For example,

(4)
and

(5)
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Note that the neighborhood of X (Tri90Aware) satisfies
(2) and (3) for X. In the situations of (4), the neighbor of X
(Tri90Aware) is Z (WealthQuintile); and in the situations of
(5), the neighbor of X (Tri90Aware) is Y (AlcoholFrequency).
However, {Y ,Z} does not satisfy (2) and is not the neighborhood
of X. Algorithm 1 finds both {Z} and {Y} as potential neighbor-
hoods for X (Tri90Aware) since both of them satisfy (2) for X.
Algorithm 2 compares between {Z} and {Y} and chooses the set
which fulfills (3) better as the neighborhood of X. In sum, the
new algorithm chooses either {Z} or {Y} as the neighborhood
of X, and concludes that either AlcoholFrequency (Y) or
WealthQuintile (Z) is the neighbor of Tri90Aware (X) but not
both of them. So, the proposed algorithm is less aggressive in
edge removal than the existing classical structural learning
algorithms such as the PC-stable algorithm as discussed in
Example 1.

2.4. Forward Step

Before stating Algorithm 1, we first provide some useful defini-
tions and their properties. Let p be the total number of vertices.
For each vertex X, let T = V\{X} = {Ti, i = 1, 2, . . . , p −
1} and vertices are considered/added sequentially in the order
of T1,T2, . . . ,Tp−1 to form a candidate neighborhood of X.
That is to say, for any already formed non-empty candidate
neighborhood S = {Ts1 , . . . ,Tsq} ⊆ T, where 1 ≤ s1 < s2 <

· · · < sq ≤ p − 1, we consider whether an additional vertex
from LX(S) := {Tsq+1,Tsq+2, . . . ,Tp−1} can be added into the
variable set, S. We also define LX(∅) = T, which means that
we need to consider all the vertices in T when S starts from an
empty set. Furthermore, let CX(S) be the vertices in LX(S) that
can be added into Swhile still satisfying Equation (2). That is to
say,

CX(S) := {T ∈ LX(S)|N = (S ∪ {T}) satisfies Equation (2)}.
(6)

Proposition 1 establishes some useful properties of CX(S),
which are used in Algorithm 1 to facilitate the calculation of
CX(S).

Proposition 1. CX(S) has the following properties.

1. Let ∅ denote the empty set. If S = ∅, then
CX(∅) = {C|C �⊥ X}. (7)

2. If S does not satisfy (2), then

CX(S) = ∅. (8)

3. If S1 ⊆ S, then

CX(S) ⊆ CX(S1). (9)

4. Let S = {S1, S2, . . . , Sn}, n ≥ 1,C∗
X(S) := ⋂n

i=1 CX(S−i), and
S−i = S\{Si}, for i = 1, 2, . . . , n. It follows that

CX(S) ⊆ C∗
X(S). (10)

5. Let S = {S1, S2, . . . , Sn}, n ≥ 1. If S satisfies (2), then

CX(S)={C ∈ C∗
X(S) ∩ LX(S) : C �⊥ X|S, Si �⊥ X|(S−i ∪ {C}),

i = 1, . . . , n}.
(11)

The properties of CX(S) in Proposition 1 can be shown
by using its definition, and the proof can be found in Sec-
tion S.1, supplementary materials. Proposition 1 establishes a
recursive structure for CX(S). Equation (7) shows that CX(S)
consists of all vertices that are marginally correlated with X
when S is an empty set. Equation (10) states that C∗

X(S) is an
upper-bound (concerning the partial order of inclusion) for
CX(S) when S is non-empty. Furthermore, (11) tells us that we
only need to examine the conditional independence relationship
with conditional set of size |S| to get CX(S) from C∗

X(S) ∩
LX(S) for non-empty S. Equation (11) is used in Algorithm 1
to reduce the number of conditional independence tests and
speed up the finding process. We can show that using (11),
no conditional independence test is repeated in Algorithm 1.
Indeed, let smax = max{s0, s1, . . . , sq}, Smax = Tsmax , s−max =
{s0, s1, . . . , sq}\{smax}, and S−max = {Ts|s ∈ s−max}, then
the conditional independence test of X and Ts0 given S =
{Ts1 ,Ts2 . . . ,Tsq} can only happen when we check whether Smax
can be added into candidate set S−max.

Algorithm 1 Forward Step: Find all potential parent and chil-
dren sets of X that satisfy (2). The algorithm sequentially adds
the candidate set satisfying (2) into the preliminary result set,
R.
Require: (i) a vertex set V, (ii) a vertex X in V, and (iii) size α

for conditional independence tests.
Ensure: The set NX including all possible N that (approxi-
mately) satisfies Equation (2).
Let S = {∅} andR = ∅.
while S �= ∅ do
CalculateCX(S) for each S ∈ S of cardinal from low to high
as follows:
if S = ∅ then
CX(∅) = {C|C �⊥ X under size α}.

else
if |S| > MCI then
Set CX(S) = C∗

X(S) ∩ LX(S).
else
Calculate CX(S) from Equation (11).

end if
end if
Delete S from S .
if CX(S) = ∅ then
Add S into the preliminary result set,R.

else
Add every S ∪ {C} for C in CX(S) into S .

end if
end while
return NX = {N|N ∈
R, and N is not a proper subset of any other sets inR}.

Remark 1. Note that the final output of Algorithm 1, NX , only
contains the candidate sets which are not proper subsets of other
candidate sets for the following reasons. If N is a candidate set
that satisfies (2) for X, then all proper subsets ofN satisfy (2) for
X, but no proper subset of N will satisfy (3). This is because for
any N1 � N, take M ∈ N\N1, and we have X �⊥ M|S for any
S ⊆ N1 � N sinceN satisfies (2). Hence,N1 does not satisfy (3).
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Remark 2. In the calculation of CX(S) and C∗
X(S), the size

of conditional sets in the conditional independence test is not
restricted. However, conditional independence tests with large
conditional sets are not accurate, and the number of all possible
conditional independence tests also grows exponentially with
the size of conditional sets. Hence, we set the upper-bound of
sizes of conditional sets in Algorithm 1, which is also discussed
by Tsamardinos, Brown, and Aliferis (2006) and is commonly
implemented in causal structural learning software such as Scu-
tari (2010). In addition, as shown by (11), if we set the upper-
bound of sizes of conditional sets to be MCI, then we can
approximate CX(S) by

CX(S) ≈ C∗
X(S) ∩ LX(S), if |S| > MCI. (12)

Remark 3. MCI is a tuning parameter in Algorithm 1. Theoret-
ically, one should choose MCI that is no less than the largest
degree of vertices in the graph. However, there are concerns
about using a largeMCI, and the true degrees are also unknown
in practice. First, a large MCI corresponds to big conditional
sets, which will increase the computing cost. Second, when
the sample size is not large enough, a large MCI leads to less
reliable results due to the increased Type II errors. Generally, it
is recommended to setMCI = 3when the true graph is expected
to be sparse or moderately sparse (Yan and Zhou 2020). We
also carry on a simulation study on different choices of MCI,
and more details and discussions can be seen in Section S.5.1,
supplementary materials.

2.5. Maximization Step

To choose the best neighbor set from the set of candidate sets
NX , we check how well each candidate N ∈ NX satisfies
Equation (3). Define

SN(X,Y) := max
S⊆N

CI(X,Y|S), (13)

where CI(X,Y|S) is the p-value of some chosen conditional
independence test for X and Y given S. To see why we use max
in (13), note that conditional independence relationship implies
big p-values, and SN(X,Y) measures whether any subset of N
makesX and Y conditional independent. Themaximum in (13)
is from the fact that (3) only requires one S that makes X and
Y conditionally independent given S as suggested by the large
p-value. The idea of using conditional independence set of the
largest p-value in the causal structural learning algorithm can
also be found in Ramsey (2016).

Define

QX(N) := min
Mi∈V\(N∪{X}) SN(Mi,X), (14)

which measures how well it is for subsets of N to “separate”
X from any vertices not in N ∪ {X}. Here we are concerned
about whether there is anyMi ∈ V\(N ∪ {X}) violates the con-
ditional independence between Mi and X given N, and hence
the minimum of p-values across Mi’s is used. Equations (13)
and (14) together can be seen as a minimax procedure. If N
satisfies Equation (3), then for anyMi not in the neighborhood
of X, there should exist S ⊆ N such that Mi ⊥ X|S leading
to a large value of SN(Mi,X). If QX(N) is large, then for any

Mi not in the neighborhood of X, SN(Mi,X) is large and it is
likely that Mi ⊥ X|S. So N with larger QX(N) is likely to be
the true neighbor set of X. Furthermore, we have the following
useful properties of SN(X,Y) in Proposition 2, which are used
in Algorithm 2 to facilitate the calculation of SN(X,Y).

Proposition 2. SN(X,Y) has the following properties.

1. Let ∅ be the empty set. Then

S∅(X,Y) = CI(X,Y|∅). (15)

2. If N1 ⊆ N, then

SN(X,Y) ≥ SN1(X,Y). (16)

3. Let N = {N1,N2, . . . ,Nn}, n ≥ 1, S∗
N(X,Y) := maxni=1

SN−i(X,Y), and N−i = N\{Ni}, i = 1, 2, . . . , n. Then

SN(X,Y) ≥ S∗
N(X,Y). (17)

4. If N �= ∅, then
SN(X,Y) = max{S∗

N(X,Y), CI(X,Y|N)}. (18)

The properties of SN(X,Y) in Proposition 2 can be shown by
using its definition, and the proof can be found in Section S.2,
supplementary materials. Similar to Propositions 1 and 2 shows
a recursive structure in SN(X,Y). (15) shows how to calculate
SN(X,Y) for an empty set. (17) states that S∗

N(X,Y) is a lower-
bound for SN(X,Y) for a nonempty set N. Furthermore, (18)
tells us that we only need to calculate the p-value of conditional
independence test CI(X,Y|N) to get SN(X,Y) from S∗

N(X,Y)

when N is non-empty. (18) is used in Algorithm 2 to reduce
the number of conditional independence tests and speed up the
searching process. It is easy to prove that using (18), no condi-
tional independence test is repeated in Algorithm 2 because the
conditional independence test of X and Y givenN only happens
when we calculate SN(X,Y).

Remark. Similar toAlgorithm1,we propose to set upper-bound
for sizes of conditional sets to be MCI, then SN(X,Y) can be
approximated by

SN(X,Y) ≈ max
S⊆N,|S|≤MCI

CI(X,Y|S). (19)

Furthermore, from (18), we can approximate SN(X,Y) by

SN(X,Y) ≈ S∗
N(X,Y), if |N| > MCI. (20)

Based on (18) and (20), we have Algorithm 2 which selects
the N with the largest QX(N) to be the neighbor set of X.

2.6. Overall Structural Learningwith Orientations

With Algorithms 1 and 2, we can learn the neighbor set of every
vertex X in the DAG G and hence the skeleton of the DAG. We
can further orient edges according to the conditional indepen-
dence relationship. The overall structural learning algorithm is
summarized in Algorithm 3. The orientation procedure is quite
similar to those of classic constraint-based causal structural
learning algorithms, such as the PC algorithm (Spirtes and
Glymour 1991).We also incorporate some prior knowledge into
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Algorithm 2Maximization Step: Find N ∈ NX with the largest
QX(N).
Require: (i) a vertex set V, (ii) a vertex X in V, and (iii)

candidate neighbor setNX of X.
Ensure: N ∈ NX with the largest QX(N).
Let r = 0 and NX = ∅.
for N ∈ NX do
LetM = V\(N ∪ {X}).
Set QX(N) = ∞.
for each vertexMi ∈ M do
if N = ∅ then
SN(Mi,X) = CI(Mi,X|∅).

else
Calculate SN(Mi,X) from Equation (18) or approxi-
mate SN(Mi,X) using (20).

end if
if SN(Mi,X) ≤ r then
Continue the outer loop for next N ∈ NX .

end if
Set QX(N) = min{QX(N), SN(Mi,X)}.

end for
if QX(N) > r then
Set NX = N.
Set r = QX(N).

end if
end for
return NX as the output.

the orientations. For example, we know covariates such as Age-
Group cannot be affected by other covariates such as Education,
so if there is an edge between AgeGroup and Education, then we
orient the edge as AgeGroup to Education. If there are multiple
d-separation sets S(X,Y) for a nonadjacent pair (X,Y), we shall
use the d-separation set S(X,Y)with the largest p-value tomake
the orientation results stable. For Z adjacent to bothX andY , we
callX−Z−Y a v-structure andmake the orientationX → Z ←
Y if Z �∈ S(X,Y). Finally, note that there could be conflicting v-
structures. For example, if there is a chain X − Z − Y − W,
and both X − Z − Y and Z − Y − W are v-structures, then
the edge Z − Y should be oriented as Z ← Y from the v-
structure of X − Z − Y but Z → Y from the v-structure of
Z − Y − W. In Algorithm 3, we resolve the conflict between
v-structures by comparing the p-value of the v-structure. Going
back to the previous example, if S(X,Y) has a larger p-value than
S(Z,W), then we orient Z − Y as Z ← Y following v-structure
X − Z − Y and vice-versa.

Remark 1. Note that multiple orientations may satisfy the
inferred d-separation (conditional independence) structure.
Hence, in Algorithm 3, we first use prior knowledge in the
orientation process to establish orientations and to enhance
the interpretability of the orientation result. For instance, we
presume that age may lead to education status but not the other
way around. The prior knowledge is provided in the sample
code of the supplementary materials.

Remark 2. Note that in the d-separation set searching proce-
dure in Algorithm 3, we use the d-separation set S(X,Y) with

Algorithm 3 Structural Learning Algorithm
Require: (i) A vertex set V, and (ii) size α for conditional
independence tests.

Ensure: CPDAG G.
for every vertex X ∈ V do
Calculate the neighbor set ofX,NX using Algorithms 1 and
2.

end for
Start from a complete undirected graph G with the vertex set
V.
for every pair of vertices (X,Y) connected in G do
if X �∈ NY and Y �∈ NX then
Delete the edge between X and Y in G.

end if
end for
for each edge X − Y do
if there is prior knowledge on the orientation X − Y then
Orient X − Y according to the prior knowledge.

end if
end for
for each pair of nonadjacent variables (X,Y) with a common
neighbor Z do
Find d-separation set S(X,Y)with the largest p-value in the
neighborhood of X and Y .
if Z �∈ S(X,Y) then
Orient X − Z − Y as X → Z ← Y .

end if
end for
Form G by recursive orientation according to the following
two rules:
1. IfX−Y and there is a directed path fromX toY , then orient
X − Y as X → Y ;
2. IfX andY are not adjacent and there is aZ such thatX → Z
and Z − Y , then orient Z − Y as Z → Y .

the largest p-value to stabilize the orientation results. It agrees
with Equation (13) used in the maximization step for skeleton
learning. The approach of using the conditional independence
set with the largest p-value in the orientation process has also
been used in Ramsey (2016). Sections 2.5 and 2.6 both use the
largest p-value among the conditional independence tests but
for different purposes. Section 2.5 is about skeleton learning,
and Section 2.6 is about orientation. Ramsey (2016) only con-
cerned the orientation phase but not the skeleton learning.

Remark 3. To make the graph learned by the proposed algo-
rithm more interpretable, we calculate p-values for the signif-
icance of the (undirectional) connections for all edges in the
graph learned by Algorithm 3. More specifically, for edge X−Y
between the covariates X and Y , define P(X,Y) to measure the
significance of X − Y as follows

P(X,Y) = min{SNX (X,Y), SNY (X,Y)}, (21)

where NX and NY are the neighbors of X and Y , respectively.
Note that the measure P(X,Y) is undirectional, that is, the
orientation of the edge X − Y has no effect on P(X,Y) from
its definition, and P(X,Y) also has no information on the edge
orientation.
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3. Application toMPHIA Data

The MPHIA survey is a new HIV-focused, cross-sectional,
household-based, nationally representative survey of adults
and adolescents aged 15 years and older as well as children
aged 0–14 years. In addition to HIV testing results, the survey
contains demographic questions, such as age group, gender
(preference to the gender collected in the adult or adolescent
questionnaire), ethnic group, and HIV-related questions, such
as access to preventive care and treatment services. There were
26,871 survey participants and 1407 covariates in total. We
will focus on adults and adolescents aged 15 years and older
with complete Tri90 related information. There are 2217 such
individuals in the MPHIA survey data, including 712 males
and 1505 females. That is to say, these 2217 individuals are
HIV-positive with known status of HIV awareness (Aware),
antiretroviral therapy (ART), and viral load suppression (VLS).

In PHIA surveys, the 1407 covariates include 34 continuous
variables such as age and time, 32 discrete variables such as the
number of partners, and 1341 categorical variables (nominal
ones such as gender and ethnic group, ordinal ones such as
alcohol frequency). Some covariates are applicable to males or
females only, that is, the questions related to pregnancy are only
applicable to females. Therefore, the numbers of vertices are
quite different between the female graph and the male graph.
After a data-preprocessing procedure (illustrated later), we will
apply the causal structural learning algorithm to six datasets for
each combination of gender and 90-90-90 goal separately.
Overview of the data-preprocessing procedure: We first drop all
the covariates with a dominant level (one level has > 99%
samples), because the MPHIA sample size is not large enough
to reject any null hypothesis of the conditional independence
involving those variables. Also, we “merge” all the closely related
covariates into a single covariate in the MPHIA dataset. For
example, some multi-option questions are dummy-coded by
many two-option ones in the MPHIA dataset, and we combine
them together to create multi-level categorical covariates. By
“merging” these kinds of covariates, we can reduce the number
of covariates and improve the interpretability of our results.
Also, some covariates appear in the MPHIA dataset multiple
times with the same meaning but different names, such as Eth-
nicGroup and EthnicCode, and we keep one covariate and drop
the others in such situations.We further remove some covariates
that are direct indicators of the Tri90 goals from the MPHIA
data. For example, there are questions like whether the subject
takes a certain ART medicine or not in the MPHIA survey.
These covariates are strongly correlated to the ART status, but
not helpful for the purpose of building the causal pathways
because they may block the connection between the ART status
and othermeaningful covariates. Furthermore, some categorical
variables havemany levels which can complicate the analysis. To
reduce the number of levels while keeping themain information
of each covariate, we keep the biggest levels of each covariate
which cover at least 95% of the individuals, and combine the
remaining levels into the “Others” category. We subsample the
whole dataset by gender and by Tri90 goal to create six datasets,
and within each of the six datasets, we further drop the covari-
ates with a dominant level (one level has > 99% samples). The
sample sizes and the numbers of vertices in each dataset are

Table 1. Sample sizes n and numbers of covariates N(V) of the six datasets for each
combination of gender and 90-90-90 goal after data preprocessing.

Male Female

Goals n N(V) n N(V)

Aware 712 66 1505 93
ART 510 66 1210 92
VLS 454 66 1110 92

NOTE: Aware, ART, and VLS stand for HIV awareness, ART treatment, and viral
load suppression, respectively. The Male/Female column means that the DAG is
learnedusingonly themale/femaleparticipants inMPHIA, and the rows represent
the Tri90 goals.

summarized in Table 1. There is one covariate included in the
female awareness dataset but not in the female ART and VLS
datasets: LiveHere (whether the individual lives here or not).
The covariate is categorical and has a dominating level, which
is below the threshold of 99% in the female awareness dataset
but is above the threshold in the female ART and VLS datasets.
More details about the six datasets are provided in Section S.3,
supplementary materials.

In the next section, we compare the results obtained from
the proposed algorithm with those of the existing algorithms
in Section 3.1. We further discuss the potential Tri90 pathways
discovered by the proposed algorithm in detail in Section 3.2.

3.1. Model Comparison

We also apply the following existing structural learning
algorithms to each dataset: PC-stable algorithm proposed
by Colombo and Maathuis (2014), which is a stable/order-
independent variant of the original PC (initials of the first
names) algorithm proposed by Spirtes and Glymour (1991);
MMPC (Max Min Parents and Children) algorithm pro-
posed by Tsamardinos, Aliferis, and Statnikov (2003b); IAMB
(Incremental Association Markov Blanket) algorithm proposed
by Tsamardinos, Aliferis, and Statnikov (2003a); GS (Grow-
Shrink) algorithm proposed by Margaritis (2003). Notice that
we use the PC-stable algorithm instead of the PC algorithm
since the PC-stable algorithm is order-independent. Order
independence means that a random reordering of the variables
does not affect the graphical learning result, which enhances
the stability of the algorithm and also makes the results more
interpretable.

We use the existing graphical learning algorithms imple-
mented in the R package bnlearn (Scutari 2010) in Sections 3
and 4. The default conditional independence test statistic in the
bnlearn package is the mutual information for categorical
variables and the linear correlation for continuous variables.
We set the upper bound of sizes of conditional sets MCI = 3
and the size of the conditional independence test α = 0.05 by
default for all the causal structural learning algorithms used in
the comparison.

Wefirst summarize the structural learning results by different
graphical learning methods. The results in Table 2 shows that
the proposed algorithm makes new discoveries regarding Tri90
goals. More specifically, Table 2 show that the numbers of edges
(NE) and the number of directed edges (NDE) are both much
smaller than the number of vertices (NV) in the graphs learned
by the existing algorithms including the PC-stable, the MMPC,
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Table 2. Structural learning results by different graphical learning methods for 90-
90-90 goals.

Male Female

Goals Method NV NE NDE NV NE NDE

Aware PC-stable 66 10 0 93 19 2
MMPC 66 6 0 93 18 2
IAMB 66 8 0 93 17 0
GS 66 10 0 93 10 0
New 66 113 99 93 156 142

ART PC-stable 66 3 0 92 19 2
MMPC 66 3 0 92 15 0
IAMB 66 4 0 92 17 0
GS 66 11 0 92 12 0
New 66 103 86 92 158 149

VLS PC-stable 66 1 0 92 20 4
MMPC 66 4 0 92 15 0
IAMB 66 4 0 92 15 0
GS 66 10 0 92 13 0
New 66 104 90 92 153 146

NOTE: Aware, ART, and VLS stand for the three 90-90-90 targets of HIV awareness,
ART treatment, and viral load suppression, respectively. NV, NE, andNDE stand for
number of vertices, edges, and directed edges, respectively.

the IAMB, and the GS algorithms. These existing algorithms
lean toward fractured graphs and do not have much conditional
independence information for the orientation. On the contrary,
the proposed algorithm produces larger numbers of edges and
well-connected graphs and hasmore potential to infer the direc-
tions of edges.

Remark. It is important to note that the goal of the causal
graphical algorithms is not to produce as many edges and
directed edges as possible. Later in this section, we will
use the Bayesian Information Criterion (BIC) to show that
these discoveries made by the proposed algorithm provide
useful information about the MPHIA data. Furthermore, in
Section 3.2, we discuss the discovered pathways in detail, which
are reasonable, also confirmed in other HIV Tri90 literature,
and can provide useful insight for the three Tri90 goals.

Let d be the distance (defined as the length of shortest path
regardless of direction) from a particular 90-90-90 goal (aware-
ness of HIV, ART, or VLS) to a covariate and N(d ≤ k) be
the number of covariates whose distances to a 90-90-90 goal
are smaller than or equal to k. Very few covariates are close to
90-90-90 goals in the graphs learned by the existing algorithms
with only two covariates whose distance to the 90-90-90 goals
are smaller or equal to three. On the contrary, the proposed
algorithm discovers many covariates that are of a small distance
to the 90-90-90 goals including several direct neighbors (d ≤ 1),
which includes the ones discovered by the existing algorithms.
See details in Table S.1, supplementary materials.

The Bayesian information criterion (BIC, Schwarz 1978) is
a classical statistical tool for model selection. We compare our
proposed graphical learning algorithmwith the aforementioned
classical PC-stable, MMPC, IAMB, and GS algorithms using
BIC criterion and summarize the results in Table 3. LetDk, k =
1, 2, . . . , 6, be the datasets corresponding to the three 90-90-90
goals of each gender, respectively. For k = 1, 2, . . . , 6, we use
each of the graphical learning algorithm Ai, for i = 1, 2, . . . , 5,
to learn a DAG Gi,k on Dk, where Ai, i = 1, 2, . . . , 5, stand for

the PC-stable, MMPC, IAMB, GS, and the proposed algorithm,
respectively.

The log-likelihood of a DAG G can be decomposed as fol-
lows:

�(θ |G) = 1
n

n∑
i=1

log(p(xi1, . . . , xip|G; θ))

=
p∑

j=1

[
1
n

n∑
i=1

log(p(xij|πij(G); θj)

]
=

p∑
j=1

�j(θj|πj(G)), (22)

where θj’s are parameters of the model, n is the sample size, p
is the number of covariates, xij, 1 ≤ i ≤ n, 1 ≤ j ≤ p, is the
ith observation of the jth covariate Xj, πj(G) is the set of parents
of Xj in the DAG G, and πij(G) is the ith observation of πj(G).
It shows that the log-likelihood of G can be decomposed as the
sum of the log-likelihood of local structures of a covariate given
its parents. For the estimation of the local structures, existing
literature on causal graphical models often assumes a linear
model of a covariate on its parents (Spirtes 2010; Valente et al.
2010; Bolla, Abdelkhalek, and Baranyi 2019). Note that in the
MPHIA dataset, many covariates are categorical, so we assume
generalized linear models (GLM) of a covariate given its parents
instead of linear models, and we fit the GLM of local structures
by MLE. The degree of freedom (DF) and the log-likelihood
of a DAG are the sums of DFs and log-likelihoods of the local
structures, respectively.

Note that all the Log-likelihood* in Table 3 are positive
since they are the differences between the log-likelihood and
the log-likelihood of the null model (model with intercept
only). Furthermore, in Table 3, BIC score is calculated by
−2Log-likelihood* + DF log(n), where n is the sample size.
Hence, lower BIC scores correspond to better models.

Our proposed algorithm learns a much larger number of
edges in all the six graphs comparedwith the existing algorithms
in Table 2, and thus it has much larger degrees of freedom
for the log-likelihood defined in Equation (22). Table 3 shows
that the proposed algorithm has the largest degree of freedom
and the largest log-likelihood. The much larger log-likelihoods
imply that the proposed algorithm discovers a lot more useful
information in MPHIA, which is further confirmed by the best
(smallest) BIC scores in Table 3.

3.2. 90-90-90 Pathways

Table 4 lists the neighbors of the 90-90-90 goals discovered
by the proposed causal structural learning algorithm. Details
of the graphs learned by the proposed algorithm are provided
in Figures 1 and S.1–S.5, which render parts of the graphs
surrounding each 90-90-90 goal for each gender. The partial
graphs we present in Figures 1 and S.1–S.5 are uniquely deter-
mined using our proposed algorithm with prior knowledge in
the orientation process. Hence, the problem of multiple orien-
tations does not affect the interpretation of the results of the
MPHIA data. See Remark 1 of Algorithm 3. Also note that the
covariates are renamed to have more intuitive meaning than
their original names in MPHIA data codebooks. The MPHIA
data codebook and the meaning of important covariates are
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Table 3. Comparison of different graphical learning methods by Bayesian Information Criterion.

Male Female

Goals Method DF Log-likelihood* BIC DF Log-likelihood* BIC

Aware PC-stable 50 3076.7 −5825.0 142 12,051.1 −23,063.3
MMPC 44 2218.7 −4148.5 140 12,853.6 −24,683.0
IAMB 71 2650.4 −4834.5 134 14,391.3 −27,802.2
GS 81 2348.3 −4164.7 69 6027.7 −11,550.6
New 948 17,755.5 −29,284.5 1, 012 52,807.1 −98,209.8

ART PC-stable 12 534.1 −993.4 147 10,172.2 −19,300.9
MMPC 26 1146.7 −2131.3 128 9833.0 −18,757.5
IAMB 32 1454.8 −2710.1 132 11,160.4 −21,383.9
GS 62 1573.6 −2760.7 96 6712.0 −12,742.5
New 970 10,274.1 −14,500.7 2, 117 48,597.2 −82,167.2

VLS PC-stable 6 162.4 −288.1 144 9448.7 −17,887.6
MMPC 30 1238.2 −2292.8 140 10,344.0 −19,706.3
IAMB 32 1293.2 −2390.7 124 10,352.2 −19,834.9
GS 63 1888.7 −3392.0 104 6074.3 −11,419.3
New 1184 9222.8 −11,201.8 979 41,991.0 −77,117.2

NOTE: Aware, ART, and VLS stand for the three 90-90-90 targets of HIV awareness, ART treatment, and viral load suppression, respectively. DF stands for the number of
degree of freedom. Log-likelihood* is the difference between the log-likelihood and the log-likelihood of the null model (model with intercept only).

Table 4. Neighbors of 90-90-90 goals discovered by the proposed graphical learn-
ing method.

Male Female

Goals Neighbors of goal Neighbors of goal

Aware AlcoholFrequency, AgeGroup,
PartnerAge, EasyGetCondom,
PartnerNumber12Mo, Education,
PLWHSupportGroup, PLWHSupportGroup,
ViolenceOK?, PregNum
WifeNumLiveElsewhere

ART AbnormPenisDischarge, SyphilisTestInPreg,
PartnerNumber12Mo, TravelTime,
TravelTime, ViolenceOK?,
WifeNumLiveElsewhere WifeNumOfHusband

VLS SeekMedicalHelp, ForceSexTimes,
WifeNum SupportGroupTimes12Mo,

TranslatorUsed

NOTE: Aware, ART, and VLS stand for the three 90-90-90 targets of HIV awareness,
ART treatment, and viral load suppression, respectively. Covariates in each table
cell are arranged in alphabetical order. Code book can be found in Section S.7.1,
supplementary materials.

provided in Section S.7, supplementarymaterials. Those covari-
ates discovered by the proposed algorithm are consistent with
findings in the existing literature, and we discuss them by Tri90
goals and by genders. However, we should be cautious about the
interpretation of the results of the proposed algorithm. Notably,
the proposed algorithm assumes causal sufficiency, implying no
hidden confounding (or common causes) covariates. Although
the MPHIA survey has included 1407 related covariates, and
most of the confounding covariates are likely observed, there
may still be some unobserved confounding factors that can
affect the interpretation of the proposed algorithm results.

3.2.1. HIV Awareness Among Females
For HIV awareness among females, we use Figure 1 to visually
illustrate the covariates that are closely connected toHIV aware-
ness (distances ≤ 2). The learned graphs for other Tri90 goals
and genders are provided in Figures S.1–S.5 in the Section S.4,
supplementary materials.

We find that HIV-positive females with more pregnant times
are more likely to know their HIV status. We think this is

because pregnant women are more likely to be tested for HIV
during antenatal clinic visits or laboring. Peltzer et al. (2009)
reported that age, condom usage, and education are associated
with HIV status awareness. The proposed algorithm finds that
AgeGroup and Education are potential “reasons” for female’s
HIV awareness, and that EasyCondom and PLWHSupport-
Group may be results of female’s HIV awareness: (i) older indi-
viduals are more likely to know their HIV status; (ii) individuals
who are unaware of their HIV status often do not knowwhether
it is easy to get condoms or have difficulties in getting condoms;
(iii) females unaware of their status never answer the PLWH-
SupportGroup question; (iv) individuals with higher education
are less likely to be aware of their HIV positive status, which is
opposite of the marginal association reported in Peltzer et al.
(2009). It is because (iv) is the conditional association given
AgeGroup (which affects both Education and HIV awareness):
while females with higher education levels in the age group 35–
44 are more likely to be aware of HIV positive status, females
with higher education levels in other age groups are less likely
to be aware of the HIV status. Further studies will be needed
to establish the relationship between education and HIV status
awareness.

Figure 1 also presents other covariates that indirectly connect
to the HIV awareness among female HIV patients. Among
those, employment status (WorkLast12Mo) and marital status
are impacted by both urban residence and education; and
education is impacted by ethnic group, urban residence, and
age group. AgeGroup is a potential “reason” for SellSexEver
and SyphilisTestInPreg: younger generations are less likely to
have SyphilisTestInPreg; older generations are less likely to
have sold sex ever. CircumcisedHIVRisk is a score measuring
whether the individual agrees that men who are circumcised
are not at risk of HIV at all, do not need to use condoms,
and can have multiple sexual partners without the risk of
HIV. The graph suggests females that are more cautious
toward HIV risk (lower CircumcisedHIVRisk score) have
smaller numbers of pregnancies on average. Finally, more
sexual partners (PartNumber12Mo), being a partner to the
head of house (RelationToHeadOfHouse), and lower tolerance
toward violence (ViolenceOK) lead to easiness in getting
condoms.
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Figure 1. 90-90-90 Awareness graph in female. Vertices representing the Tri90 goals are biggest and marked by orange; vertices closer to goals have bigger sizes and
darker colors than those farther away from goals. Widths of edges reflect the significance of the nondirectional connection (conditional dependence) between vertices.
Redandblue edges represent positive andnegative relationshipswith Tri90goals, respectively. Gray edge fromTri90Aware toPLWHSupportGroup represents an association
between Tri90Aware and missingness in PLWHSupportGroup. Codebook can be found in Section S.7.2, supplementary materials.

3.2.2. HIV Awareness amongMales
We find males whose partners are older are more likely to be
aware of their HIV status, both marginally, or conditioning on
their age groups. Comparing the male awareness pathway and
the female awareness pathway, we suspect that older females
contributemore toHIV awareness because someone’s age group
is associated with his/her partner’s age.

In Figure S.1, the proposed algorithm finds that Partner-
Number12Mo (sexual partners in the last 12 months) and
WifeNumLiveElsewhere (number of wive/partners that live
elsewhere) to be important covariates for male HIV awareness.
These discoveries are supported by Peltzer et al. (2009) which
showed that HIV awareness is significantly associated with
the number of sexual partners. WifeNumLiveElsewhere and
PartnerNum12Mo are strongly correlated and have closely
related meanings. Instead of studying their impacts on HIV

awareness separately, we study the relationship between HIV
awareness and WealthQuintile which is the parent of both
WifeNumLiveElsewhere and PartnerNum12Mo. We find that
“poor” HIV positive males (with wealth in lower 20%) are more
likely to have no partner in the last 12 months, more likely to
have wives/partners live elsewhere, and less likely to be aware
of their HIV status than the wealthier (in the upper 80%) HIV
positive males. This finding is consistent with Dokubo et al.
(2014).

We also find that ViolenceOK and AlcoholFrequency may
be possible “reasons” of HIV awareness in males, where Vio-
lenceOK is a score to measure whether the individual believes
it is right for a man to beat his wife/partner under various
scenarios. Further investigation shows that among males who
are HIV positive: (i) those with a higher violence score are more
likely to be unaware of their HIV status; (ii) those who never



1652 L. BAO ET AL.

drink are most likely to be aware of their HIV status while those
with a high frequency of alcohol use (more than four drinks a
week) are least likely to be aware of their HIV positive status,
and such an effect is more significant in males who have not
worked in the last 12 months. Alcohol usage is an important
factor associated with sexual risk behavior (Kalichman et al.
2007; Hahn, Woolf-King, and Muyindike 2011), and violence
score can also be an important factor for sexual behavior. These
factors deservemore attentionwhen advocatingHIV awareness.

The proposed causal structural learning algorithm also finds
that WorkLast12Mo has a small distance to HIV awareness
which is supported by Peltzer et al. (2009). PLWHSupportGroup
is a result of HIV awareness because males unaware of their
status never answer the PLWHSupportGroup question.

3.2.3. ART Pathways
Next, we discuss the ART pathways for females and males in
one section because they are relatively simpler compared with
the HIV awareness pathways. For the same reason, we discuss
the VLS pathways for females and males in the same section.

Hodgson et al. (2014), Tomori et al. (2014), and Kebaabetswe
et al. (2019) showed the connection between TravelTime to the
receiving of ART. The proposed algorithm indicates that among
people living with HIV and being aware of their positive HIV
status, those who do not know the travel time to HIV care are
less likely to receive ART treatment than the individuals who
know the travel time.

Friedman et al. (2015), Hatcher et al. (2015), and Sullivan,
Messer, and Quinlivan (2015) showed that violence and other
kinds of abuse are significantly associated with ART initiation.
We find females with smaller violence scores are more likely to
be on ART treatment.

We find that wealthier males are more likely to initiate the
ART treatment, which is in agreement with Gebru, Lentiro, and
Jemal (2018). On the other hand, the males with “poor” wealth
are likely to have no partners in the last 12 months, and more
likely to have wives or partners live elsewhere. The proposed
algorithm also discovers that females with known status of
SyphilisTestInPreg are more likely to be on ART treatment. The
learned female ART pathway reveals that those received ART
treatments had easy access to the HIV care (short travel time)
and easy access to antenatal care where they could be offered
the syphilis test during pregnancy. They were both indicators of
receiving good health care services which increased the chance
of receiving ART treatment.

Finally, we find AbnormPenisDischarge to be a potential
“reason” for male ART initiation. Further investigation shows
that males with the missing response on abnormal penis
discharge problems are more likely to be on ART treatment
among the HIV-positive males who are aware of their HIV
status. Unfortunately, it was unclear why people did not respond
AbnormPenisDischarge question.

3.2.4. VLS Pathways
We find females who attend the support groupsmore frequently
aremore likely to have their viral load suppressed. It is supported
by Roberts (2000), Tomori et al. (2014), and Rangarajan et al.
(2016).

Friedman et al. (2015), Hatcher et al. (2015), and Sullivan,
Messer, and Quinlivan (2015) showed that violence and other
kinds of abuse are significantly associated with viral load sup-
pression (VLS), especially among females. It supports the con-
nection between VLS and ForceSexTimes found in the female
VLS pathway.

We also find SeekMedicalHelp andWifeNum to be potential
“reasons” of VLS amongmales who are on ART.Males who seek
help from doctors or nurses because of health issues such as
abnormal penis discharge and painful urination are more likely
to have viral load unsuppressed; and males with more wives are
more likely to have viral load suppressed.

4. Simulation Studies

In Section 3, we see that the proposed causal structural learning
algorithm discovers many more new edges than the existing
ones, and we validate the results of the proposed algorithm
through the Bayesian information criterion (BIC). However,
since the true causal graph forMPHIAdata is unknown, we can-
not validate the edge discoveries directly. To get more insights
on the Type I and Type II error rates and their tradeoff for
the proposed algorithm against existing ones, we carry out
simulation studies with settings mimicking the MPHIA data in
this section.

We check the true positive and negative rates of the pro-
posed algorithm against the existing algorithms on synthetic
datasets that mimic the MPHIA data. More specifically, we use
the DAG learned from MPHIA data as the truth to generate
the simulation data. Here we choose the graphs learned by the
proposed algorithm as the truth for simulation purposes since
Table 3 shows that the graphs learned by the proposed algorithm
are better fits for the MPHIA data in the BIC criterion than
those learned by the other algorithms. That is to say, let Gk
be the DAG learned by the proposed algorithm on the 90-90-
90 MPHIA dataset Dk for k = 1, 2, . . . , 6. Then we fit the
data distribution Pk based on Gk on the data Dk. We further
randomly generate simulated datasets based on the distribution
Pk with sample size n. The distribution estimation and the
random datasets generation use the bn.fit (Bayesian network
fitting) and rbn (random Bayesian network) functions in the R
package bnlearn (Scutari 2010). We then carry out the pro-
posed algorithm together with the aforementioned PC-stable,
GS, MMPC, and IAMB algorithms on the generated datasets.
Finally, we calculate true positive rates and true negative rates
of edges disregarding the orientation for each algorithm.

Here we set the sample size n = 250, 500, 1000 for a sample
size similar with our real data and to check the performance of
the proposed algorithm with different sample sizes. We repeat
the Monte Carlo simulation 500 times for each setting and
summarize the results in Table 5. The left and right panels of
Table 5 summarize the empirical true positive and negative rates
of the proposed algorithmaswell as those of existing algorithms,
respectively. From the right panel of Table 5, we can see that the
proposed algorithm has similar true negative rates with existing
algorithms. Furthermore, from the left panel of Table 5, we can
see that the proposed algorithm has better true positive rates
than existing algorithms.
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Table 5. Empirical true positive rates and true negative rates of different causal structural learning algorithms (in percentage).

True positive rate True negative rate

Goals Gender n PC-stable MMPC IAMB GS New PC-stable MMPC IAMB GS New

Aware 250 10.6 12.6 12.7 10.6 36.7 100.0 99.9 99.8 99.9 98.0
Male 500 14.6 16.0 15.2 12.0 43.0 100.0 99.9 99.9 99.9 98.0

1000 18.8 20.7 15.4 14.5 48.9 99.9 99.9 99.8 99.9 98.0
250 14.7 13.9 14.4 10.0 32.9 100.0 100.0 99.9 99.9 98.4

Female 500 18.4 17.7 17.7 12.3 38.2 100.0 100.0 100.0 99.9 98.4
1000 24.2 22.5 22.1 14.4 45.4 100.0 100.0 100.0 99.9 98.3

ART 250 10.6 13.3 12.3 11.0 36.9 100.0 99.9 99.9 99.9 98.0
Male 500 15.2 17.2 15.6 14.2 46.1 100.0 99.9 99.9 99.9 97.9

1000 21.0 22.9 20.7 17.5 51.6 100.0 99.9 99.9 100.0 97.7
250 14.1 11.3 10.3 11.2 31.7 100.0 100.0 99.9 99.9 98.2

Female 500 18.4 12.6 9.4 13.4 37.5 100.0 100.0 99.9 99.9 98.1
1000 21.2 17.4 8.4 14.9 47.4 100.0 100.0 100.0 100.0 98.1

VLS 250 9.4 13.1 13.0 11.0 35.7 99.9 99.9 99.9 100.0 97.9
Male 500 12.6 17.3 17.3 12.9 45.0 99.9 99.9 99.9 100.0 97.9

1000 16.3 21.5 21.3 16.3 49.6 99.9 99.9 99.9 100.0 97.5
250 15.5 12.8 11.3 12.5 34.1 100.0 100.0 99.9 100.0 98.4

Female 500 19.6 13.8 10.0 14.3 39.9 100.0 100.0 99.9 100.0 98.4
1000 23.5 17.6 10.1 15.0 46.0 100.0 100.0 99.9 99.9 98.3

NOTE: Aware, ART, and VLS stand for the 90-90-90 targets of HIV awareness, ART treatment, and viral load suppression, respectively.

We also present additional simulation studies in Section S.5,
supplementary materials to save space.

5. Conclusions

UNAIDS 90-90-90 goals are important milestones to end AIDS.
To understand the progress on the 90-90-90 goals better, we
analyze the Malawi PHIA (MPHIA) dataset to discover impor-
tant covariates and potential causal pathways for the 90-90-90
goals through causal structural learning in the paper. Existing
classical constraint-based causal structural learning algorithms
are quite aggressive in edge removal and can lead to information
losses while building directed graphical models, especially in
the case of categorical variables and relatively small sample
sizes. To deal with the problem, we propose a new causal struc-
tural learning algorithm. The proposed algorithm can preserve
more information about important features and potential causal
pathways as shown by various numerical studies when many
covariates in the domain are categorical. More specifically, the
proposed algorithm improves true positive rates over the exist-
ing classical algorithmswhile having a comparable true negative
rate. It shows that our proposed algorithm has a great potential
to discover important features and potential causal pathways,
especially in a domain with many categorical variables.

Carrying out the causal graphical analysis on the MPHIA
dataset, we obtain interesting results on important covariates
and possible causal pathways related to the UNAIDS 90-90-90
goals. For example, the proposed algorithm discovers age and
condomusage to be important covariates for femaleHIV aware-
ness and number of sexual partners to be important for male
HIV awareness, which agrees with literature, such as Peltzer
et al. (2009). The proposed algorithm also discovers similarities
as well as differences between female and male pathways. For
example, travel time is discovered to be an important covariate
for both female and male ART. However, there are also different
important covariates for female and male ART, such as attitude
toward violence for female ART and partner numbers for male
ART.

It is also important to pay attention to the assumptions of
the proposed causal structural learning algorithm when we
interpret the results. One important assumption behind the
proposed algorithm is causal sufficiency which is critical for our
algorithm and many other constraint-based causal structural
learning algorithms. Although the MPHIA survey provides
many related covariates, the causal sufficiency assumption may
still not hold perfectly.

In the article, we stratify theMPHIA dataset by sex and learn
the graphical models for each sex and each Tri90 goal. It is also
possible to learn the DAG with further stratified data by other
covariates such as age, but the sample size would be too small
for each stratum to make reliable inferences.

The discoveries on causality are important extensions for
existing literature where only correlation instead of causation is
established. More studies can be carried out to further validate
the potential causal discoveries, and other statistical inference
tools such as mediation analysis can be applied to further the
understanding of the causal relationship. The discoveries on
causality can help develop better HIV response strategies and
related policies.

SupplemantaryMaterials

The supplementary materials contain the proofs of Propositions 1 and 2.
The supplementary materials also present additional details for the six
Tri90 datasets. The supplementary materials also present some analysis
results of the MPHIA data, more simulation studies, as well as the code
to carry out the analysis in the paper. A summary for the notations in the
proposed algorithms and parts of MPHIA codebook are also provided in
the supplementary materials.
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