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a b s t r a c t

Mediation analysis draws increasing attention in many research areas such as economics,
finance and social sciences. In this paper, we propose new statistical inference proce-
dures for high dimensional mediation models, in which both the outcome model and
the mediator model are linear with high dimensional mediators. Traditional procedures
for mediation analysis cannot be used to make statistical inference for high dimensional
linear mediation models due to high-dimensionality of the mediators. We propose an
estimation procedure for the indirect effects of the models via a partially penalized least
squares method, and further establish its theoretical properties. We further develop a
partially penalized Wald test on the indirect effects, and prove that the proposed test has
a χ2 limiting null distribution. We also propose an F-type test for direct effects and show
that the proposed test asymptotically follows a χ2-distribution under null hypothesis
and a noncentral χ2-distribution under local alternatives. Monte Carlo simulations are
conducted to examine the finite sample performance of the proposed tests and compare
their performance with existing ones. We further apply the newly proposed statistical
inference procedures to study stock reaction to COVID-19 pandemic via an empirical
analysis of studying the mediation effects of financial metrics that bridge company’s
sector and stock return.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work of Baron and Kenny (1986), mediation analysis has been used in various scientific research, such
s economics and finance (Conti et al., 2016; Chernozhukov et al., 2021). It is designed to investigate the mechanisms how
xposure variables affect an outcome through intermediate variables, which are termed as mediators. Numerous inference
rocedures for such mediation models have been studied in both statistic and econometric fields. For instance, in economic
olicy evaluation, while there certainly is no shortage of techniques assessing effects of policies or other treatments on an
utcome (Imbens, 2004; Donald and Hsu, 2014; Abadie and Cattaneo, 2018), mediation analyses move a step further to
isentangle such effect into indirect effects through mediators, such as certain economic indices, and direct effects (Celli,
022). Heckman and Pinto (2015) conducted an econometric mediation analysis with unmeasured and mismeasured
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xposure variables. Huber and Frölich (2017) discussed the nonparametric identification of causal direct and indirect
effects of a binary treatment based on instrumental variables. See Huber (2020) and Celli (2022) for a comprehensive
overview of mediation analysis in economics and econometrics.

On account of modern data-collecting technology, mediation analysis extends its territory to quantitative finance,
genomics, internet analysis, biomedical research, among other data-intensive fields. This brings in high-dimensional
mediators and requires attention on high-dimensional mediation model (HDMM), where the number of potential
mediators is much larger than the sample size. This work is motivated by such a high-dimensional mediation structure
when studying the effects of company’s belonging sector on stock return via influencing various financial metrics during
the COVID-19 period. Direct effects of sectors, as well as financial statements, on stock performance have been extensively
studied in literature. See, for instance, Fama and French (1993, 2015), Graham et al. (2002) and Khan et al. (2015). Yet as
o be evidently shown by the empirical analysis in Section 3.2, the companies’ belonging sectors also significantly affect
stock returns indirectly through certain financial metrics in the statements. In our analysis, 550 financial indexes are
involved, based on only 490 companies, resulting in high dimensional mediators.

The high-dimensionality, on every account, poses both computational and statistical challenges for carrying out
efficient mediation analysis. For instance, the traditional structural equation modeling fails due to the rank-deficiency of
the observed covariance matrix. However, notwithstanding the high dimensional mediation structure, the number of truly
active mediators is typically assumed small and less than the sample size. This is referred to as the sparsity assumption
in the literature, although the sparsity pattern is unknown and thus to be recovered. See, for example, Fan et al. (2020b)
and references therein.

Recently, debiased Lasso has been advocated to deal with bias correction and make valid inference for high dimensional
data (Zhang and Zhang, 2014; Van de Geer et al., 2014). Cattaneo et al. (2018) developed inference methods for high
dimensional linear regression models with heteroscedasticity and the number of included covariates growing as fast
as the sample size. In addition, there are other strands of literature focusing on linear regressions with increasing
dimensions (Cattaneo et al., 2019; Galbraith and Zinde-Walsh, 2020; Fan et al., 2020a,c). Belloni et al. (2014, 2017),
Farrell (2015) and others investigated the inference problem about the average treatment effect in high dimensions.
Chernozhukov et al. (2015) provided a general approach based on the idea of orthogonalization. To apply the debiased
Lasso to mediation analysis, Zhou et al. (2020) introduced debiased penalized estimators for the direct and indirect effects,
with theoretical guarantees of the related tests. However, their method involves estimating high dimensional matrices,
leading to potentially unstable estimates and expensive computation. Imposing penalization on all parameters reduces
the efficiency of estimators, and hence tests. Wang et al. (2020) systematically discussed the efficiency loss of the debiased
methods and presented a thorough comparison among different inference methods.

In this paper, we propose new statistical inference procedures for HDMM. However, there are much less work on
statistical inference for HDMM. To our best knowledge, Zhou et al. (2020) is the only one on testing hypothesis on indirect
effect with rigorous theoretical analysis. Our inference procedure on indirect effect is distinguished from Zhou et al. (2020)
n that we observe the indirect effect in HDMM indeed is a low dimensional parameter and is the difference between the
otal effect and the direct effect in the HDMM. This motivates us to estimate the total effect via least squares method
nd the direct effect by partially penalized least squares method, and then estimate the indirect effect by the difference
etween the estimates of the total effect and the direct effect. We establish the asymptotical normality of the indirect
ffect estimate and further develop a Wald test for the indirect effect.
We estimate the direct effect in the HDMM by partially penalized least squares method, and propose an F-type test

or it. The statistical inference on the direct effect essentially is the same as statistical inference on low dimensional
oefficients in high-dimensional linear models. This topic has been studied under the setting in which the covariate vector
n the high-dimensional linear models is fixed design (Zhang and Zhang, 2014; Van de Geer et al., 2014; Shi et al., 2019).
ue to the nature of HDMM, the design matrix in HDMM must be random rather than fixed since mediators are random.
hus, the statistical setting studied in this paper is different from the one in Shi et al. (2019), in which the covariate
ector is assumed to be fixed design. We study the asymptotical property of the proposed estimator in the random-design
etting. The random design imposes challenges in deriving the rate of convergence and asymptotical normality of the
artially penalized least squares estimates. Under mild regularity conditions, we prove the sparsity and establish the rate
f convergence of the partially penalized least squares estimate. We further establish an asymptotical representation of
he estimate. Based on the asymptotical representation, we can further derive the asymptotical normality of the estimate
nd derive the asymptotical distributions of the proposed test for the direct effect under null hypothesis and under local
lternative.
We show that the proposed estimate of indirect effect is asymptotically more efficient than the one proposed in Zhou

t al. (2020). This is because the debias step of the debiased Lasso inflates the asymptotical variance of the resulting
stimate. We conduct Monte Carlo simulation studies to assess the finite sample performance of the proposed estimate
n terms of bias and variance and to examine Type I error and power of the proposed test. We also conduct numerical
omparisons among the proposed estimate, the oracle estimate and the estimate proposed in Zhou et al. (2020). Our
umerical comparison indicates that the proposed estimate performs as well as the oracle one, and outperforms the
stimate proposed by Zhou et al. (2020).
We utilize the proposed method to study the mediator role of financial metrics that bridge company’s sector and stock

eturn. Our proposed procedure selects six financial metrics out of all the 550 that indeed mediate the pathways linking
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ompany sector and stock return, with interestingly and informatively financial interpretations. We also compare the
etrics selected using our data during the COVID-19 period and those classical findings in existing works, including Fama
nd French (2015) and Edirisinghe and Zhang (2008), among others. We indeed discover some unique patterns and

features due to the pandemic. Moreover, according to the proposed tests for effects of sector, both its direct effect and
indirect effect via financial metrics are statistically significant. Therefore, evaluating the selected financial metrics, as well
as the sector information, might help investors to make wiser investment decisions and choose stocks especially during
the pandemic.

The rest of this paper is organized as follows. In Section 2, we develop statistical inference procedures for the indirect
and direct effects and establish its theoretical properties. Section 3 presents numerical studies and a real data example.
Conclusion and discussion are given in Section 4. All proofs are presented in the supplement of this paper.

2. Tests of hypotheses on indirect and direct effects

Consider the mediation model

y = αT
0m+ αT

1x+ ε1, (2.1)

m = Γ Tx+ ε, (2.2)

where y is the outcome, m is the p-dimensional mediator, x is the q-dimensional exposure variable, and aT denotes the
transpose of a. We in this paper assume p is high dimensional, while q is fixed and finite. Correspondingly, α0 and α1 are p-
and q-dimensional regression coefficient vectors, and Γ is a q× p coefficient matrix. For instance, in quantitative finance,
the sectors of different companies result in different financial metrics, and subsequently affect stock returns. Therefore,
one could adopt model (2.1) and (2.2) to study the mediation effects of financial metrics that bridge company’s sector
and stock return, where the outcome y is stock return, the exposure variable x are the indicators of companies’ sectors,
and the mediators m are financial metrics. For more examples, see Zhou et al. (2020), Huber (2020) and Celli (2022).

Following the literature on high-dimensional mediation model (Zhou et al., 2020), we impose a sparsity assumption
that only a small proportion of entries in α0 are nonzero. This implies that the corresponding variables in m are actually
relevant to y. Notably, from Eq. (2.2), m must be random. We further assume that ε1 and ε are independent random errors
with var(ε1) = σ 2

1 and cov(ε) = Σ∗; ε1 is independent of m, x, and ε is independent of x.
Plugging (2.2) into (2.1) yields

y = (β + α1)Tx+ ε1 + ε2 = γTx+ ε3, (2.3)

where β = Γ α0, ε2 = αT
0ε with var(ε2) = σ 2

2 = αT
0Σ

∗α0, γ = β + α1, and ε3 = ε1 + ε2 is the total random error.
Following the literature (Imai et al., 2010), we refer β to the indirect effect of x on y mediated by m, α1 to the direct
effect, and γ = α1 + β to the total effect. A causal interpretation of β and α1 is briefly discussed in the Appendix.

2.1. Estimating indirect and direct effects

In practice, of interest is to test whether there exists significant (joint) indirect effect or not. This can be formulated
as the following hypothesis testing problem

H0 : β = 0 versus H1 : β ̸= 0. (2.4)

When both p and q are finite-dimensional, β can be estimated through β̂ = Γ̂ α̂0, where Γ̂ and α̂0 are
√
n-consistently

stimated from models (2.1) and (2.2). That is, Γ̂ = Γ +Eγ and α̂0 = α0+ eα , where Eγ = OP (1/
√
n) and eα = OP (1/

√
n)

re estimation errors. Then

∥β̂ − β∥ ≤ ∥Γ eα∥ + ∥Eγα0∥ + ∥Eγ eα∥ = OP (1/
√
n), (2.5)

here ∥ · ∥ stands for the Euclidean norm.
When p is high-dimensional, however, the right-hand side of (2.5) is no longer OP (1/

√
n). This results in potentially

on-ignorable estimation error of β̂. Moreover, β is challenging to be estimated through Γ α0 as it involves estimation
f a high-dimensional matrix and a high-dimensional vector, though, interestingly, β = Γ α0 is q-dimensional, fixed and
inite.

As a key observation from (2.3), the indirect effect β = γ − α1, is the difference between the total effect and direct
effect. This motivates us to estimate β by separately estimating γ via (2.3) and α1 via (2.1), respectively, rather than
stimating the high-dimensional Γ and α0.
Suppose that {mi, xi, yi}, i = 1, . . . , n is a random sample from (2.1) and (2.2). Let y = (y1, . . . , yn)T and X =

x1, . . . , xn)T . Then we estimate γ by its least squares estimate

γ̂ = (X TX)−1X Ty. (2.6)
168
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hile for the estimator of α1, due to the high-dimensionality of α0, we propose the following partially penalized least
quares method:

(α̂1, α̂0) = arg min
α1,α0

1
2n

∥y −Mα0 − Xα1∥
2
+

p∑
j=1

pλ(|α0j|), (2.7)

here M = (m1, . . . ,mn)T and pλ(·) is a penalty function with a tuning parameter λ. The regularization is only applied
o the high-dimensional yet sparse α0. We opt not penalize α1 to achieve local power on the direct effect α1 and the
ndirect effect β under local alternatives. See Theorem 2 and Corollary 1 for more details. Thus, our proposal is different
rom Zhou et al. (2020), which is to develop a debiased estimator of Σ̃XMα0 with Σ̃XM = E[xmT

] rather than estimator of
0 or β. As a result, the proposal of Zhou et al. (2020) may lead to less efficient estimators due to debiasing. This will be
iscussed in the next subsection.

.2. Theoretical results

In this section, we investigate statistical properties of the proposed estimators. We first present some notations and
ssumptions. For the penalty function, it is assumed that pλ(t0) is increasing and concave in t0 ∈ [0,∞), and has a
ontinuous derivative p′λ(t0) with p′λ(0+) > 0. Denote ρ(t0, λ) = pλ(t0)/λ for λ > 0. Further, ρ ′(t0, λ) is increasing in
∈ (0,∞) and ρ ′(0+, λ) does not depend on λ. Define ρ̄(v, λ) = {sgn(v1)ρ ′(|v1|, λ), . . . , sgn(vl)ρ ′(|vl|, λ)}T for a vector
= (v1, . . . , vl)T , where sgn(·) is the sign function. Define the local concavity of ρ(·) at v as

κ(ρ, v, λ) = lim
ϵ→0+

max
1≤j≤l

sup
t1<t2∈(|vj|−ϵ,|vj|+ϵ)

−
ρ ′(t2, λ)− ρ ′(t1, λ)

t2 − t1
.

Let θ = (αT
1,α

T
0)

T and θ0 = (α⋆T
1 ,α⋆T

0 )T , the true value of θ. Further let θ̂ = (α̂T
1, α̂

T
0) be the estimator of θ0. Denote

A = {j : α⋆
0j ̸= 0}, and s = |A| is the number of elements in A. Moreover, ϑ = (αT

1,α
T
0,A)T . And ϑ0, ϑ̂ are similarly defined.

Let M j denote the jth column of M . Let MA be the submatrix of M formed by columns in A. mi,A is the ith column of
the matrix MT

A. Similarly, let α⋆
0,A be the subvector of α⋆

0 formed by elements in A. Define Ac
= [1, . . . , p] − A as the

complement set of A. Define N0 = {δ ∈ Rs
: ∥δ−α⋆

0,A∥2 ≤ dn}. Let ΣMM = E[mAmT
A], ΣMX = E[mAxT ], andΣXX = E[xxT ].

Denote

Σ =

(
ΣXX ΣXM
ΣMX ΣMM

)
.

In this paper, for a vector v = (v1, . . . , vl)T , ∥v∥∞ = maxi |vi| and ∥v∥2 = (vTv)1/2. λmin(A) and λmax(A) denote the
minimum and maximum eigenvalues of the matrix A, respectively. ∥A∥2,∞ = supv:∥v∥2=1 ∥Av∥∞. Further a ≫ b means
limn→∞ a/b = ∞. We impose the following conditions:

A1. λmin(Σ) ≥ c > 0, λmax(Σ) = O(1), and ∥MT
Ac (X,MA)∥2,∞ = OP (n).

A2. Let dn be the half minimum signal of α⋆
0,A, i.e. dn = minj∈A |α⋆

0j|/2. Assume that dn ≫ λn ≫ max{
√
s/n,

√
log p/n},

p′λn (dn) = o((ns)−1/2), λnκ0 = o(1) where κ0 = maxδ∈N0 κ(ρ, δ, λn).
A3. For some ϖ > 2, there exists a positive sequence Kn such that E[∥mAc ε1∥

ϖ
∞
] ≤ Kϖ

n and K 2
n log p/n

1−2/ϖ−ς
→ 0 for

some arbitrary small ς > 0. Further assume that max1≤j≤p+q E(z4j ) < C < ∞, here z = (m, x), zj is the jth component
of z .

To emphasize the dependence on the sample size, in the above conditions and the Appendix, we use λn to denote
the tuning parameter. The first condition is mild and commonly assumed. See for instance Fan and Lv (2011). Condition
A2 imposes a minimal signal condition on nonzero elements in α0. Recall that our primary interest is to make statistical
inference on direct effect α1 and indirect effect β = γ −α1, and α0 may be treated as a nuisance parameter in this model.
We do not make any minimal signal condition on α1 and β. Thus, Condition A2 is reasonable to a certain extent. If, in any
case where the minimal signal condition is in doubt, debiased procedures may be preferred. Condition A3 is imposed for
establishing sparsity result. Compared with existing literature, A3 is very mild. In fact, to simplify the proof, it has been
assumed that all covariates are uniformly bounded in the literature. See for instance Wang et al. (2012). Under bounded
covariates condition, A3 reduces to E(|ε1|ϖ ) ≤ C by taking Kn as a constant. Furthermore, the dimension p is allowed to
increase in a rate of an exponential order of the sample size n according to Conditions A2 and A3.

Theorem 1. Suppose that Conditions (A1)–(A3) hold, and s = o(n1/2), then with probability tending to 1, α̂0 must satisfy (i)
α̂0,Ac = 0. (ii) ∥α̂0,A − α⋆

0,A∥2 = OP (
√
s/n). Let ϵ1 = (ε11, . . . , εn1)T . If further s = o(n1/3), we obtain that

√
n(ϑ̂ − ϑ0) =

1
√ Σ−1

(
X T ϵ1

T

)
+ oP (1).
n MAϵ1
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The proofs of Theorem 1 and its corollary below are given in the supplement of this paper. Theorem 1 establishes
the sparsity of α̂0, the convergence rate of α̂0,A and the asymptotic representation of ϑ̂. Based on the asymptotical
representation, we further obtain the following corollary.

Corollary 1. Suppose that Conditions (A1)–(A3) hold, and s = o(n1/3), we have
√
n(α̂1 − α⋆

1) → N(0, σ 2
1 (Σ

−1
XX + B)), and

√
n(β̂ − β⋆) → N(0, σ 2

2Σ
−1
XX + σ 2

1 B),

where B = Σ−1
XX ΣXM (ΣMM −ΣMXΣ

−1
XX ΣXM )−1ΣMXΣ

−1
XX , and β⋆ is the true value of β.

This corollary establishes the asymptotic normalities of the estimators α̂1 and β̂. We next make theoretical comparison
with the estimators in Zhou et al. (2020). Note that the asymptotic variance matrices of α̂

Z
1 and β̂

Z
in Zhou et al.

(2020) are σ 2
1 (Σ

−1
XX + B̃) and σ 2

2Σ
−1
XX + σ 2

1 B̃, respectively, where Σ̃MM = E[mmT
], Σ̃MX = E[mxT ], ΣXX = E[xxT ], and

B̃ = Σ−1
XX Σ̃XM (Σ̃MM−Σ̃MXΣ

−1
XX Σ̃XM )−1Σ̃MXΣ

−1
XX . To show our proposed estimators are more efficient than the ones in Zhou

et al. (2020), it suffices to show that B̃ > B. Note that Σ−1
XX + B = (Iq, 0q×s)Σ−1(Iq, 0q×s)T , and

Σ−1
XX + B̃ = (Iq, 0q×p)

(
E[xxT ] E[xmT

]

E[mxT ] E[mmT
]

)−1

(Iq, 0q×p)T

= (Iq, 0q×s)(Σ − E[xmT
Ac ]E[mAcmT

Ac ]
−1E[mAc xT ])−1(Iq, 0q×s)T .

Thus, B̃ > B since (Σ − E[xmT
Ac ]E[mAcmT

Ac ]
−1E[mAc xT ])−1 > Σ−1. Hence our proposed estimators are more efficient

than the proposal of Zhou et al. (2020). This should not be surprising because the debiased Lasso inflates its asymptotical
variance in the debiasing step for high-dimensional linear model (Van de Geer et al., 2014). The proposed partially
penalized least squares method does not penalize α1, and hence minimal signal condition on α1 is not required, and
the debiased step becomes unnecessary. As discussed by Wang et al. (2020), debiased procedures ‘‘achieve bias reduction
by essentially allowing all the covariates, including the inactive ones, to be used to adjust for bias’’. Our procedure aims to
work with a sparse model while the debiased procedures are about bias-correction based on all the covariates. Although α0
is sparse, the debiased or desparsified Lasso estimate is not sparse. In other words, debiased procedures do not effectively
utilize the sparsity information of nuisance parameter α0.

2.3. Test for indirect effect

To form the test statistic for the indirect effect β, we first study its asymptotic variance matrix. Let Â = {j : α̂0j ̸= 0}.
With probability tending to 1, we have Â = A. Then the variance matrix Σ and σ 2

1 can be estimated by the estimated
sample version and the mean squared errors, respectively.

Σ̂ =
1
n

(
X TX X TMÂ
MT

ÂX MT
ÂMÂ

)
, and σ̂ 2

1 =
1

n− ŝ− q
∥y −M α̂0 − X α̂1∥

2,

here ŝ = |Â|. As is shown, σ̂ 2
1 = σ 2

1 + oP (1). In fact, when s = o(n1/2), we have σ̂ 2
1 = σ 2

1 + OP (n−1/2).
As to σ 2

2 , we first estimate σ 2
= var(ε3) = σ 2

1 + σ 2
2 by the classic least squares residual variance estimator σ̂ 2 based

n model (2.3). Thus σ̂ 2
2 = σ̂ 2

− σ̂ 2
1 . In practice, σ̂ 2

1 may sometimes be larger than σ̂ 2, where we would simply set σ̂ 2
2 = 0.

This is possible when no mediators are relevant. That is, α0 = 0, and hence σ 2
2 indeed equals zero.

According to Corollary 1, the asymptotic variance matrices of α̂1 and β̂ can be consistently estimated by:

σ̂ 2
1 (Iq, 0q×ŝ)Σ̂−1(Iq, 0q×ŝ)T ; σ̂ 2

2 Σ̂
−1
XX + σ̂ 2

1 [(Iq, 0q×ŝ)Σ̂−1(Iq, 0q×ŝ)T − Σ̂−1
XX ], (2.8)

where Σ̂XX = X TX/n. Then Wald test statistic for the hypotheses in (2.4) can be derived as

Sn = nβ̂
T {

σ̂ 2
2 Σ̂

−1
XX + σ̂ 2

1 [(Iq, 0q×ŝ)Σ̂−1(Iq, 0q×ŝ)T − Σ̂−1
XX ]

}−1
β̂.

Clearly, under H0, Sn → χ2
q , a chi-square random variable with q degrees of freedom.

To investigate the local power of Sn, we consider the local alternative hypotheses H1n : β = ∆/
√
n, where ∆ is a

constant vector. From Corollary 1, under such local alternative hypotheses, Sn → χ2
q (∆

T (σ 2
2Σ

−1
XX +σ 2

1 B)
−1∆), a chi-square

random variable with q degrees of freedom and noncentrality parameter ∆T (σ 2
2Σ

−1
XX +σ 2

1 B)
−1∆. Thus, Sn can detect local

effects that converge to 0 at root-n rate.

2.4. F-Type test on direct effect

It is of interest to test the following hypothesis

H : α = 0 versus H : α ̸= 0. (2.9)
02 1 12 1

170



X. Guo, R. Li, J. Liu et al. Journal of Econometrics 235 (2023) 166–179

(

a

d
u
h

D
H

T
e

T

H

i
t
l

y
t
h
p

2

a

i

2.1) and (2.2) are called complete or full mediation models under H02, while incomplete or partial mediation models
under H12.

Testing the hypothesis in (2.9) essentially is to test low dimensional regression coefficients in linear regression model
(2.1). This has been studied when the covariates in (2.1) are fixed design (Zhang and Zhang, 2014; Van de Geer et al.,
2014; Shi et al., 2019). Due to the nature of mediation model, the covariates in (2.1) are random design. The fixed-design
ssumption on m is inappropriate in mediation models.
We next propose an F-type test for (2.9), and further show that the proposed F-test asymptotically has a chi-square

istribution with q degrees of freedom under H02, and a noncentral chi-square distribution with q degrees of freedom
nder H12. Similar to F-test, we need to calculate the residual sum of squares (RSS) under the null and alternative
ypotheses. Under H02, the penalized least squares function for model (2.1) becomes

1
2n

∥y −Mα0∥
2
+

p∑
j=1

pλ(|α0j|). (2.10)

enote by α̃0 the resulting penalized least squares estimator. Then the RSS under H02 is RSS0 = ∥y − M α̃0∥
2. Under

12, we can estimate α0 and α1 by the partially penalized least squares method in (2.7). Then we calculate RSS1 =

∥y −M α̂0 − X α̂1∥
2, the RSS under H12.

The F-type test for hypothesis (2.9) is defined to be

Tn =
RSS0 − RSS1
RSS1/(n− q)

. (2.11)

heorem 2 shows that the asymptotical null distribution of Tn is a chi-square distribution with q degrees of freedom. To
valuate the local power of Tn under local alternative hypotheses, we impose the following assumption.

A4. Consider local alternative hypotheses H1n : α1 = hn. Assume that ∥hn∥2 = O(
√
1/n).

heorem 2. Suppose that Conditions (A1)-(A4) hold, and s = o(n1/3). It follows that

sup
x

|P(Tn ≤ x)− P(χ2
q (nh

T
nΦ

−1hn/σ
2
1 ) ≤ x)| → 0. (2.12)

ere Φ = (Iq, 0q×s)Σ−1(Iq, 0q×s)T and χ2
q (nh

T
nΦ

−1hn/σ
2
1 ) is a chi square random variable with q degrees of freedom and

noncentrality parameter nhT
nΦ

−1hn/σ
2
1 .

Theorem 2 implies that under H02, Tn asymptotically follows χ2
q distribution, which does not depend on any parameter

n the model. This is similar to the Wilks phenomenon for likelihood ratio test in classical statistical setting. In other words,
he Wilks phenomenon still holds in this high dimensional mediation model. Theorem 2 also implies that Tn can detect
ocal alternatives that are distinct from the null hypothesis at the rate of 1/

√
n.

Remark. Intuitively, one may also construct a Wald test for the direct effect based on its asymptotic normality. To this
end, one needs to estimate the asymptotic covariance matrix of α̂1. This may be tricky under the setting of ultrahigh
dimensional sparse linear models. On the other hand, the Wald test is preferable than the F-type test for the indirect
effect β since β = Γ α0 is defined as the product of a high dimensional matrix Γ and a high dimensional vector α0. When
the null hypothesis H0 : β = 0 holds, either Γ or α0 is zero, associated with two regression models (2.1) and (2.2). Thus
constructing an F-test for the indirect effect is difficult since it is not easy, if not impossible, to define the residual sum
of squares under the null (RSS0) and alternative hypotheses (RSS1). If, for instance, we construct RSS0 by only regressing
versus x, and RSS1 by the same procedure as when constructing (2.11), it would result in only testing the hypothesis

hat the high dimensional α0 = 0, rather than β = 0; Furthermore, classical theory for the F-test becomes invalid for
igh dimensional parameter α0, in particular, when regularization methods are used to estimate the high dimensional
arameters.

.5. Algorithm and tuning parameter selection

To compute the partially penalized estimators α̂1 and β̂, we apply the local linear approximation algorithm (LLA) in Zou
nd Li (2008) with the SCAD penalty (Fan and Li, 2001),

p′λ(t) = λ{I(t ≤ λ)+
(aλ− t)+
(a− 1)λ

I(t > λ)},

and set a = 3.7. The tuning parameter λ for our method is chosen based on the high-dimensional BIC (HBIC) method
n Wang et al. (2013). For a fixed regularization parameter λ, define

(α̂λ
0, α̂

λ
1) = min

α0,α1

1
2n

∥y −Mα0 − Xα1∥
2
2 +

p∑
j=1

pλ(|α0,j|).

The minimization of the partially penalized least squares method can be carried out as follows.
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Fig. 1. Left panel is the empirical sizes and powers of Sn, SZn and SOn at level α = 0.05 over 500 replications for testing indirect effect when α1 = 0.5.
olid line, dotted line and dash-dotted line represent the sizes and powers of Sn, SOn , and SZn , respectively. Right panel is empirical sizes and powers
f Tn, T Z

n , and TO
n at level α = 0.05 over 500 replications for testing direct effect when β = 0.7. The solid line, dotted line, and dash-dotted line

epresent the sizes and powers of Tn, TO
n , and T Z

n , respectively.

1. Get initial values for α
(0)
0 ,α

(0)
1 by minimizing a partial L1-penalized least squares: (α̂(0)

0 , α̂
(0)
1 ) = minα0,α1

1
2n∥y −

Mα0 − Xα1∥
2
2 + λ

∑p
j=1 |α0,j|.

2. Solve (α̂(k+1)
0 , α̂

(k+1)
1 ) = minα0,α1

1
2n∥y − Mα0 − Xα1∥

2
2 +

∑p
j=1 p

′

λ(|α
(k)
0,j |)|α0,j| for k = 1, 2, . . ., until {(α̂(k)

0 , α̂
(k)
1 )}

converges.

In practice, we use a data-driven method to choose the tuning parameter λ. Following Wang et al. (2013), we use the
BIC criterion to choose λ. The HBIC score is defined as HBIC(λ) = log(∥y −Mα0 − Xα1∥

2
2)+ df log(log(n)) log(p+ q)/n,

here df is the number of variables with nonzero coefficients in (αT
0,α

T
1)

T . Minimizing HBIC(λ) yields a selection of λ.

3. Numerical studies

In this section, we examine the finite sample performance of the proposed procedures via Monte Carlo simulation
studies and illustrate the proposed procedure by a real data example.

3.1. Simulation studies

We first examine finite sample performances of the proposed partial-penalization based test statistics, along with
comparisons with the oracle test statistics which know the true set A = {j : α⋆

0j ̸= 0}, denoted as SOn and TO
n as a

benchmark, and the debiased test statistics SZn and T Z
n in Zhou et al. (2020), denoted by Zhou et al.’s method in the tables

and figures in this section. Note that Zhou et al. (2020) focus on the test of indirect effects. One can derive a valid Wald
test for direct effects based on the asymptotical normality established in their paper.

Example 1. In this example, we set n = 300, q = 1, and p = 500. x ∼ N(0, 1) and m = Γ Tx + ε, where ε ∼ N(0,Σ∗)
with Σ∗ being an AR correlation structure. That is, the (i, j)-element of Σ∗ equals ρ|i−j| and ρ is set to be 0.5. Take
Γ = c1(τ1, . . . , τp)T , where τk = 0.2k for k = 1, . . . , 5, and when k > 5, τk’s are independently generated from N(0, 0.12).
Set c1 = 0 to examine Type I error rate and c1 = ±0.1,±0.2, . . . ,±1 for power when testing the indirect effects.

We generate the response y frommodel y = αT
0m+αT

1x+ε1, where ε1 ∼ N(0, 0.52), α0 = [1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0]T
and α1 = c2 is set in the same fashion as c1. The simulation results are based on 500 replications. The significance level
is set to be 0.05.

We first compare the performances of Sn, SOn and SZn for testing the indirect effect β. We set c2 = 0.5 and β = Γ α0 =

1.4c1. The left panel of Fig. 1 depicts power functions of the three tests versus the values of c1 over [−0.3, 0.3]. All the
three tests gain larger powers as |c1| increases. Sn performs as well as the oracle SOn , and is generally more powerful than
SZn . For instance, when c1 = −0.2, the empirical power of SZn is 0.516, while the empirical powers of Sn and SOn are 0.596.
These observations are in consistent with the theoretical results in Section 2.

Next, we turn to test the direct effect. Set c1 = 0.5. And c2 is taken from 0,±0.1,±0.2, . . . ,±1, where c2 = 0
corresponds to the null hypothesis. The right panel of Fig. 1 depicts the power function of the three tests versus the
values of c2 over [−0.3, 0.3]. The proposed test Tn performs almost the same as the oracle one, and is obviously more
powerful than the test T Z

n proposed in Zhou et al. (2020), whose power curve is asymmetric. In fact, when c2 = −0.2, the
O Z
empirical powers of our test statistic Tn and the oracle test Tn are about 1, while that of Tn is only about 0.780.
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Table 1
Estimated biases and standard deviations (in parentheses) of different methods with different c1 and c2 . Except for c1 and c2 , the values in this table
equals 100 times of the actual ones.
c1 c2 New method Oracle Zhou et al.’s method

α̂1 β̂ α̂
O
1 β̂

O
α̂
Z
1 β̂

Z

−0.8 0.5 −0.23(4.15) −0.22(13.73) −0.11(4.11) −0.35(13.70) −11.77(6.56) 11.31(14.05)
−0.4 0.5 0.18(3.13) −0.33(11.98) 0.25(3.08) −0.40(11.95) −3.49(5.10) 3.37(12.20)
0 0.5 −0.02(2.99) 0.39(12.61) −0.00(2.99) 0.37(12.63) −0.13(8.65) 0.47(15.00)
0.4 0.5 0.02(3.15) 0.08(11.83) −0.02(3.11) 0.12(11.81) −0.60(5.31) 0.77(12.66)
0.8 0.5 0.31(3.79) 0.26(12.69) 0.16(3.72) 0.42(12.63) −1.57(8.57) 2.19(15.05)

0.5 −0.8 0.16(3.38) 0.79(11.62) 0.11(3.37) 0.85(11.64) 16.37(5.61) −7.63(13.13)
0.5 −0.4 −0.01(3.43) 0.16(12.58) −0.09(3.36) 0.26(12.57) 16.05(4.00) −8.08(13.64)
0.5 0 0.10(3.35) −0.15(12.52) 0.01(3.33) −0.06(12.52) 0.66(6.56) −0.71(13.82)
0.5 0.4 0.35(3.39) 0.01(12.26) 0.32(3.37) 0.04(12.26) −0.96(5.69) 1.30(13.10)
0.5 0.8 0.13(3.29) 0.24(12.10) 0.05(3.26) 0.32(12.17) −0.53(5.58) 0.84(12.86)

Table 2
Estimated standard deviations and average estimated standard errors with their standard deviations (in parentheses) over 500 replications with
different c1 and c2 . Except for c1 and c2 , the values in this table equals 100 times of the actual ones.

c1 c2 Direct effect (α̂1) Indirect Effect (β̂)

New method Oracle New method Oracle Zhou et al.’s method

std se(std) std se(std) std se(std) std se(std) std se(std)

−0.8 0.5 4.15 3.88(0.23) 4.11 3.89(0.23) 13.73 12.56(0.72) 13.70 12.56(0.72) 14.05 13.43(1.03)
−0.4 0.5 3.13 3.16(0.18) 3.08 3.17(0.18) 11.98 12.38(0.73) 11.95 12.38(0.73) 12.20 13.14(0.85)
0 0.5 2.99 2.90(0.17) 2.99 2.91(0.17) 12.61 12.26(0.66) 12.63 12.26(0.66) 15.00 13.12(2.62)
0.4 0.5 3.15 3.18(0.18) 3.11 3.19(0.18) 11.83 12.35(0.71) 11.81 12.35(0.71) 12.66 13.09(0.82)
0.8 0.5 3.79 3.88(0.24) 3.72 3.88(0.23) 12.69 12.47(0.73) 12.63 12.47(0.73) 15.05 13.37(1.79)

0.5 −0.8 3.38 3.31(0.19) 3.37 3.32(0.19) 11.62 12.43(0.71) 11.64 12.42(0.71) 13.13 14.30(0.76)
0.5 −0.4 3.43 3.30(0.19) 3.36 3.31(0.20) 12.58 12.30(0.70) 12.57 12.30(0.70) 13.64 13.19(0.71)
0.5 0 3.35 3.32(0.18) 3.33 3.33(0.18) 12.52 12.35(0.75) 12.52 12.34(0.75) 13.82 13.78(3.73)
0.5 0.4 3.39 3.32(0.19) 3.37 3.33(0.19) 12.26 12.39(0.71) 12.26 12.39(0.71) 13.10 13.14(0.75)
0.5 0.8 3.29 3.33(0.20) 3.26 3.34(0.20) 12.10 12.37(0.74) 12.17 12.37(0.74) 12.86 13.27(1.31)

Furthermore, T Z
n performs unstably according to our simulation studies. To gain insight of this, we explore more on

ˆ
Z
1, β̂

Z
. The estimates α̂1, β̂ and α̂

O
1 , β̂

O
are reported in Table 1 from which it can be seen that the biases of α̂1, β̂ and

ˆ
O
1 , β̂

O
are very small, while α̂

Z
1 has a large bias. This may be due to that the direct effect α1 is also penalized in Zhou

t al. (2020)’s estimation procedure based on scaled lasso. This makes sense only if the direct effect is expected to be zero.
s seen in Table 1, the bias of α̂

Z
1 is very small when c2 = 0, yet inversely when c2 ̸= 0.

Table 1 also reports standard errors of corresponding estimates. Both the proposed method and oracle outper-
orm (Zhou et al., 2020), especially when estimating α1.

To assess the accuracy of variance estimation of α̂1 and β̂, Table 2 reports their estimated standard errors in two ways.
s to each method — new, oracle and Zhou et al.’s method, the first column lists the empirical standard deviations of
oint estimates α̂1 or β̂ over 500 replications (they are also recorded in parentheses of Table 1); for the second column,
e estimate standard errors of α̂1 and β̂ using formula (2.8) in each simulation run, and reports the average together with
tandard deviations (in parentheses) over the 500 runs. Note that the R package ‘‘freebird’’ (Zhou et al., 2020) does not
rovide the estimated standard error of α̂1. From Table 2, for the new method and oracle, the standard errors estimated
y Monte Carlo simulations are close to those calculated from formulas; while the two versions of Zhou et al. (2020)
epart more.
Furthermore, Fig. 2 visually compares the standard deviations of β̂ over 500 point estimates using the new method

x-axis) with those using oracle or Zhou et al.’s method (y-axis), respectively. Each blue diamond or red dot in the figure
orresponds to each of the 21 different simulation settings — when holding c2 = 0.5, vary c1 = 0,±0.1, . . . ,±1 in (a)
nd holding c1 = 0.5, vary c2 = 0,±0.1, . . . ,±1 in (b). The figures imply that the estimated standard errors of the new
ethod are close to oracle, and are generally smaller than those of Zhou et al.’s method. This in turn intuitively illustrates

he precision of proposed estimators.
Lastly, Table 3 reports the computing times, where the new method is nearly 1000 times faster than Zhou et al.’s

ethod. The proposed method is very fast and stable because initialized by LASSO estimator, LLA algorithm converges in
ne step.

xample 2. In this example, we examine the finite sample performances of proposed method when heavy-tail errors are
ncountered. Specifically, assume now ε ∼ t /

√
6. The multiplier

√
6 ensures the equality of variance of ε to that when
1 6 1
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v

e

Fig. 2. Scatter plot of standard deviations of β̂ over 500 point estimates by the new method (x-axis) and by oracle or Zhou et al.’s method (y-axis).
Each dot (blue and red) corresponds each of the 21 different simulation settings — when holding c2 = 0.5, vary c1 = 0,±0.1, . . . ,±1 in (a) and
holding c1 = 0.5, vary c2 = 0,±0.1, . . . ,±1 in (b). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 3
Comparison results of the average computing time (in seconds) over 500 replications.
c1 c2 New method Zhou et al.’s method

−0.8 0.5 1.38 1,207.88
−0.4 0.5 1.47 1,327.82
0 0.5 1.31 1,197.66
0.4 0.5 1.52 1,614.84
0.8 0.5 1.22 1,332.24
0.5 −0.8 1.35 1,192.32
0.5 −0.4 1.33 1,329.48
0.5 0 1.48 1,544.23
0.5 0.4 1.50 1,790.34

Table 4
Estimated biases and standard deviations (in parentheses) of different methods with different c1 and c2 when ε1 ∼ t6/

√
6. Except for c1 and c2 , the

alues in this table equals 100 times of the actual ones.
c1 c2 New method Oracle Zhou et al.’s method

α̂1 β̂ α̂
O
1 β̂

O
α̂
Z
1 β̂

Z

−0.8 0.5 0.14(4.06) −0.30(12.46) 0.22(3.93) −0.38(12.43) −13.93(6.09) 13.50(12.84)
−0.4 0.5 0.01(1.93) −0.14(6.24) 0.06(1.89) −0.19(6.23) −3.34(2.81) 3.23(6.43)
0 0.5 0.16(3.03) −0.36(12.21) 0.14(3.01) −0.34(12.21) −1.13(4.68) 0.86(12.74)
0.4 0.5 0.16(3.29) −0.36(12.30) 0.09(3.26) −0.28(12.29) −0.77(5.19) 0.52(13.01)
0.8 0.5 0.28(3.07) −0.26(6.67) 0.21(3.02) −0.18(6.63) 0.75(4.06) −0.70(7.15)

0.5 −0.8 0.19(3.44) −0.37(12.34) 0.10(3.40) −0.28(12.33) 6.50(5.61) −6.73(12.89)
0.5 −0.4 0.16(3.45) −0.32(12.32) 0.09(3.41) −0.25(12.30) 5.92(12.67) −6.16(16.26)
0.5 0 0.19(3.42) −0.34(12.34) 0.09(3.41) −0.25(12.30) 0.70(4.56) −0.95(12.95)
0.5 0.4 0.20(3.44) −0.39(12.39) 0.09(3.41) −0.28(12.33) −1.20(5.30) 0.93(12.98)
0.5 0.8 0.18(3.44) −0.34(12.32) 0.09(3.41) −0.25(12.30) −1.17(5.29) 0.96(13.07)

ε1 ∼ N(0, 0.52). All other settings are identical to those in Example 1. We first investigate the performances of Sn, SOn and
SZn for testing indirect effect β via the left panel of Fig. 3. The proposed test Sn performs as well as the oracle one SOn in
terms of controlling Type-I error rate (c1 = 0) and possessing much larger power than SZn (when c1 ̸= 0), especially when
c1 < 0. Similar phenomenons are observed in the right penal of Fig. 3 when examining Tn, TO

n and T Z
n . The proposed test

Tn performs as well as the oracle one, and is more powerful than the test T Z
n . In fact, when c2 = −0.2, the empirical

powers of our test statistic Tn and the oracle test TO
n are about 1, while that of T Z

n is only about 0.756. In addition, we
also evaluate the accuracy and precision of α̂1 and β̂ through Tables 4 and 5. The overall pattern in these two tables with
ε1 ∼ t6/

√
6 is very similar to that for ε1 ∼ N(0, 0.52). In sum, the proposed method retains its validity for heavy-tailed

rror distributions.
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Table 5
Estimated standard deviations and average estimated standard errors with their standard deviations (in parentheses) of different methods with
different c1 and c2 when ε1 ∼ t6/

√
6. Except for c1 and c2 , the values in this table equals 100 times of the actual ones.

c1 c2 Direct effect (α̂1) Indirect Effect (β̂)

New method Oracle New method Oracle Zhou et al.’s method

std se(std) std se(std) std se(std) std se(std) std se(std)

−0.8 0.5 4.06 3.87(0.28) 3.93 3.88(0.27) 12.46 12.55(0.70) 12.43 12.55(0.70) 12.84 13.12(0.90)
−0.4 0.5 1.93 1.94(0.14) 1.89 1.95(0.14) 6.24 6.29(0.33) 6.23 6.29(0.33) 6.43 6.47(0.36)
0 0.5 3.03 2.91(0.21) 3.01 2.92(0.21) 12.21 12.29(0.72) 12.21 12.29(0.72) 12.74 12.80(0.77)
0.4 0.5 3.29 3.17(0.23) 3.26 3.18(0.23) 12.30 12.35(0.72) 12.29 12.35(0.72) 13.01 12.95(0.82)
0.8 0.5 3.07 2.92(0.22) 3.02 2.93(0.22) 6.67 6.66(0.30) 6.63 6.66(0.30) 7.15 6.57(0.64)

0.5 −0.8 3.44 3.31(0.24) 3.40 3.32(0.24) 12.34 12.39(0.71) 12.33 12.39(0.71) 12.89 12.98(0.74)
0.5 −0.4 3.45 3.31(0.24) 3.41 3.32(0.24) 12.32 12.39(0.71) 12.30 12.39(0.71) 16.26 13.01(0.87)
0.5 0 3.42 3.31(0.24) 3.41 3.32(0.24) 12.34 12.39(0.71) 12.30 12.39(0.71) 12.95 12.96(0.74)
0.5 0.4 3.44 3.31(0.24) 3.41 3.32(0.24) 12.39 12.39(0.71) 12.33 12.39(0.71) 12.98 12.98(0.81)
0.5 0.8 3.44 3.31(0.24) 3.41 3.32(0.24) 12.32 12.39(0.71) 12.30 12.39(0.71) 13.07 12.99(0.86)

Fig. 3. Left panel is empirical sizes and powers of Sn, SZn and SOn when ε1 ∼ t6/
√
6 at level α = 0.05 over 500 replications for testing indirect effect

hen α1 = 0.5. Dotted line, solid line, and dash-dotted line represent the sizes and powers of Sn, SOn and SZn , respectively. Right panel is empirical
izes and powers of Tn, T Z

n and TO
n for testing direct effect when β = 0.7. The dotted line, solid line, and dash-dotted line represent the sizes and

owers of Tn, TO
n and T Z

n , respectively.

.2. Real data analysis

We apply the proposed method to an empirical analysis to examine whether financial statements items and metrics
ediate the relationship between company sectors and stock price recovery after COVID-19 pandemic outbreak. While

nvestors and researchers have reached a consensus ages ago that stock returns highly rely on companies’ belonging
ectors, recent studies more focus on using financial statements or market conditions to predict stock returns. Fama
nd French (1993)’s pioneering proposal of the three-factor model started this era, which captures patterns of return
sing market return, firm size and book-to-market ratio factors. Callen and Segal (2004) showed that accruals, cash
low, growth in operating income significantly influence stocks return. Edirisinghe and Zhang (2008) developed a relative
inancial strength metric based on data envelopment analysis (Farrell, 1957), and found that return on assets and solvency
atio has high correlation with stock price return. To enhance prediction accuracy, deep neural network and data mining
echniques were developed, with model inputs as historical financial statements and output as stock price return (Enke
nd Thawornwong, 2005; Lee et al., 2019). Meanwhile, it is reasonable to hypothesize that companies’ sectors affect stock
erformances via influencing the associated financial metrics. Few existing works, however, study the mediating effects
f such financial metrics. Hence our analysis aims to fill in this gap, and use the proposed mediation analysis to select
mportant financial metrics, as well as to test the direct and indirect effects of companies’ sectors on returns.

In addition, we in this analysis are specifically interested in the stock performance of S&P 500 component companies
uring the COVID-19 pandemic period. As is known, the outbreak of the COVID-19 dealt a shock to the U.S. economy with
nprecedented speed, and the government had to take a lockdown to stop spread of virus. The lockdown took a toll in the
.S. economy: business were closed, millions of people lost jobs and the price of an oil futures contract fell below zero. The
risis spread to the U.S. stock market, dragging down the major index S&P 500 by 33.92%. To help businesses, households
nd the economy, the Federal Reserve and the White House launched various rescue programs and take measures to
tabilize energy prices from the end of March, 2020. Therefore, all these events and measures led the U.S. stock market to
V-shape pattern, thanks to which, the general financial rules from classical literature may not directly apply any more.
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Table 6
The estimated coefficients and associated standard errors of direct and indirect effect in the stock data analysis.
Sectors Direct effect std Indirect effect std

Intercept −0.2845 0.0248 −0.0831 0.0162
Basic materials 0.0912 0.0354 0.0709 0.0224
Communication services 0.1471 0.0430 0.0673 0.0269
Consumer cyclical 0.0126 0.0287 0.0662 0.0185
Consumer defensive 0.1563 0.0332 0.0998 0.0221
Financial services 0.0217 0.0293 0.0549 0.0192
Healthcare 0.1621 0.0301 0.1211 0.0196
Industrials 0.0583 0.0289 0.0939 0.0188
Real.Estate 0.0117 0.0348 0.0798 0.0217
Technology 0.1042 0.0290 0.1220 0.0191
Utilities 0.1083 0.0337 0.0592 0.0214

Admittedly, some recent literature studied the economic reaction to COVID-19 pandemic from sector or company level
data (Ramelli and Wagner, 2020; Zhang et al., 2020; Baker et al., 2020; Gormsen and Koijen, 2020; De Vito and Gomez,
020). Thorbecke (2020) analyzed sector-specific and macroeconomic variables as contributing factors to stock return
n COVID-19 downturn and found that idiosyncratic factors negatively affected energy and consumer cyclical sectors.
assan et al. (2020) investigated companies’ transcripts of quarterly earnings call from January to September 2020 to
nvestigate senior management’s and major market participants’ opinions about future prospects. They discovered several
mportant factors related to accounting and business fundamentals, including supply chain, production and operations and
inancing, that are highly associated with stock market recovery from COVID-19. However, these methods mainly rely on
rior financial knowledge to select low dimensional data for modeling, while ignore important company level factors. In
ddition, these methods only consider the relation of stock return to either sector level or company level while failing
o recognize that the company’s financial plays a role in mediating stock sector effects to stock price return. Therefore,
e use the proposed method to study the financial statement items or metrics that mediate the relationship between

irm sectors and stock performance in this special period. This work may then shed light on how to select valuable stocks
uring a pandemic or any adverse event likewise.
In the mediation models, the response is taken to be the stock return from its highest price before the pandemic in

ebruary, 2020 to April 30th, 2020. The closed price is adjusted for both dividends and splits. The potential mediators in
are 550 accounting metrics from financial statements of associated companies, scratched from Yahoo Finance on April

0, 2020. We obtain annual reports of firms from fiscal year 2015Y to 2019Y and the first three quarterly reports in 2019.
e use the latest annual report of firms to compute financial metrics and use previous annual reports to compute average

rowth rate of each financial metrics. In practice, financial analysts use the latest financial statements and the news to
auge future stock price performance. Thus, we focus on the companies that released their latest reports, either quarterly
r annual report, during the investigation period from February to April 2020. This results in that 490 companies in the
&P 500 are included this example. Thus the total sample size is 490.
The exposure variables in x, are companies’ sectors according to Global Industry Classification Standard (GICS) that

re coded as dummy variables. GICS classifies companies into eleven sectors: basic materials, communication services,
onsumer cyclical, consumer defensive, energy, financial services, healthcare, industrials, real estate, technology and
tilities. We set energy sector as baseline level. In this empirical analysis, we select λ by the high-dimensional BIC
HBIC, Wang et al. (2013)), in which the authors demonstrate that the HBIC balances model complexity and prediction, and
rove that the HBIC selects the optimal tuning parameter which asymptotically identifies the oracle estimator under the
igh dimensional linear regression model setting. The selected λ = 0.1125 — this yields six financial metrics as selected
ediators. It is worth to noting that six financial metrics are not as few as they seem to be because the financial metrics
re correlated, thus other potentially relevant metrics are to some extent represented by the six chosen ones. We also
alidate model assumption via residual plot. See Section S.4 in the supplement for details.
Table 6 presents the estimated direct and indirect effects of companies’ sectors, together with their standard errors.

he test statistic Sn = 57.857 with P-value < 10−8 for testing indirect effect H0 : β = 0, and Tn = 731.47 with P-value
10−15 for testing direct effect H0 : α1 = 0, indicating both the direct and indirect effect are significant. Note that this

s not a experimental study, like clinical trials, and the x is an exposure rather than treatment variable. The coefficients
f x may not be interpreted as causal effects of x, but they may have a descriptive interpretation. For example, as shown
n Table 6, stocks in sectors such as ‘Communication services’ and ‘Healthcare’ are more likely to outperform benchmark
han ‘Industrials’. Furthermore, sectors influence the stocks performance partly through business operation reflected by
elected financial metrics, and the indirect effects are significantly positive.
The selected mediating metrics, their associated estimated coefficients in model (2.1), as well as their brief descriptions,

re presented in Table 7. These selected metrics are of their own significance. For instance, the first three chosen metrics
n Table 7, namely return on assets, gross margin and annual growth rate of operating income, reflect firms’ revenue.
eturn on assets is an indicator of how well a firm utilizes its assets, by determining how profitable a firm is relative to
ts total assets. A firm with a higher return-on-assets value is preferred, as the firm squeezes more out of limited resources
o make a profit. Gross margin is the portion of sales revenue a firm retains after subtracting costs of producing the goods
176
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Table 7
Selected importance mediators and their coefficients.
Selected mediator Estimated coefficient (std) Description

Return on assets 0.0677 (0.0060) Net income divided by the total assets
Gross margin 0.0134 (0.0062) The difference between the revenue and cost of goods sold divided by revenue
AGR* Operating Income 0.0169 (0.0055) Revenues subtract the cost of goods sold and operating expenses
AGR* Quick ratio 0.0190 (0.0054) Total current assets minus inventory divided by total current liabilities
Debt to assets −0.0193 (0.0058) Total debts divided by total assets
Receivables turnover (days) −0.0151 (0.0055) Average receivables divided by net credit sales times 360 days

* AGR: average growth rate, calculated as the average of growth rates for the metrics from 2015Y to 2019Y.

it sells and the services it provides. A firm that has higher gross margin is more likely to retain more profit for every dollar
of good sold. Annual growth rate of operating income shows the firm’s growth of generating operating income compared
with previous year. Operating income measures the amount of profit realized from a business’s operation, after deducting
operating expenses such as wages, depreciation, and cost of goods sold. A firm with high growth of operating income
can avoids unnecessary production costs, and improve core business efficiency. In a word, a firm with a higher return
on assets, gross margin and growing operating income is considered more profitable, and hence, more likely to attract
investors.

On the other hand, both the average growth rate of quick ratio and debt to assets are indicators of financial leverage
f a firm. Quick ratio of a firm is defined as the dollar amount of liquid assets dividing that of current liabilities, where
iquid assets are the portion of assets that can be quickly converted into cash with minimal impact on the price received
n open market, while current liabilities are a firm’s debts or obligations to be paid to creditors within one year. Thus
large quick ratio indicates that the firm is fully equipped with enough assets to be instantly liquidated to pay off its
urrent liabilities. Debt to assets is the total amount of debt relative to assets owned by a firm. It reflects a firm’s financial
tability. Therefore, a firm with a higher quick ratio or a lower debt to assets might be more likely to survive when it
s difficult to finance through borrowing and cover its debts, thus is more favorable to investors during the economy
ockdown.

Lastly, receivables turnover quantifies a firm’s effectiveness in collecting its receivables or money owed by clients. It
hows how well a firm uses and manages the credit it extends to customers and how quickly that short-term debt is
aid. Receivables turnover can be negative when net credit sale is negative because the client pre-pay for the product
r service. A negative receivables turnover means that the firm are less susceptible to counter-party credit risk because
t already receives the cash from its client before delivering the service or shipping out the product. This is especially
mportant during liquidity dry periods when the clients may default or delay payment due to lack of cash. Therefore, a
irm that has a negative receivables turnover is preferred.

On all accounts, one might incorporate the analysis results as reference when seeking for a stock portfolio during
he financial crisis caused by pandemic. First, the sectors in ‘Healthcare’, ‘Consumer defensive’, ‘Communication service’,
Utility’ and ‘Technology’ have the top five positive direct effects on stock return. In terms of the financial metrics, we
ay focus on those reported in Table 7 to filter stocks. For example, we shall select firms that have higher values in

AGR operating income, gross margin, quick ratio, and return on assets but lower values in debt to assets and receivable
turnover.

Moreover, we compare our findings with those selected in established models. For instance, our method picks
profitability factors like return on assets, which is also selected in Fama and French (2015), as profitability is the core
f a firm’s stock performance. But we do not include metrics representing size of firm, valuation of stock price or
nvestment that were covered by Fama and French (2015). For firm size factor, there is no evidence that small-size firms
ecovered faster or slower than larger-size ones. For valuation of stock price factor, previous price valuation ratio changed
ignificantly due to stock price change and is no longer reliable to predict future stock return. For investment factor, it
s less important for a short-term stock price movement. Compared with Edirisinghe and Zhang (2008), our method also
icks profitability (return on assets), liquidity (quick ratio) and solvency (debt to assets) metrics, as in Edirisinghe and
hang (2008). During the crisis, a firm facing liquidity crunch could not access to credit. Therefore, a firm with sufficient
ash and less debt is more easily to survive and less likely to be forced to liquidate valuable assets at unfavorable prices.
nd its stock would be safer and more attractive to investors. But we did not select metrics of earnings per share or about
apital intensity as in Edirisinghe and Zhang (2008). The lockdown dramatically changes a firm’s revenue structure and
apital allocation, and hence reduces predictive capability of these metrics to short-term recovery.

. Conclusion

In this paper, we propose statistical inference procedures for the indirect effects in high dimensional mediation model.
e introduce a partially penalized least squares method and study its statistical properties under random design, and

how that the proposed estimators are more efficient than existing ones. We further develop a partially penalized Wald
est to detect the indirect effect, with a χ2 limiting null distribution, and develop an F-type test for the direct effect
177
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nd reveal Wilks phenomenon in the high-dimensional mediation model. The proposed inference procedures are used to
nalyze the mediation effects of various financial metrics on the relationship between company’s sector and the stock
eturn.
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