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ARTICLE INFO ABSTRACT
Keywords: In this paper we discuss nonlinear anisotropic anelasticity formulated based on the two
Anelasticity multiplicative decompositions F = FF and F = FIF. Using the Bilby-Kroner-Lee decomposition

Intermediate configuration
Residual stress

Anisotropic solids
Structural tensors

F = FF one can define a Riemannian material manifold (the natural configuration of an anelastic
body) whose metric explicitly depends on the anelastic deformation F. We call this the global
material intermediate configuration. Deformation is a map from this Riemannian manifold to the
flat ambient space. Using the reverse decomposition F = I'I%, the reference configuration is a
(flat) submanifold of the Euclidean ambient space, while the global intermediate configuration
is a Riemannian manifold whose metric explicitly depends on the elastic deformation F. We
call thls the global spatial intermediate configuration. We show that the direct F = FF and reverse
F=TFF decompositions correspond to the same anelastic motion if and only if F and ¥ are
equal up to local isometries of the reference configuration. We discuss the constitutive equations
of anisotropic anelastic solids in terms of both intermediate configurations. It is shown that the
two descriptions of anelasticity are equivalent in the sense that the Cauchy stresses calculated
using them are identical. We note that, unlike isotropic solids, for an anisotropic solid the
material metric is not sufficient for describing the constitutive behavior of the solid; the energy
function explicitly depends on F (or ]ﬁ‘) through the structural tensors.

1. Introduction

Anelasticity is the study of finite deformations of bodies that, in addition to elastic deformations, undergo non-elastic deforma-
tions or microstructural changes due to other physical, chemical, or biological processes, e.g., bulk growth and remodeling, accretion,
swelling in gels, plasticity, thermal expansion/contraction, diffusion, etc. We refer to strains due to non-elastic deformations as
anelastic strains or eigenstrains.” As an example, in bulk growth different material points may change in size or shape even in the
absence of external loads (Epstein and Maugin, 2000; Ben Amar and Goriely, 2005; Yavari, 2010; Goriely, 2017). Other examples
of anelastic strains appear in accretion (Tomassetti et al., 2016; Sozio and Yavari, 2017, 2019; Zurlo and Truskinovsky, 2017, 2018;
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2 Figenstrain is a hybrid German-English term whose origin is in the pioneering paper of Reissner (1931) (Eigenspannung means proper or self stress). A few
decades after the work of Reissner, Mura (Kinoshita and Mura, 1971; Mura, 1982) popularized this term. In the mechanics literature, for the same concept, a few
other terms have been used: initial strain (Kondo, 1949), nuclei of strain (Mindlin and Cheng, 1950), transformation strain (Eshelby, 1957), inherent strain (Ueda
et al., 1975), and residual strain (Ambrosi et al., 2019). For infinite bodies, and in the setting of linear elasticity, the first systematic study of eigenstrains and
the stresses they induce is due to Eshelby (1957).
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Truskinovsky and Zurlo, 2019), thermoelasticity (Ozakin and Yavari, 2010; Sadik and Yavari, 2017a), and solids with distributed
defects (Yavari and Goriely, 2013b, 2012a,b). One should note that stress in anelasticity explicitly depends on the elastic strain, and
not the total strain.

A fundamental assumption of nonlinear anelasticity of simple materials® is that locally the elastic and anelastic deformations can
be decoupled through a multiplicative decomposition of the deformation gradient into elastic and anelastic parts: F = i‘ff where the
anelastlc strains are induced from the material tensor field F while the elastlc strains exphc1tly depend on the two-point tensor field
F. It has been known that the decomposition F = FF is not unique as F (FQ)(Q 1F) is another equivalent decomposition for any
isometry Q (Casey and Naghdi, 1980).* Although the total strain is compatible, neither the elastic nor the anelastic part needs to
be compatible. The incompatibility of elastic strain (and consequently anelastic strain) is the source of residual stresses in anelastic
bodies. Unlike elastic bodies that have a stress-free reference configuration that can be isometrically embedded into the Euclidean
ambient space, anelastic bodies do not have such Euclidean reference configurations, in general. Anelastic bodies are non-Euclidean
in this sense. Non-Euclidean solids — a term that was coined by Poincaré (1905) — has been used interchangeably for anelastic bodies
in the recent literature (Zurlo and Truskinovsky, 2017, 2018; Truskinovsky and Zurlo, 2019).

The ideas leading to the decomposition F = FF originated from different scientific communities (Sadik and Yavari, 2017b).
The first systematic study of nonlinear anelasticity is due to Eckart (1948). Eckart suggested that a theory of anelasticity can
be formulated by modifying two fundamental assumptions of the classical theory of elasticity that he called “principle of a
constant relaxed state”, and the “principle of relaxability-in-the-large”. The first “principle” refers to assuming a fixed stress-
free reference configuration independent of applied loads and the history of deformation. The second “principle” is equivalent
to assuming a Euclidean stress-free reference configuration. Motivated by earlier works of geometers (Eisenhart, 1926), Eckart
suggested replacing “relaxability-in-the-large” by “relaxability-in-the-small”. He clearly saw the connection between anelasticity and
Riemannian geometry, and explicitly modeled anelastic strains by a Riemannian metric. Independently, Kondo (1949) suggested
that the natural framework for formulating the mechanics of residually-stressed bodies is Riemannian geometry. Kondo (1949)
used the terms “free manifold” and “free space” for the natural configuration of a residually-stressed body. Later on he coined the
term “material manifold” (Kondo, 1950a). Kondo in his attempts of modeling plasticity using Riemannian and non-Riemannian
geometries (Kondo, 1950a,b, 1952) was motivated by the works of Cartan (1926), Cartan (1928).°

These early works focused on modeling anelastic strains as Riemannian metrics. A one-dimensional analogue of F = IFf}E‘, where
f’ is the swelling part of the deformation gradient was first introduced by Flory and Rehner (1944), see also (Duda et al., 2010). In
finite plasticity the multiplicative decomposition first appeared in Bilby et al. (1957), Page 41, Eq. (12), and in Kroner (1959), Page
286, Eq. (4). This decomposition was popularized in the plasticity literature by Lee and Liu (1967), and Lee (1969). In nonlinear
thermoelasticity it is due to Stojanovic et al. (1964), and Stojanovi¢ (1969). In the mechanics of bulk growth it is due to Kondaurov
and Nikitin (1987), Takamizawa and Hayashi (1987), Takamizawa and Matsuda (1990), and Takamizawa (1991). Similar ideas
can also be found in (Tranquillo and Murray, 1992, 1993). The multiplicative decomposition was popularized in biomechanics
by Rodriguez et al. (1994). In the past two decades the multiplicative decomposition of deformation gradient has become a popular
modeling tool in nonlinear solid mechanics, and especially in biomechanics (Goriely, 2017). We should mention that there have
been several recent works on different aspects of the multiplicative decomposition of the deformation gradient (Neff, 2008; Neff
et al., 2009; Reina and Conti, 2014; Casey, 2017; Del Piero, 2018; Du et al., 2018; Goodbrake et al., 2021).

In linear anelasticity, the total linearized strain is additively decomposed into elastic and anelastic strains: € = € + €. This
decomposition is unambiguous for linearized strain. However, this is not the case for nonlinear anelasticity as there are different
measures of strain and even for a given measure of strain there is more than one possible decomposition (Nemat-Nasser, 1979). In
the case of deformation gradient another possibility is F = ]ﬁ‘]ﬁ",(’ which following Lubarda (1999) we call the reverse decomposition.
Clifton (1972) considered the polar decompositions of the direct and reverse elastic and anelastic deformation gradients and under
certain assumptions concluded that for isotropic solids the two decomposmons are equivalent. Lubarda (1999) restricted his analysis
of the reverse decomposition to isotropic solids and assumed that [F = F.” He showed that there is a duality between the constitutive
formulations of finite plasticity using the two decompositions for isotropic solids. He also concluded that the Bilby—Kroner—Lee
decomposition is preferable in the case of anisotropic solids. Davoli and Francfort (2015) concluded that the reverse decomposition
corresponds to a more natural dissipation functional.

The main contributions of this paper can be summarized as follows:

« A global spatial intermediate configuration is constructed for anisotropic anelasticity.
+ The relation between the spatial intermediate configuration and the material intermediate configuration (material manifold) is
established.

3 A material whose elastic response at any point depends only on the first deformation gradient (and its evolution) at that point is called simple (Noll, 1958).

4 Casey and Naghdi (1980) claimed that there is an SO(3)-ambiguity in the decomposmon F= FF. However, this is not true for elastically anisotropic
anelastic solids. Assuming that FQ is an elastic deformation gradient implies that W(F G, 8) = W(FQ,G 8), where W is the energy function. This then implies
that Q is a material symmetry. Denoting the material symmetry group by g for an anisotropic solid there is a g ambiguity (and not an SO(3)-ambiguity) in
the multiplicative decomposition. In particular, this implies that for triclinic solids the multiplicative decomposition is unique.

5 Interestingly, in his development of non-Riemannian geometries, and more specifically torsion of a connection, Cartan (1922) was motivated by the work
of Cosserat brothers on generalized continua (Cosserat and Cosserat, 1909). See (Scholz, 2019) for a detailed history and discussion.

6 Note that F = (FQ™')(QIF) is an equivalent decomposition for any invertible Q. Material-frame-indifference implies that the two multiplicative decompositions
F=TFF and F= (]fTQ")(Q]fT) are equivalent for any Q € SO(T,C) = SO(3). We observe that for anisotropic solids there is much more freedom in choosing the
elastic and anelastic deformations in the reverse decomposition compared to the Bilby-Kréner-Lee decomposition.

7 Note that IF and F have the same tensorial character and IF = F makes sense intrinsically.
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+ In the decompositions F = IFJIH“ = E[:“IeF, a priori there is no relation between IEJ and IF (or between la? and IEH?). When the direct and
reverse decompositions represent the same anelastic deformation, we find such a relationship between F and IE?, see (3.9). This
result is summarized in Theorem 3.1.

+ Constitutive equations of anisotropic solids are formulated with respect to the global spatial intermediate configuration.

« We show that for anisotropic solids the two decompositions are equivalent, i.e., Cauchy stresses calculated with respect to the
two decompositions are identical ( Theorem 3.5). This is a generalization of the works of Clifton (1972) and Lubarda (1999).
This paper is organized as follows. Nonlinear elasticity is tersely reviewed in Section 2. In Section 3 the geometry and the

constitutive equations of nonlinear anelasticity are discussed. Material metric and some strain tensors are defined in Sections 3.1
and 3.2. In Section 3.3 the global material intermediate configuration is discussed. In Section 3.4 we construct a global spatial
intermediate configuration that reflects the reverse multiplicative decomposition F = [FIF. We make a connection between the
geometries of the two intermediate configurations. The constitutive equations of elastically anisotropic anelastic bodies are discussed
in Section 3.5, and it is shown that the two decompositions are equivalent for anisotropic solids. The concluding remarks are given
in Section 4.

2. Nonlinear anisotropic elasticity
2.1. Kinematics and strain tensors

Deformation of an elastic body is a time-dependent map ¢, : (5, & - S, 8), where S is the Euclidean ambient space, and § is
the Euclidean background metric. B is a submanifold of S, and G = §| 5-° In elasticity (and anelasticity) the local change of length
is a quantity of interest and that is why the reference configuration and the ambient space are equipped with Riemannian metrics.
For a fixed value of + we denote ¢ = ¢,, and C = @(B) C S. Therefore, at any instant of time, deformation is a map from the
stress-free reference configuration B to the current configuration C. Therefore, we write deformation as the map ¢ : (5, G - @ £).
In nonlinear elasticity deformation gradient F is the tangent map of the deformation map ¢. More precisely, F(X) = T¢|-1(x,, where
. TB — B is the natural projection in the tangent bundle onto the base space. In other words, F(X) is the restriction of T¢ to the
fiber over X. The tangent map T¢ is a vector bundle morphism that maps the tangent bundle T8 to the tangent bundle T'C, and
hence it also includes ¢ as the map on the base space. As S, and consequently B and C, are parallelizable, T3 and TC are trivial,
and hence one can write Tg = (¢, F), where F is understood as a tensor field that maps tangent vector fields on B to tangent vector
fields on C. Note that F(X) is a linear mapping that maps the vector U € Tx BB to F(X)U € T,,x,C. Let us consider coordinate charts
{X4} : B> R" and {x?} : C - R", for B and C, respectively (n = 2 or 3). With respect to these coordinate charts deformation
gradient has the following representation

a
03;1()%@(”(/4:1:%()()0;;@‘”(4 2.1)
To avoid self-penetration of matter, a necessary condition is that det F(X) > 0, VX € B, i.e., ¢ is locally invertible and orientation
preserving. The dual of F is defined as

F(X) =

F*: Ty C—TxB. (a.FV)= (F*a,V), VVeTyB, aeT:C, 2.2)
where T;( X)C and Ty 3 denote the cotangent spaces of T,,x,C and Ty 3, respectively, and (.,.) is the natural pairing of a 1-form and
a vector: (a, V) = a, v’. F* has the following coordinate representation

Jd

F*(X) = FyxdX* ® 2.3)

oxa
The transpose of deformation gradient is defined as® F T,C - Ty B, {(FV,v))g = (V, Ffv))é, VV € TxB, v € T,C, where (, ))¢ and
{, )¢ are the inner products induced by the metrics G and §, respectively. F' has the following representation

FF 00 = (FT 000, =22 @ dx® = 4,0 F/ 500 6100 =2 @ . @4
Note that FT = G*F* &, where G' is the inverse of G, i.e., GAC G = 64 5. For V a vector field on B, ¢,V = Tp-Vop~! =F-Vop~! is
a vector field on C c S—the push-forward of V by ¢. Similarly, if v is a vector field on C = ¢(B3), the pull-back of v by ¢ is defined
as ¢*v =T(¢p)-vop = F~! -vog, which is a vector field on B. The pull-back and push-forward of tensor fields are defined similarly.

The right Cauchy-Green strain is defined as C = @*§ = F* gF. Note that the two Riemannian manifolds (C,§) and (3, Cb)
are isometric. Therefore, the deformation can be equivalently described by the map idg : (B,G6) — (B, C’). The left Cauchy-
Green deformation tensor is defined as B = ¢*g?, and in components BAE = (F-1)4_(F~1)B, g4 where §' is the inverse of g,
ie., g% g., = 6%,. The spatial analogues of C’ and B¥ are denoted by ¢ and b? (the Finger deformation tensor), respectively, and

8 Our notation is slightly different from that of Marsden and Hughes (1994). We use § and G for metrics of the Euclidean ambient space and the induced
Euclidean metric in the reference configuration. We reserve g and G for the (non-flat) Riemannian metrics of the spatial and material intermediate configurations,
respectively.

9 We use (.)f when the metrics G and § are used in calculating the transpose. In §3, we will use the notation (.)” for transpose calculated using the metrics
G and g, where G is the material metric that as we will see in Section 3 explicitly depends on the local anelastic deformation.
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are defined as ¢ = ¢,G and b* = ¢,G, with their corresponding components c,, = (F~1)4 (F~1)8, G, and b = Fe, Fb, GAB,
respectively. Note that ¢’ = ¢,G is the spatial analogue of C’. This means that the two Riemannian manifolds (8,G) and (C,¢)
are isometric. Therefore, the deformation can be equivalently described by the map id, : (C,c¢’) = (C,§). In summary, one has the
following measures of strain:

C =¢'¢, C=6G'C’=FF,

b* = ,G', b=Dblg=FF @5
B =¢'g'. B=Blg=F'FT, '
&= ¢*é, c= g‘icb = F‘fF_1 .

Note B=C! and b = ¢™!. The following commutative diagram summarizes the three equivalent descriptions of motion in nonlinear

elasticity.

. idg b
B,G) —— (B,C")

i3 ‘o
B,6) —— C.®) (2.6)
@ ide

Y. ide >,
cc)y——(C 9
The three horizontal maps describe the same elastic deformation while the vertical maps are isometries.'° In this paper we use
dotted arrows to emphasize that a map is an isometry.
The principal invariants of b (and C) are defined as (Ogden, 1997): I, =trb= 5%, = b §,,, I, =
% (I? = b®b%4 §,. &y4), and I = det b. Note that

L2 2y _ 1 (2 by —
s -teb®) =3 (17 = b, 00,) =
trb= tré((p*é“) =g Gf = tres @8 = trgs ¢ =uc,

\ , . , @7
det b = det(b*g) = det b¥ det § = det(¢,G") det § = det(FG'F*) det § = det G* det(F* §F) = det(C’G") = det C.

We assume a hyperelastic solid, i.e., there exists an energy function W = W (X,F, G, §). As the focus of this paper is on kinematics
and constitutive equations of anelasticity we will not discuss the balance laws (see Sozio and Yavari (2020) for discussions on
balance laws in anelasticity).

2.2. Constitutive equations in nonlinear elasticity

We restrict ourselves to hyper-elastic solids, i.e., assume the existence of an energy function that for a simple material depends
on the deformation gradient. However, as deformation gradient is a two-point tensor, the energy function (which is a scalar) must
explicitly depend on the metrics of the reference and current configurations as well, i.e., W = W(X,F,G, §).

2.2.1. Material symmetry in elasticity
The material symmetry group Gy of an elastic body made of a solid with the energy function W at a point X with respect to
the Euclidean reference configuration (3, G) is defined as (éilhavy, 2013)

W(X,FK,G.8) = W(X,F,G.8), VKeGy<Orth@G), (2.8)

fo%‘ all deformation gradients AF, where K : TyB — Ty B is an invertible linear transformation, and Orth(é) = {Q 1 TxB - Ty B |
o' =§! } The condition Q7 = Q7! is equivalent to Q,G = G, or ©*GQ~' = G. When ¥ is a subgroup of %, this is denoted as
¥ < . For hyperelastic solids, objectivity (material-frame-indifference) requires that the energy function depend on the deformation
through the right Cauchy—-Green deformation tensor C’, i.e., W = W(X,C’,G). This implies that the material symmetry group Gy
of a hyperelastic solid is the subgroup of G-orthogonal transformations Orth(G) such that

WX, KC.6)=wX,¢" 6, VKe§,<O0rth@), (2.9

where K*C* = K*C’K. The material symmetry group can be characterized using a finite collection of structural tensors ¢ ; of order
M, i = 1,...,N (Liu, 1982; Boehler, 1987; Zheng and Spencer, 1993; Zheng, 1994; Lu and Papadopoulos, 2000; Mazzucato and
Rachele, 2006)

Qeg<orth@G) = (Q), & =¢.... .(Q), in=En. (2.10)

10 The Lagrangian strain calculated using the first two rows is %(Cb —é), while using the third row one obtains its pushforward, i.e., %(id*c g-c) = %(g—c )=

%(/)*(C7 -G).
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The set of structural tensors is a basis for the space of tensors that are invariant under the action of the group §. The u-
th power Kronecker product (Q) q of a G-orthogonal transformation O for a u-th order tensor ¢ is defined as ((Q) Mcf yhAe =
QOA‘AI QOA“AM EA“"A". Notice that (Q),, (v, ® - ®v,) = Qv, ® - ® Qv,,, where v, € Ty, i = 1,...,m, are arbitrary vectors.
Eq. (2.10) tells us that the material symmetry group ¢ is the invariance group of the set of the structural tensors ¢;, i = 1,..., N.
The energy function has the following functional form

W=WX.,C,G¢E,...¢. (2.11)
When structural tensors are considered as arguments of the energy function, the energy function becomes an isotropic function of
its arguments—the so-called principle of isotropy of space (Boehler, 1979).

Instead of using the set of tensors {Cb,é,é‘ oo N N}, one can use a corresponding set of isotropic invariants. According to a
theorem by Hilbert for any finite collection of tensors there exists a finite set of isotropic invariants—the integrity basis for the set
of isotropic invariants of the collection (Spencer, 1971). Let us denote the integrity basis by I =1 m Thus, one can write
W =W(X.,I,,...,1,). In terms of the integrity basis, the second Piola-Kirchhoff stress tensor has the following representation (Doyle
and Ericksen, 1956; Marsden and Hughes, 1994)

oW

m
ow Ij '
§=2 b:ZZVVJ_ W,=Wj(X,Il,...I)__F,
J

> dm j=1...m, (2.12)
where the second Piola—Kirchhoff stress S has the following relationship with the first Piola-Kirchhoff and Cauchy stresses: S48 =
(Ffl)AaPaB — J(Ffl)Aa(Ffl)Bb GHb.

2.2.2. Covariant constitutive equations

In nonlinear elasticity, conservation of mass and the balance of linear and angular momenta can be derived by postulating
the balance of energy and its invariance under rigid body translations and rotations of the Euclidean ambient space (Green and
Rivlin, 1964). This approach was generalized to nonlinear elasticity in a Riemannian ambient space by Hughes and Marsden (1977)
and led to a covariant formulation of nonlinear elasticity. Covariant elasticity was further developed in (Marsden and Hughes,
1994; Simo and Marsden, 1984; Yavari et al., 2006; Yavari and Golgoon, 2019). Let us consider a body with an energy function
W = W(X,F,G,§), and a diffeomorphism & 8§ — S, which can be thought of a change of coordinates in the ambient space or a
mapping of the ambient space to itself. Spatial covariance of the energy function is the invariance of the energy function under any
such diffeomorphism, i.e., WX, ¢, F, G, £.8) = W(X,F, G, &) (note that 5,*C°i = G). Marsden and Hughes (1994) proved that spatial
covariance of energy function implies that Vf/(X ,E.G, 8 =W(X, Cb,é).

Let us next consider a material (referential) diffeomorphism = : B — B. A homogeneous energy function W (C’, G) is materially
covariant if it is invariant under any material diffeomorphism =, i.e., W(E,C", 5,6) = w(C,G). For inhomogeneous bodies material
covariance is defined locally and using local diffeomorphisms such that =(X) = X. Marsden and Hughes (1994) showed that
material covariance of energy function implies isotropy. They suggested that a covariant description of non-isotropic materials
requires some additional variables in the energy function. Material covariance was further studied by Lu and Papadopoulos (2000)
and Lu (2012). Lu (2012) showed that when structural tensors are included as arguments of the energy function, in addition to the
material metric and the right Cauchy-Green tensor, the energy function becomes a materially covariant function, i.e.,

WX, 2,C,5,6,5¢,.... 50 =WX.C,6¢,,...¢n. (2.13)

Lu (2012) also showed that spatial and material covariance of an energy function imply the principle of isotropy of space (Boehler,
1979), i.e., the energy function of an anisotropic solid is an isotropic function of its arguments when structural tensors are included.

3. Nonlinear anisotropic anelasticity

In this section we first review the global intermediate configuration of nonlinear anelasticity corresponding to the Bilby—Kroner—
Lee decomposition F = FF following an approach similar to that of Goodbrake et al. (2021). We next construct a global intermediate
configuration that corresponds to the reverse multiplicative decomposition F = IFIF. We then make a connection between the two
intermediate manifolds. Finally, we will discuss the constitutive equations of elastically anisotropic anelastic solids and will show
the equivalence of the two decompositions.

For factorizations of the tensor field F = FF = IFI* we are interested in constructing the corresponding factorizations of
@ (B, é) — (S, §) through some Riemannian manifolds that we call global material and spatial intermediate configurations. We

assume that the maps
FOX) i TyB—TyB,  F(X): TyB — T,u,C. o
FX) : TyB = T,0C. F(X) : Ty C = Ty C

are invertible. Here, we have assumed that in both decompositions the local elastic deformations are two-point tensors. In the direct
a e
decomposition instead of (3.1); one can assume that F(X) : TyB — T,x,C, and F(X) : T, x)C — T,x,C. Similarly, in the reverse

5
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decomposition one can assume that IE‘(X ) ¢ TyB - TyxB, and IEH“(X ) : TxB — T,x)C. It is important to clearly define the tensor
character of the different fields.'!

3.1. Material metric in anelasticity

The rest (natural) configuration of an anelastic body cannot be isometrically embedded into the Euclidean ambient space, in
general. In this sense an anelastic body is non-Euclidean and the natural distances in its natural configuration are measured using
a metric — the material metric — that explicitly depends on the local anelastic deformations. Knowing that F is a linear map from
Ty B to itself and given the (Euclidean) metric G one can define another metric G = Fa'*G Anelastic strain (or eigenstrain) can be
visualized as follows (Yavari, 2021). Given a vector W € Ty 3, it has the length square (W, W))¢, where ((, ))¢ is the inner product
induced by G. The anelastlc deformation maps this vector to the vector FW in the Euclidean reference configuration (B,G) and its
length square is ((FW FW))G This is the natural square length of the vector From the definition of pull-back of a metric, one has
<(FW FW))G = (W, W)) & where G = F*'G = F* GF. In components, (F G)AB = FM A FN 5 Gan, where { X4} is a coordinate chart

for B.'? In summary, the mater1a1 metric is related to the flat Euclidean metric G and the local anelastic deformation F as G = F*G.

3.2. Strain tensors in anelasticity

In anelasticity, the elastic strains are defined by replacing F with Fin (2.5). In the geometric approach, strain tensors are defined
by replacing G with G in (2.5), while the transpose operator ()7 is defined using § and G. Hence, one has the following strains

¢ =Fg C=G'C =FF, C=¢'g, C=G'C’=F'F

b* =F.G', b=b'g=FF, b* = ¢,G!, b=Dblg=FF, 32

B =Fg, B=BG=F'FT, B =¢'¢, B=BG=F'F' '

&=F6, C=g&=FTF", ¢ =¢,G, c=§d=FTF".
It should be noticed that the strain tensors obtained starting from the material metric tensors G and G are the same, viz.

b=b, b =bf, é=c, &=¢". 3.3)
This is not the case for the strain tensors obtained by pulling back the Euclidean ambient metric g, as

B=FB, B'=FB', C=FcC, C=FC. (3.9
3.3. The global material intermediate configuration

One can write the following factorization of the total deformation:
B.62 362 C.p. 3.5)

We call (B, G) the global material intermediate configuration. The intermediate configuration is unique up to isometry by construction
(equality of elastic strain). This configuration is what has also been called the material manifold in the literature (Kondo, 1950a;
Ozakin and Yavari, 2010; Yavari, 2010; Lu, 2012; Yavari and Goriely, 2012a,b, 2013b). Note that the Rlemannlan manifold (B, G) is
the natural configuration of the anelastic body. The local anelastic deformations are encoded in the metric G = F G (Yavari, 2021).
Note that the local anelastic deformations are fully encoded in the material metric only in the isotropic case (Sozio and Yavari,
2020); for elastically anisotropic anelastic solids one would need to include structural tensors that explicitly depend on F as we will
discuss in Section 3.5.

It should be noted that, in general, F is incompatible, i.e., it is not the tangent of any map from B to itself. Incompatibility
of E is a necessary condition for non-flatness of the material metric G, which is the source of residual stresses. However, it is
not sufficient; there are incompatible distributions of F that do not induce residual stresses—contorted aeolotropy (Noll, 1967) or
zero-stress (impotent) eigenstrains (or impotent dislocation distributions in the case of plasticity) (Mura, 1989; Sozio and Yavari,
2021).

11 An example of ignoring the tensor character of tensor fields in elasticity is how deformation gradient has been related to the displacement field in the
literature. This has led to the incorrect view that linear elasticity is not frame indifferent, see (Steigmann, 2007; Yavari and Ozakin, 2008).

12 In nonlinear elasticity strain is usually defined using line elements in the reference and current configurations. Instead of using vectors, one can define
the material metric in terms of line elements as follows. The line element at X € B associated with G is written as d§* = G,,(X)dXAdX5. This is the
natural line element in the absence of eigenstrains (the natural distance of two points with coordinates X# and X* + dX* is d$). Let us imagine that an
infinitesimal segment dX4 is detached from the rest of the body and is allowed to relax in the Euclidean space (I3,G). One obtains a segment FA w dXM, with
length square ds? = G 5 (FA, dXM)(FBy dXN) = G,pdXAdX® = (G,p FA,\ FB\)dXMdXN. The new metric G5 = G, F4,, FP, is the material metric and
ds* =G,z dX*dX?® is the natural line element in the presence of eigenstrains.
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3.4. The global spatial intermediate configuration

Let us next consider the reverse decomposition F = Ilé‘IEF Similarly to (3.2), we define the following strain tensors:
¢ =g, C=GC=F"F,
bf=1,6%, b=0Dbig=FF",
B =gf, B=BG=T'FT,
& =16 E=gled=FTR1,

(3.6)

a a e e
First note that while F is a material tensor, I is a spatial tensor. Also notice that both F and I are two-point tensors. Let us consider
a vector W in the reference configuration. It has the natural length square (W, W))¢. The local elastlc deformation I* maps the vector

W in the reference configuration to w = W in the ambient space. Thus, (W, W)g = (-, - Iwhe = (w, Whe o = (wW. W),

where g = IF‘*G = ¢ is the push-forward of the Euclidean metric of the reference configuration by the local elastic deformation. We
call g the spatial material metric. Therefore, we have the following factorization of the total deformation

B.6)2 €. C.9). 37

We call (C, 8) the global spatial intermediate configuration, which is unique up to isometry by construction.
In summary, we have the following material and spatial factorizations of the total deformation

idg @

B.6) (B.G) €8
idg ® ide (3.8)
\:/Q id, ¥

B.6) —— (.89 —— C.§)

In each of the two rows, the elastic deformation is represented by a map from the material intermediate configuration (3, G) and
from spatial intermediate configuration (C, §), respectively, to the Euclidean ambient space. Hence, in order for the two intermediate
conflguratlons to represent the same anelastic process, they must be isometric. In other words, the multlphcatlve decompositions
F = FF = IF have the jsame “elastic strain” if and only if g = (p,yG 3 This means that the metric g = ]F .G can be written as
g =F,G =F,G. Thus, F*I",G = (F'I"),G = G. This implies that F~'IF = Q is an isometry for G. Therefore,

=FQ, QecZB6), (3.9)

where Z(5,G) is the isometry group of (5, G). In components, F?, = Fe, FB, = If?”b b 4, and [ra 4= Fe 5 OB . The previous
discussion can be summarized in the following result.

Theorem 3.1. The direct F = FF and reverse F = F'IF decompositions are equivalent if and only if Ig'*cﬂ} = Ibe“*(ﬂ;, ie., F and I are equal
up to local isometries of the reference configuration (B, G).

Finally, it should be noticed that a deformation in terms of the global material intermediate configuration can be described fully
referentially. Similarly, it can be described fully spatially using the global spatial intermediate configuration. This is shown in the
following commutative diagram, which is a generalization of (2.6) to anelasticity.

(B.6) 2 B.6) —2 B,
éidg éidg ¢
6.6~ Blo — Cp)
idg 3 ide (3.10)
56— Cp—sCy)
<p ndc 1dc
co) 2 cp—2 sy

Notice that the first and second rows of the above commutative diagram describe an anelastic deformation using the global
material intermediate configuration. The third and fourth rows describe the same deformation using the global spatial intermediate
configuration. Note that all the vertical maps are isometries.

13 The Lagrangian strain is calculated using the first row as E = %((p*é— G). Similarly, using the second row spatial strain is calculated as e = %(é— g) =¢,E.
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Example 3.2 (Radially-symmetric finite eigenstrains in a spherical ball). Consider a homogeneous spherical ball of radius R, made
of a nonlinear elastic solid. The metric of the eigenstrain-free reference configuration G in the spherical coordinates (R, ©, ®) has
the representation G = diag (I,RZ,R2 sin? 6). For the Euclidean ambient space we choose the spherical coordinates (r,0, ¢). The
Euclidean metric of the ambient space § has the representation § = diag (1,2, sin? 0). We assume that the ball has a radially-
symmetric distribution of radial wp = wg(R) and circumferential wg = wg(R) finite eigenstrains. This means that with respect to the
spherical coordinates (R, O, ®), F has the following representation (Yavari and Goriely, 2013a; Golgoon and Yavari, 2018b; Yavari,
2021)*

[eor® 0 0
F=FR)=| 0 ew® o |, (3.11)
0 0 e®o(R)

Therefore, metric of the global material intermediate configuration (material metric) reads

. [20r(R) 0 0
G=FG=| o e2@e(R) R2 0 ) (3.12)
0 0 e220(R) R25in2 ©

We assume radial deformations, i.e., (r,0,¢) = (r (R), O, ®). Thus, with respect to the spherical coordinates (R, ©,®) and (r,0, @),
the total deformation gradient has the representation F = diag (+'(R), 1, 1). Metric of the global spatial intermediate configuration is
written as

L2oR(R)

2(R) 0
g=F.G= 0 e2we(R) R2 0 . (3.13)
0 0 e220(R) R2sin? @

Example 3.3 (Radially-Symmetric Eigentwists in a Circular Cylindrical Bar). Let us consider a circular cylindrical bar with a radial
distribution of eigentwists. This problem was analyzed for isotropic solids in (Yavari and Goriely, 2015) and for orthotropic solids
in (Yavari, 2021). We assume an eigentwist distribution w(R). In cylindrical coordinates (R, ©, Z), G= diag (1, R2, 1), and f has the
following representation

.. [1 0 0
F=FR=|0 1 w®]|. (3.14)
0 O 1

Therefore, metric of the global material intermediate configuration (material metric) reads

i 1 0 0
G=F'G=|0 R? w(R)R? |. (3.15)
0 w(RR® 1+y*(RR?

For the Euclidean ambient space we choose the cylindrical coordinates (r, , z). The Euclidean metric of the ambient space g has the
representation § = diag(1, r2, 1). We assume deformations of the form: (r,6, z) = ((R), @+1Z, AZ), where r and A are some unknown
constants to be determined. The deformation gradient is written as

’(R) 0 0
F=( 0 1 ). (3.16)
0 0 2

Metric of the global spatial intermediate configuration reads

2 0 0
r"=(R)
g=F.G=| o R? IRy (R -7 |- (3.17)

0  A'RYy(R)—1] A2 [R[r-y(R)+1]

Remark 3.4. Goodbrake et al. (2021) provided an interpretation of Kondo (1950a)’s material manifold of nonlinear anelasticity,
and found that any Riemannian manifold (M, H) is a global intermediate configuration if there exist two maps ¢ : B — M and
@ : M — C such that (i) ¢ = ¢o¢, and (ii) H = ¢,G. Hence, the global material intermediate configuration corresponds to the
choices ¢ = idg and ¢ = ¢, while the global spatial intermediate configuration corresponds to ¢ = ¢ and ¢ = id.. Note that the fact
that (B, G) and (C, g) are isometric reflects the principle that Goodbrake et al. (2021) called “equality of anelastic strain”. Note also
that although T¢ and T'¢ are compatible by construction, the incompatibility of the local anelastic deformations is reflected in the
non-flatness of the intermediate manifold (M, H).

14 Goodbrake et al. (2020) showed that the eigenstrain distributions (3.11) are the only universal eigenstrains that are consistent with Family 4 universal
deformations of incompressible isotropic spherical shells (Ericksen, 1954).
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3.5. Constitutive equations in nonlinear anelasticity

In Section 2.2 for an elastic solid an energy function of the form W = W(X.F,G,§) was assumed In the presence of local
anelastic deformations, energy exphc1tly depends on the local elastic deformation, i.e., W = W(X, F G, §). Objectivity implies that
this can be put in the form W (X ,C.6 G), where C =F'g g. Changing variables, one has

W(X,C,6) = W(X,F,C,F,G). (3.18)

This cannot be put in any of the forms W = W (X ,Cb, G) = W(X ,C, (o}) =WX ,C, G). In other words, the material metric G is not
enough to describe the constitutive behavior of an anisotropic material, and an explicit F-dependence is unavoidable:

W =WX,C,GF)=WX,C,6F=wX,C,GF). (3.19)

Eaﬂo

Let us define W(X,F.F,G,§ = W(X,FF.F,G.§ = W(X.FF',6.§) = W(X.F.G, §).

3.5.1. Material symmetry in anelasticity
Note that, VK € Gy:

W (X,FF,F,G.§ = W(X.F,G,8) = W(X,FK,G,§ = W (X,FKF,F, G, §) = W(X,FF'KF.F,G,8) = W(X,FK.F.G,8), (3.20)

where K = F~'KF. This means that Gy = F_]Q XF, which is Noll’s rule (Noll, 1958; Coleman and Noll, 1959, 1963, 1964). Material
symmetry can be expressed in the following three equivalent forms'®:

W(X.F,KF,G,§ = W(X,FKF)™, 6,8 = WX, FF 'K, G, = W(X.FF',6,§ = W(X.EFG.§). vKed,, (3.21)
W (X,FK.F,G.§) = W (X . FKF',G.§) = W(X.FF'K.G,8) = W(X.FF'.6.§) = W(X.E.F.G.§). VKeGy, (3.22)
W (X,F,FK,G,§) = W(X,FFK)",6.8) = W(X,FK'F ', 6.8 = WX, FF 'K, 6.8 = W(X,FF,6.§)

=WX.EF.G9), VKeGy. (3.23)

We assume that the energy function is materially covariant. Using (2.13) this implies that
W=wX,€"6.¢, ... =WX.F.C F.GE. . &) =WX.C.GFE, . FE)=wX.C.G ¢ .....{n), (3.24)

where ¢; = F*¢,, i = 1,... N. Hence, the material symmetry group of an anelastic body can be characterized using the structural
tensors ¢; of order y;, i=1,...,N:

Qeg<Orth(G) <= (Q),, &1 =¢.... .(Q, én=Cn- (3.25)

where Orth(G) = {Q CTyB - TyB | QF = Q’l} and ()7 is defined with respect to G, and not G. In other words, the material
symmetry group of an anelastic body is written with respect to the material manifold (13, G). Note that Noll’s rule implies that
Q= F_IQF and induces an isomorphism between Orth(G) and Orth(G) In summary, (3.24) implies that in the classical anisotropic
constitutive equations of elasticity if one replaces G by G one finds the corresponding anelastic constitutive equation.'®

3.5.2. Constitutive equations written with respect to (C,g)

Next, we would like to write the constitutive equations with respect to the global intermediate configuration (C, g). Let us denote
the symmetry group of the material relative to (C,g) by G. Note that C = ¢(B) and g = ¢, G. Thus, Noll’s rule (Noll, 1958; Coleman
and Noll, 1959, 1963, 1964) tells us that

G=¢,G=FGF. (3.26)

This means that G and G are conjugate subgroups of the general linear group, and hence, are isomorphic. The relation (3.26) holds
if and only if it holds for all the generators of the group . Let us assume that G is finitely generated and denote the generating sets
of G and G by {Q).....Q,} and {Ql, . Qm} respectively. In this case, (3.26) holds if and only if Qj =FQ;F ', j=1,....m The
material symmetry group with respect to (C, g) is characterized using the structural tensors Z, ; of order y;, i=1,...,N:

aeaéOrth(g)'::»<(~2>MIZ]:EI,.. <Q> CN In. (3.27)

where using (2.10) and (3.26), one has Q= »,Q=FQF! and Z,- =¢,¢;, i=1,...,N. This, in particular, implies that the type of
the symmetry group of the material with respect to (C,g) and (3, G) is the same. The energy function written with respect to the
global intermediate configuration (C, g) is related to that written with respect to (5, G), e.g., (3.24), by push forward:

W=o W =W (x),0.C.0,G.0.{1, ... 0. n) = W(x. 8,881, Ln)- (3.28)

In particular, for an elastically isotropic anelastic solid from (3.28) one has W = W(x, §,g). For an isotropic elastic solid this is
reduced to W = W(x, §, ).

15 One should note that for any invertible tensor A on has W (FA, FA G, 8= VIG/(FA(FA)’I,(Q}, 8= W(FF’I,(B;, 8) =W(F, F G, g).
16 This is what was done in (Golgoon and Yavari, 2018a,b).
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e a a e
Theorem 3.5. The direct F = FF and reverse F = FIF decompositions corresponding to the same local elastic deformation have identical
corresponding Cauchy stresses. In this sense, for anisotropic solids the two decompositions of deformation gradient are equivalent.

Proof. For an anisotropic solid, the second Piola-Kirchhoff with respect to (C, g) is written as

W W
aW_2 2. W _ oW

§=2¢, 2" = =22, (3.29)
¢ dp,C 0%
The Cauchy stress is calculated as
& =27 (Tide)3(Tide)* =27 ‘;lé" . (3.30)

Note that det(T id;) = 1, and hence,

~ detg detg
T=5==V detF=J. 3.31
detg  Vaeg (3:31)

Therefore,

5o W _ (3.32)

where the Doyle-Ericksen formula (Doyle and Ericksen, 1956; Marsden and Hughes, 1994; Yavari et al., 2006) was used in the
second equality. []

Example 3.6 (Elastically Isotropic Anelastic Solids). One can show that the principal invariants using the two intermediate configu-
rations are identical. The first invariant with respect to the two intermediate configurations is calculated as

I =trC=trgu(F*§F) = G* 1 F*§F, T) =try§=try g' = ry(FG'F*) = FG'F* : § = G' : F*§F. (3.33)
Thus, T, = I,. We know that I, = %(112 ~trC?), and I, = % (I* — tr §). But notice that

trC* =tr;(C6*C) = G* : CGPC, r g’ = try;(88'§) = FG'F* : §FG'F*§ = G* : F*gFG'F*gF = G* : CGPC. (3.34)
Hence, I, = I,. Finally

I = det C = det(C°G*) = det(F* §F) det G* = (det F)? det § (det G)™', (3.35)

T, = det(gg") = det § det(FG*F*) = (det F)? det § (det G)™", )

and hence, T; = I;. For a compressible elastically isotropic anelastic solid, W = W(X,I,,I,,I;), where I,,I,, and I; are the
principal invariants of the right Cauchy-Green deformation tensor calculated using G as in (3.33), (3.34), and (3.35). With respect
to the global material intermediate configuration and the deformation map ¢ : (B,G) — (C,8), and using (2.12) one writes

S = 2W1Gﬁ + 2W,(IL,C! — ,CY) + 2W,1,C7L, where W, = %, i = 1,2,3. Similarly, the Cauchy stress has the following
representation (Doyle and Ericksen, 1956; Truesdell and Noll, 2004)
o= -2 [Wl b + (LW, + LW)E — LW, c”] . (3.36)
I

With respect to the global spatial intermediate configuration and the map id; : (C,8) — (C, §), the Cauchy stress has the following
representation

o 2 [W1 b (LW, + Lwyg - LW, E’“] , (3.37)

3

where € = (ido).g = § = ¢.G = ¢, and b= (idc),g" = g*. Note that g = F* GF™!, and hence g' = FG*F*. Thus, " = b. This
means that, as expected, ¢ = o.

Example 3.7 (Elastically Transversely Isotropic Anelastic Solids). As the simplest example of an elastically anisotropic anelastic solid
let us consider transverse isotropy. A transversely isotropic solid at every point X € B has a plane of isotropy. When there are
no anelastic strains, the plane of isotropy has the unit normal vector N such that (N, ﬁ))é = 1. The energy function has the form
W =w(X ,(e}b, G, é‘), where C =N®N is a structural tensor (Doyle and Ericksen, 1956; Spencer, 1982; Lu and Papadopoulos, 2000).
Thus, knowing that the energy function is materially covariant, one has

W =w(X,C,& & = wX,F,C,F,G ¢ =wX,C,GF&=wX,C, G, (3.38)

where ¢ = FN ® FN=N ® N. Note that N = F*N = F~'N. This implies that when F evolves, i.e., when F = f<‘(X ,1), although
the anelastic body remains elastically transversely isotropic, the plane of symmetry at every point evolves as we}zl. Note that in
the presence of anelastic strains, N(X) is a unit vector with respect to the material metric G because {N,N)s = (F'N, F*N»ﬂ*é =

10
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(N, ﬁ))é = 1. The integrity basis consists of five members {I,, I,, I5, I, Is}, where the first three are the principal invariants of C.
With respect to the global material intermediate configuration (3, G) the extra invariants are defined as

I,=C(N,N)=NANBC,,., I;=(CG'C)N,N)=NANBCy, CM,. (3.39)

We know thatZ =¢.¢ = p,N®¢,N = n®n, where n = FN. Thus, with respect to the global spatial intermediate configuration (C, g),
the energy function has the functional form W = W(x, §,g,n ® n). Note that IN4 =g(m,n) = g(p,N, 9, N) = p*g(N,N) = Cb(N, N) = I,.
Also, TS =(@gt®mn) = p*Eg HN,N) = (0*§ 0*g* ¢*§N,N) = (C’G*C’)(N,N) = Is. Therefore, as expected, the Cauchy stresses
calculated using the two intermediate configurations are identical.

4. Concluding remarks

In this paper we studied the geometry of the reverse multiplicative decomposition F = FIF. Over the years, intermediate
configuration and its interpretation has been a controversial topic in anelasticity. Following the early works of Eckart (1948)
and Kondo (1949) for elastically isotropic anelastic solids one can bypass this configuration and directly start with a material
manifold—a Riemannian mamfold whose metric encodes the anelastic strains. However, for elastically anisotropic solids, in addition
to the material metric G, F (or ") is needed in describing the constitutive equations. Constructing global intermediate configurations
and understanding their connections with the material manifold is a fundamental problem in nonlinear anelasticity. Goodbrake et al.
(2021) provided an interpretation of the material manifold (53, G) as a global intermediate configuration. We call (83, G) the global
material intermediate configuration. It is exactly what one would call material manifold and can be identified with the natural
configuration of a residually-stressed anelastic body. By construction the intermediate configuration (13, G) is unique up to isometry.

In the literature there have been discussions on other possible decompositions, and particularly, the reverse decomposition of
the deformation gradient F = [FIF. It has been shown that under certain assumptions the reverse decomposition is equivalent to
the Bilby—Kroner-Lee decomposition for isotropic solids. In this paper we showed the equivalence of the two decompositions for
amsotroplc solids. First, we constructed a global spatial intermediate conflguratlon , g) without assuming any relationship between
IF and F In the spat1a1 intermediate configuration C = ¢(B), and g = IF G where G is the flat metric of the Euclidean reference
configuration (B, G). Next, we noted that the two decompositions F = I = FF locally represent the same anelastic deformation
if and only if they induce the same elastic strain (and consequently anelast1c strain). We showed that this is equlvalent to the two
manifolds (5, G) and (C, g) being isometric. We used this to prove that IF and F must be equal up to isometry, i.e., IF(X )= F(X )Q(X),
where Q is an isometry of (Ty B, G).

The constitutive equations of elastically isotropic anelastic solids can be written with respect to (3, G); in the classical constitutive
equations the Euclidean metric G is replaced by the Riemannian metric G that encodes the anelastic strains. In the case of elastically
anisotropic anelastic solids, in addition to G, F explicitly enters the constitutive equations through the structural tensors. It was
shown that the constitutive equations with respect to (C, g) are the push forward of those with respect to (53, G) by the deformation
mapping, which is an isometry between the two intermediate configurations. This, in particular, implies that the Cauchy stresses
calculated with respect to the two intermediate configurations are identical. In this sense, the two decompositions of deformation
gradient are equivalent even for arbitrary anisotropic solids.
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