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A B S T R A C T

In this paper we discuss nonlinear anisotropic anelasticity formulated based on the two
multiplicative decompositions F =

𝑒

F
𝑎

F and F =
𝑎
F

𝑒
F. Using the Bilby–Kröner–Lee decomposition

F =
𝑒

F
𝑎

F one can define a Riemannian material manifold (the natural configuration of an anelastic
body) whose metric explicitly depends on the anelastic deformation

𝑎

F. We call this the global
material intermediate configuration. Deformation is a map from this Riemannian manifold to the
flat ambient space. Using the reverse decomposition F =

𝑎
F

𝑒
F, the reference configuration is a

(flat) submanifold of the Euclidean ambient space, while the global intermediate configuration
is a Riemannian manifold whose metric explicitly depends on the elastic deformation

𝑒
F. We

call this the global spatial intermediate configuration. We show that the direct F =
𝑒

F
𝑎

F and reverse
F =

𝑎
F

𝑒
F decompositions correspond to the same anelastic motion if and only if

𝑒

F and
𝑒
F are

equal up to local isometries of the reference configuration. We discuss the constitutive equations
of anisotropic anelastic solids in terms of both intermediate configurations. It is shown that the
two descriptions of anelasticity are equivalent in the sense that the Cauchy stresses calculated
using them are identical. We note that, unlike isotropic solids, for an anisotropic solid the
material metric is not sufficient for describing the constitutive behavior of the solid; the energy
function explicitly depends on

𝑎

F (or
𝑎
F) through the structural tensors.

1. Introduction

Anelasticity is the study of finite deformations of bodies that, in addition to elastic deformations, undergo non-elastic deforma-
ions or microstructural changes due to other physical, chemical, or biological processes, e.g., bulk growth and remodeling, accretion,
welling in gels, plasticity, thermal expansion/contraction, diffusion, etc. We refer to strains due to non-elastic deformations as
nelastic strains or eigenstrains.2 As an example, in bulk growth different material points may change in size or shape even in the
absence of external loads (Epstein and Maugin, 2000; Ben Amar and Goriely, 2005; Yavari, 2010; Goriely, 2017). Other examples
f anelastic strains appear in accretion (Tomassetti et al., 2016; Sozio and Yavari, 2017, 2019; Zurlo and Truskinovsky, 2017, 2018;

∗ Corresponding author at: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
E-mail address: arash.yavari@ce.gatech.edu (A. Yavari).

1 The two authors have contributed equally to this work. All the descriptions are accurate and agreed by both authors.
2 Eigenstrain is a hybrid German-English term whose origin is in the pioneering paper of Reissner (1931) (Eigenspannung means proper or self stress). A few

decades after the work of Reissner, Mura (Kinoshita and Mura, 1971; Mura, 1982) popularized this term. In the mechanics literature, for the same concept, a few
other terms have been used: initial strain (Kondo, 1949), nuclei of strain (Mindlin and Cheng, 1950), transformation strain (Eshelby, 1957), inherent strain (Ueda
t al., 1975), and residual strain (Ambrosi et al., 2019). For infinite bodies, and in the setting of linear elasticity, the first systematic study of eigenstrains and
the stresses they induce is due to Eshelby (1957).
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Truskinovsky and Zurlo, 2019), thermoelasticity (Ozakin and Yavari, 2010; Sadik and Yavari, 2017a), and solids with distributed
efects (Yavari and Goriely, 2013b, 2012a,b). One should note that stress in anelasticity explicitly depends on the elastic strain, and
ot the total strain.
A fundamental assumption of nonlinear anelasticity of simple materials3 is that locally the elastic and anelastic deformations can

e decoupled through a multiplicative decomposition of the deformation gradient into elastic and anelastic parts: F =
𝑒
F
𝑎
F, where the

nelastic strains are induced from the material tensor field
𝑎
F while the elastic strains explicitly depend on the two-point tensor field

𝑒
. It has been known that the decomposition F =

𝑒
F
𝑎
F is not unique as F = (

𝑒
FQ)(Q−1 𝑎F) is another equivalent decomposition for any

sometry Q (Casey and Naghdi, 1980).4 Although the total strain is compatible, neither the elastic nor the anelastic part needs to
e compatible. The incompatibility of elastic strain (and consequently anelastic strain) is the source of residual stresses in anelastic
odies. Unlike elastic bodies that have a stress-free reference configuration that can be isometrically embedded into the Euclidean
mbient space, anelastic bodies do not have such Euclidean reference configurations, in general. Anelastic bodies are non-Euclidean
n this sense. Non-Euclidean solids – a term that was coined by Poincaré (1905) – has been used interchangeably for anelastic bodies
in the recent literature (Zurlo and Truskinovsky, 2017, 2018; Truskinovsky and Zurlo, 2019).

The ideas leading to the decomposition F =
𝑒
F
𝑎
F originated from different scientific communities (Sadik and Yavari, 2017b).

The first systematic study of nonlinear anelasticity is due to Eckart (1948). Eckart suggested that a theory of anelasticity can
be formulated by modifying two fundamental assumptions of the classical theory of elasticity that he called ‘‘principle of a
constant relaxed state’’, and the ‘‘principle of relaxability-in-the-large’’. The first ‘‘principle’’ refers to assuming a fixed stress-
free reference configuration independent of applied loads and the history of deformation. The second ‘‘principle’’ is equivalent
to assuming a Euclidean stress-free reference configuration. Motivated by earlier works of geometers (Eisenhart, 1926), Eckart
suggested replacing ‘‘relaxability-in-the-large’’ by ‘‘relaxability-in-the-small’’. He clearly saw the connection between anelasticity and
Riemannian geometry, and explicitly modeled anelastic strains by a Riemannian metric. Independently, Kondo (1949) suggested
that the natural framework for formulating the mechanics of residually-stressed bodies is Riemannian geometry. Kondo (1949)
used the terms ‘‘free manifold’’ and ‘‘free space’’ for the natural configuration of a residually-stressed body. Later on he coined the
term ‘‘material manifold’’ (Kondo, 1950a). Kondo in his attempts of modeling plasticity using Riemannian and non-Riemannian
geometries (Kondo, 1950a,b, 1952) was motivated by the works of Cartan (1926), Cartan (1928).5

These early works focused on modeling anelastic strains as Riemannian metrics. A one-dimensional analogue of F =
𝑒
F
𝑠
F, where

𝑠
F is the swelling part of the deformation gradient was first introduced by Flory and Rehner (1944), see also (Duda et al., 2010). In
finite plasticity the multiplicative decomposition first appeared in Bilby et al. (1957), Page 41, Eq. (12), and in Kröner (1959), Page
286, Eq. (4). This decomposition was popularized in the plasticity literature by Lee and Liu (1967), and Lee (1969). In nonlinear
thermoelasticity it is due to Stojanović et al. (1964), and Stojanović (1969). In the mechanics of bulk growth it is due to Kondaurov
and Nikitin (1987), Takamizawa and Hayashi (1987), Takamizawa and Matsuda (1990), and Takamizawa (1991). Similar ideas
can also be found in (Tranquillo and Murray, 1992, 1993). The multiplicative decomposition was popularized in biomechanics
by Rodriguez et al. (1994). In the past two decades the multiplicative decomposition of deformation gradient has become a popular
modeling tool in nonlinear solid mechanics, and especially in biomechanics (Goriely, 2017). We should mention that there have
been several recent works on different aspects of the multiplicative decomposition of the deformation gradient (Neff, 2008; Neff
et al., 2009; Reina and Conti, 2014; Casey, 2017; Del Piero, 2018; Du et al., 2018; Goodbrake et al., 2021).

In linear anelasticity, the total linearized strain is additively decomposed into elastic and anelastic strains: 𝝐 = 𝑒𝝐 + 𝑎𝝐. This
ecomposition is unambiguous for linearized strain. However, this is not the case for nonlinear anelasticity as there are different
easures of strain and even for a given measure of strain there is more than one possible decomposition (Nemat-Nasser, 1979). In
he case of deformation gradient another possibility is F =

𝑎
F

𝑒
F,6 which following Lubarda (1999) we call the reverse decomposition.

lifton (1972) considered the polar decompositions of the direct and reverse elastic and anelastic deformation gradients and under
ertain assumptions concluded that for isotropic solids the two decompositions are equivalent. Lubarda (1999) restricted his analysis
f the reverse decomposition to isotropic solids and assumed that

𝑒
F =

𝑒
F.7 He showed that there is a duality between the constitutive

ormulations of finite plasticity using the two decompositions for isotropic solids. He also concluded that the Bilby–Kröner–Lee
ecomposition is preferable in the case of anisotropic solids. Davoli and Francfort (2015) concluded that the reverse decomposition
orresponds to a more natural dissipation functional.
The main contributions of this paper can be summarized as follows:

• A global spatial intermediate configuration is constructed for anisotropic anelasticity.
• The relation between the spatial intermediate configuration and the material intermediate configuration (material manifold) is
established.

3 A material whose elastic response at any point depends only on the first deformation gradient (and its evolution) at that point is called simple (Noll, 1958).
4 Casey and Naghdi (1980) claimed that there is an 𝑆𝑂(3)-ambiguity in the decomposition F =

𝑒

F
𝑎

F. However, this is not true for elastically anisotropic
anelastic solids. Assuming that

𝑒

FQ is an elastic deformation gradient implies that 𝑊 (
𝑒

F, G̊, g̊) = 𝑊 (
𝑒

FQ, G̊, g̊), where 𝑊 is the energy function. This then implies
that Q is a material symmetry. Denoting the material symmetry group by G̊, for an anisotropic solid there is a G̊-ambiguity (and not an 𝑆𝑂(3)-ambiguity) in
he multiplicative decomposition. In particular, this implies that for triclinic solids the multiplicative decomposition is unique.
5 Interestingly, in his development of non-Riemannian geometries, and more specifically torsion of a connection, Cartan (1922) was motivated by the work
f Cosserat brothers on generalized continua (Cosserat and Cosserat, 1909). See (Scholz, 2019) for a detailed history and discussion.
6 Note that F = (

𝑎
FQ−1)(Q

𝑒
F) is an equivalent decomposition for any invertible Q. Material-frame-indifference implies that the two multiplicative decompositions

=
𝑎
F

𝑒
F and F = (

𝑎
FQ−1)(Q

𝑒
F) are equivalent for any Q ∈ 𝑆𝑂(𝑇𝑥C) = 𝑆𝑂(3). We observe that for anisotropic solids there is much more freedom in choosing the

lastic and anelastic deformations in the reverse decomposition compared to the Bilby–Kröner–Lee decomposition.
7 Note that

𝑒
F and

𝑒

F have the same tensorial character and
𝑒
F =

𝑒

F makes sense intrinsically.
2



Journal of the Mechanics and Physics of Solids 170 (2023) 105101A. Yavari and F. Sozio

i
g
i
i

2

2

t

s

T

T
⟨

N

i

E
r

G

• In the decompositions F =
𝑒
F
𝑎
F =

𝑎
F

𝑒
F, a priori there is no relation between

𝑒
F and

𝑒
F (or between

𝑎
F and

𝑎
F). When the direct and

reverse decompositions represent the same anelastic deformation, we find such a relationship between
𝑒
F and

𝑒
F, see (3.9). This

result is summarized in Theorem 3.1.
• Constitutive equations of anisotropic solids are formulated with respect to the global spatial intermediate configuration.
• We show that for anisotropic solids the two decompositions are equivalent, i.e., Cauchy stresses calculated with respect to the
two decompositions are identical ( Theorem 3.5). This is a generalization of the works of Clifton (1972) and Lubarda (1999).
This paper is organized as follows. Nonlinear elasticity is tersely reviewed in Section 2. In Section 3 the geometry and the

constitutive equations of nonlinear anelasticity are discussed. Material metric and some strain tensors are defined in Sections 3.1
and 3.2. In Section 3.3 the global material intermediate configuration is discussed. In Section 3.4 we construct a global spatial
ntermediate configuration that reflects the reverse multiplicative decomposition F =

𝑎
F

𝑒
F. We make a connection between the

eometries of the two intermediate configurations. The constitutive equations of elastically anisotropic anelastic bodies are discussed
n Section 3.5, and it is shown that the two decompositions are equivalent for anisotropic solids. The concluding remarks are given
n Section 4.

. Nonlinear anisotropic elasticity

.1. Kinematics and strain tensors

Deformation of an elastic body is a time-dependent map 𝜑𝑡 ∶ (B, G̊) → (S, g̊), where S is the Euclidean ambient space, and g̊ is
he Euclidean background metric. B is a submanifold of S, and G̊ = g̊|B.8 In elasticity (and anelasticity) the local change of length
is a quantity of interest and that is why the reference configuration and the ambient space are equipped with Riemannian metrics.
For a fixed value of 𝑡 we denote 𝜑 = 𝜑𝑡, and C = 𝜑(B) ⊂ S. Therefore, at any instant of time, deformation is a map from the
tress-free reference configuration B to the current configuration C. Therefore, we write deformation as the map 𝜑 ∶ (B, G̊) → (C, g̊).
In nonlinear elasticity deformation gradient F is the tangent map of the deformation map 𝜑. More precisely, F(𝑋) = 𝑇𝜑|𝜋−1(𝑋), where
𝜋 ∶ 𝑇B → B is the natural projection in the tangent bundle onto the base space. In other words, F(𝑋) is the restriction of 𝑇𝜑 to the
fiber over 𝑋. The tangent map 𝑇𝜑 is a vector bundle morphism that maps the tangent bundle 𝑇B to the tangent bundle 𝑇C, and
hence it also includes 𝜑 as the map on the base space. As S, and consequently B and C, are parallelizable, 𝑇B and 𝑇C are trivial,
and hence one can write 𝑇𝜑 = (𝜑,F), where F is understood as a tensor field that maps tangent vector fields on B to tangent vector
fields on C. Note that F(𝑋) is a linear mapping that maps the vector U ∈ 𝑇𝑋B to F(𝑋)U ∈ 𝑇𝜑(𝑋)C. Let us consider coordinate charts
{𝑋𝐴} ∶ B → R𝑛 and {𝑥𝑎} ∶ C → R𝑛, for B and C, respectively (𝑛 = 2 or 3). With respect to these coordinate charts deformation
gradient has the following representation

F(𝑋) =
𝜕𝜑𝑎(𝑋)
𝜕𝑋𝐴

𝜕
𝜕𝑥𝑎

⊗ 𝑑𝑋𝐴 = 𝐹 𝑎𝐴(𝑋) 𝜕
𝜕𝑥𝑎

⊗ 𝑑𝑋𝐴 . (2.1)

o avoid self-penetration of matter, a necessary condition is that det F(𝑋) > 0, ∀𝑋 ∈ B, i.e., 𝜑 is locally invertible and orientation
preserving. The dual of F is defined as

F⋆ ∶ 𝑇 ∗
𝜑(𝑋)C → 𝑇 ∗

𝑋B , ⟨𝜶,FV⟩ = ⟨F⋆𝜶,V⟩ , ∀V ∈ 𝑇𝑋B, 𝜶 ∈ 𝑇 ∗
𝑥 C , (2.2)

where 𝑇 ∗
𝜑(𝑋)C and 𝑇

∗
𝑋B denote the cotangent spaces of 𝑇𝜑(𝑋)C and 𝑇𝑋B, respectively, and ⟨., .⟩ is the natural pairing of a 1-form and

a vector: ⟨𝜶,v⟩ = 𝛼𝑎 𝑣𝑎. F⋆ has the following coordinate representation

F⋆(𝑋) = 𝐹 𝑎𝐴(𝑋) 𝑑𝑋
𝐴 ⊗ 𝜕

𝜕𝑥𝑎
. (2.3)

he transpose of deformation gradient is defined as9 F𝑇̊ ∶ 𝑇𝑥C → 𝑇𝑋B, ⟨⟨FV,v⟩⟩g̊ = ⟨⟨V,F𝑇̊ v⟩⟩G̊, ∀V ∈ 𝑇𝑋B, v ∈ 𝑇𝑥C, where ⟨⟨, ⟩⟩G̊ and
⟨, ⟩⟩g̊ are the inner products induced by the metrics G̊ and g̊, respectively. F𝑇̊ has the following representation

F𝑇̊ (𝑋) = (𝐹 𝑇̊ (𝑋))𝐴𝑎
𝜕

𝜕𝑋𝐴 ⊗ 𝑑𝑥𝑎 = 𝑔̊𝑎𝑏(x)𝐹 𝑏𝐵(𝑋) 𝐺̊𝐴𝐵(𝑋) 𝜕
𝜕𝑋𝐴 ⊗ 𝑑𝑥𝑎 . (2.4)

ote that F𝑇̊ = G̊♯F⋆g̊, where G̊♯ is the inverse of G̊, i.e., 𝐺̊𝐴𝐶 𝐺̊𝐶𝐵 = 𝛿𝐴𝐵 . For V a vector field on B, 𝜑∗V = 𝑇𝜑 ⋅V◦𝜑−1 = F ⋅V◦𝜑−1 is
a vector field on C ⊂ S—the push-forward of V by 𝜑. Similarly, if v is a vector field on C = 𝜑(B), the pull-back of v by 𝜑 is defined
as 𝜑∗v = 𝑇 (𝜑−1) ⋅v◦𝜑 = F−1 ⋅v◦𝜑, which is a vector field on B. The pull-back and push-forward of tensor fields are defined similarly.

The right Cauchy–Green strain is defined as C♭ = 𝜑∗g̊ = F⋆ g̊ F. Note that the two Riemannian manifolds (C, g̊) and (B,C♭)
are isometric. Therefore, the deformation can be equivalently described by the map idB ∶ (B, G̊) → (B,C♭). The left Cauchy–
Green deformation tensor is defined as B♯ = 𝜑∗g̊♯, and in components 𝐵𝐴𝐵 = (𝐹−1)𝐴𝑎(𝐹−1)𝐵𝑏 𝑔̊𝑎𝑏, where g̊♯ is the inverse of g̊,
.e., 𝑔̊𝑎𝑐 𝑔̊𝑐𝑏 = 𝛿𝑎𝑏. The spatial analogues of C♭ and B♯ are denoted by c♭ and b♯ (the Finger deformation tensor), respectively, and

8 Our notation is slightly different from that of Marsden and Hughes (1994). We use g̊ and G̊ for metrics of the Euclidean ambient space and the induced
uclidean metric in the reference configuration. We reserve g and G for the (non-flat) Riemannian metrics of the spatial and material intermediate configurations,
espectively.
9 We use (.)𝑇̊ when the metrics G̊ and g̊ are used in calculating the transpose. In §3, we will use the notation (.)𝑇 for transpose calculated using the metrics

̊

3

and g, where G is the material metric that as we will see in Section 3 explicitly depends on the local anelastic deformation.
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are defined as c♭ = 𝜑∗G̊ and b♯ = 𝜑∗G̊♯, with their corresponding components 𝑐𝑎𝑏 = (𝐹−1)𝐴𝑎(𝐹−1)𝐵𝑏 𝐺̊𝐴𝐵 and 𝑏𝑎𝑏 = 𝐹 𝑎𝐴 𝐹 𝑏𝐵 𝐺̊𝐴𝐵 ,
respectively. Note that c♭ = 𝜑∗G̊ is the spatial analogue of C♭. This means that the two Riemannian manifolds (B, G̊) and (C, c♭)
are isometric. Therefore, the deformation can be equivalently described by the map idC ∶ (C, c♭) → (C, g̊). In summary, one has the
following measures of strain:

C♭ = 𝜑∗g̊ , C = G̊♯C♭ = F𝑇̊ F ,

b♯ = 𝜑∗G̊♯ , b = b♯g̊ = FF𝑇̊ ,

B♯ = 𝜑∗g̊♯ , B = B♯g̊ = F−1F−𝑇̊ ,

c♭ = 𝜑∗G̊ , c = g̊♯c♭ = F−𝑇̊ F−1 .

(2.5)

Note B = C−1 and b = c−1. The following commutative diagram summarizes the three equivalent descriptions of motion in nonlinear
elasticity.

(B, G̊)

idB
↓↓

idB →→ (B,C♭)

𝜑

↓↓

(B, G̊)

𝜑

↓↓

𝜑
→→ (C, g̊)

idC

↓↓

(C, c♭)
idC →→ (C, g̊)

(2.6)

he three horizontal maps describe the same elastic deformation while the vertical maps are isometries.10 In this paper we use
otted arrows to emphasize that a map is an isometry.
The principal invariants of b (and C) are defined as (Ogden, 1997): 𝐼1 = tr b = 𝑏𝑎𝑎 = 𝑏𝑎𝑏 𝑔̊𝑎𝑏, 𝐼2 =

1
2

(

𝐼21 −tr b2
)

= 1
2

(

𝐼21 − 𝑏𝑎𝑏 𝑏𝑏𝑎
)

=
1
2

(

𝐼21 − 𝑏𝑎𝑏𝑏𝑐𝑑 𝑔̊𝑎𝑐 𝑔̊𝑏𝑑
)

, and 𝐼3 = det b. Note that

tr b = trg̊(𝜑∗G̊♯) = tr𝜑∗ g̊ G̊♯ = trG̊♯ 𝜑
∗g̊ = trG̊♯ C

♭ = tr C ,

det b = det(b♯g̊) = det b♯ det g̊ = det(𝜑∗G̊♯) det g̊ = det(FG̊♯F⋆) det g̊ = det G̊♯ det(F⋆g̊F) = det(C♭G̊♯) = det C .
(2.7)

We assume a hyperelastic solid, i.e., there exists an energy function 𝑊̊ = 𝑊̊ (𝑋,F, G̊, g̊). As the focus of this paper is on kinematics
and constitutive equations of anelasticity we will not discuss the balance laws (see Sozio and Yavari (2020) for discussions on
alance laws in anelasticity).

.2. Constitutive equations in nonlinear elasticity

We restrict ourselves to hyper-elastic solids, i.e., assume the existence of an energy function that for a simple material depends
n the deformation gradient. However, as deformation gradient is a two-point tensor, the energy function (which is a scalar) must
xplicitly depend on the metrics of the reference and current configurations as well, i.e., 𝑊̊ = 𝑊̊ (𝑋,F, G̊, g̊).

.2.1. Material symmetry in elasticity
The material symmetry group G̊𝑋 of an elastic body made of a solid with the energy function 𝑊̊ at a point 𝑋 with respect to

he Euclidean reference configuration (B, G̊) is defined as (Šilhavý, 2013)

𝑊̊ (𝑋,FK̊, G̊, g̊) = 𝑊̊ (𝑋,F, G̊, g̊) , ∀ K̊ ∈ G̊𝑋 ⩽ Orth(G̊) , (2.8)

or all deformation gradients F, where K̊ ∶ 𝑇𝑋B → 𝑇𝑋B is an invertible linear transformation, and Orth(G̊) =
{

Q̊ ∶ 𝑇𝑋B → 𝑇𝑋B ∣
̊ 𝑇̊ = Q̊−1}. The condition Q̊𝑇̊ = Q̊−1 is equivalent to Q̊∗G̊ = G̊, or Q̊−⋆G̊Q̊−1 = G̊. When 𝒢 is a subgroup of ℋ, this is denoted as
⩽ ℋ. For hyperelastic solids, objectivity (material-frame-indifference) requires that the energy function depend on the deformation

hrough the right Cauchy–Green deformation tensor C♭, i.e., 𝑊 = 𝑊 (𝑋,C♭, G̊). This implies that the material symmetry group G̊𝑋
f a hyperelastic solid is the subgroup of G̊-orthogonal transformations Orth(G̊) such that

𝑊 (𝑋, K̊∗C♭, G̊) = 𝑊 (𝑋,C♭, G̊) , ∀ K̊ ∈ G̊𝑋 ⩽ Orth(G̊) , (2.9)

here K̊∗C♭ = K̊⋆C♭K̊. The material symmetry group can be characterized using a finite collection of structural tensors 𝜻̊ 𝑖 of order
𝑖, 𝑖 = 1,… , 𝑁 (Liu, 1982; Boehler, 1987; Zheng and Spencer, 1993; Zheng, 1994; Lu and Papadopoulos, 2000; Mazzucato and
achele, 2006)

Q̊ ∈ G̊ ⩽ Orth(G̊) ⟺ ⟨Q̊⟩𝜇1 𝜻̊1 = 𝜻̊1 ,… , ⟨Q̊⟩𝜇𝑁 𝜻̊𝑁 = 𝜻̊𝑁 . (2.10)

10 The Lagrangian strain calculated using the first two rows is 1
2

(

C♭−G̊
)

, while using the third row one obtains its pushforward, i.e., 1
2

(

id∗C g̊−c
♭) = 1

2

(

g̊−c♭
)

=
1𝜑

(

C♭ − G̊
)

.

4

2 ∗
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The set of structural tensors is a basis for the space of tensors that are invariant under the action of the group G̊. The 𝜇-
th power Kronecker product ⟨Q̊⟩𝜇 of a G̊-orthogonal transformation Q̊ for a 𝜇-th order tensor 𝜻̊ is defined as (⟨Q̊⟩𝜇 𝜁̊ )𝐴1…𝐴̄𝜇 =
𝑄̊𝐴̄1𝐴1

… 𝑄̊𝐴̄𝜇𝐴𝜇 𝜁̊
𝐴1…𝐴𝜇 . Notice that ⟨Q̊⟩𝑚

(

v1 ⊗⋯⊗ v𝑚
)

= Q̊v1 ⊗ ⋯ ⊗ Q̊v𝑚, where v𝑖 ∈ 𝑇𝑋B, 𝑖 = 1,… , 𝑚, are arbitrary vectors.
Eq. (2.10) tells us that the material symmetry group G̊ is the invariance group of the set of the structural tensors 𝜻̊ 𝑖, 𝑖 = 1,… , 𝑁 .
The energy function has the following functional form

𝑊 = 𝑊 (𝑋,C♭, G̊, 𝜻̊1,… , 𝜻̊𝑁 ) . (2.11)

When structural tensors are considered as arguments of the energy function, the energy function becomes an isotropic function of
its arguments—the so-called principle of isotropy of space (Boehler, 1979).

Instead of using the set of tensors
{

C♭, G̊, 𝜻̊1,… , 𝜻̊𝑁
}

, one can use a corresponding set of isotropic invariants. According to a
theorem by Hilbert for any finite collection of tensors there exists a finite set of isotropic invariants—the integrity basis for the set
of isotropic invariants of the collection (Spencer, 1971). Let us denote the integrity basis by 𝐼𝑗 , 𝑗 = 1,… , 𝑚. Thus, one can write
𝑊 = 𝑊 (𝑋, 𝐼1,… , 𝐼𝑚). In terms of the integrity basis, the second Piola–Kirchhoff stress tensor has the following representation (Doyle
and Ericksen, 1956; Marsden and Hughes, 1994)

S = 2 𝜕𝑊
𝜕C♭

=
𝑚
∑

𝑗=1
2𝑊𝑗

𝜕𝐼𝑗
𝜕C♭

, 𝑊𝑗 = 𝑊𝑗 (𝑋, 𝐼1,… , 𝐼𝑚) ∶=
𝜕𝑊
𝜕𝐼𝑗

, 𝑗 = 1,… , 𝑚 , (2.12)

here the second Piola–Kirchhoff stress S has the following relationship with the first Piola–Kirchhoff and Cauchy stresses: 𝑆𝐴𝐵 =
(𝐹−1)𝐴𝑎𝑃 𝑎𝐵 = 𝐽 (𝐹−1)𝐴𝑎(𝐹−1)𝐵𝑏 𝜎𝑎𝑏.

.2.2. Covariant constitutive equations
In nonlinear elasticity, conservation of mass and the balance of linear and angular momenta can be derived by postulating

he balance of energy and its invariance under rigid body translations and rotations of the Euclidean ambient space (Green and
ivlin, 1964). This approach was generalized to nonlinear elasticity in a Riemannian ambient space by Hughes and Marsden (1977)
and led to a covariant formulation of nonlinear elasticity. Covariant elasticity was further developed in (Marsden and Hughes,
1994; Simo and Marsden, 1984; Yavari et al., 2006; Yavari and Golgoon, 2019). Let us consider a body with an energy function
𝑊 = 𝑊̊ (𝑋,F, G̊, g̊), and a diffeomorphism 𝜉𝑡 ∶ S → S, which can be thought of a change of coordinates in the ambient space or a
mapping of the ambient space to itself. Spatial covariance of the energy function is the invariance of the energy function under any
such diffeomorphism, i.e., 𝑊̊ (𝑋, 𝜉𝑡∗F, G̊, 𝜉𝑡∗g̊) = 𝑊̊ (𝑋,F, G̊, g̊) (note that 𝜉𝑡∗G̊ = G̊). Marsden and Hughes (1994) proved that spatial
covariance of energy function implies that 𝑊̊ (𝑋,F, G̊, g̊) = 𝑊 (𝑋,C♭, G̊).

Let us next consider a material (referential) diffeomorphism 𝛯 ∶ B → B. A homogeneous energy function 𝑊 (C♭, G̊) is materially
covariant if it is invariant under any material diffeomorphism 𝛯, i.e.,𝑊 (𝛯∗C♭, 𝛯∗G̊) = 𝑊 (C♭, G̊). For inhomogeneous bodies material
covariance is defined locally and using local diffeomorphisms such that 𝛯(𝑋) = 𝑋. Marsden and Hughes (1994) showed that
material covariance of energy function implies isotropy. They suggested that a covariant description of non-isotropic materials
requires some additional variables in the energy function. Material covariance was further studied by Lu and Papadopoulos (2000)
and Lu (2012). Lu (2012) showed that when structural tensors are included as arguments of the energy function, in addition to the
material metric and the right Cauchy–Green tensor, the energy function becomes a materially covariant function, i.e.,

𝑊 (𝑋,𝛯∗C♭, 𝛯∗G̊, 𝛯∗𝜻̊1,… , 𝛯∗𝜻̊𝑁 ) = 𝑊 (𝑋,C♭, G̊, 𝜻̊1,… , 𝜻̊𝑁 ) . (2.13)

Lu (2012) also showed that spatial and material covariance of an energy function imply the principle of isotropy of space (Boehler,
1979), i.e., the energy function of an anisotropic solid is an isotropic function of its arguments when structural tensors are included.

3. Nonlinear anisotropic anelasticity

In this section we first review the global intermediate configuration of nonlinear anelasticity corresponding to the Bilby–Kröner–
Lee decomposition F =

𝑒
F
𝑎
F following an approach similar to that of Goodbrake et al. (2021). We next construct a global intermediate

configuration that corresponds to the reverse multiplicative decomposition F =
𝑎
F

𝑒
F. We then make a connection between the two

intermediate manifolds. Finally, we will discuss the constitutive equations of elastically anisotropic anelastic solids and will show
the equivalence of the two decompositions.

For factorizations of the tensor field F =
𝑒
F
𝑎
F =

𝑎
F

𝑒
F we are interested in constructing the corresponding factorizations of

𝜑 ∶ (B, G̊) → (S, g̊) through some Riemannian manifolds that we call global material and spatial intermediate configurations. We
assume that the maps

𝑎
F(𝑋) ∶ 𝑇𝑋B → 𝑇𝑋B ,

𝑒
F(𝑋) ∶ 𝑇𝑋B → 𝑇𝜑(𝑋)C ,

𝑒
F(𝑋) ∶ 𝑇𝑋B → 𝑇𝜑(𝑋)C ,

𝑎
F(𝑋) ∶ 𝑇𝜑(𝑋)C → 𝑇𝜑(𝑋)C ,

(3.1)

are invertible. Here, we have assumed that in both decompositions the local elastic deformations are two-point tensors. In the direct
𝑎 𝑒
5

decomposition instead of (3.1)1 one can assume that F(𝑋) ∶ 𝑇𝑋B → 𝑇𝜑(𝑋)C, and F(𝑋) ∶ 𝑇𝜑(𝑋)C → 𝑇𝜑(𝑋)C. Similarly, in the reverse
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decomposition one can assume that
𝑒
F(𝑋) ∶ 𝑇𝑋B → 𝑇𝑋B, and

𝑎
F(𝑋) ∶ 𝑇𝑋B → 𝑇𝜑(𝑋)C. It is important to clearly define the tensor

character of the different fields.11

3.1. Material metric in anelasticity

The rest (natural) configuration of an anelastic body cannot be isometrically embedded into the Euclidean ambient space, in
general. In this sense an anelastic body is non-Euclidean and the natural distances in its natural configuration are measured using
a metric – the material metric – that explicitly depends on the local anelastic deformations. Knowing that

𝑎
F is a linear map from

𝑇𝑋B to itself and given the (Euclidean) metric G̊ one can define another metric G =
𝑎
F∗G̊. Anelastic strain (or eigenstrain) can be

visualized as follows (Yavari, 2021). Given a vector W ∈ 𝑇𝑋B, it has the length square ⟨⟨W,W⟩⟩G̊, where ⟨⟨, ⟩⟩G̊ is the inner product
induced by G̊. The anelastic deformation maps this vector to the vector

𝑎
FW in the Euclidean reference configuration (B, G̊) and its

length square is ⟨⟨
𝑎
FW,

𝑎
FW⟩⟩G̊. This is the natural square length of the vector. From the definition of pull-back of a metric, one has

⟨⟨

𝑎
FW,

𝑎
FW⟩⟩G̊ = ⟨⟨W,W⟩⟩

𝑎
F∗G̊

, where G =
𝑎
F∗G̊ =

𝑎
F⋆ G̊

𝑎
F. In components, (

𝑎
F∗G̊)𝐴𝐵 =

𝑎
𝐹𝑀𝐴

𝑎
𝐹𝑁𝐵 𝐺̊𝑀𝑁 , where {𝑋𝐴} is a coordinate chart

for B.12 In summary, the material metric is related to the flat Euclidean metric G̊ and the local anelastic deformation
𝑎
F as G =

𝑎
F∗G̊.

3.2. Strain tensors in anelasticity

In anelasticity, the elastic strains are defined by replacing F with
𝑒
F in (2.5). In the geometric approach, strain tensors are defined

by replacing G̊ with G in (2.5), while the transpose operator (.)𝑇 is defined using g̊ and G. Hence, one has the following strains
𝑒
C♭ =

𝑒
F∗g̊ ,

𝑒
C = G̊♯

𝑒
C♭ =

𝑒
F𝑇̊

𝑒
F , C♭ = 𝜑∗g̊ , C = G♯C♭ = F𝑇 F ,

𝑒
b♯ =

𝑒
F∗G̊♯ ,

𝑒
b =

𝑒
b♯g̊ =

𝑒
F
𝑒
F𝑇̊ , b♯ = 𝜑∗G♯ , b = b♯g̊ = FF𝑇 ,

𝑒
B♯ =

𝑒
F∗g̊♯ ,

𝑒
B =

𝑒
B♯G̊ =

𝑒
F−1

𝑒
F−𝑇̊ , B♯ = 𝜑∗g̊♯ , B = B♯G = F−1F−𝑇 ,

𝑒c♭ =
𝑒
F∗G̊ ,

𝑒c = g̊♯ 𝑒c♭ =
𝑒
F−𝑇̊

𝑒
F−1 , c♭ = 𝜑∗G , c = g̊♯c♭ = F−𝑇 F−1 .

(3.2)

It should be noticed that the strain tensors obtained starting from the material metric tensors G̊ and G are the same, viz.
𝑒
b = b ,

𝑒
b♯ = b♯ , 𝑒c = c , 𝑒c♭ = c♭ . (3.3)

This is not the case for the strain tensors obtained by pulling back the Euclidean ambient metric g̊, as
𝑒
B =

𝑎
F∗B ,

𝑒
B♯ =

𝑎
F∗B♯ ,

𝑒
C =

𝑎
F∗C ,

𝑒
C♭ =

𝑎
F∗C♭ . (3.4)

3.3. The global material intermediate configuration

One can write the following factorization of the total deformation:

(B, G̊)
idB
←←←←←←←←←←←←←←←→ (B,G)

𝜑
←←←←←←←→ (C, g̊) . (3.5)

We call (B,G) the global material intermediate configuration. The intermediate configuration is unique up to isometry by construction
(equality of elastic strain). This configuration is what has also been called the material manifold in the literature (Kondo, 1950a;
Ozakin and Yavari, 2010; Yavari, 2010; Lu, 2012; Yavari and Goriely, 2012a,b, 2013b). Note that the Riemannian manifold (B,G) is
the natural configuration of the anelastic body. The local anelastic deformations are encoded in the metric G =

𝑎
F∗G̊ (Yavari, 2021).

Note that the local anelastic deformations are fully encoded in the material metric only in the isotropic case (Sozio and Yavari,
2020); for elastically anisotropic anelastic solids one would need to include structural tensors that explicitly depend on

𝑎
F as we will

discuss in Section 3.5.
It should be noted that, in general,

𝑎
F is incompatible, i.e., it is not the tangent of any map from B to itself. Incompatibility

of
𝑎
F is a necessary condition for non-flatness of the material metric G, which is the source of residual stresses. However, it is

not sufficient; there are incompatible distributions of
𝑎
F that do not induce residual stresses—contorted aeolotropy (Noll, 1967) or

zero-stress (impotent) eigenstrains (or impotent dislocation distributions in the case of plasticity) (Mura, 1989; Sozio and Yavari,
2021).

11 An example of ignoring the tensor character of tensor fields in elasticity is how deformation gradient has been related to the displacement field in the
iterature. This has led to the incorrect view that linear elasticity is not frame indifferent, see (Steigmann, 2007; Yavari and Ozakin, 2008).
12 In nonlinear elasticity strain is usually defined using line elements in the reference and current configurations. Instead of using vectors, one can define
he material metric in terms of line elements as follows. The line element at 𝑋 ∈ B associated with G̊ is written as 𝑑𝑠̊2 = 𝐺̊𝐴𝐵 (𝑋) 𝑑𝑋𝐴𝑑𝑋𝐵 . This is the
atural line element in the absence of eigenstrains (the natural distance of two points with coordinates 𝑋𝐴 and 𝑋𝐴 + 𝑑𝑋𝐴 is 𝑑𝑠̊). Let us imagine that an
nfinitesimal segment 𝑑𝑋𝐴 is detached from the rest of the body and is allowed to relax in the Euclidean space (B, G̊). One obtains a segment 𝑎

𝐹𝐴
𝑀 𝑑𝑋𝑀 , with

ength square 𝑑𝑠2 = 𝐺̊𝐴𝐵 (
𝑎
𝐹𝐴

𝑀 𝑑𝑋𝑀 ) (
𝑎
𝐹𝐵

𝑁 𝑑𝑋𝑁 ) = 𝐺𝐴𝐵 𝑑𝑋𝐴𝑑𝑋𝐵 = (𝐺̊𝐴𝐵
𝑎
𝐹𝐴

𝑀
𝑎
𝐹𝐵

𝑁 ) 𝑑𝑋𝑀𝑑𝑋𝑁 . The new metric 𝐺𝐴𝐵 = 𝐺̊𝐴𝐵
𝑎
𝐹𝐴

𝑀
𝑎
𝐹𝐵

𝑁 is the material metric and
2 𝐴 𝐵
6

𝑠 = 𝐺𝐴𝐵 𝑑𝑋 𝑑𝑋 is the natural line element in the presence of eigenstrains.



Journal of the Mechanics and Physics of Solids 170 (2023) 105101A. Yavari and F. Sozio

N
m
c

3.4. The global spatial intermediate configuration

Let us next consider the reverse decomposition F =
𝑎
F

𝑒
F. Similarly to (3.2), we define the following strain tensors:

𝑒
C♭ =

𝑒
F∗g̊ ,

𝑒
C = G̊♯

𝑒
C♭ =

𝑒
F𝑇̊ 𝑒

F ,
𝑒
b♯ =

𝑒
F∗G̊♯ ,

𝑒
b =

𝑒
b♯g̊ =

𝑒
F

𝑒
F𝑇̊ ,

𝑒
B♯ =

𝑒
F∗g̊♯ ,

𝑒
B =

𝑒
B♯G̊ =

𝑒
F−1 𝑒

F−𝑇̊ ,
𝑒
c♭ =

𝑒
F∗G̊ ,

𝑒
c = g̊♯ 𝑒c♭ =

𝑒
F−𝑇̊ 𝑒

F−1 .

(3.6)

First note that while
𝑎
F is a material tensor,

𝑎
F is a spatial tensor. Also notice that both

𝑒
F and

𝑒
F are two-point tensors. Let us consider

a vectorW in the reference configuration. It has the natural length square ⟨⟨W,W⟩⟩G̊. The local elastic deformation
𝑒
F maps the vector

W in the reference configuration to w =
𝑒
FW in the ambient space. Thus, ⟨⟨W,W⟩⟩G̊ = ⟨⟨

𝑒
F−1w,

𝑒
F−1w⟩⟩G̊ = ⟨⟨w,w⟩⟩

𝑒
F∗G̊

= ⟨⟨w,w⟩⟩g,

where g =
𝑒
F∗G̊ = 𝑒

c♭ is the push-forward of the Euclidean metric of the reference configuration by the local elastic deformation. We
call g the spatial material metric. Therefore, we have the following factorization of the total deformation

(B, G̊)
𝜑
←←←←←←←→ (C, g)

idC
←←←←←←←←←←←←←←→ (C, g̊) . (3.7)

We call (C, g) the global spatial intermediate configuration, which is unique up to isometry by construction.
In summary, we have the following material and spatial factorizations of the total deformation

(B, G̊)

idB
↓↓

idB →→ (B,G)

𝜑

↓↓

𝜑
→→ (C, g̊)

idC

↓↓

(B, G̊)
𝜑

→→ (C, g)
idC →→ (C, g̊)

(3.8)

In each of the two rows, the elastic deformation is represented by a map from the material intermediate configuration (B,G) and
from spatial intermediate configuration (C, g̊), respectively, to the Euclidean ambient space. Hence, in order for the two intermediate
configurations to represent the same anelastic process, they must be isometric. In other words, the multiplicative decompositions
F =

𝑒
F
𝑎
F =

𝑎
F

𝑒
F have the same ‘‘elastic strain’’ if and only if g = 𝜑∗G.13 This means that the metric g =

𝑒
F∗G̊ can be written as

g = F∗G =
𝑒
F∗G̊. Thus,

𝑒
F∗

𝑒
F∗G̊ = (

𝑒
F−1

𝑒
F)∗G̊ = G̊. This implies that

𝑒
F−1

𝑒
F = Q is an isometry for G̊. Therefore,

𝑒
F =

𝑒
FQ , Q ∈ I(B, G̊) , (3.9)

where I(B, G̊) is the isometry group of (B, G̊). In components, 𝐹 𝑎𝐴 =
𝑒
𝐹 𝑎𝐵

𝑎
𝐹𝐵𝐴 =

𝑎
F𝑎

𝑏
𝑒
F𝑏

𝐴, and
𝑒
F𝑎

𝐴 =
𝑒
𝐹 𝑎𝐵 𝑄𝐵𝐴. The previous

discussion can be summarized in the following result.

Theorem 3.1. The direct F =
𝑒
F

𝑎
F and reverse F =

𝑎
F

𝑒
F decompositions are equivalent if and only if

𝑒
F ∗G̊ =

𝑒
F∗G̊, i.e.,

𝑒
F and

𝑒
F are equal

up to local isometries of the reference configuration (B, G̊).

Finally, it should be noticed that a deformation in terms of the global material intermediate configuration can be described fully
referentially. Similarly, it can be described fully spatially using the global spatial intermediate configuration. This is shown in the
following commutative diagram, which is a generalization of (2.6) to anelasticity.

(B, G̊)

idB
↓↓

idB →→ (B,G)

idB

↓↓

idB →→ (B,C♭)

𝜑

↓↓

(B, G̊)

idB
↓↓

idB →→ (B,G)

𝜑

↓↓

𝜑
→→ (C, g̊)

idC

↓↓

(B, G̊)

𝜑

↓↓

𝜑
→→ (C, g)

idC

↓↓

idC →→ (C, g̊)

idC

↓↓

(C, c♭)
idC →→ (C, g)

idC →→ (C, g̊)

(3.10)

otice that the first and second rows of the above commutative diagram describe an anelastic deformation using the global
aterial intermediate configuration. The third and fourth rows describe the same deformation using the global spatial intermediate
onfiguration. Note that all the vertical maps are isometries.

13 The Lagrangian strain is calculated using the first row as E = 1 (𝜑∗g̊−G). Similarly, using the second row spatial strain is calculated as e = 1 (g̊− g) = 𝜑 E.
7

2 2 ∗
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Example 3.2 (Radially-symmetric finite eigenstrains in a spherical ball). Consider a homogeneous spherical ball of radius 𝑅𝑜 made
f a nonlinear elastic solid. The metric of the eigenstrain-free reference configuration G̊ in the spherical coordinates (𝑅,𝛩,𝛷) has
he representation G̊ = diag

(

1, 𝑅2, 𝑅2 sin2 𝛩
)

. For the Euclidean ambient space we choose the spherical coordinates (𝑟, 𝜃, 𝜙). The
uclidean metric of the ambient space g̊ has the representation g̊ = diag

(

1, 𝑟2, 𝑟2 sin2 𝜃
)

. We assume that the ball has a radially-
ymmetric distribution of radial 𝜔𝑅 = 𝜔𝑅(𝑅) and circumferential 𝜔𝛩 = 𝜔𝛩(𝑅) finite eigenstrains. This means that with respect to the
pherical coordinates (𝑅,𝛩,𝛷),

𝑎
F has the following representation (Yavari and Goriely, 2013a; Golgoon and Yavari, 2018b; Yavari,

021)14

𝑎
F =

𝑎
F(𝑅) =

⎡

⎢

⎢

⎣

𝑒𝜔𝑅(𝑅) 0 0
0 𝑒𝜔𝛩(𝑅) 0
0 0 𝑒𝜔𝛩(𝑅)

⎤

⎥

⎥

⎦

. (3.11)

herefore, metric of the global material intermediate configuration (material metric) reads

G =
𝑎
F∗G̊ =

⎡

⎢

⎢

⎣

𝑒2𝜔𝑅(𝑅) 0 0
0 𝑒2𝜔𝛩(𝑅) 𝑅2 0
0 0 𝑒2𝜔𝛩(𝑅) 𝑅2 sin2 𝛩

⎤

⎥

⎥

⎦

. (3.12)

e assume radial deformations, i.e., (𝑟, 𝜃, 𝜙) = (𝑟 (𝑅) , 𝛩,𝛷). Thus, with respect to the spherical coordinates (𝑅,𝛩,𝛷) and (𝑟, 𝜃, 𝜙),
he total deformation gradient has the representation F = diag

(

𝑟′(𝑅), 1, 1
)

. Metric of the global spatial intermediate configuration is
ritten as

g = F∗G =

⎡

⎢

⎢

⎢

⎣

𝑒2𝜔𝑅 (𝑅)

𝑟′2(𝑅)
0 0

0 𝑒2𝜔𝛩(𝑅) 𝑅2 0
0 0 𝑒2𝜔𝛩(𝑅) 𝑅2 sin2 𝛩

⎤

⎥

⎥

⎥

⎦

. (3.13)

xample 3.3 (Radially-Symmetric Eigentwists in a Circular Cylindrical Bar). Let us consider a circular cylindrical bar with a radial
istribution of eigentwists. This problem was analyzed for isotropic solids in (Yavari and Goriely, 2015) and for orthotropic solids
n (Yavari, 2021). We assume an eigentwist distribution 𝜓(𝑅). In cylindrical coordinates (𝑅,𝛩,𝑍), G̊ = diag

(

1, 𝑅2, 1
)

, and
𝑎
F has the

following representation

𝑎
F =

𝑎
F(𝑅) =

⎡

⎢

⎢

⎣

1 0 0
0 1 𝜓(𝑅)
0 0 1

⎤

⎥

⎥

⎦

. (3.14)

herefore, metric of the global material intermediate configuration (material metric) reads

G =
𝑎
F∗G̊ =

⎡

⎢

⎢

⎣

1 0 0
0 𝑅2 𝜓(𝑅)𝑅2

0 𝜓(𝑅)𝑅2 1 + 𝜓2(𝑅)𝑅2

⎤

⎥

⎥

⎦

. (3.15)

or the Euclidean ambient space we choose the cylindrical coordinates (𝑟, 𝜃, 𝑧). The Euclidean metric of the ambient space g̊ has the
epresentation g̊ = diag(1, 𝑟2, 1). We assume deformations of the form: (𝑟, 𝜃, 𝑧) = (𝑟(𝑅), 𝛩+𝜏𝑍, 𝜆𝑍), where 𝜏 and 𝜆 are some unknown
onstants to be determined. The deformation gradient is written as

F =
⎡

⎢

⎢

⎣

𝑟′(𝑅) 0 0
0 1 𝜏
0 0 𝜆

⎤

⎥

⎥

⎦

. (3.16)

etric of the global spatial intermediate configuration reads

g = F∗G =

⎡

⎢

⎢

⎢

⎣

1
𝑟′2(𝑅)

0 0

0 𝑅2 𝜆−1𝑅2[𝜓(𝑅) − 𝜏]
0 𝜆−1𝑅2[𝜓(𝑅) − 𝜏] 𝜆−2

[

𝑅2[𝜏 − 𝜓(𝑅)]2 + 1
]

⎤

⎥

⎥

⎥

⎦

. (3.17)

emark 3.4. Goodbrake et al. (2021) provided an interpretation of Kondo (1950a)’s material manifold of nonlinear anelasticity,
nd found that any Riemannian manifold (M,H) is a global intermediate configuration if there exist two maps 𝑎𝜑 ∶ B → M and
𝑒 ∶ M → C such that (i) 𝜑 = 𝑒𝜑◦ 𝑎𝜑, and (ii) H = 𝑎𝜑∗G. Hence, the global material intermediate configuration corresponds to the
hoices 𝑎𝜑 = idB and 𝑒𝜑 = 𝜑, while the global spatial intermediate configuration corresponds to 𝑎𝜑 = 𝜑 and 𝑒𝜑 = idC. Note that the fact
hat (B,G) and (C, g) are isometric reflects the principle that Goodbrake et al. (2021) called ‘‘equality of anelastic strain’’. Note also
hat although 𝑇 𝑎𝜑 and 𝑇 𝑒𝜑 are compatible by construction, the incompatibility of the local anelastic deformations is reflected in the
on-flatness of the intermediate manifold (M,H).

14 Goodbrake et al. (2020) showed that the eigenstrain distributions (3.11) are the only universal eigenstrains that are consistent with Family 4 universal
8

deformations of incompressible isotropic spherical shells (Ericksen, 1954).
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3.5. Constitutive equations in nonlinear anelasticity

In Section 2.2 for an elastic solid an energy function of the form 𝑊̊ = 𝑊̊ (𝑋,F, G̊, g̊) was assumed. In the presence of local
nelastic deformations, energy explicitly depends on the local elastic deformation, i.e., 𝑊 = 𝑊̊ (𝑋,

𝑒
F, G̊, g̊). Objectivity implies that

his can be put in the form ı𝑊 (𝑋,
𝑒
C♭, G̊), where

𝑒
C♭ =

𝑒
F∗g̊. Changing variables, one hası𝑊 (𝑋,

𝑒
C♭, G̊) = ı𝑊 (𝑋,

𝑎
F∗C♭,

𝑎
F∗G) . (3.18)

his cannot be put in any of the forms 𝑊 = 𝑊̌ (𝑋,C♭,G) = 𝑊 (𝑋,C♭, G̊) = 𝑊 (𝑋,
𝑒
C♭,G). In other words, the material metric G is not

enough to describe the constitutive behavior of an anisotropic material, and an explicit
𝑎
F-dependence is unavoidable:

𝑊 = 𝑊 (𝑋,C♭,G,
𝑎
F) = 𝑊 (𝑋,C♭, G̊,

𝑎
F) = 𝑊 (𝑋,

𝑒
C♭,G,

𝑎
F) . (3.19)

et us define 𝑊 (𝑋,F,
𝑎
F, G̊, g̊) = 𝑊 (𝑋,

𝑒
F
𝑎
F,

𝑎
F, G̊, g̊) = 𝑊̊ (𝑋,F

𝑎
F−1, G̊, g̊) = 𝑊̊ (𝑋,

𝑒
F, G̊, g̊).

.5.1. Material symmetry in anelasticity
Note that, ∀ K̊ ∈ G̊𝑋 :

𝑊 (𝑋,
𝑒
F
𝑎
F,

𝑎
F, G̊, g̊) = 𝑊̊ (𝑋,

𝑒
F, G̊, g̊) = 𝑊̊ (𝑋,

𝑒
FK̊, G̊, g̊) = 𝑊 (𝑋,

𝑒
FK̊

𝑎
F,

𝑎
F, G̊, g̊) = 𝑊 (𝑋,F

𝑎
F−1K̊

𝑎
F,

𝑎
F, G̊, g̊) = 𝑊 (𝑋,FK,

𝑎
F, G̊, g̊) , (3.20)

here K =
𝑎
F−1K̊

𝑎
F. This means that G𝑋 =

𝑎
F−1G̊𝑋

𝑎
F, which is Noll’s rule (Noll, 1958; Coleman and Noll, 1959, 1963, 1964). Material

ymmetry can be expressed in the following three equivalent forms15:

𝑊 (𝑋,F, K̊
𝑎
F, G̊, g̊) = 𝑊̊ (𝑋,F(K̊

𝑎
F)−1, G̊, g̊) = 𝑊̊ (𝑋,F

𝑎
F−1K̊−1, G̊, g̊) = 𝑊̊ (𝑋,F

𝑎
F−1, G̊, g̊) = 𝑊 (𝑋,F,

𝑎
F, G̊, g̊) , ∀ K̊ ∈ G̊𝑋 , (3.21)

𝑊 (𝑋,FK,
𝑎
F, G̊, g̊) = 𝑊̊ (𝑋,FK

𝑎
F−1, G̊, g̊) = 𝑊̊ (𝑋,F

𝑎
F−1K̊, G̊, g̊) = 𝑊̊ (𝑋,F

𝑎
F−1, G̊, g̊) = 𝑊 (𝑋,F,

𝑎
F, G̊, g̊) , ∀ K ∈ G𝑋 , (3.22)

𝑊 (𝑋,F,
𝑎
FK, G̊, g̊) = 𝑊̊ (𝑋,F(

𝑎
FK)−1, G̊, g̊) = 𝑊̊ (𝑋,FK−1 𝑎F−1, G̊, g̊) = 𝑊̊ (𝑋,F

𝑎
F−1K̊−1, G̊, g̊) = 𝑊̊ (𝑋,F

𝑎
F−1, G̊, g̊)

= 𝑊 (𝑋,F,
𝑎
F, G̊, g̊) , ∀ K ∈ G𝑋 . (3.23)

We assume that the energy function is materially covariant. Using (2.13) this implies that

𝑊 = w(𝑋,
𝑒
C♭, G̊, 𝜻̊1,… , 𝜻̊𝑁 ) = w(𝑋,

𝑎
F∗C♭,

𝑎
F∗G, 𝜻̊1,… , 𝜻̊𝑁 ) = w(𝑋,C♭,G,

𝑎
F∗𝜻̊1,… ,

𝑎
F∗𝜻̊𝑁 ) = w(𝑋,C♭,G, 𝜻1,… , 𝜻𝑁 ) , (3.24)

where 𝜻 𝑖 =
𝑎
F∗𝜻̊ 𝑖, 𝑖 = 1,…𝑁 . Hence, the material symmetry group of an anelastic body can be characterized using the structural

tensors 𝜻 𝑖 of order 𝜇𝑖, 𝑖 = 1,… , 𝑁 :

Q ∈ G ⩽ Orth(G) ⟺ ⟨Q⟩𝜇1 𝜻1 = 𝜻1 ,… , ⟨Q⟩𝜇𝑁 𝜻𝑁 = 𝜻𝑁 , (3.25)

where Orth(G) =
{

Q ∶ 𝑇𝑋B → 𝑇𝑋B ∣ Q𝑇 = Q−1}, and (.)𝑇 is defined with respect to G, and not G̊. In other words, the material
symmetry group of an anelastic body is written with respect to the material manifold (B,G). Note that Noll’s rule implies that
Q =

𝑎
F−1Q̊

𝑎
F and induces an isomorphism between Orth(G) and Orth(G̊). In summary, (3.24) implies that in the classical anisotropic

constitutive equations of elasticity if one replaces G̊ by G one finds the corresponding anelastic constitutive equation.16

3.5.2. Constitutive equations written with respect to (C, g )
Next, we would like to write the constitutive equations with respect to the global intermediate configuration (C, g). Let us denote

the symmetry group of the material relative to (C, g) by G̃. Note that C = 𝜑(B) and g = 𝜑∗G. Thus, Noll’s rule (Noll, 1958; Coleman
nd Noll, 1959, 1963, 1964) tells us that

G̃ = 𝜑∗G = FGF−1 . (3.26)

his means that G and G̃ are conjugate subgroups of the general linear group, and hence, are isomorphic. The relation (3.26) holds
f and only if it holds for all the generators of the group G. Let us assume that G is finitely generated and denote the generating sets
f G and G̃ by

{

Q1,… ,Q𝑚
}

and
{

Q̃1,… , Q̃𝑚
}

, respectively. In this case, (3.26) holds if and only if Q̃𝑗 = FQ𝑗 F−1, 𝑗 = 1,… , 𝑚. The
aterial symmetry group with respect to (C, g) is characterized using the structural tensors 𝜻 𝑖 of order 𝜇𝑖, 𝑖 = 1,… , 𝑁 :

Q̃ ∈ G̃ ⩽ Orth(g) ⟺
⟨

Q̃
⟩

𝜇1
𝜻1 = 𝜻1 ,… ,

⟨

Q̃
⟩

𝜇𝑁
𝜻𝑁 = 𝜻𝑁 , (3.27)

here using (2.10) and (3.26), one has Q̃ = 𝜑∗Q = FQF−1, and 𝜻 𝑖 = 𝜑∗𝜻 𝑖, 𝑖 = 1,… , 𝑁 . This, in particular, implies that the type of
he symmetry group of the material with respect to (C, g) and (B,G) is the same. The energy function written with respect to the
lobal intermediate configuration (C, g) is related to that written with respect to (B,G), e.g., (3.24), by push forward:

w = 𝜑∗𝑊 =W(𝜑−1(𝑥), 𝜑∗C♭, 𝜑∗G, 𝜑∗𝜻1,… , 𝜑∗𝜻𝑁 ) =∶ ŵ(𝑥, g̊, g, 𝜻1,… , 𝜻𝑁 ) . (3.28)

n particular, for an elastically isotropic anelastic solid from (3.28) one has w = ŵ(𝑥, g̊, g). For an isotropic elastic solid this is
educed to w = ŵ(𝑥, g̊, c♭).

15 One should note that for any invertible tensor A on has 𝑊 (FA,
𝑎

FA, G̊, g̊) = 𝑊̊ (FA(
𝑎

FA)−1 , G̊, g̊) = 𝑊̊ (F
𝑎

F−1 , G̊, g̊) = 𝑊 (F,
𝑎

F, G̊, g̊).
16
9

This is what was done in (Golgoon and Yavari, 2018a,b).
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Theorem 3.5. The direct F =
𝑒
F

𝑎
F and reverse F =

𝑎
F

𝑒
F decompositions corresponding to the same local elastic deformation have identical

corresponding Cauchy stresses. In this sense, for anisotropic solids the two decompositions of deformation gradient are equivalent.

Proof. For an anisotropic solid, the second Piola–Kirchhoff with respect to (C, g) is written as

s̃ = 2𝜑∗
𝜕W
𝜕C♭

= 2
𝜕 𝜑∗W

𝜕 𝜑∗C♭
= 2 𝜕ŵ

𝜕g̊
. (3.29)

The Cauchy stress is calculated as

𝝈 = 2𝐽 (𝑇 idC) s̃ (𝑇 idC)⋆ = 2𝐽 𝜕ŵ
𝜕g̊

. (3.30)

Note that det(𝑇 idC) = 1, and hence,

𝐽 =

√

det g̊
det g =

√

det g̊
det G det F = 𝐽 . (3.31)

herefore,

𝝈 = 2𝐽 𝜕ŵ
𝜕g̊

= 𝝈 , (3.32)

here the Doyle–Ericksen formula (Doyle and Ericksen, 1956; Marsden and Hughes, 1994; Yavari et al., 2006) was used in the
second equality. □

Example 3.6 (Elastically Isotropic Anelastic Solids). One can show that the principal invariants using the two intermediate configu-
rations are identical. The first invariant with respect to the two intermediate configurations is calculated as

𝐼1 = tr C = trG♯ (F
⋆g̊F) = G♯ ∶ F⋆g̊F , 𝐼1 = trg♯ g̊ = trg̊ g♯ = trg̊(FG♯F⋆) = FG♯F⋆ ∶ g̊ = G♯ ∶ F⋆g̊F . (3.33)

Thus, 𝐼1 = 𝐼1. We know that 𝐼2 =
1
2

(

𝐼21 − tr C2
)

, and 𝐼2 =
1
2

(

𝐼21 − tr g̊2
)

. But notice that

tr C2 = trG♯ (CG
♯C) = G♯ ∶ CG♯C , tr g̊2 = trg♯ (g̊g

♯g̊) = FG♯F⋆ ∶ g̊FG♯F⋆g̊ = G♯ ∶ F⋆g̊FG♯F⋆g̊F = G♯ ∶ CG♯C . (3.34)

ence, 𝐼2 = 𝐼2. Finally

𝐼3 = det C = det(C♭G♯) = det(F⋆g̊F) det G♯ = (det F)2 det g̊ (det G)−1 ,

𝐼3 = det(g̊g♯) = det g̊ det(FG♯F⋆) = (det F)2 det g̊ (det G)−1 ,
(3.35)

nd hence, 𝐼3 = 𝐼3. For a compressible elastically isotropic anelastic solid, 𝑊 = 𝑊 (𝑋, 𝐼1, 𝐼2, 𝐼3), where 𝐼1, 𝐼2, and 𝐼3 are the
rincipal invariants of the right Cauchy–Green deformation tensor calculated using G as in (3.33), (3.34), and (3.35). With respect
o the global material intermediate configuration and the deformation map 𝜑 ∶ (B,G) → (C, g̊), and using (2.12) one writes
= 2𝑊1G♯ + 2𝑊2(𝐼2C−1 − 𝐼3C−2) + 2𝑊3𝐼3C−1, where 𝑊𝑖 = 𝜕𝑊

𝜕𝐼𝑖
, 𝑖 = 1, 2, 3. Similarly, the Cauchy stress has the following

representation (Doyle and Ericksen, 1956; Truesdell and Noll, 2004)

𝝈 = 2
√

𝐼3

[

𝑊1 b♯ + (𝐼2𝑊2 + 𝐼3𝑊3)g̊♯ − 𝐼3𝑊2 c♯
]

. (3.36)

With respect to the global spatial intermediate configuration and the map idC ∶ (C, g) → (C, g̊), the Cauchy stress has the following
representation

𝝈 = 2
√

𝐼3

[

𝑊1 b̃
♯
+ (𝐼2𝑊2 + 𝐼3𝑊3)g̊♯ − 𝐼3𝑊2 c̃

♯
]

, (3.37)

here c̃♭ = (idC)∗g = g = 𝜑∗G = c♭, and b̃
♯
= (idC)∗g♯ = g♯. Note that g = F−⋆ GF−1, and hence g♯ = FG♯ F⋆. Thus, b̃

♯
= b♯. This

eans that, as expected, 𝝈 = 𝝈.

xample 3.7 (Elastically Transversely Isotropic Anelastic Solids). As the simplest example of an elastically anisotropic anelastic solid
let us consider transverse isotropy. A transversely isotropic solid at every point 𝑋 ∈ B has a plane of isotropy. When there are
no anelastic strains, the plane of isotropy has the unit normal vector N̊ such that ⟨⟨N̊, N̊⟩⟩G̊ = 1. The energy function has the form
𝑊 = w(𝑋,

𝑒
C♭, G̊, 𝜻̊), where 𝜻̊ = N̊⊗ N̊ is a structural tensor (Doyle and Ericksen, 1956; Spencer, 1982; Lu and Papadopoulos, 2000).

hus, knowing that the energy function is materially covariant, one has

𝑊 = w(𝑋,
𝑒
C♭, G̊, 𝜻̊) = w(𝑋,

𝑎
F∗C♭,

𝑎
F∗G, 𝜻̊) = w(𝑋,C♭,G,

𝑎
F∗𝜻̊) = w(𝑋,C♭,G, 𝜻) , (3.38)

here 𝜻 =
𝑎
F∗N̊ ⊗

𝑎
F∗N̊ = N ⊗ N. Note that N =

𝑎
F∗N̊ =

𝑎
F−1N̊. This implies that when

𝑎
F evolves, i.e., when

𝑎
F =

𝑎
F(𝑋, 𝑡), although

he anelastic body remains elastically transversely isotropic, the plane of symmetry at every point evolves as well. Note that in
𝑎 ∗ ̊ 𝑎 ∗ ̊ 𝑎
10

he presence of anelastic strains, N(𝑋) is a unit vector with respect to the material metric G because ⟨⟨N,N⟩⟩G = ⟨⟨F N,F N⟩⟩
F∗G̊

=
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⟨⟨N̊, N̊⟩⟩G̊ = 1. The integrity basis consists of five members {𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5}, where the first three are the principal invariants of C.
With respect to the global material intermediate configuration (B,G) the extra invariants are defined as

𝐼4 = C♭(N,N) = 𝑁𝐴𝑁𝐵 𝐶𝐴𝐵 , 𝐼5 = (C♭G♯C♭)(N,N) = 𝑁𝐴𝑁𝐵 𝐶𝐵𝑀 𝐶𝑀𝐴 . (3.39)

e know that 𝜻 = 𝜑∗𝜻 = 𝜑∗N⊗𝜑∗N = n⊗n, where n = FN. Thus, with respect to the global spatial intermediate configuration (C, g),
he energy function has the functional form 𝑊 = ŵ(𝑥, g̊, g,n⊗n). Note that 𝐼4 = g̊(n,n) = g̊(𝜑∗N, 𝜑∗N) = 𝜑∗g̊(N,N) = C♭(N,N) = 𝐼4.
lso, 𝐼5 = (g̊ g♯ g̊)(n,n) = 𝜑∗(g̊ g♯ g̊)(N,N) = (𝜑∗g̊𝜑∗g♯ 𝜑∗g̊)(N,N) = (C♭G♯C♭)(N,N) = 𝐼5. Therefore, as expected, the Cauchy stresses
alculated using the two intermediate configurations are identical.

. Concluding remarks

In this paper we studied the geometry of the reverse multiplicative decomposition F =
𝑎
F

𝑒
F. Over the years, intermediate

onfiguration and its interpretation has been a controversial topic in anelasticity. Following the early works of Eckart (1948)
nd Kondo (1949) for elastically isotropic anelastic solids one can bypass this configuration and directly start with a material
anifold—a Riemannian manifold whose metric encodes the anelastic strains. However, for elastically anisotropic solids, in addition
o the material metric G,

𝑎
F (or

𝑎
F) is needed in describing the constitutive equations. Constructing global intermediate configurations

nd understanding their connections with the material manifold is a fundamental problem in nonlinear anelasticity. Goodbrake et al.
2021) provided an interpretation of the material manifold (B,G) as a global intermediate configuration. We call (B,G) the global
aterial intermediate configuration. It is exactly what one would call material manifold and can be identified with the natural
onfiguration of a residually-stressed anelastic body. By construction the intermediate configuration (B,G) is unique up to isometry.
In the literature there have been discussions on other possible decompositions, and particularly, the reverse decomposition of

he deformation gradient F =
𝑎
F

𝑒
F. It has been shown that under certain assumptions the reverse decomposition is equivalent to

he Bilby–Kröner–Lee decomposition for isotropic solids. In this paper we showed the equivalence of the two decompositions for
nisotropic solids. First, we constructed a global spatial intermediate configuration (C, g) without assuming any relationship between
𝑒
and

𝑒
F. In the spatial intermediate configuration C = 𝜑(B), and g =

𝑒
F∗G̊, where G̊ is the flat metric of the Euclidean reference

onfiguration (B, G̊). Next, we noted that the two decompositions F =
𝑎
F

𝑒
F =

𝑒
F
𝑎
F locally represent the same anelastic deformation

if and only if they induce the same elastic strain (and consequently anelastic strain). We showed that this is equivalent to the two
manifolds (B,G) and (C, g) being isometric. We used this to prove that

𝑒
F and

𝑒
F must be equal up to isometry, i.e.,

𝑒
F(𝑋) =

𝑒
F(𝑋)Q(𝑋),

where Q is an isometry of (𝑇𝑋B, G̊).
The constitutive equations of elastically isotropic anelastic solids can be written with respect to (B,G); in the classical constitutive

equations the Euclidean metric G̊ is replaced by the Riemannian metric G that encodes the anelastic strains. In the case of elastically
anisotropic anelastic solids, in addition to G,

𝑎
F explicitly enters the constitutive equations through the structural tensors. It was

shown that the constitutive equations with respect to (C, g) are the push forward of those with respect to (B,G) by the deformation
mapping, which is an isometry between the two intermediate configurations. This, in particular, implies that the Cauchy stresses
calculated with respect to the two intermediate configurations are identical. In this sense, the two decompositions of deformation
gradient are equivalent even for arbitrary anisotropic solids.
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