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Abstract
In this paper we formulate the initial-boundary value problem of accreting circular cylindri-
cal bars under finite torsion. It is assumed that the bar grows as a result of printing stress-
free cylindrical layers on its boundary while it is under a time-dependent torque (or a time-
dependent twist) and is free to deform axially. In a deforming body, accretion induces eigen-
strains, and consequently residual stresses. We formulate the anelasticity problem by first
constructing the natural Riemannian metric of the growing bar. This metric explicitly de-
pends on the history of deformation during the accretion process. To simplify the kinematics,
we consider incompressible solids. For the example of incompressible neo-Hookean solids,
we solve the governing equations numerically. We also linearize the governing equations
and compare the linearized solutions with the numerical solutions of the neo-Hookean bars.

Keywords Accretion mechanics · Surface growth · Finite torsion · Nonlinear elasticity ·
Residual stress · Geometric mechanics

Mathematics Subject Classification 74B20 · 74A05 · 74G05 · 74F99

1 Introduction

There are many examples of structures built by accretion in nature (formation of plane-
tary objects, volcanic and sedimentary rock formation, the growth of biological tissues,
etc.) and engineering applications (built up of concrete dams in successive layers, solid-
ification of metals, electrolytic deposition, thermal and laser-based 3D printing, etc.). The
first theoretical study of accretion mechanics was an analysis of thick-walled cylinders man-
ufactured by wire winding of an initial elastic tube by Southwell [31]. As examples of no-
table subsequent contributions one can mention [3, 5, 7, 8, 18, 21, 30]. In recent years
there has been a renewed interest in the mechanics of accretion, and specifically the large
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deformation analysis of accreting bodies. There are several works in the recent literature
[1, 2, 4, 11, 14–17, 19, 24, 32–34, 38, 42, 51–53]. For detailed reviews of the mechanics of
accretion see [22] and [32].

In classical finite elasticity, a body has a fixed reference configuration and motion is
a time-dependent map from the reference configuration to the ambient space. For grow-
ing bodies the notion of reference configuration needs to be modified. There are two types
of growth: bulk and surface growth. For a body undergoing bulk growth material points
are fixed but their relaxed (natural) states change due to growth. In the literature this has
been modeled using a multiplicative decomposition of deformation gradient into elastic

and growth parts: F = e

F
g

F.1 Geometrically, in bulk growth the reference configuration is a
Riemannian manifold (B,Gt ), where B is a fixed 3-manifold that is equipped with a time-
dependent Riemannian metric Gt [43].2 For a body undergoing growth on its boundary (or
a subset of its boundary) while in motion, the reference configuration is a time-dependent
set Bt . Material (stress-free or pre-stressed) can be either added (accretion) or removed (ab-
lation) from the boundary. The natural configuration of the growing body depends on its
initial natural configuration (the natural configuration before accretion started) and the state
of deformation at the time of attachment of new material points. Accretion induces residual
stress, in general.3 This is due to the non-flatness of the material metric. A geometric anal-
ysis of finite deformations of accreting bodies was presented in [32, 33]. Recently, Yavari
et al. [51] formulated and solved the nonlinear initial-boundary value problem of accreting
circular cylindrical bars under finite extension. In this paper we analyze circular cylindrical
shafts that undergo finite torsion, are free to deform axially, and are simultaneously growing
symmetrically. The classical analogue of this problem (without accretion) has been stud-
ied extensively in the literature and is a subset of Family 3 universal deformations [9], see
Remark 3.2.

This paper is organized as follows. In §2, we tersely review some elements of Riemannian
geometry and the nonlinear mechanics of accretion. In §3, the nonlinear accretion problem
of a circular cylindrical shaft that is under finite torsion while it is free to deform axially
is formulated. The natural configuration (material manifold) of the growing shaft is con-
structed, and stresses and residual stresses are calculated assuming that during the accretion
process either a time-dependent applied torque or a time-dependent twist per unit length is
given. Several numerical examples are solved and discussed. The kinematics, stresses, and
residual stresses are calculated in the setting of linear accretion mechanics. The linear and
nonlinear solutions are compared in a numerical example. Conclusions are given in §4.

2 Nonlinear Mechanics of Accretion

In this section, we briefly review some elements of Riemannian geometry, nonlinear
elasticity and anelasticity, and accretion mechanics. For more detailed discussions, see
[20, 33, 43, 45].

1This decomposition is due to Kondaurov and Nikitin [13], Takamizawa and Hayashi [36], Takamizawa and
Matsuda [37], and Takamizawa [35]. One can find similar ideas in [39, 40]. This decomposition was popular-
ized in the literature of biomechanics by Rodriguez et al. [26]. For a historical account of this decomposition
in different fields see [27, 50].
2Growing bodies are non-Euclidean in the sense that their natural configuration is not Euclidean, in general.
Non-Euclidean solids—a term that was coined by Henri Poincaré [25]—has been used interchangeably for
anelastic bodies in the recent literature [42, 52, 53].
3This was first observed in the setting of linear accretion mechanics in the seminal work of Brown and
Goodman [5] who studied accreting planets under self-gravity.
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Riemannian Geometry Let us consider a smooth n-manifold B (this is identified with the
body in its reference configuration). Its tangent space at a point X ∈ B is denoted TXB. Let
S be another n-manifold (this is the Euclidean ambient space) and ϕ : B → S a smooth
and invertible mapping (this is the deformation mapping). A smooth vector field W on B
at every X ∈ B assigns a vector WX such that X �→ WX ∈ TXB varies smoothly. For W a
vector field on B, ϕ∗W = T ϕ ·W◦ϕ−1 is a vector field on C = ϕ(B) ⊂ S—the push-forward
of W by ϕ. Similarly, if w is a vector field on C = ϕ(B), the pull-back of w by ϕ is defined
as ϕ∗w = T (ϕ−1) ·w◦ϕ, which is a vector field on B. The derivative map of ϕ is denoted by
F = T ϕ, and is a two-point tensor. When ϕ is a deformation map, F has traditionally been
called deformation gradient in the finite elasticity literature. One should note that F (unlike
the gradient operator) is metric independent. It has the following representation

F = Fa
A

∂

∂xa
⊗ dXA, F a

A = ∂ϕa

∂XA
, (2.1)

where {XA} and {xa} are local coordinate charts for B and S , respectively. Note that
{

∂
∂xa

}

is a basis for TxC (x = ϕ(X)) and {dXA} is a basis for T ∗
XB, the co-tangent space, i.e., the

dual space of TXB, or the space of 1-forms. The push-forward and pull-back of vectors
have the coordinate representations (ϕ∗W)a = Fa

A WA, and (ϕ∗w)A = (F−1)a
A wa . A

(
0
2

)
-

tensor at X ∈ B is a bilinear map T : TXB × TXB →R, and in a local coordinate chart {XA}
for B one has T(U,W) = TAB UA WB , where U and W are vectors, i.e., are elements of
TXB. Let B be a smooth manifold that is equipped with an inner product GX on the tangent
space TXB. Assume that GX varies smoothly, i.e., if U and W are vector fields on B, then
X �→ GX(UX,WX) = 〈〈UX,WX〉〉GX

, where 〈〈., .〉〉GX
is the inner product induced by the

metric GX , is a smooth function. In this case (B,G) is called a Riemannian manifold.
For two Riemannian manifolds (B,G) and (C,g), and for a diffeomorphism (a smooth

map with smooth inverse) ϕ : B → C, push-forward of the metric G is denoted by ϕ∗G. It is
a metric on C = ϕ(B), and is defined as

〈〈ux,wx〉〉(ϕ∗G)x = 〈〈(ϕ∗u)X, (ϕ∗w)X〉〉GX
, (2.2)

where x = ϕ(X). In components, (ϕ∗G)ab = (F−1)a
A (F−1)b

B GAB . The pull-back of the
metric g is a metric in ϕ−1(C) = B, and is denoted by C� = ϕ∗g—the right Cauchy-Green
strain. It is defined as

〈〈UX,WX〉〉(ϕ∗g)X = 〈〈(ϕ∗U)x, (ϕ∗W)x〉〉gx , (ϕ∗g)AB = Fa
A F b

B gab . (2.3)

If G = ϕ∗g, or equivalently, g = ϕ∗G, ϕ is called an isometry and the Riemannian manifolds
(B,G) and (C,g) are isometric.

Kinematics In an accretion process, the material manifold that represents the growing body
is time dependent; new material points are attached to part of the boundary of the body
that we call the growth surface. Let us identify the accreting body with a time-dependent
3-manifold Bt . The initial body is denoted by B = B0. Accretion occurs in a time interval
[0, ta]. We follow [33] and define an accreting body to be a 3-manifold M—the material
ambient space—that is embedded in the Euclidean ambient space along with a smooth time
of attachment map τ : M → [0, ta].4 Note that for all points in the initial body B, τ(X) = 0.
The body at time t , Bt , is defined as

Bt = {X ∈ M | τ(X) ≤ t} . (2.4)

4The idea of a time of attachment map is due to Metlov [21].
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Note that the growth surface at time t is given as �t = τ−1(t). For an accreting body, motion
is a time-dependent map ϕt : Bt → S , t ∈ [0, ta], where S is the Euclidean ambient space.
Consider the map ϕ̄ : M → S defined as ϕ̄(X) = ϕ(X, τ(X)). For points in the initial body
ϕ̄(X) = X. For a point X in the secondary body Bt \ B0, ϕ̄(X) is the placement of X at
its time of attachment. Notice that for each layer �t , ϕ̄|�t = ϕt |�t because for τ(X) = t ,
ϕ̄(X) = ϕ(X, t). This implies that ϕ̄ records the placement of the deformed configuration
ωt = ϕt (�t ) = ϕ̄(�t ) of the layer �t at its time of attachment. It should be noted that the
map ϕ̄ is not one-to-one, in general. In other words, ϕ̄ is not a deformation mapping. T ϕ̄

need not be injective either.
Deformation gradient is the derivative of ϕt : Bt → S , see (2.1). The frozen deformation

gradient is defined as F̄(X) = F(X, τ(X)); it is the deformation gradient of point X at its
time of attachment τ(X). It can be shown that T ϕ̄ = F̄+V⊗dτ , where V(X, t) = ∂

∂t
ϕ(X, t)

is the material velocity. The frozen deformation gradient F̄(X) is compatible on each single
layer �t . However, it is not the tangent map of any embedding; F̄ is incompatible, in general.
In accreting bodies, the incompatibility of the frozen deformation gradient is the source of
anelasticity, and hence residual stresses [33].

The growth surface in the deformed configuration ωt = ϕt(�t ) is that part of the de-
formed boundary where new material points are added. The growth velocity is a vector field
ut on ωt that describes the rate and direction at which new material points are being added
to the boundary. The material growth velocity Ut describes the time evolution of the layers
�t in the material ambient space. It turns out that Ut , and consequently the material motion,
is not unique. In other words, there is some freedom in choosing Ut , and all these equivalent
Ut ’s lead to isometric material manifolds [33]. Natural distances in the material manifold
are measured using a material metric G. This metric is not known a priori in accretion prob-
lems; it depends on the state of deformation of the body during the accretion process. It is
determined after solving the accretion initial-boundary-value problem. The accretion tensor
Q is a time-independent two-point tensor that is defined as

Q(X) = F̄(X) + [
u(ϕ̄(X), τ (X)) − F̄(X)U(X)

]⊗ dτ(X) , X ∈ M . (2.5)

Because 〈dτ,U〉 = 1, QU = u. Notice that the accretion tensor Q is not the tangent
map of any embedding, although it is compatible on each single layer. Also note that,
Q|� = F̄|� = T ϕ̄|�. The Euclidean metric of the ambient space is denoted by g. The
material metric of the accreting body is defined as the pull-back of the Euclidean am-
bient metric g using Q, i.e., G(X) = Q�(X)g(ϕ̄(X))Q(X). In components, GAB(X) =
Qa

A(X)gab(ϕ̄(X))Qb
B(X). One can show that if the energy function W of the material

is rank-one convex, and if the growth surface is traction-free, then F̄ = Q [33].
Transpose of the deformation gradient FT : TxC → TXB is defined as 〈〈FV,v〉〉g =

〈〈V,FTv〉〉G, ∀V ∈ TXB, v ∈ TxC. In components, (F T(X))A
a = gab(x)F b

B(X)GAB(X).
The right Cauchy-Green deformation tensor is defined as C(X) = FT(X)F(X) : TXB →
TXB, and in components, CA

B = (F T)A
a F a

B . Note that C� = ϕ∗g (� is the flat operator in-
duced by the metric g), and has components CAB = Fa

A F b
B gab ◦ϕ. The left Cauchy-Green

deformation tensor is defined as B	 = ϕ∗g	 (	 is the sharp operator induced by the metric
g), and has components BAB = (F−1)A

a (F−1)B
b gab . The deformation tensors c� and b	

(the Finger deformation tensor) are the spatial analogues of C� and B	, respectively, and are
defined as

c� = ϕ∗G , cab = (
F−1

)A
a

(
F−1

)B
b GAB ,

b	 = ϕ∗G	 , bab = Fa
A F b

B GAB.
(2.6)
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It is straightforward to see that bac ccb = ba
m cm

b = δa
b , i.e., b = c−1. The strain tensors C

and b have the principal invariants I1, I2, and I3, which are defined as [23]: I1 = tr b =
ba

a = bab gab , I2 = 1
2

(
I 2

1 − tr b2
)

1
2

(
I 2

1 − ba
b bb

a

)= 1
2

(
I 2

1 − babbcd gac gbd

)
, and I3 = det b.

Constitutive Equations For an isotropic hyperelastic solid, the energy function depends on
deformation through the principal invariants: W = W(X, I1, I2, I3). For an incompress-
ible (I3 = 1) isotropic hyperelastic solid energy function only depends on I1 and I2:
W = W(X, I1, I2). The X-dependence of the energy function models material inhomogene-
ity. In this paper, we restrict our calculations to homogeneous bodies. The Cauchy stress has
the following representation [6, 28]

σ = −p g	 + 2W1 b	 − 2W2 c	 , σ ab = −p gab + 2W1 bab − 2W2 cab , (2.7)

where p is the Lagrange multiplier associated with the incompressibility constraint J =√
I3 = 1, and Wi = ∂W

∂Ii
, i = 1,2. Notice that b	 and c	, and consequently σ , explicitly

depend on the material metric G. It is assumed that the material points of the accreting
body are isotropic in their relaxed configuration. However, in its current configuration the
accreting body may not be isotropic.

Equilibrium Equations Accretion is usually a slow process, and hence one can ignore in-
ertial effects. In the absence of body forces, the balance of linear momentum in local
form, and in terms of the Cauchy stress, reads: divσ = 0, where div = divg is diver-
gence with respect to the spatial metric. In components, one writes (divσ )a = σab |b =
∂σab

∂xb + σacγ b
cb + σ cbγ a

cb , where γ a
bc is the Christoffel symbol of the Levi-Civita con-

nection ∇g in the local coordinate chart {xa}, and is defined as ∇g
∂b

∂c = γ a
bc ∂a . More

explicitly, γ a
bc = 1

2 gak
(
gkb,c + gkc,b − gbc,k

)
.

3 Torsion of an Accreting Circular Cylindrical Bar

In this section we formulate the initial-boundary value problem of symmetric accretion of
a circular cylindrical bar made of an incompressible isotropic hyperelastic solid that is un-
dergoing finite torsion while it is free to deform axially. In order to motivate the continuous
accretion problem, let us first discuss a discrete accretion problem, which is a twist-fit prob-
lem [46]. Consider a circular cylindrical bar with radius R1 that is finitely twisted, see Fig. 1.
While the bar is twisted a cylindrical shell with thickness R2 −R1 is printed on its boundary
cylinder. In other words, we start with a stress-free solid cylinder with radius R2, remove
a concentric solid cylinder of radius R1, and replace it with the twisted bar with radius R1,
and then glue them. After removal of external loads, the accreted bar is residually stressed.
This is because the natural configurations of the core and the shell are incompatible. In the
following, we will formulate the continuous analogue of this problem. We will calculate the
metric of the natural configuration, the stress distribution during accretion, and the residual
stress distribution after removal of the external loads.

Kinematics and the Material Metric Let us consider a circular cylindrical bar with initial
length L and radius R0 that is made of a homogeneous isotropic and incompressible material
with energy function W = W(I1, I2). We use the cylindrical coordinates (R,
,Z) in the
reference configuration, and cylindrical coordinates (r, θ, z) in the current configuration.



34 A. Yavari, S.P. Pradhan

Fig. 1 The twist-fit problem: A
cylindrical bar is first twisted. In
the deformed configuration, a
stress-free cylindrical shell is
printed on its cylinder boundary.
When the accreted bar is
released, the unloaded bar is
residually stressed

The metrics of the reference and current configurations have the following representations
(0 ≤ R ≤ R0)

G =
⎡

⎣
1 0 0
0 R2 0
0 0 1

⎤

⎦ , g =
⎡

⎣
1 0 0
0 r2 0
0 0 1

⎤

⎦ . (3.1)

Let us consider a time-dependent torsion of the circular cylindrical bar such that it is slow
enough for the inertial effects to be negligible. Torsion of circular cylindrical bars is a subset
of Family 3 deformations that are universal for incompressible isotropic solids [9], and have
the following form5

r = r(R, t) , θ = 
 + ψ(t)Z , z = λ2(t)Z , (3.2)

where ψ(t) is twist per unit length, and λ2(t) is the axial stretch, see Fig. 2. Under a twist-
control loading ψ(t) is given while λ(t) needs to be calculated. Under a torque-control
loading the applied torque is given while both ψ(t) and λ(t) are unknown functions to
be determined. In the numerical examples we will consider both cases. The deformation
gradient reads

F = F(R, t) =
⎡

⎣
r ′(R, t) 0 0

0 1 ψ(t)

0 0 λ2(t)

⎤

⎦ , (3.3)

where r ′(R, t) = ∂r(R,t)

∂R
. The incompressibility condition is written as

J =
√

det g
det G

det F = λ2(t) r(R, t) r ′(R, t)

R
= 1 . (3.4)

5Family 3 deformations are universal for certain inhomogeneous and anisotropic bars as well [44, 47, 48]. In
this paper, we restrict our calculations to isotropic and homogeneous bars.
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Fig. 2 An accreting circular
cylindrical bar undergoing finite
torsion while it is free to deform
axially. (a) The initial bar, (b) the
accreting bar at time t , and
(c) the residually-stressed
accreted bar after the completion
of accretion and removal of the
external forces

This condition, together with r(0, t) = 0, gives us

r(R, t) = R

λ(t)
, 0 ≤ R ≤ R0 . (3.5)

We assume that while the cylindrical bar is under the time-dependent deformation (3.2)
cylindrical layers of stress-free material are printed continuously on its boundary (see
Fig. 3). The growth velocity is assumed to be normal to the boundary in the current configu-
ration and has magnitude ug(t). This means that in the time interval [t, t + dt] a stress-free
circular cylindrical shell of thickness ug(t)dt is attached to the deformed body. We also as-
sume that this accretion process is continuous in the time interval t ∈ [0, ta]. Let us assign a
time of accretion τ(R) to each layer with the radial coordinate R in the reference configu-
ration. For 0 ≤ R ≤ R0, τ(R) = 0. We assume that there is no ablation during the accretion
process, and hence τ(R) is invertible for R > R0. Its inverse is denoted as s = τ−1, and
it assigns to the time t the radial coordinate of the accreted cylinder in the reference con-
figuration. The growth surfaces in the reference and the current configurations are defined
as

�t = {(s(t),
,Z) : 0 ≤ 
 < 2π ,0 ≤ Z ≤ L} ,

ωt = {
(r(s(t), t),
 + ψ(t)Z,λ2(t)Z) : 0 ≤ 
 < 2π ,0 ≤ Z ≤ L

}
.

(3.6)

Note that

d

dt
r(s(t), t) = ∂r

∂R
(s(t), t)ṡ(t) + ∂r

∂t
(s(t), t) = r ′(s(t), t) Ug(t) + V r(s(t), t), (3.7)

where Ug(t) = ṡ(t), and V r = ∂r
∂t

is the radial component of the material velocity on the
growth surface. In the absence of accretion, the spatial velocity of the material points lying
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Fig. 3 Cross section of a circular cylindrical bar undergoing symmetric accretion and torsion simultaneously.
(a) The material manifold (B,G). The radial coordinate of the boundary of the accreting bar at time t is s(t).
At a later time t +dt the radial coordinate changes to s(t)+Ug(t)dt . (b) The deformed bar under torsion with
a layer of stress-free material of thickness ug(t)dt joining its boundary during the time interval [t, t + dt].
(c) The residually-stressed accreted bar after the removal of the external torque

on the boundary is V r(s(t), t), and this implies that

ug(t) = r ′(s(t), t)Ug(t) . (3.8)

Following [32], we choose Ug(t) = ug(t). Sozio and Yavari [32] showed that other choices
for Ug(t) will result in isometric material metrics. In other words, this choice will not affect
the calculation of stresses, see Remark 3.1.

From (3.8), the choice Ug(t) = ug(t) imposes the following constraint on r(R, t):

r ′(s(t), t) = 1 , or r ′(R, τ(R)) = 1 . (3.9)

Note that s(t) = R0 + ∫ t

0 ug(ξ)dξ . In order to simplify the calculations, let us assume that
the spatial growth velocity is constant, i.e., ug(t) = u0 > 0. Thus

s(t) = R0 + u0t , or τ(R) = R − R0

u0
. (3.10)

The constraint (3.9) is simplified to read

r ′(R0 + u0t, t) = 1 , or r ′
(

R,
R − R0

u0

)
= 1 . (3.11)

For the initial body, i.e., for 0 ≤ R ≤ R0, the material metric has the representation (3.1)1.
For R0 ≤ R ≤ s(t), we assume that the accreted cylindrical layer at any instant of time t is
stress-free (generalizing our analysis to the case of pre-stressed material is straightforward
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[32]). This implies that the material metric at R = s(t) is the pull-back of the metric of the
(Euclidean) ambient space, i.e.,

G(s(t)) = ϕ∗
t g(r(s(t), t)) , or G(R) = ϕ∗

τ(R) g(r(R, τ(R))). (3.12)

In components, one has GAB(s(t)) = GAB(R) = Fa
A(R, τ(R))F b

B(R, τ(R))gab(r(R,

τ(R))). Therefore

G(R) =
⎡

⎣
r ′2(R, τ(R)) 0 0

0 r2(R, τ(R)) ψ(τ(R)) r2(R, τ(R))

0 ψ(τ(R)) r2(R, τ(R)) ψ2(τ (R)) r2(R, τ(R)) + λ4(τ (R))

⎤

⎦

=
⎡

⎣
1 0 0
0 r2(R, τ(R)) ψ(τ(R)) r2(R, τ(R))

0 ψ(τ(R)) r2(R, τ(R)) ψ2(τ (R)) r2(R, τ(R)) + λ4(τ (R))

⎤

⎦ ,

(3.13)
where use was made of (3.9), and τ(R) is given in (3.10)2.

For this accretion problem, the material manifold is an evolving Riemannian manifold
(Bt ,G), where

Bt = {
(R,
,Z) : 0 ≤ 
 < 2π , R0 ≤ R ≤ s(t) = R0 + u0t , 0 ≤ Z ≤ L

}
, (3.14)

and6

0 ≤ R ≤ R0 : G =
⎡

⎣
1 0 0
0 R2 0
0 0 1

⎤

⎦ ,

R0 ≤ R ≤ R0 + u0t :

G =
⎡

⎣
1 0 0
0 r2(R, τ(R)) ψ(τ(R)) r2(R, τ(R))

0 ψ(τ(R)) r2(R, τ(R)) ψ2(τ (R)) r2(R, τ(R)) + λ4(τ (R))

⎤

⎦ .

(3.15)

The incompressibility constraint for R ≥ R0 is written as

J =
√

det g
det G

det F = r(R, t)

r(R, τ(R))λ2(τ (R))
r ′(R, t) λ2(t) = 1. (3.16)

Thus

r(R, t) r ′(R, t) = r̄(R)
λ2(τ (R))

λ2(t)
, (3.17)

6Note that as soon as a layer is deposited it becomes part of the body and participates in the deformation
process. If the load is fixed, one would have a classical twist-fit problem (Fig. 1). The time dependence of
the load (or twist) makes the natural state of the body (the material metric) inhomogeneous. In other words,
after completion of accretion if each cylindrical layer is allowed to relax independently of the rest of the body
the collection of relaxed thin cylindrical shells can not be put back together in the Euclidean ambient space
without local elastic deformations. This incompatibility of the local rest configurations depends on the state
of deformation during accretion and indirectly on the applied load during accretion.
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where r̄(R) := r(R, τ(R)) = r
(
R,

R−R0
u0

)
. Hence

r2(R, t) = R2
0

λ2(t)
+ 2

λ2(t)

∫ R

R0

r̄(ξ ) λ2(τ (ξ)) dξ, R0 ≤ R ≤ R0 + u0t , (3.18)

where use was made of (3.5). Thus

λ2(t) r2(R, t) = R2
0 + 2

∫ R

R0

r̄(ξ ) λ2(τ (ξ)) dξ . (3.19)

The right-hand side is time independent, and hence, λ2(t) r2(R, t) is independent of time. In
particular, λ2(t) r2(R, t) = λ2(τ (R)) r2(R, τ(R)), and hence

r(R, t) = λ(τ(R))

λ(t)
r̄(R) . (3.20)

The constraint (3.9) gives the following ODE for the unknown function r̄(R):

r̄ ′(R) + λ′(τ (R)) τ ′(R)

λ(τ(R))
r̄(R) = 1 . (3.21)

With the initial condition r̄(R0) = R0, this ODE has the following solution:

r̄(R) = 1

λ(τ(R))

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
. (3.22)

Therefore7

r(R, t) = 1

λ(t)

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
. (3.23)

For 0 ≤ R ≤ R0:

b	(R, t) =
⎡

⎣

1
λ2(t)

0 0
0 1

R2 + ψ2(t) λ2(t)ψ(t)

0 λ2(t)ψ(t) λ4(t)

⎤

⎦ ,

c	(R, t) =
⎡

⎢
⎣

λ2(t) 0 0

0 λ4(t)

R2 −ψ(t)

0 −ψ(t)
R2ψ2(t)+1

λ4(t)

⎤

⎥
⎦ .

(3.24)

The principal invariants of b read

I1(R, t) = 2 + R2ψ2(t) + λ6(t)

λ2(t)
, I2(R, t) = 1 + R2ψ2(t) + 2λ6(t)

λ4(t)
. (3.25)

7This is identical to what was obtained in [51] in the case of accreting bars under finite extension.
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The Cauchy stress has the following non-zero components

σ rr (R, t) = −p(R, t) + α(R, t)

λ2(t)
− β(R, t) λ2(t) ,

σ θθ (R, t) = −p(R, t)
λ2(t)

R2
+ α(R, t)

[
1

R2
+ ψ2(t)

]
− β(R, t) λ4(t)

R2
,

σ zz(R, t) = −p(R, t) + α(R, t) λ4(t) − β(R, t)
1 + R2ψ2(t)

λ4(t)
,

σ θz(R, t) = ψ(t)
[
α(R, t)λ2(t) + β(R, t)

]
,

(3.26)

where α = 2 ∂W
∂I1

and β = 2 ∂W
∂I2

. Using the circumferential and axial equilibrium equations

one concludes that p = p(R, t). The radial equilibrium equation reads ∂σ rr

∂r
+ 1

r
σ rr −rσ θθ =

0. This can be rewritten in terms of the referential coordinates as

∂σ rr

∂R
− ψ2(t)

λ2(t)
αR = 0 . (3.27)

Thus

σ rr (R, t) = σ0(t) − ψ2(t)

λ2(t)

∫ R0

R

ξ α(ξ, t) dξ , (3.28)

where σ0(t) = σ rr (R0, t). This implies that for the initial body one has

−p(R, t) = σ0(t) − ψ2(t)

λ2(t)

∫ R0

R

ξ α(ξ, t) dξ − α(R, t)

λ2(t)
+ β(R, t) λ2(t) . (3.29)

For the secondary body, i.e., for R0 ≤ R ≤ s(t):

b	(R, t) =

⎡

⎢⎢
⎣

λ2(τ (R))

λ2(t)
0 0

0 λ4(τ (R))+r̄2(R)(ψ(t)−ψ(τ(R)))2

λ4(τ (R))r̄2(R)

λ2(t)(ψ(t)−ψ(τ(R)))

λ4(τ (R))

0 λ2(t)(ψ(t)−ψ(τ(R)))

λ4(τ (R))

λ4(t)

λ4(τ (R))

⎤

⎥⎥
⎦ ,

c	(R, t) =

⎡

⎢⎢
⎣

λ2(t)

λ2(τ (R))
0 0

0 λ4(t)

λ4(τ (R))r̄2(R)

ψ(τ(R))−ψ(t)

λ2(τ (R))

0 ψ(τ(R))−ψ(t)

λ(τ (R))2
λ4(τ (R))+r̄2(R)(ψ(t)−ψ(τ(R)))2

λ4(t)

⎤

⎥⎥
⎦ .

(3.30)

The principal invariants of b read

I1(R, t) = λ4(t)

λ4(τ (R))
+ 2λ2(τ (R))

λ2(t)
+ r̄2(R)(ψ(t) − ψ(τ(R)))2

λ2(τ (R))λ2(t)
,

I2(R, t) = λ4(τ (R))

λ4(t)
+ 2λ2(t)

λ2(τ (R))
+ r̄2(R)(ψ(t) − ψ(τ(R)))2

λ4(t)
.

(3.31)
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The non-zero components of the Cauchy stress are

σ rr (R, t) = −p(R, t) + α(R, t)
λ2(τ (R))

λ2(t)
− β(R, t)

λ2(t)

λ2(τ (R))
,

σ θθ (R, t) = −p(R, t)
λ2(t)

λ2(τ (R)) r̄2(R)
+ α(R, t)

r̄2(R)
− β(R, t) λ4(t)

λ4(τ (R)) r̄2(R)

+ α(R, t) (ψ(t) − ψ(τ(R)))2

λ4(τ (R))
,

σ zz(R, t) = −p(R, t) + α(R, t) λ4(t)

λ4(τ (R))
− β(R, t) λ4(τ (R))

λ4(t)

− β(R, t) r̄2(R)(ψ(t) − ψ(τ(R)))2

λ4(t)
,

σ θz(R, t) = ψ(t) − ψ(τ(R))

λ4(τ (R))

[
α(R, t) λ2(t) + β(R, t) λ2(τ (R))

]
.

(3.32)

The equilibrium equation reads

∂σ rr (R, t)

∂R
− α(R, t)

r̄(R)(ψ(t) − ψ(τ(R)))2

λ2(τ (R))λ2(t)
= 0 . (3.33)

Thus

σ rr (R, t) = σ0(t) +
∫ R

R0

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ)))2

λ2(τ )λ2(t)
dξ . (3.34)

This implies that for R0 ≤ R ≤ s(t):

−p(R, t) = σ0(t) +
∫ R

R0

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ)))2

λ2(τ )λ2(t)
dξ − α(R, t)

λ2(τ (R))

λ2(t)

+ β(R, t)
λ2(t)

λ2(τ (R))
. (3.35)

Thus on the growth surface, one has

−p(s(t), t) = σ0(t) +
∫ s(t)

R0

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ)))2

λ2(τ (ξ))λ2(t)
dξ − α(s(t), t) + β(s(t), t) .

(3.36)
Note that for R = s(t), τ(R) = τ(s(t)) = t , and hence ψ(t) = ψ(τ(R)). Thus

σ (s(t), t) = [−p(s(t), t) + α(s(t), t) − β(s(t), t)]

⎡

⎣
1 0 0
0 1

r̄2(R)
0

0 0 1

⎤

⎦ . (3.37)

We know that σ (s(t), t) = 0 (note that stress-free material is added on the boundary and this
means that the stress tensor vanishes on the boundary), and hence −p(s(t), t)+α(s(t), t)−
β(s(t), t) = 0. Therefore

σ0(t) = −
∫ s(t)

R0

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ)))2

λ2(τ (ξ))λ2(t)
dξ . (3.38)



Accretion Mechanics of Nonlinear Elastic Circular Cylindrical Bars Under... 41

Thus, for R0 ≤ R ≤ s(t) we have

−p(R, t) = − 1

λ2(t)

∫ s(t)

R

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ − α(R, t)

λ2(τ (R))

λ2(t)

+ β(R, t)
λ2(t)

λ2(τ (R))
. (3.39)

From (3.29), for 0 ≤ R ≤ R0:

−p(R, t) = −ψ2(t)

λ2(t)

∫ R0

R

ξ α(ξ, t) dξ − 1

λ2(t)

∫ s(t)

R0

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ

− α(R, t)

λ2(t)
+ β(R, t) λ2(t) .

(3.40)
Therefore, the non-zero physical components of the Cauchy stress for the initial body (0 ≤
R ≤ R0) are8

σ̄ rr (R, t) = −ψ2(t)

λ2(t)

∫ R0

R

ξ α(ξ, t) dξ − 1

λ2(t)

∫ s(t)

R0

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ ,

σ̄ θθ (R, t) = −ψ2(t)

λ2(t)

∫ R0

R

ξ α(ξ, t) dξ − 1

λ2(t)

∫ s(t)

R0

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ

+ α(R, t)
R2 ψ2(t)

λ2(t)
,

σ̄ zz(R, t) = −ψ2(t)

λ2(t)

∫ R0

R

ξ α(ξ, t) dξ − 1

λ2(t)

∫ s(t)

R0

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ

+ α(R, t)

[
λ4(t) − 1

λ2(t)

]
+ β(R, t)

[
λ2(t) − 1 + R2ψ2(t)

λ4(t)

]
,

σ̄ θz(R, t) = R ψ(t)

λ(t)

[
α(R, t)λ2(t) + β(R, t)

]
.

(3.41)

For the secondary body (R0 ≤ R ≤ s(t)) they read

σ̄ rr (R, t) = − 1

λ2(t)

∫ s(t)

R

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ ,

σ̄ θθ (R, t) = − 1

λ2(t)

∫ s(t)

R

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ

+ α(R, t) r̄2(R) (ψ(t) − ψ(τ(R)))2

λ2(t) λ2(τ (R))
,

8The physical components of the Cauchy stress are defined as σ̄ ab = σab√
gaa gbb (no summation) [41].
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σ̄ zz(R, t) = − 1

λ2(t)

∫ s(t)

R

α(ξ, t)
r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ (3.42)

− β(R, t) r̄2(R)(ψ(t) − ψ(τ(R)))2

λ4(t)
+ α(R, t)

[
λ4(t)

λ4(τ (R))
− λ2(τ (R))

λ2(t)

]

+ β(R, t)

[
λ2(t)

λ2(τ (R))
− λ4(τ (R))

λ4(t)

]
,

σ̄ θz(R, t) = r̄(R)(ψ(t) − ψ(τ(R)))

λ(t) λ3(τ (R))

[
α(R, t) λ2(t) + β(R, t) λ2(τ (R))

]
.

At the two ends of the bar (Z = 0,L), the axial force is assumed to be zero and the
applied torque is given, i.e.,

F(t) = 2π

∫ s(t)

0
P zZ(R, t)R dR = 0 ,

M(t) = 2π

∫ s(t)

0
P̄ θZ(R, t)R2 dR = 2π

∫ s(t)

0
P θZ(R, t) r(R, t)R2 dR ,

(3.43)

where P̄ zZ = P zZ is the zZ-component of the first Piola-Kirchhoff stress and P̄ θZ = rP θZ

is the physical θZ component of the first Piola-Kirchhoff stress. Note that

P zZ(R, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ψ2(t)

λ4(t)

∫ R0
R

ξ α(ξ, t) dξ − 1
λ4(t)

∫ s(t)

R0
α(ξ, t)

r̄(ξ)(ψ(t)−ψ(τ(ξ))2

λ2(τ (ξ)
dξ

+α(R, t)
[
λ2(t) − 1

λ4(t)

]
+ β(R, t)

[
1 − 1+R2ψ2(t)

λ6(t)

]
,

0 ≤ R ≤ R0 ,

− 1
λ4(t)

∫ s(t)

R
α(ξ, t)

r̄(ξ)(ψ(t)−ψ(τ(ξ))2

λ2(τ (ξ)
dξ − β(R,t) r̄2(R)(ψ(t)−ψ(τ))2

λ6(t)

+α(R, t)
[

λ2(t)

λ4(τ (R))
− λ2(τ (R))

λ4(t)

]
+ β(R, t)

[
1

λ2(τ (R))
− λ4(τ (R))

λ6(t)

]
,

R0 ≤ R ≤ s(t) ,

(3.44)

and

P θZ(R, t) =

⎧
⎪⎨

⎪⎩

[
α(R, t) + β(R,t)

λ2(t)

]
ψ(t) , 0 ≤ R ≤ R0 ,

ψ(t)−ψ(τ(R))

λ2(t) λ4(τ (R))

[
α(R, t) λ2(t) + β(R, t) λ2(τ )

]
, R0 ≤ R ≤ s(t) .

(3.45)

Remark 3.1 Instead of the choice Ug(t) = ug(t) = u0, let us assume that Ug(t) = U0 > 0. In
this case, instead of the constraint (3.9), one has

r ′(s(t), t) = u0

U0
, or r ′(R̂, τ̂ (R̂)) = u0

U0
, (3.46)

where R̂ is the radial coordinate of the new material manifold (for 0 ≤ R ≤ R0, R̂ = R).
Note that in the two material manifolds the time of attachment of the same layer should be
the same, i.e., τ̂ (R̂) = τ(R). This implies that
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R̂ =
(

1 − U0

u0

)
R0 + U0

u0
R . (3.47)

With this choice, the new time dependent material manifold is

Bt =
{
(R̂,
,Z) : 0 ≤ 
 < 2π , R0 ≤ R̂ ≤ s(t) = R0 + U0 t , 0 ≤ Z ≤ L

}
. (3.48)

Let us denote the radial component of the deformation mapping with respect to the new
material manifold by r̂(R̂, t). The material metric has the following representation

0 ≤ R ≤ R0 : G =
⎡

⎣
1 0 0
0 R2 0
0 0 1

⎤

⎦ ,

R0 ≤ R̂ ≤ R0 + U0 t :

G =
⎡

⎢
⎣

(
u0
U0

)2
0 0

0 r̂2(R̂, τ̂ (R̂)) ψ(τ̂ (R̂)) r̂2(R̂, τ̂ (R̂))

0 ψ(τ̂ (R̂)) r̂2(R̂, τ̂ (R̂)) ψ2(τ̂ (R̂)) r̂2(R̂, τ̂ (R̂)) + λ4(τ̂ (R̂))

⎤

⎥
⎦ .

(3.49)

With respect to the new material manifold

F = F̂(R̂, t) =
⎡

⎣
r̂ ′(R̂, t) 0 0

0 1 ψ(t)

0 0 λ2(t)

⎤

⎦ . (3.50)

For 0 ≤ R ≤ R0, we have R̂ = R, and r̂(R̂, t) = r(R, t) = R
λ(t)

. For R ≥ R0, incompressibil-
ity implies that

Ĵ = r̂(R̂, t)
u0
U0

r̂(R̂, τ̂ (R̂)) λ2(τ̂ (R̂))
r̂ ′(R̂, t) λ2(t) = 1 . (3.51)

Therefore

λ2(t) r̂2(R̂, t) = R2
0 + 2

u0

U0

∫ R̂

R0

r̂(η)λ2(τ̂ (η)) dη , (3.52)

where r̂(η) = r̂(η, τ̂ (η)). The right-hand side of the above relation is time independent, and
hence λ2(t) r̂2(R̂, t) = λ2(τ̂ (R̂)) r̂2(R̂, τ̂ (R̂)), or

r̂(R̂, t) = λ(τ̂ (R̂))

λ(t)
r̂(R̂) . (3.53)

The constraint (3.46) gives the following ODE for the unknown function r̂(R̂):

r̂ ′(R̂) +
[
λ(τ̂ (R̂))

]′

λ(τ̂ (R̂))
r̂(R̂) = u0

U0
. (3.54)
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This ODE has the following solution:

r̂(R̂) = 1

λ(τ̂ (R̂))

[

R0 + u0

U0

∫ R̂

R0

λ(τ̂ (η)) dη

]

= 1

λ(τ(R))

[

R0 + u0

U0

∫ R̂

R0

λ(τ̂ (η)) dη

]

.

(3.55)

Note that dR̂ = U0
u0

dR, and hence u0
U0

∫ R̂

R0
λ(τ̂ (η)) dη = ∫ R

R0
λ(τ(ξ)) dξ . Substituting this re-

lation back into (3.55), and comparing this with (3.23), we observe that r̂(R̂, t) = r(R, t).
This means that kinematics is not affected by the choice Ug(t) = U0 > 0. Consequently,
stresses are not affected either.

Remark 3.2 In [10] for each of the six known families of universal deformations of incom-
pressible isotropic solids [9, 12, 29] the corresponding universal eigenstrains (or equiva-
lently material metrics) were found. However, there may be many more pairs of universal
deformations and their corresponding universal eigenstrains (material metrics). In [51] one
such family of universal deformations and eigenstrains was found. In this paper, we have
found another family of universal deformations and eigenstrains. More specifically, we have
shown that the following pair of deformations and material metrics (ϕ,G)

(r, θ, z) = ϕ(R,
,Z) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r = r(R, t) =

⎧
⎪⎪⎨

⎪⎪⎩

R

λ(t)
, 0 ≤ R ≤ R0,

1

λ(t)

[
R0 +

∫ R

R0

λ(τ(ξ)) dξ

]
, R0 ≤ R ≤ s(t),

θ = 
 + ψ(t)Z,

z = λ2(t)Z,

(3.56)
and

G=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎣

1 0 0

0 R2 0

0 0 1

⎤

⎥
⎦ , 0 ≤ R ≤ R0,

⎡

⎢
⎣

1 0 0

0 r2(R, τ(R)) ψ(τ(R)) r2(R, τ(R))

0 ψ(τ(R)) r2(R, τ(R)) ψ2(τ (R)) r2(R, τ(R)) + λ4(τ (R))

⎤

⎥
⎦ , R0 ≤R ≤ s(t),

(3.57)
are universal.

Example 3.3 For neo-Hookean solids α(R) = μ(R) > 0 and β(R) = 0. Let us also assume
a uniform shear modulus μ(R) = μ0. Therefore, the non-zero physical components of the
Cauchy stress for the initial body (0 ≤ R ≤ R0) are

σ̄ rr (R, t) = −μ0
ψ2(t)

λ2(t)

R2
0 − R2

2
− μ0

λ2(t)

∫ s(t)

R0

r̄(ξ )(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ ,

σ̄ θθ (R, t) = −μ0
ψ2(t)

λ2(t)

R2
0 − R2

2
− μ0

λ2(t)

∫ s(t)

R0

r̄(ξ )(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ

+ μ0
R2 ψ2(t)

λ2(t)
, (3.58)
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σ̄ zz(R, t) = −μ0
ψ2(t)

λ2(t)

R2
0 − R2

2
− μ0

λ2(t)

∫ s(t)

R0

r̄(ξ )(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ

+ μ0

[
λ4(t) − 1

λ2(t)

]
,

σ̄ θz(R, t) = μ0 R ψ(t)λ(t) .

For the secondary body (R0 ≤ R ≤ s(t)) they read

σ̄ rr (R, t) = − μ0

λ2(t)

∫ s(t)

R

r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ))
dξ ,

σ̄ θθ (R, t) = − μ0

λ2(t)

∫ s(t)

R

r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ + μ0

r̄2(R) (ψ(t) − ψ(τ(R)))2

λ2(t) λ2(τ (R))
,

σ̄ zz(R, t) = − μ0

λ2(t)

∫ s(t)

R

r̄(ξ)(ψ(t) − ψ(τ(ξ))2

λ2(τ (ξ)
dξ + μ0

[
λ4(t)

λ4(τ (R))
− λ2(τ (R))

λ2(t)

]
,

σ̄ θz(R, t) = μ0
r̄(R)(ψ(t) − ψ(τ(R)))

λ3(τ (R))
λ(t) .

(3.59)
Thus

P zZ(R, t) = μ0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ψ2(t)

2λ4(t)

(
R2

0 − R2
)+ λ2(t) − 1

λ4(t)

− 1
λ4(t)

∫ s(t)

R0

r̄(ξ )(ψ(t)−ψ(τ(ξ))2

λ2(τ (ξ)
dξ , 0 ≤ R ≤ R0 ,

λ2(t)

λ4(τ (R))
− λ2(τ (R))

λ4(t)
− 1

λ4(t)

∫ s(t)

R

r̄(ξ)(ψ(t)−ψ(τ(ξ))2

λ2(τ (ξ)
dξ , R0 ≤ R ≤ s(t) ,

(3.60)
and

P θZ(R, t) = μ0

⎧
⎪⎨

⎪⎩

ψ(t) , 0 ≤ R ≤ R0 ,

ψ(t)−ψ(τ(R))

λ4(τ (R))
, R0 ≤ R ≤ s(t) .

(3.61)

The applied torque is calculated as

M(t) = πμ0R
4
0

2

ψ(t)

λ(t)
+ 2πμ0R0

[
ψ(t)h1(t) − h2(t)

]+ 2πμ0
[
ψ(t)h3(t) − h4(t)

]
,

(3.62)

where

h1(t) =
∫ s(t)

R0

R2

λ5(τ (R))
dR , h2(t) =

∫ s(t)

R0

R2 ψ(τ(R))

λ5(τ (R))
dR ,

h3(t) =
∫ s(t)

R0

R2 γ (R)

λ5(τ (R))
dR , h4(t) =

∫ s(t)

R0

R2 ψ(τ(R)) γ (R)

λ5(τ (R))
dR ,

γ (R) =
∫ R

R0

λ(τ(ξ)) dξ .

(3.63)
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Thus

h′
1(t) = u0 s2(t)

λ5(t)
, h′

2(t) = u0 s2(t)ψ(t)

λ5(t)
,

h′
3(t) = u0 s2(t) h5(t)

λ5(t)
, h′

4(t) = u0 s2(t)ψ(t)h5(t)

λ5(t)
, h′

5(t) = u0 λ(t) ,

(3.64)

where h5(t) = γ (s(t)). We assume that M(0) = 0, λ(0) = 1, and ψ(0) = 0. Note also that
hj (0) = 0, j = 1, . . . ,5.

The zero applied force condition is written as

[
λ2(t) − 1

λ4(t)

]
R2

0

2
− R4

0 ψ2(t)

8λ4(t)
+ λ2(t) k1(t) − k2(t)

λ4(t)

− R2
0

2λ4(t)

[
ψ2(t) (R0k3(t) + k4(t)) − 2ψ(t) (R0k5(t) + k6(t)) + R0k7(t) + k8(t)

]

− 1

λ4(t)

[
ψ2(t)

(
R0k̂3(t) + k̂4(t)

)
− 2ψ(t)

(
R0k̂5(t) + k̂6(t)

)
+ R0k̂7(t) + k̂8(t)

]
= 0 ,

(3.65)

where

k1(t) =
∫ s(t)

R0

R

λ4(τ (R))
dR , k2(t) =

∫ s(t)

R0

R λ2(τ (R)) dR ,

k3(t) =
∫ s(t)

R0

R

λ3(τ (R))
dR , k4(t) =

∫ s(t)

R0

γ (R)

λ3(τ (R))
dR ,

k5(t) =
∫ s(t)

R0

ψ(τ(R))

λ3(τ (R))
dR , k6(t) =

∫ s(t)

R0

ψ(τ(R)) γ (R)

λ3(τ (R))
dR ,

k7(t) =
∫ s(t)

R0

ψ2(τ (R))

λ3(τ (R))
dR , k8(t) =

∫ s(t)

R0

ψ2(τ (R)) γ (R)

λ3(τ (R))
dR ,

k̂3(t) =
∫ s(t)

R0

R

∫ s(t)

R

1

λ3(τ (ξ))
dξ dR , k̂4(t) =

∫ s(t)

R0

R

∫ s(t)

R

γ (ξ)

λ3(τ (ξ))
dξ dR ,

k̂5(t) =
∫ s(t)

R0

R

∫ s(t)

R

ψ(τ(ξ))

λ3(τ (ξ))
dξ dR , k̂6(t) =

∫ s(t)

R0

R

∫ s(t)

R

ψ(τ(ξ)) γ (ξ)

λ3(τ (ξ))
dξ dR ,

k̂7(t) =
∫ s(t)

R0

R

∫ s(t)

R

ψ2(τ (ξ))

λ3(τ (ξ))
dξ dR , k̂8(t) =

∫ s(t)

R0

R

∫ s(t)

R

ψ2(τ (ξ)) γ (ξ)

λ3(τ (ξ))
dξ dR .

(3.66)
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Thus

k′
1(t) = u0 s(t)

λ4(t)
, k′

2(t) = u0 s(t) λ2(t) , k′
3(t) = u0 s(t)

λ3(t)
,

k′
4(t) = u0 γ (s(t))

λ3(t)
, k′

5(t) = u0 ψ(t)

λ3(t)
, k′

6(t) = u0 ψ(t) γ (s(t))

λ3(t)
,

k′
7(t) = ψ2(t)

λ3(t)
, k′

8(t) = u0 ψ2(t) γ (s(t))

λ3(t)
.

(3.67)

Note that9

k̂′
3(t) = u0

2λ3(t)

(
s2(t) − R2

0

)
. (3.68)

Similarly,

k̂′
4(t) = u0 γ (s(t))

2λ3(t)

(
s2(t) − R2

0

)
, k̂′

5(t) = u0 ψ(t)

2λ3(t)

(
s2(t) − R2

0

)
,

k̂′
6(t) = u0 ψ(t) γ (s(t))

2λ3(t)

(
s2(t) − R2

0

)
, k̂′

7(t) = u0 ψ2(t)

2λ3(t)

(
s2(t) − R2

0

)
,

k̂′
8(t) = u0 ψ2(t) γ (s(t))

2λ3(t)

(
s2(t) − R2

0

)
.

(3.69)

9This is a simple application of the Leibniz integral rule:

k̂′
3(t) = d

dt

∫ s(t)

R0

f (t,R)dR = s′(t) f (t, s(t)) +
∫ s(t)

R0

∂f (t,R)

∂t
dR ,

where

f (t,R) = R

∫ s(t)

R

dξ

λ3(τ (ξ))
.

Note that

f (t, s(t)) = s(t)

∫ s(t)

s(t)

dξ

λ3(τ (ξ))
= 0 ,

∂f (t,R)

∂t
= R s′(t) 1

λ3(τ (s(t)))
= R u0

λ3(t)
.

Thus

k̂′
3(t) =

∫ s(t)

R0

R u0

λ3(t)
dR = u0

2λ3(t)

(
s2(t) − R2

0
)
.
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Note that k1(0) = · · · = k8(0) = 0, and k̂3(0) = · · · = k̂8(0) = 0. Therefore, we have the
following system of nonlinear first-order ODEs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
λ2(t) − 1

λ4(t)

]
R2

0

2
− R4

0 ψ2(t)

8λ4(t)
+ λ2(t) k1(t) − k2(t)

λ4(t)

− R2
0

2λ4(t)

[
ψ2(t) (R0k3(t) + k4(t)) − 2ψ(t) (R0k5(t) + k6(t)) + R0k7(t) + k8(t)

]

− 1

λ4(t)

[
ψ2(t)

(
R0k̂3(t) + k̂4(t)

)
− 2ψ(t)

(
R0k̂5(t) + k̂6(t)

)
+ R0k̂7(t) + k̂8(t)

]
= 0,

πR4
0

2
μ0

ψ(t)

λ(t)
+ 2πμ0R0

[
ψ(t)h1(t) − h2(t)

]+ 2πμ0

[
ψ(t)h3(t) − h4(t)

]= M(t),

h′
1(t) = u0 s2(t)

λ5(t)
, h′

2(t) = u0 s2(t)ψ(t)

λ5(t)
, h′

3(t) = u0 s2(t) h5(t)

λ5(t)
,

h′
4(t) = u0 s2(t)ψ(t)h5(t)

λ5(t)
, h′

5(t) = u0 λ(t),

k′
1(t) = u0 s(t)

λ4(t)
, k′

2(t) = u0 s(t) λ2(t), k′
3(t) = u0 s(t)

λ3(t)
, k′

4(t) = u0 h5(t)

λ3(t)
,

k′
5(t) = u0 ψ(t)

λ3(t)
, k′

6(t) = u0 ψ(t)h5(t)

λ3(t)
, k′

7(t) = u0 ψ2(t)

λ3(t)
, k′

8(t) = u0 ψ2(t) h5(t)

λ3(t)
,

k̂′
3(t) = u0

2λ3(t)

(
s2(t) − R2

0

)
, k̂′

4(t) = u0 h5(t)

2λ3(t)

(
s2(t) − R2

0

)
,

k̂′
5(t) = u0 ψ(t)

2λ3(t)

(
s2(t) − R2

0

)
, k̂′

6(t) = u0 ψ(t)h5(t)

2λ3(t)

(
s2(t) − R2

0

)
,

k̂′
7(t) = u0 ψ2(t)

2λ3(t)

(
s2(t) − R2

0

)
, k̂′

8(t) = u0 ψ2(t) h5(t)

2λ3(t)

(
s2(t) − R2

0

)
,

λ(0) = 1, ψ(0) = h1(0) = · · · = h5(0) = k1(0) = · · · = k8(0) = k̂3(0) = · · · = k̂8(0) = 0.

(3.70)

Let us assume that R0 = 1, u0 = 1, and ta = 1. We first consider the following twist-control
loadings:

ψ1(t) = π sin
(2π t

ta

)
, ψ2(t) = π sin2

(2π t

ta

)
,

ψ3(t) = π sin
(8π t

ta

)
, ψ4(t) = π sin2

(8π t

ta

)
.

(3.71)

The corresponding λ2(t) distribution for each loading is shown in Fig. 4. Next we consider
the following torque-control loadings.

M1(t) = π R3
0 sin

(2π t

ta

)
, M2(t) = π R3

0 sin2
(2π t

ta

)
,

M3(t) = π R3
0 sin

(8π t

ta

)
, M4(t) = π R3

0 sin2
(8π t

ta

)
.

(3.72)

The corresponding λ2(t) and ψ(t) distributions are shown in Fig. 5.

Remark 3.4 Note that in (3.62), M(t) is a linear function of ψ(t). Consequently, in (3.62)
and (3.63) the transformation ψ(t) → −ψ(t) changes the sign of M(t). Note also that (3.65)
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Fig. 4 The axial stretch
distribution for a bar under the
four different twist-control
loadings given in (3.71) during
accretion

Fig. 5 The time-dependent axial stretch and twist per unit length for a bar under four different applied torques
given in (3.72) during accretion

is unchanged under the transformation ψ(t) → −ψ(t). This implies that if (λ(t),ψ(t)), is
a solution for M(t), t ∈ [0, ta], then (λ(t),−ψ(t)), is a solution for −M(t), t ∈ [0, ta].
Consequently, from (3.58) and (3.59), if σ rr (R, t), σ θθ (R, t), σ zz(R, t), and σ θz(R, t) are
the stresses for M(t), t ∈ [0, ta], then σ rr (R, t), σ θθ (R, t), σ zz(R, t), and −σ θz(R, t) are
the stresses for −M(t), t ∈ [0, ta].

3.1 Residual Stresses

Let us assume that after the completion of accretion at time ta the accreted body is unloaded,
i.e., for t > ta , F(t) = M(t) = 0. In this section we calculate the residual stretch λ̃2, residual
twist ψ̃ , and residual stresses. The material metric of the accreted body has the following
representation:

0 ≤ R ≤ R0 : G =
⎡

⎣
1 0 0
0 R2 0
0 0 1

⎤

⎦ ,

R0 ≤ R ≤ Ra : G =
⎡

⎣
1 0 0
0 r̄2(R) ψ(τ(R)) r̄2(R)

0 ψ(τ(R)) r̄2(R) ψ2(τ (R)) r̄2(R) + λ4(τ (R))

⎤

⎦ ,

(3.73)
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where Ra = s(ta). Note that for a given loading during accretion the material manifold
(B,G), where B = Bta , has already been constructed. The map from the natural con-
figuration of the accreted body to its residually-stressed configuration with no external
loads is denoted by ϕ̃ : B → C̃ ⊂ S . In cylindrical coordinates it has the representation
ϕ̃(R,
,Z) = (r̃, θ̃, z̃) = (r̃(R),
 + ψ̃Z, λ̃2Z). Using the incompressibility constraint one
obtains

r̃(R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R

λ̃
, 0 ≤ R ≤ R0 ,

R2
0

λ̃2
+ 2

λ̃2

∫ R

R0

r̄(ξ ) λ2(τ (ξ)) dξ , R0 ≤ R ≤ Ra .

(3.74)

The residual Cauchy stress has the following distribution for the initial body (0 ≤ R ≤
R0)

¯̃σ rr (R) = − ψ̃2

λ̃2

∫ R0

R

ξ α(ξ) dξ − 1

λ̃2

∫ Ra

R0

α(ξ)
r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ ,

¯̃σ θθ (R) = − ψ̃2

λ̃2

∫ R0

R

ξ α(ξ) dξ − 1

λ̃2

∫ Ra

R0

α(ξ)
r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ + α(R)

R2 ψ̃2

λ̃2
,

¯̃σ zz(R) = − ψ̃2

λ̃2

∫ R0

R

ξ α(ξ) dξ − 1

λ̃2

∫ Ra

R0

α(ξ)
r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ

+ α(R)

[
λ̃4 − 1

λ̃2

]
+ β(R)

[

λ̃2 − 1 + R2 ψ̃2

λ̃4

]

,

¯̃σ θz(R) = R ψ̃

λ̃

[
α(R)λ̃2 + β(R)

]
,

(3.75)

and for the secondary body (R0 ≤ R ≤ Ra)

¯̃σ rr (R) = − 1

λ̃2

∫ Ra

R

α(ξ)
r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ ,

¯̃σ θθ (R) = − 1

λ̃2

∫ Ra

R

α(ξ)
r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ + α(R) r̄2(R) (ψ̃ − ψ(τ(ξ)))2

λ̃2 λ2(τ (ξ))
,

¯̃σ zz(R) = − 1

λ̃2

∫ Ra

R

α(ξ)
r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ − β(R) r̄2(R)(ψ̃ − ψ(τ(R)))2

λ̃4

+ α(R)

[
λ̃4

λ̃4(τ (R))
− λ2(τ (R))

λ̃2

]

+ β(R)

[
λ̃2

λ2(τ (R))
− λ4(τ (R))

λ̃4

]

,

¯̃σ θz(R) = r̄(R)(ψ̃ − ψ(τ(R)))

λ̃ λ3(τ (R))

[
α(R) λ̃2 + β(R)λ2(τ )

]
.

(3.76)



Accretion Mechanics of Nonlinear Elastic Circular Cylindrical Bars Under... 51

Table 1 Residual stretch and
twist for the four different
torque-control loadings given in
(3.72)

M1(t) M2(t) M3(t) M4(t)

λ̃2 1.24866 1.20544 1.26215 1.26174
ψ̃
π 0.18626 0.23904 0.022172 0.29500

Example 3.5 For a homogeneous neo-Hookean solid, the zero applied torque and force con-
ditions are written as the following system of nonlinear algebraic equations

R4
0

ψ̃

λ̃
+ 4R0

[
ψ̃ h̃1 − h̃2

]+ 4
[
ψ̃ h̃3 − h̃4

]= 0 ,

[
λ̃2 − 1

λ̃4

]
R2

0

2
− R4

0 ψ̃2

8λ̃4
+ λ̃2 k̃1 − k̃2

λ̃4

− R2
0

2λ̃4

[
ψ̃2

(
R0 k̃3 + k̃4

)
− 2ψ̃

(
R0 k̃5 + k̃6

)
+ R0 k̃7 + k̃8

]

− 1

λ̃4

[
ψ̃2

(
R0

˜̂
k3 + ˜̂

k4

)
− 2ψ̃

(
R0

˜̂
k5 + ˜̂

k6

)
+ R0

˜̂
k7 + ˜̂

k8

]
= 0 ,

(3.77)

where h̃i = hi(ta), i = 1, . . . ,4, k̃i = ki(ta), i = 1, . . . ,8, and ˜̂
ki = k̂i (ta), i = 3, . . . ,8.

For R0 = 1, u0 = 1, and ta = 1, the residual twists and stretches for the four applied
torques (3.72) are given in Table 1. The residual Cauchy stress components have the follow-
ing distributions. For 0 ≤ R ≤ R0:

¯̃σ rr (R) = −μ0
ψ̃2

λ̃2

R2
0 − R2

2
− μ0

λ̃2

∫ Ra

R0

r̄(ξ )(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ ,

¯̃σ θθ (R) = −μ0
ψ̃2

λ̃2

R2
0 − R2

2
− μ0

λ̃2

∫ Ra

R0

r̄(ξ )(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ + μ0

R2 ψ̃2

λ̃2
,

¯̃σ zz(R) = −μ0
ψ̃2

λ̃2

R2
0 − R2

2
− μ0

λ̃2

∫ Ra

R0

r̄(ξ )(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ + μ0

[
λ̃4 − 1

λ̃2

]
,

¯̃σ θz(R) = μ0 ψ̃ λ̃R .

(3.78)

For R0 ≤ R ≤ Ra :

¯̃σ rr (R) = −μ0

λ̃2

∫ Ra

R

r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ ,

¯̃σ θθ (R) = −μ0

λ̃2

∫ Ra

R

r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ + μ0 r̄2(R) (ψ̃ − ψ(τ(R)))2

λ̃2 λ2(τ (R))
,

¯̃σ zz(R) = −μ0

λ̃2

∫ Ra

R

r̄(ξ)(ψ̃ − ψ(τ(ξ)))2

λ2(τ (ξ))
dξ + μ0

[
λ̃4

λ4(τ (R))
− λ2(τ (R))

λ̃2

]

,

¯̃σ θz(R) = μ0
λ̃ r̄(R)(ψ̃ − ψ(τ(R)))

λ3(τ (R))
.

(3.79)
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Fig. 6 Residual stresses in a bar under the applied torque M(t) = 2πR3
0( t

ta
)3 during accretion

For R0 = 1, u0 = 1, and ta = 1, in Fig. 6 we show the residual stress distributions for the
loading M(t) = 2πR3

0

(
t
ta

)3
. It is observed that the shear stress is an order of magnitude

larger than the normal stresses.

3.2 Linearized Accretion Mechanics

In this section we linearize the governing equations of the nonlinear accretion theory and find
those of the linearized accretion mechanics. We assume that linearization is with respect to
an undeformed stress-free configuration of the bar. More precisely, let us consider a refer-
ence motion ϕ̊t , and a one-parameter family of motions ϕt,ε such that ϕt,0 = ϕ̊t [20, 32, 49].
For the combined torsion and extension of a bar we consider the following one-parameter
family of motions

ϕε(R,
,Z, t) = (rε(R, t),
 + ψε(t)Z,λ2
ε(t)Z) . (3.80)

We will linearize the governing equations with respect to the reference motion ϕ̊t (R,
,

Z, t) = (R,
,Z), which corresponds to the motion of a cylindrical bar that is under no
external forces or torques while stress-free cylindrical layers are added to its boundary in
the time interval [0, ta]. The variation field is defined as

δϕt (R,
,Z) = d

dε

∣∣∣
ε=0

ϕε(R,
,Z, t) = (δr(R, t), δψ(t)Z,2δλ(t)Z) . (3.81)

From

δr(R, t) = d

dε

∣∣∣
ε=0

rε(R, t) , (3.82)
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one concludes that δr̄(R) = δr
(
R,

R−R0
u0

)
. The displacement field is defined as

U(R,
,Z, t) = δϕt (R,
,Z) − δϕτ(R)(R,
,Z) . (3.83)

Assuming that ψ(0) = 0 and λ(0) = 1, for the initial body (0 ≤ R ≤ R0), ϕε(R,
,Z,0) =
(rε(R,0),
,Z) = (R,
,Z), and hence δϕ0(R,
,Z) = (0,0,0). Thus, for 0 ≤ R ≤ R0,
U(R,
,Z, t) = δϕt (R,
,Z). However, for the new material points (R0 ≤ R ≤ s(t) =
R0 + u0t ) the displacement field is defined with respect to their positions at the time of
attachment.

Linearized Kinematics For 0 ≤ R ≤ R0, the incompressibility condition for the perturbed
motion is written as λ2

ε(t) rε(R, t) r ′
ε(R, t)/R = 1, which along with rε(0, t) = 0, implies

that

rε(R, t) = R

λε(t)
, 0 ≤ R ≤ R0 . (3.84)

Taking derivative with respect to ε on both sides, evaluating at ε = 0, and noting that
λε=0(t) = 1, one obtains

δr(R, t) = −R δλ(t) . (3.85)

Knowing that λε(0) = 1, δλ(0) = 0, and hence δr(R,0) = 0.
For R0 ≤ R ≤ s(t):

rε(R, t) = 1

λε(t)

[
R0 +

∫ R

R0

λε(τ (ξ)) dξ

]
. (3.86)

Thus

δr(R, t) = −R δλ(t) +
∫ R

R0

δλ(τ(ξ)) dξ . (3.87)

Linearized Stresses For 0 ≤ R ≤ R0, one has

σ̄ rr
ε (R, t) = −μ0

ψ2
ε (t)

λ2
ε(t)

R2
0 − R2

2
− μ0

λ2
ε(t)

∫ s(t)

R0

r̄ε(ξ)(ψε(t) − ψε(τ(ξ))2

λ2
ε(τ (ξ)

dξ ,

σ̄ θθ
ε (R, t) = −μ0

ψ2
ε (t)

λ2
ε(t)

R2
0 − R2

2
− μ0

λ2
ε(t)

∫ s(t)

R0

r̄ε(ξ)(ψε(t) − ψε(τ(ξ))2

λ2
ε(τ (ξ)

dξ

+ μ0
R2 ψ2

ε (t)

λ2
ε(t)

,

σ̄ zz(R, t) = −μ0
ψ2

ε (t)

λ2
ε(t)

R2
0 − R2

2
− μ0

λ2
ε(t)

∫ s(t)

R0

r̄ε(ξ)(ψε(t) − ψε(τ(ξ))2

λ2
ε(τ (ξ)

dξ

+ μ0

[
λ4

ε(t) − 1

λ2
ε(t)

]
,

σ̄ θz(R, t) = μ0 R ψε(t) λε(t) .

(3.88)
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For R0 ≤ R ≤ s(t):

σ̄ rr
ε (R, t) = − μ0

λ2
ε(t)

∫ s(t)

R

r̄ε(ξ)(ψε(t) − ψε(τ(ξ))2

λ2
ε(τ (ξ)

dξ ,

σ̄ θθ
ε (R, t) = − μ0

λ2
ε(t)

∫ s(t)

R

r̄ε(ξ)(ψε(t) − ψε(τ(ξ))2

λ2
ε(τ (ξ)

dξ + μ0
r̄2
ε (R) (ψε(t) − ψε(τ(R)))2

λ2
ε(t) λ2

ε(τ (R))
,

σ̄ zz
ε (R, t) = − μ0

λ2
ε(t)

∫ s(t)

R

r̄ε(ξ)(ψε(t) − ψε(τ(ξ))2

λ2
ε(τ (ξ)

dξ + μ0

[
λ4

ε(t)

λ4
ε(τ (R))

− λ2
ε(τ (R))

λ2
ε(t)

]
,

σ̄ θz
ε (R, t) = μ0

r̄ε(R)(ψε(t) − ψε(τ(ξ))

λ3
ε(τ (ξ)

λε(t) .

(3.89)

Thus, for 0 ≤ R ≤ R0:

δσ̄ rr (R, t) = δσ̄ θθ (R, t) = 0 ,

δσ̄ zz(R, t) = 6μo δλ(t) ,

δσ̄ θz(R, t) = μ0 R δψ(t) ,

(3.90)

and for R0 ≤ R ≤ s(t):

δσ̄ rr (R, t) = δσ̄ θθ (R, t) = 0 ,

δσ̄ zz(R, t) = 6μ0

[
δλ(t) − δλ(τ(R))

]
,

δσ̄ θz(R, t) = μ0 R
[
δψ(t) − δψ(τ(R))

]
.

(3.91)

For the perturbed motion (3.62) reads

Mε(t) = πR4
0

2
μ0

ψε(t)

λε(t)
+ 2πμ0R0

[
ψε(t)

∫ s(t)

R0

R2

λ5
ε(τ (R))

dR −
∫ s(t)

R0

R2 ψε(τ(R))

λ5
ε(τ (R))

dR

]

+ 2πμ0

[
ψε(t)

∫ s(t)

R0

R2 γε(R)

λ5
ε(τ (R))

dR −
∫ s(t)

R0

R2 ψε(τ(R)) γε(R)

λ5
ε(τ (R))

dR

]
,

(3.92)

where γε(R) = ∫ R

R0
λε(τ (ξ)) dξ . Notice that γε=0(R) = ∫ R

R0
dξ = R − R0. Thus

δM(t)

2π μ0
= R4

0

4
δψ(t) + δψ(t)R0

∫ s(t)

R0

R2 dR − R0

∫ s(t)

R0

R2 δψ(τ(R)) dR

+ δψ(t)

∫ s(t)

R0

R2(R − R0) dR −
∫ s(t)

R0

R2(R − R0) δψ(τ(R)) dR

= R4
0

4
δψ(t) + δψ(t)R0

s3(t) − R3
0

3
− R0

∫ s(t)

R0

R2 δψ(τ(R)) dR (3.93)
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+ δψ(t)

12

(
3s4(t) − 4R0 s3(t) + R4

0

)−
∫ s(t)

R0

R2(R − R0) δψ(τ(R)) dR

= s4(t)

4
δψ(t) − R0

∫ s(t)

R0

R2 δψ(τ(R)) dR −
∫ s(t)

R0

R2(R − R0) δψ(τ(R)) dR .

Taking time derivative of both sides one finds

˙
δM(t)

2π μ0
= s4(t)

4
˙

δψ(t) . (3.94)

Knowing that δψ(0) = 0, one obtains

δψ(t) = 2

π μ0

∫ t

0

˙
δM(x)

s4(x)
dx . (3.95)

Similarly, for the perturbed motion (3.65) reads

[
λ2

ε(t) − 1

λ4
ε(t)

]
R2

0

2
− R4

0 ψ2
ε (t)

8λ4
ε(t)

+ λ2
ε(t) k1ε(t) − k2ε(t)

λ4
ε(t)

− R2
0

2λ4
ε(t)

[
ψ2

ε (t) (R0k3ε(t) + k4ε(t)) − 2ψε(t) (R0k5ε(t) + k6ε(t)) + R0k7ε(t) + k8ε(t)
]

− 1

λ4
ε(t)

[
ψ2

ε (t)
(
R0k̂3ε(t)+ k̂4ε(t)

)
− 2ψε(t)

(
R0k̂5ε(t)+ k̂6ε(t)

)
+R0k̂7ε(t)+ k̂8ε(t)

]
=0,

(3.96)

where

k1ε(t) =
∫ s(t)

R0

R

λ4
ε(τ (R))

dR , k2ε(t) =
∫ s(t)

R0

R λ2
ε(τ (R)) dR ,

k3ε(t) =
∫ s(t)

R0

R

λ3
ε(τ (R))

dR , k4ε(t) =
∫ s(t)

R0

γε(R)

λ3
ε(τ (R))

dR ,

k5ε(t) =
∫ s(t)

R0

ψε(τ(R))

λ3
ε(τ (R))

dR , k6ε(t) =
∫ s(t)

R0

ψε(τ(R)) γε(R)

λ3
ε(τ (R))

dR ,

k7ε(t) =
∫ s(t)

R0

ψ2
ε (τ (R))

λ3
ε(τ (R))

dR , k8ε(t) =
∫ s(t)

R0

ψ2
ε (τ (R)) γε(R)

λ3
ε(τ (R))

dR ,

k̂3ε(t) =
∫ s(t)

R0

∫ s(t)

R

ξ

λ3
ε(τ (ξ))

dξ dR , k̂4ε(t) =
∫ s(t)

R0

∫ s(t)

R

γε(ξ)

λ3
ε(τ (ξ))

dξ dR ,

k̂5ε(t) =
∫ s(t)

R0

∫ s(t)

R

ψε(τ (ξ))

λ3
ε(τ (ξ))

dξ dR , k̂6ε(t) =
∫ s(t)

R0

∫ s(t)

R

ψε(τ (ξ)) γε(ξ)

λ3
ε(τ (ξ))

dξ dR ,

k̂7ε(t) =
∫ s(t)

R0

∫ s(t)

R

ψ2
ε (τ (ξ))

λ3
ε(τ (ξ))

dξ dR , k̂8ε(t) =
∫ s(t)

R0

∫ s(t)

R

ψ2
ε (τ (ξ)) γε(ξ)

λ3
ε(τ (ξ))

dξ dR .

(3.97)
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Thus, linearizing (3.96), one obtains

s2(t) δλ(t) = 2
∫ s(t)

R0

R δλ(τ(R)) dR . (3.98)

Taking time derivative of both sides one obtains s2(t)
˙

δλ(t) = 0, and hence ˙
δλ(t) = 0. Know-

ing that δλ(0) = 0, one concludes that δλ(t) = 0. Therefore, the only nonzero linearized
stress has the following distribution:

δσ̄ θz(R, t) =
{

μ0 R δψ(t) , 0 ≤ R ≤ R0 ,

μ0 R
[
δψ(t) − δψ(τ(R))

]
, R0 ≤ R ≤ s(t) .

(3.99)

Or

δσ̄ θz(R, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2R

π

∫ t

0

˙
δM(x)

s4(x)
dx , 0 ≤ R ≤ R0 ,

2R

π

[∫ t

0

˙
δM(x)

s4(x)
dx −

∫ τ(R)

0

˙
δM(x)

s4(x)
dx

]

, R0 ≤ R ≤ s(t) .

(3.100)

This can equivalently be written as

δσ̄ θz(R, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2R

π

∫ t

0

˙
δM(x)

s4(x)
dx , 0 ≤ R ≤ R0 ,

2R

π

∫ t

τ (R)

˙
δM(x)

s4(x)
dx , R0 ≤ R ≤ s(t) .

(3.101)

Linearized Residual Stresses Linearizing the zero-force condition (3.77)2, one finds δλ̃ = 0.
Similarly, linearizing the zero-torque condition (3.77)1, one obtains

δψ̃ = 8

πμ0 R4
a

∫ Ra

R0

ξ 3
∫ τ(ξ)

0

˙
δM(x)

s4(x)
dx dξ . (3.102)

The only nonzero linearized residual stress has the following distribution:

δ ¯̃σ θz(R) =
{

μ0 R δψ̃ , 0 ≤ R ≤ R0 ,

μ0 R
[
δψ̃ − δψ(τ(R))

]
, R0 ≤ R ≤ Ra ,

(3.103)

or

δ ¯̃σ θz(R) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

8R

πR4
a

∫ Ra

R0

ξ 3
∫ τ(ξ)

0

˙
δM(x)

s4(x)
dx dξ , 0 ≤ R ≤ R0 ,

8R

π R4
a

∫ Ra

R0

ξ 3
∫ τ(ξ)

0

˙
δM(x)

s4(x)
dx dξ − 2R

π

∫ τ(R)

0

˙
δM(x)

s4(x)
dx , R0 ≤ R ≤ Ra .

(3.104)

For R0 = 1, u0 = 1, and ta = 1, in Fig. 7 the residual shear stress and the linearized residual
shear stress distributions for the loading M(t) = kπR3

0 sin
(

2πt
ta

)
and four different values of
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Fig. 7 Residual shear stress and linearized residual shear stress for the loading M(t) = kπR3
0 sin( 2πt

ta
) for

four different values of k

k are shown. As expected, as k increases the difference between the nonlinear and linear
solutions increases.

4 Conclusions

In this paper, we formulated the initial-boundary-value problem of finite torsion and exten-
sion of an accreting circular cylindrical bar. The bar is assumed to be homogeneous and is
made of an arbitrary incompressible isotropic solid. It is also assumed that accretion is sym-
metric, i.e., the accreting bar is a solid circular cylinder at all times. Assuming a generalized
Family 3 kinematics (3.2), we showed that radial deformation is a functional of the time-
dependent axial stretch λ2(t), see (3.56)1. Assuming that stress-free material is added to the
boundary of the deforming bar (generalizing our analysis to the case of pre-stressed mate-
rial is straightforward), we calculated the material metric of the accreting bar. We noted that
this metric is unique up to isometry. The kinematics is completely specified as soon as the
time-dependent axial stretch λ2(t) and the twist per unit length ψ(t) are known. The applied
toque M(t) and the axial force F(t) explicitly depend on these two functions. We assumed
that there is no applied axial force, i.e., F(t) = 0; the bar is free to deform axially. We
considered both twist-control (ψ(t) is given) and torque-control (M(t) is given) loadings.
We calculated the corresponding stresses. It was observed that the kinematics (3.2) together
with its corresponding material metric are universal for incompressible isotropic solids (see
Remark 3.2) in the sense that equilibrium equations are satisfied in the absence of body
forces and for any energy function W(I1, I2). We also calculated the residual stresses that
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are induced by accretion. Finally, we calculated the deformations and stresses in the setting
of linear accretion mechanics by linearizing the nonlinear fields. The nonlinear and linear
solutions were numerically compared in a few examples. As expected, as the applied torque
increases the difference between the linear and nonlinear solutions becomes more apprecia-
ble.

The analysis presented in this paper can be extended to inhomogeneous and anisotropic
bars. In the case of incompressible transversely isotropic, orthotropic, and monoclinic solids,
we expect the kinematics ansatz given in (3.2) to be universal for circular cylindrical bars
with the universal material preferred directions found in [47]. We also suspect that for either
isotropic or the three anisotropy classes (transversely isotropic, orthotropic, and monoclinic
solids), the cylindrical bar can have radial inhomogeneity, i.e., its energy function can ex-
plicitly depend on the radial coordinate: W = W(R, I1, I2) [44, 48].
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