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Madagascar’s biota is hyperdiverse and includes exceptional levels of endemicity. We review the
current state of knowledge on Madagascar’s past and current terrestrial and freshwater biodiversity
by compiling and presenting comprehensive data on species diversity, endemism, and rates of
species description and human uses, in addition to presenting an updated and simplified map of
vegetation types. We report a substantial increase of records and species new to science in recent
years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi
and most invertebrates). Digitization efforts are increasing the resolution of species richness
patterns and we highlight the crucial role of field- and collections-based research for advancing
biodiversity knowledge and identifying gaps in our understanding, particularly as species richness
corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species
richness and endemism in most of the analyzed groups. We highlight humid forests as centers of
diversity and endemism because of their role as refugia and centers of recent and rapid radiations.
However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the
Central Highlands and the spiny forest of the southwest, is also biologically important despite lower
species richness. The documented uses of Malagasy biodiversity are manifold, with much potential
for the uncovering of new useful traits for food, medicine, and climate mitigation. The data
presented here showcase Madagascar as a unique “living laboratory” for our understanding of
evolution and the complex interactions between people and nature. The gathering and analysis of
biodiversity data must continue and accelerate if we are to fully understand and safeguard this
unique subset of Earth’s biodiversity.

T
he Republic of Madagascar, an island
country off the east coast of Africa, is
home to a unique assemblage of taxa
and a diverse set of ecosystems. The high
levels of terrestrial and freshwater diver-

sity have arisen over millions of years through
complex processes of speciation and extinc-
tion. Understanding the origins, evolution,
current distribution, and uses of this extraor-
dinary diversity is crucial to highlighting its

global importance and guiding urgent conser-
vation efforts (1, 2).

Origins of Madagascar’s biota

Once part of the Gondwana supercontinent,
Madagascar and India split from Africa 150
to 160 million years ago (Ma), with India sep-
arating 84 to 91 Ma (3). The Malagasy fossil
record shows both regional and widespread
Gondwanan fauna before continental breakup

(Fig. 1A) (4) but plant remains are scarce in the
record (5). The Cretaceous-Paleogene (K-Pg)
mass extinction (66 Ma), when Madagascar
had already become an island, is believed to
have greatly reduced the ancient Malagasy
fauna. This species turnover presented new
opportunities for the establishment and ra-
diation of colonizers (6, 7). Biotic history dur-
ing this period is almost entirely inferred from
molecular phylogenies as there is a long gap
in the fossil record during the Cenozoic (8).
Molecular clock estimates suggest that few ex-
tant groups date back to potential Gondwanan
vicariance, including some reptile, fish, and
insect lineages (6, 9, 10) and the plant genus
Takhtajania (11) (Fig. 1A). Most of the current
animal, plant, and fungal diversity originated
from ancestors with mainly African and Indo-
Pacific origin according to phylogenies and
biogeographic reconstructions, and reached
Madagascar throughoverseas dispersal (6, 10–12)
(Fig. 1B). The presence of oceanic surface cur-
rents flowing fromAfrica toMadagascar during
the Paleogene, which subsided in the Miocene
(13), coincided with the arrival of multiple ver-
tebrate lineages that subsequently diversified
(6, 7). It has also been proposed that short-
lived land bridges in theMozambique channel
during theNeogenemay have aidedmigration
(14), although the significance of this is debated
(14, 15). In addition, stepping-stone islands in
the Indian Ocean, now submerged, may have
facilitated animal and plant dispersal from the
Indo-Pacific region (16).
The current peaks and plateaus of Mada-

gascar probably formed in the past 30 to 40
million years (My) through mantle upwelling
and volcanism, and the past 10 My have seen
accelerated uplift (17, 18). This suggests that
rather than evolving on an old stable surface,
many of the current patterns of biodiversity
were shaped by environmental gradients and
dispersal barriers that are relatively young,
geologically speaking (17).

Regional differences

Madagascar’s diverse biota and ecosystems
have been categorized using many different
systems (e.g., 19, 20), but data scarcity means
that any inferences on the extent of native
vegetation prior to major anthropogenic in-
fluences come with a very high level of uncer-
tainty. We summarize the current vegetation
types of Madagascar (dry forest, grassland-
woodland mosaic, humid forest, mangrove,
tapia, spiny forest, and subhumid forest) based
on a simplified version of the Atlas of the Veg-
etation of Madagascar (21) (Fig. 1 and table S1)
(22). Although our resulting simplified map is
adequate for providing an overview of Mada-
gascar’s main vegetation types, a higher reso-
lution map and more detailed classification is
needed for in-depth analyses such as system-
atic conservation planning.We suggest that any
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new mapping classification should build on ex-
isting mapping [including the updated classi-
fication of (23)] but follow the suggestions of the
IUCN global ecosystem typology (24), which is
a hierarchical classification system that at its
top level defines ecosystems by ecological func-
tion and at detailed levels distinguishes ecosys-
tems by species assemblage (25).
There is a marked longitudinal rainfall gra-

dient created by the high eastern edge of the
mountain range running from north to south,
most of which exceeds 800 m above sea level.
Humidity brought by easterly trade winds and
summer monsoons from the Indian Ocean is
captured by the edge and forms a cloud layer
at ca. 900 to 1200 m. This rain-producing sys-
tem sustains the patchy remains of a ca. 100-km–
wide band of evergreen humid forest along the
east coast, with extensions to certain portions
of the north. Rainfall patterns are largely un-
predictable throughout the country, and there
are frequent but irregular cyclones during the
rainy season. This unpredictability is suggested
to have led to unique biological adaptations in
Malagasy species, including extremes of very
fast or slow life histories (26, 27).
The Central Highlands have a subhumid

climate, which is cooler and drier during the
winter. They are dominated by a grassland-
woodlandmosaic, where grasslands aremixed
with agricultural land, shrubland, and patches
of woodland. There are also areas of humid
forest and tapia—woodland dominated by the
tree species tapia (Uapaca bojeri)—from which
the vegetation type takes its name. Although
grasslands increased as a result of the degrada-
tion of woody vegetation types following hu-
man settlement, some are derived from the
pantropical savanna expansion that started in
the lateMiocene (28). The extent of grasslands
at the time of human arrival, especially in the
CentralHighlands, remains debated (29). To the
southwest, the highlandmosaic transitions into
subhumid forests and more extensive tapia.

The highest mountains (>2500 m) are ig-
neous in origin and support sclerophyllous
shrublands dominated by species of the plant
family Ericaceae in addition to open grass-
lands around their summits. Humidity and
rainfall decrease in the rain shadow to the west
of the Central Highlands, with the dominant
vegetation type transitioning to dry forest, with
some deciduous plant species and succulent
elements toward the western coast. Mangroves
are mostly found along the Mozambique Chan-
nel coast. The southwest region is the driest
part of the island, and the rainy season, when
present, lasts ≤3months. This climate supports
the spiny forest ecosystem,which in global terms
is strictly a thicket but classedas forestwithin the
context of Madagascar (21). This ecosystem was
previously thought to beMadagascar’s oldest
and was widespread across the island when it
lay at the edge of the tropical belt before the
mid-Oligocene. When continental drift moved
Madagascar north and directly into the trade
wind zone, the spiny forest ecosystem con-
tracted (3). However, the humid forest has been
found to contain taxa belonging to lineages
that date back to the Paleocene, and further
evidence from climate reconstructions suggests
that Madagascar was moderately humid at
the K-Pg boundary (11, 30) (Fig. 1A).

The arrival of humans

Human presence in Madagascar—from both
Austronesian and African origins—dates to at
least the start of the CE with some evidence
pointing to the Early Holocene—8000 BCE
onward (31, 32) (Fig. 3). Settlement in the in-
terior and large-scale anthropogenic impacts
likely took place after 1000CE,with subsequent
progressive population growth from initially
sparse settlements from 1200 CE onward
(33, 34). As in other parts of the world once
human populations began to expand, their
activities had substantial impacts on local biota.
This process resulted in landscape transforma-

tion from ca. 300 CE onward (35, 36) and sub-
sequent extinction of Madagascar’s once rich
megafauna (here defined as vertebrates >10 kg)
through a combination of hunting and habitat
displacement (34, 37–40). These extinctionsmay
have accelerated as a result of a shift from
hunting and foraging to herding and farm-
ing as the predominant methods of obtaining
food, which brought land clearance and trans-
formation to agricultural land (41). Droughtmay
have further compounded these changes (42).
Since settling on the island, humans have

introduced crops and livestock for agriculture
and husbandry (43–45) (Fig. 3). Of these, rice
and zebu cattle have had the largest impacts
on the landscape (43, 44) as a result of their
vital role in sustaining human populations.
Rice is currently widely cultivated both in the
Central Highlands (using paddy production)
and in the humid east, where swidden agri-
cultural methods are used (i.e., shifting culti-
vation involving clearing forest for conversion
to cropland, usually by burning). With the lat-
ter practice, soils are rapidly depleted and re-
main fertile for only a short period, meaning
that the land is abandoned for long fallow pe-
riods with further vegetation being cleared at
a new location. The expansion of the Kingdom
of Madagascar in the late 1700s, followed by
British and French colonialism in the 1800s
and 1900s, accelerated trade and landscape
transformation, resulting in a substantial loss
of native vegetation across the island (33). Cur-
rent patterns ofMadagascar’s biological diversity
are therefore shaped both by ancient evolution
and recent anthropogenic activities.

Contemporary patterns of richness,
endemism, and use

Madagascar is one of Earth’s “hottest” biodi-
versity hotspots (46), with high species rich-
ness and exceptional levels of endemism across
many taxonomic groups, combined with high
rates of habitat degradation and fragmentation
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Fig. 1. Timing and origins of Madagascar’s biodiversity. (A) Geological and
environmental events in relation to the age of multiple organismal groups. The
dark yellow horizontal bars at the bottom show the timing of landscape and
climatic events. Vertical yellow shading along the panel corresponds to longer
geographical events. Bars and lines show crown and stem ages of 217 lineages that
each produced at least two endemic Malagasy species, estimated from molecular
and fossil data. Icons correspond (from top to bottom) to nonflowering vascular
plants, flowering plants, mammals, birds, dinosaurs (for fossil data), reptiles
(here all Sauropsida, excluding birds), amphibians, arthropods, bony fishes,

mollusks, and flatworms. In the fossil data section, the empty bars show the
number of unique species in the fossil record through time that were found in
Madagascar, with filled bars showing the number of unique species endemic
to Madagascar. PL, Pleistocene; PLI, Pliocene; MIO, Miocene; OLI, Oligocene;
EOC, Eocene; PAL, Paleogene; lCRE, late Cretaceous; eCRE, early Cretaceous.
(B) Geographical origins of Madagascar’s biodiversity. These treemaps show the
proportional origins of the 217 endemic lineages in (A), estimated through
biogeographic reconstruction, or if unavailable, the distribution of the sister group.
Unsaturated hues represent the proportion of lineages whose origin is ambiguous.
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(Fig. 4) (46, 47). Despite the global significance
of Malagasy biodiversity, many taxonomic
groups remain poorly known, and Madagas-
car ranks among the top countries for the pre-
dicted percentage of terrestrial vertebrates
lacking scientific description (48). Most species
are represented by only a small number of
records in global natural history collections

and some groups remain practically unknown,
particularly fungi and most invertebrates.
Estimates place the global number of fungi
at >6.3million species (49), andMadagascar is
likely to hold a large proportion of this diver-
sity. However, to date <2000 fungal species
and species hypotheses—the latter defined by
genetic reference sequences (50)—have been

reported in public databases (51, 52) and check-
lists (53, 54).
Concerted efforts, including taxonomic re-

search, improved digital access to natural his-
tory collections, and application of molecular
techniques for species identification and de-
limitation, have resulted in a substantial in-
crease in the number of records and species
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Fig. 2. Map of predominant vegetation types, expanded and simplified from Moat and Smith (21).
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new to science in recent years, even in rela-
tively conspicuous groups such as reptiles and
amphibians (Fig. 5). However, many species
remain undescribed across most taxonomic
groups (55, 56). For example, as of June 2021,
there were 369 described native Malagasy
amphibians (57) but the true number has been
estimated to be well over 500 (58). The figures
for undescribed species of arthropods could be
orders of magnitude higher. Of the estimated
1300 species of ants alone (59), only 781 have
been formally described (60).
For Malagasy grasses, concerted herbarium

digitization efforts over just three years re-
sulted in a 43% increase in georeferenced spe-
cies records. Thismore thandoubled themedian
number of records per species and improved the
resolution of species richness patterns (28, 61).
In better-studied groups such as lemurs, con-
tinued advancements in our understanding of
their distribution, ecology, and genetic diversity
allow us to better understand their evolution-
ary history and inform conservation strategies
(62). Together, these efforts show the crucial
role of field- and collections-based research
in advancing biodiversity knowledge and
understanding of spatial patterns of richness,
endemism, and speciation, while providing

opportunities to further investigate the eco-
logical roles of species across Madagascar’s
ecosystems.

Extensive endemism

Among the 1314 native species of terrestrial and
freshwater vertebrates (4), levels of endemism
are extremely high (90% overall); all native
nonflying terrestrial mammals and native am-
phibians are found nowhere else on Earth,
and 56% of birds, 81% of freshwater fishes,
95% of mammals, and 98% of reptile species
are endemic (4, 63–68) (Fig. 4). Little is known
about endemism in insects, but data from the
few well-studied groups on the island suggest
that it is similarly high (69, 70). Endemismamong
Madagascar’s animals is not limited to lower
taxonomic levels: Among birds, the island con-
tains one endemic order (Mesitornithiformes)
and three endemic families (Brachypteraciidae,
Philepittidae, andBernieridae) (71). Amongmam-
mals, higher-level endemism includes the super-
family Lemuroidea, the families Myzopodidae
(sucker-footed bats), Eupleridae (native Carniv-
ora), and Tenrecidae (tenrecs), and the subfamily
Nesomyinae (nesomyine rodents) (66, 68, 72, 73).
For amphibians, in the family Mantellidae
(mantellid frogs) all but three species (endemic

to the Comoro islands) (74, 75) are endemic to
Madagascar; there are also three endemic sub-
families: Cophylinae (narrow-mouthed frogs),
Dyscophinae (tomato frogs), and Scaphiophry-
ninae (rain frogs) (63).
Malagasy flora is also highly diverse and

mostly endemic (76). It is estimated that over
14,000 vascular plant species occur on the is-
land (76), including 11,516 described native spe-
cies, ofwhich82%are endemic (22, 77).When the
estimated 2550 species that remain to be sci-
entifically described are factored in, the level
of endemism could rise to 87% (76). Among the
island’s flowering plants (angiosperms), there are
310 endemic genera, ca. 19% of the generic diver-
sity (11); and five endemic families (Asteropeiaceae,
Barbeuiaceae, Physenaceae, Sarcolaenaceae,
and Sphaerosepalaceae). Five families dom-
inate the flora in terms of species richness:
Orchidaceae (orchid family, 922 spp., 84% en-
demic), Rubiaceae (coffee family, 806 spp., 93%
endemic), Fabaceae (pea family, 603 spp., 76%
endemic), Poaceae (grass family, 541 spp., 50% en-
demic, 40% after specialist taxonomic evalua-
tion) (78), and Asteraceae (daisy family, 529 spp.,
83% endemic) (5, 76, 77, 79). These are also the
five largest families globally but all five are dis-
proportionately species rich in Madagascar
relative to the land area (~0.4% of Earth’s total).
TheMalagasy bryophyte flora is less well studied
but is also diverse: of the 1215 described bryo-
phyte species (767 mosses, 443 liverworts, and
5 hornworts), 28% are endemic (80).
Endemism in Malagasy fungi is hard to as-

sess given that so little is known about the total
diversity of species. However, 14% of the species
in the Global Biodiversity Information Facility
(GBIF) and almost 75% of the fungal species
hypotheses detected by environmental sequenc-
ing have not been reported as occurring out-
side of Madagascar (22). A recent molecular
assessment of fruiting fungi and root samples
from five forest sites in Madagascar based on
Internal Transcribed Spacer data (12) found
similar levels of endemism, with 65% of se-
quences not known from outside the country
and 10% of species potentially new to science,
with much of the new diversity extrapolated
from ectomycorrhizal samples. This further
highlights the possible magnitude of unknown
diversity among Malagasy fungi.

Spatial patterns of Malagasy biodiversity

Biodiversity is not evenly distributed across
Madagascar, with much of the island’s biota
occurring in humid forests in the east as well
as on the eastern flanks of the Central High-
lands and in some northern areas such as the
Tsaratanana and Marojejy Massifs (79–82)
(Fig. 4). Overall patterns of species richness
correspond closely to collection effort, and
the variation in sampling frequency across the
country therefore makes it difficult to ascer-
tain true patterns of diversity in many groups
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Fig. 3. Human arrival. Holocene events and environmental changes around the time of human arrival. Dates
for human introductions of dogs, zebu cattle, rats, bushpigs, goats, and rice are provided as well as last dated
records of megafauna (hippopotamus, elephant birds, giant tortoises, and giant lemurs) (22).
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(Fig. 4). Species diversity patterns in amphib-
ians, reptiles, and primates are closely mir-
rored by corresponding phylogenetic diversity
patterns (fig. S3). An exception occurs in water
beetles, where phylogenetic diversity is nega-
tively correlated to species richness and en-
demism, purportedly because narrow endemism
in this group is the result of recent radiations
(83). The few studies investigating the distribu-
tion of phylogenetic diversity in plants present
varied patterns, some resembling those of ver-
tebrate groups, whereas others differ marked-
ly (84, 85).
The high species richness and endemism of

many lineages in the humid forests of eastern
and northern Madagascar reflect the role of
these ecosystems both as forest refugia during
glacial maxima (82, 86, 87), and centers of re-
cent and rapid evolutionary radiations (88–90).
This scenario is supported by the presence in
these areas of high but clustered phylogenetic
diversity in reptiles, mammals, and, to a cer-
tain extent, amphibians (fig. S3). The grassland-
woodland mosaic vegetation of the Central
Highlands is marked by its own distinctive ende-
mism despite relatively low species richness

(78, 91). Certain groups, including reptiles and
some plant families, such as Fabaceae, Euphor-
biaceae, andMalvaceae, show additional centers
of diversity in spiny forests that dominate the
island’s southwest region (77, 79, 81) (Fig. 4).
Species endemismacross taxa and regionshas

arisen through multiple mechanisms, including
allopatric speciation across mountain ranges
(92), between isolated inselbergs (93), and in
fragments of forests and wetlands created
during the wet-dry cycles of the Quaternary
(94, 95). Narrow endemism is also linked to
adaptive radiation across the island’s steep
environmental gradients (81, 94, 96).

Human use of biodiversity

Madagascar’s rich biodiversity, particularly its
diverse flora, has providedmany opportunities
for human utilization. Although biodiversity
is “useful” in many ways (e.g., ecosystem ser-
vices or nature’s contributions to people, either
material or nonmaterial), here we report “uti-
lized species” as those having a documented
direct use by humans. Of the 40,283 plant spe-
cies documented as used by humans worldwide
(97), 1916 (5%) are found in Madagascar—of

these, 1596 are thought to be native and 597
endemic to the island (98). Hundreds of uti-
lized species have also been introduced, such
as the Mesoamerican vanilla orchid (Vanilla
planifolia), brought to Madagascar from the
island of Réunion by the French in the mid-
1800s, following the discovery of a method to
speed up hand pollination by Edmond Albius
in 1841 (99). Vanilla is the second most expen-
sive spice in the world, and Madagascar has
become the largest producer globally (100).
Vanilla agroforestry is currently expanding,
especially in northeastern (Sava region) and
eastern (Analanjirofo and Atsinanana regions)
Madagascar, which can pose additional threats
to biodiversity in some cases. However, it can
also generate opportunities for conservation
and restoration when undertaken in sustain-
able and safe settings and accounting for local
land use history (100–102). Beyond the wide-
spread cultivation of a few introduced species,
the goods and services provided by Madagas-
car’s flora are especially important for subsis-
tence in many rural communities (103).
Documented utilized endemic plants in-

clude 310 species used formaterials (e.g., woods,
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A B

Fig. 4. Diversity patterns. (A) Species richness and endemism of six taxonomic
groups in Madagascar. Native terrestrial and freshwater species counts and
percentages of endemic species are based on estimates using author-curated data
compiled from The New Natural History of Madagascar (126), and the Catalogue of
the Vascular Plants of Madagascar (77). Species richness maps were generated from
species distribution models based on specimen occurrence records and bioclimatic

data; non-native and marine taxa are not included (22). Numbers in parentheses
below color ramps are the number of species used to generate the species richness
maps. (B) Patterns of species richness and collection effort for the same six
taxonomic groups. Map grid cells are 25 × 25 km; cell colors correspond to species
richness and collection number per cell, based on specimen occurrence records.
Gray denotes an absence of records for that cell.
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fibers, resins) (104), 91 edible species, and an
additional 120 crop wild relatives that repre-
sent genetic reservoirs for the improvement of
food crops. Among the most important edible
groups, 38 species of yams (Dioscorea spp.) are
native toMadagascar, 31 of which are endemic
(105). Most have edible tubers and are widely
consumed throughout the island, especially
when primary crops fail (105, 106). Crop wild
relatives with potential for commercial bene-
fits include Madagascar’s 65 species of coffee,
Coffea spp. (107–109), which could be used as
gene and trait sources for the improvement of
the two non-native but commercially grown cof-
fee species, robusta (C. canephora) and Arab-
ica (C. arabica), for example to confer greater
climate resilience (110).
Many of Madagascar’s 204 native palm spe-

cies (99% of which are endemic) are used by
people and often for multiple purposes, e.g.,
construction materials, fibers, medicine, and
food (111). Structural constraints of palms
mean that palm exploitation is often fatal to
the trees. Consequently, palm populations are
often denuded in otherwise intact habitats as
a result of selective extraction, which contributes
to palms being among the most threatened
of the assessed plant groups in Madagascar,
with more than 83% of species evaluated as
threatened (112).
At least 221 endemic plant species have

been documented as having medicinal value
(97, 113–115). These include several species of
Zanthoxylum, which have antiplasmodial prop-
erties and are used locally to treat malaria (116),
and the widely cultivated Madagascar peri-
winkle (Catharanthus roseus), which contains
diverse and abundant alkaloids used in the
treatment of some cancers and other diseases
such as diabetes, high blood pressure, and asth-
ma (117). Many plant species are used solely in
traditional medicine practices in Madagascar.

Although scientific knowledge remains in-
complete on the topic, medicinal plant species
have been documented as being used for a
wide range of health conditions across many
regions and ecosystems (103, 118–120), high-
lighting the effective and potential value of
Malagasy plant diversity for humanity.
The human uses of animals are not as ex-

tensive as those of plants, but hunting formeat,
especially forest-dwelling species, provides
an important source of nutrition and protein
for some communities (121, 122) and exerts
considerable pressure on wild populations
(123–125). Consumption of insects—particularly
orthopterans, lepidopterans, and coleopterans—
is also widespread. Beyond what we report,
there are certainly additional potential uses
of plants that have yet to be published or dis-
covered, and additional uses of currently uti-
lized species that have not been documented
by scientists. The data reported here are cer-
tainly underestimates.
Madagascar’s rich biodiversity has diverse

values. Among them, the multitude of known
and potential uses reported here reinforce the
imperative to conserve the unique Malagasy
biota in the face of major threats such as hab-
itat loss and overexploitation (2).

Concluding remarks

Our synthesis shows that the depth and breadth
of Madagascar’s remarkable biodiversity—
the product of millions of years of evolution in
relative isolation (Figs. 1 and 2)—is still being
uncovered. Although the scientific community
has accumulated a great amount of informa-
tion on some taxonomic groups, others remain
relatively unknown, particularly fungi andmost
invertebrates. Fundamental information on
biodiversity and its uses is essential for guid-
ing conservation action (2). The gathering
and analysis of these data must therefore con-

tinue and accelerate, through equitable prac-
tices, if we are to safeguard the multifaceted
aspects of Madagascar’s unique biota.
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Protecting Madagascar
Madagascar has been isolated from mainland Africa and Asia for more than 80 million years and has developed
a distinctive flora and fauna, with more than 90% of its species endemic to the island nation. It is also home to the
Malagasy people, with a population of about 30 million, and was first colonized by humans around the first century
BCE. The island’s biodiverse wildlife is highly threatened, and much of its human population lives below the poverty
line. In Reviews, Antonelli et al. and Ralimanana et al. characterize the biological history and diversity of the island and
examine conservation status and actions required to protect biodiversity and improve living standards and well-being
for the Malagasy people. —SNV
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