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Many biological phenomena can be modeled by the collective activity of a population of 
individual units. A common strategy for simulating such a system, the population density 
approach, is to take the macroscopic limit and track a population density function. Here, 
we develop the asymmetric particle population density (APPD) method that efficiently 
and accurately simulates populations with complex behaviors that are infeasible for 
previous population density-based methods. The APPD method is well-suited for a parallel 
implementation. Our method can accurately reproduce complex macroscopic behaviors 
such as inhibitory coupling-induced clustering and noise-induced firing while being faster 
than the direct simulation. We compare the method’s performance against direct Monte-
Carlo simulation and verify its accuracy by applying it to the well-studied Hodgkin-Huxley 
model with a range of challenging scenarios.

 2023 Published by Elsevier Inc.

1. Introduction

Many biological behaviors can be modeled by a large population of coupled oscillating elements, with examples including 
the rhythmic flashing of fireflies [1], the electrical activity of neurons [2], and circadian rhythm [3]. To simulate macroscopic 
behavior, one can take the number of elements to infinity and simulate the evolution as a continuous population density 
function. The mean field method is a classical and widely used approach to solve these problems [4–8]. However, a mean-
field approach has severe constraints on the oscillator model, such as requiring the oscillator to follow a limit cycle closely or 
that the coupling is weak. A more direct approach is to simulate the population density directly. This approach is first used 
for a one-dimensional model as higher dimensions are considered prohibitively expensive [9]. In a more recent development, 
Stinchcombe and Forger [10] noted many of the models, while having a high dimensional state space, are dissipative with a 
coupling that concentrates the distribution; consequently, only a fraction of the possible system states have a non-negligible 
number of oscillators at any given time. As such, a population can be efficiently discretized by a particle method that 
only covers the distribution but not the entire state space. Here, we improve the method in two ways: First, we use an 
asymmetric kernel that covers the distribution more efficiently. Second, we simulate the diffusion term by deforming the 
particle independently instead of as an interaction between particles (as defined in [11]).

Using an asymmetric deforming kernel to solve a convection-diffusion equation or a Fokker-Planck equation is not new. 
We took our inspiration from a very different context of Kalman-Bucy filtering [12–16] which works when the system’s dy-
namics can be approximated as locally linear. In the context of convection-diffusion equations, this has also been discussed 
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in [17,18]. Unlike Kalman-Bucy filtering, however, the population density cannot be satisfactorily represented using a single 
multivariate normal distribution.

An asymmetric particle method must split and combine particles as they deform and the local linear approximation is 
no longer satisfactory. Such particle methods are first investigated in [19], with later works [20,21]. In a very recent work 
by Berchet [22], they investigated the mass transport problem with a similar update-split-combine scheme that we are 
introducing here.

However, the previous works are still insufficient for the problem of interest: previous particle methods are restricted 
to 2-dimensional scenarios, whereas the Hodgkin-Huxley model [2] has a 4-dimensional state space. The higher dimension 
poses two main challenges: numerical stability with finite-precision linear algebra and an exponentially growing space 
requirement. We designed the method with these constraints in mind. First, our method naturally tracks a square-root of 
the covariance, which gives improved numerical stability, as known in the Kalman filter community [12,13] but has not 
been introduced in this context. Second, we avoid the need for Ito-Taylor expansion with an a priori timestep to represent 
diffusion, which enables an adaptive timestep method to be directly applied. Third, for the splitting particle criteria, we 
avoided using Laplacian as in [22] and used a single-direction criterion to avoid numerical instability, as the covariance 
matrix can be close to a singular (see numerical example in Fig. 8). Fourth, splitting a single particle into three particles 
with optimized weight and distance introduces less error than a 2-particle split as in [22]. Fifth, for combining particles, we 
introduced hashed cubic blocks and restricted particle combinations within each block only to speed up the computation 
without exhausting computer memory.

The remainder of the paper is structured as follows: Sec. 2 introduces the method, with an overview in Sec. 2.1 followed 
by a detailed discussion in the following subsections. In Sec. 3, we look at several numerical examples that illustrate our 
method’s working and show its advantages.

2. Method

2.1. Overview of the method

A large population of coupled noisy oscillators is commonly simulated by Monte-Carlo methods. Here, we use the Monte 
Carlo method as described in [23] for comparison. In the direct Monte-Carlo method, each oscillator is updated individually 
based on its dynamics, noise, and an averaged coupling. The intuition for our method is simple: a particle not only repre-
sents oscillators exactly at one state but also nearby oscillators with some locally linear approximation. We now discuss how 
this is implemented: how the system’s dynamics and noise are updated for a single particle in a deterministic algorithm, 
how the local linearity is preserved by splitting the particle, and other technicalities that arise.

In the asymmetrical particle population density (APPD) method, a single particle is a weighted multivariate Gaussian. 
Simulating the probability distribution function (PDF) of a similar stochastic process using a single multivariate Gaussian 
is a well-studied topic in the context of Kalman-Bucy filtering [24] and its generalizations [12–15]. These methods utilize 
the fact that a Gaussian function is preserved if the system’s dynamics are linear in space. Therefore, when the PDF is 
concentrated in a small region where the ordinary differential equation (ODE) can be considered approximately locally 
linear, and the Gaussian is preserved. However, these existing methods for Kalman-Bucy filtering [12–15] are based on the 
Itô-Taylor expansion of the underlying equation and require a pre-determined fixed timestep. In [16], we proposed the Level 
Set Kalman Filter (LSKF), which takes arbitrary adaptive timestep and has superior accuracy than the Continuous-Discrete 
Cubature Kalman Filter. Therefore we base the particle in our proposed method on the time-update of the LSKF.

While the Fokker-Planck equation for the LSKF and the convection-diffusion equation for the population takes the same 
form, some adjustments are needed. First, oscillators can have a limit cycle with strong contraction, resulting in the PDF 
being very thin in certain directions, corresponding to a close-to-singular covariance matrix in a multivariate-Gaussian ap-
proximation. Therefore the method has to be robust with respect to singular covariance. The LSKF is suitable as it works 
with a square root of the covariance matrix and is demonstrated to be robust for semi-positive definite covariances in [16]. 
The next challenge is that the distribution is more complicated: in Kalman-Bucy filtering, continuous or periodic measure-
ments keep the distribution to be closely approximated by a multivariate distribution, and the distribution is concentrated in 
a small volume where the dynamics can be approximated by a local linear approximation centered at mean of the distribu-
tion. In the absence of such measurements, the distribution can no longer be approximated by a single normal distribution; 
instead, a linear combination of many particles, each having their own local linear approximation is used to approximate 
the distribution. This also introduced the need for a scheme that splits and combines particles.

2.2. Problem formulation

We simulate a population consisting of identical oscillators subject to dynamics described by a velocity field v, and noise 
that can be described by a Wiener process. We assume that an oscillator can be described by a d-dimensional state variable. 
Suppose that the oscillators are also subject to noise; then this probability density u is evolved according to the following 
convection-diffusion equation:

∂u
∂t

= ∇ · K∇u − ∇ · (vu) (1)
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in which K is a constant diffusion matrix, and v = v(x, u) is the convection velocity that corresponds to the ordinary 
differential equation of each oscillator, and the coupling between oscillators. In this work, we assume K and v are constant 
in time or changing slowly so that their time derivatives can be omitted.

We further assume that the population is infinitely large such that individual fluctuations alone would not affect the 
population. Hence the probability distribution (1) is the population distribution function of the entire population. This 
assumption is essential as the coupling would be more complex otherwise.

To accommodate coupling, we assume the velocity field takes the following form:

v = vd(x) + vc(u,x) (2)

in which vd is the dynamic velocity corresponding to the dynamics that are determined by the state variable x only. 
vc is the coupling velocity corresponding to the coupling term that depends on the state variable x, and the population 
distribution u at the same time. Moreover, for each particle, we take a local linear approximation and assume the coupling 
velocity vc is of the following form:

vc(u,x) = wc(x) · L[u] (3)

in which wc(·) is a vector-valued function, L[·] is a linear functional on the PDF u.
In principle, the dependence of coupling velocity on the density makes (1) a nonlinear differential equation, which gives 

rise to complex behaviors. However, since the coupling velocity vc as defined in (3) depends on global quantities of u over 
the domain and can be assumed to change relatively slowly for our applications. Therefore, we approximate vc = vc(x) to 
be fixed except when the velocity function vc is updated at some fixed timesteps. This approximation keeps (1) linear in 
the following derivations.

A discretization is required to simulate the population density numerically. In a particle method, the population density 
is discretized by approximating the population density as a linear combination of particles:

u(x) ≈
∑

i∈I

wi Ki(x − xi) (4)

where for each particle with index i, Ki(x) is the kernel function of the particle, wi is the weight of the particle, and xi is 
the center location of the particle. It should be noted that the linear approximation L[·] defined in (3) is different for each 
particle, as they have different center locations.

In our method, each particle is a weighted multivariate Gaussian. In particular, each Gaussian particle is represented by 
its weight wi , center location xi and covariance matrix !i , and its kernel function Ki is given by:

Ki(x) = 1
√

(2π)d det(!i)
exp

(
−1

2
(x − xi)

T !−1
i (x − xi)

)
. (5)

To improve the numerical stability and derive a simpler update algorithm, we track and store a square root of the covariance 
matrix ! = MMT instead and only evaluate the covariance matrix when needed.

2.3. Single particle update

This section describes the particle update algorithm, which is a special case of the Level Set Kalman Filter method as 
derived in [16]. Only the description is included here. Readers interested in the derivation and proof should refer to [16].

Recall (1):

∂u
∂t

= ∇ · K∇u − ∇ · (vu). (6)

For a single particle centered at x0, the probability density function is given by:

u(x,0) = 1
√

(2π)d det(!)
exp

(
− (x − x0)

T !−1(x − x0)

2

)
. (7)

Consider the level set of the function F :
{

x|F (x, t) := u(x, t)
u(0, t)

= c
}

(0 < c < 1). (8)

For u being a Gaussian particle, all level sets are ellipsoids. Tracking the movement of the Gaussian particle is equivalent 
to tracking one of its ellipsoid level sets as defined in (8). A factorization of the covariance matrix ! = MMT (where M is 
called a square root of !) represents a level set in the sense that the column vectors lie on the same ellipsoid. We represent 
the columns of the matrix M as Mi , and advance them in time. The ordinary differential equation is given by:

3
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∂Mi

∂t
= 1

2
(v(x0 + Mi) − v(x0 − Mi)) + K(MT )−1ei (9)

where x0 is the center location of the Gaussian particle, and the matrix inverse is understood as solving the equation with 
a backward-stable solver.

A matrix short-hand form is as follows (where the matrix-vector additions are defined entrywise):

∂M
∂t

= 1
2

(v(x0 + M) − v(x0 − M)) + K(MT )−1 (10)

and the velocity for the center is given by:

∂x0

∂t
= 1

2d

d∑

i=1

v(x0 + Mi) + v(x0 − Mi). (11)

Notice that to evaluate the velocity for one point xi on the level set, the center location, and all other points x j for this 
Gaussian kernel are needed, hence the points on a level set cannot be updated independently, and the dimension for the 
ODE solver is d × (d + 1). However, the updates of different Gaussian particles are independent.

As a summary, a particle is updated as follows (Table 1):

Table 1
The particle update algorithm.

Algorithm 1 Particle Update.

Require: center x, and a square root M of the covariance matrix at the previous time step.
Pass M and x as the state variable to an ODE solver with derivative defined by (10).
return center x′ , and a square root M′ of the covariance matrix.

2.4. Splitting a particle

Since updating the center location and the square root of the covariance matrix for a single particle uses a linear ap-
proximation of the convection velocity, we need a method to control the size of the Gaussian particle that would otherwise 
expand due to diffusion. Though the Gaussian particles have infinite support, most of the density is within 2 standard de-
viations in each eigenvector direction, and we consider this region to be its effective support. In [22], the Laplacian is used 
as the criterion for the quality of the local linear approximation. However, we would like to avoid the use of an explicit 
Laplacian, as it is one of the advantages of LSKF [16]. Numerical differentiation to find the Laplacian turns out to be not 
numerically stable with the close-to-singular covariance matrices. (This is investigated in Sec. 3.2.) With the numerical sta-
bility issue in mind, we check the soundness of the linear approximation in the direction of the off-center points used in 
the particle update. We decide if the particle needs to be split if this particular relative error for any of the off-center points 
is larger than a threshold chosen by the user:

ε = ‖(v(x + 2$xi) − v(x)) − 2(v(x + $xi − v(x)))‖
2‖v(x)‖ (12)

where x is the center of the particle, and $xi is the offset of the off-center point in direction i. The choice of ε has a 
significant effect on computational speed and is related to the combination of particles discussed in Sec. 2.5. In Sec. 3.2, we 
will further investigate the relation between the tolerance ε and the computation speed. For the numerical examples that 
follow, unless otherwise noticed, the value is chosen as 0.05.

Once the velocity field v in the effective support deviates from the linear approximation larger than this tolerance, we 
need a method to reduce the covariance, thereby reducing the effective support of the particle. We achieve this by splitting 
the particle into three thinner particles in the corresponding direction with half variance in that direction.

Up to some rotation, the kernel function (5) can be reformulated as:

Ki(x) = 1
(2π)d/2√σ1σ2 . . .σd

exp

(

−1
2

(
x2

1

σ1
+ x2

2

σ2
+ · · · + x2

d

σd

))

(13)

in which σ1 ≥ σ2 ≥ · · · ≥ σd are the eigenvalues of !. We here consider a method to reduce the width of the population in 
xi direction by representing the original population as a summation of three particles with variance in xi direction reduced 
by half. The particle in the center would weigh 1 − 2ω, and have its location the same as what it replaced, while the two 
off-center particles would both weigh ω, and have their center location shift by a and −a in the direction of xi respectively. 
Note the weight of the three children particles add up to 1, and the total weight of the particle is conserved after the 
operation.
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Fig. 1. Optimal one-dimension particle split with standard deviation 1 to three particles with standard deviation 1√
2

. The left panel shows the three 
components of the split particle with a = 1.0332 and ω = 0.21921 as defined in (14). The central panel shows the normal distribution and its approximation 
using the three particles defined in the left panel. The right figure shows the difference between the normal distribution and its approximation. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 2
The Eigen-decomposition particle split algorithm.

Algorithm 2 Particle Split (Eigen-decomposition).

Require: Particle with weight 1 centered at origin with a Diagonal covariance matrix ! = diag(σ1, . . . ,σd)

Define the new Diagonal covariance matrix !′ = diag(σ1/2,σ2, . . . ,σd)

Find center locations of the off-center particles given by xc = (1.03332
√

σ1,0, . . . ,0)

Construct center particle centered at the origin, with weight 1 − 2ω and covariance !′

Construct left and right particle centered at ±xc , with weight ω and covariance !′

Apply this method to the new particles until all variances are sufficiently small

In order to optimally find the value of the parameter of ω and a that is independent of the dimension of the state space, 
we first consider the following optimization problem in a single variable x:

min
a,ω

max
x

∣∣∣∣K (x|0,σ 2) − ((1 − 2ω)K (x|0,
σ 2

2
) + ωK (x| − a,

σ 2

2
) + ωK (x|a,

σ 2

2
))

∣∣∣∣ (14)

Where K (x|µ, σ 2) is the probability density function of the normal distribution with expectation µ and standard deviation 
σ . Using numerical optimization, we find a = 1.03332σ , ω = 0.21921.

Then, for a multivariate normal distribution, note that in an eigendecomposition, the probability distribution formed by 
the three particles is still a normal distribution when projected into the orthogonal eigenvectors. Additionally, (14) is defined 
without dimension-dependent terms. Consequently, this process can be repeated in other directions with the a and ω still 
optimal until variance in all directions are sufficiently small such that (12) is satisfied. This process introduces a maximum 
relative error of 0.73% for each iteration. This is enough to bias a careful analysis of convergence as the size of particles 
is reduced (and thus, we do not provide convergence results). However, it does offer sufficient accuracy in our simulations 
since the error introduced has little effect on the linear coupling velocity term. Therefore, the error introduced does not 
significantly affect the global behavior of the population, as will be shown in the examples below. If higher accuracy is 
required, one needs to reduce the difference between the variance of the particles. The method and a demonstration of the 
split is in Fig. 1 (Table 2).

The above derivation uses the eigendecomposition of the covariance matrix, which could be expensive and undesirable 
in some applications. However, as the error introduced is so small, we would like to apply this method with the identical 
a and ω for an arbitrary matrix decomposition as well. While this choice of parameters may no longer be optimal (as the 
claim projection of split distribution are normal no longer holds), the error bound 0.73% is still valid.

Specifically, given a particle centered at the origin with weight 1, and a covariance matrix is given by its square root 
decomposition ! = MMT , suppose split is needed along direction M1 (the first column vector of M), then the children 
particles are computed as follows:

• Center particle: centered at the origin, weight 1 −2ω, covariance matrix defined by the square root decomposition NNT ;
• Left particle: centered at 1.03332M1, weight ω, covariance matrix defined by the square root decomposition NNT ;
• Right particle: centered at −1.03332M1, weight ω, covariance matrix defined by the square root decomposition NNT .

w is equal to 0.21921, and the matrix N defined column-wise by:

Ni = Mi −
(

1 − 1√
2

)
< M1,Mi >

< M1,M1 >
M1 (15)

in which < ·, · > denotes the inner product.

5
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Table 3
The square root particle split algorithm.

Algorithm 3 Particle Split (square root).

Require: A particle with weight 1 centered at the origin and a square root decomposition MMT of the Covariance matrix
Find new square root decomposition N define in (15)
Find center locations of the off-center particles xc = 1.03332M1
Construct center particle centered at the origin, with weight 1 − 2ω and decomposition N
Construct left and right particle centered at ±xc , with weight ω and decomposition N
Apply this method to the new particles until all variances are sufficiently small

Fig. 2. Particle split along an arbitrary direction. The left figure shows the PDF of a particle with covariance 
[

16 2
2 3

]
. The middle figure and right figure 

show the three-particle approximation and absolute error introduced when the particle is split along (0, 1) direction, which is not an eigenvector.

It can be seen in Fig. 2 that the error introduced has more complicated shapes, and the projection of the split distribution 
into the other direction is no longer a normal distribution. A summary of the split algorithm is given by Table 3.

2.5. Combining particles

The previous method introduces new particles to the system. Therefore, a method to remove particles is required: oth-
erwise, the number of particles can grow geometrically, rendering this method impossible to use.

The description of the method for combining the particles can be divided into two parts: first, given a set of particles, 
a method to combine these particles into a single one optimally; second, a strategy to determine which particles should be 
merged into a single one.

First, consider the method for combining particles. With the requirement that the total weight adds to 1, we find a 
multivariate normal distribution that best approximates the PDF of the old population. Therefore we choose the new particle 
such that it has the same mean (center location) and covariance matrix of the distribution, and the weight is the sum of all 
the particles to be combined, conserving the total weight.

Consider a probability distribution consist of N particles with each particle approximated as:

p(x) =
N∑

n=1

wn√
(2π)d det(!n)

exp
(

− (x − µn)
T !−1

n (x − µn)

2

)
(16)

where ωn , µn , and !n are the weight, center location, and covariance matrix for the nth component particle.
Then the expectation of the new distribution µ is the weighted average of µn:

µ = 1
'

N∑

n=1

wnµn (17)

where ' = ∑N
n=1 ωn is the sum of particle weights.

(!)i j , the i jth entry of the covariance matrix ! for the combined particle, is given by the definition

(!)i j := E[(Xi − µi)(X j − µ j)] = 1
'

N∑

n=1

ω1 E
[
(Yni − µi)(Ynj − µ j)

]
(18)

where Xi denotes the ith component of the random variable X (note Xi is not bold to indicate that it is a scalar), µi is the 
ith component of the mean µ, Yn is the normal random variable corresponding to the nth particle with expectation µn and 
covariance matrix !n , and Yni denotes the ith component of the nth particle.

6
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A single summand in the right hand side of (18) can be evaluated as:

E[(Yni − µi)(Ynj − µ j)] = E
[
(Yni − µni + (µni − µi))(Ynj − µnj + (µnj − µ j))

]

= E
[
(Yni − µni)(Ynj − µnj)

]
+ (µni − µi)E(Ynj − µnj)

+ (µnj − µ j)E(Yni − µni) + (µni − µi)(µnj − µ j)

+ (µnj − µ j)E(Yni − µni) + (µni − µi)(µnj − µ j)

+ (µnj − µ j)E(Yni − µni) + (µni − µi)(µnj − µ j)

= (!n)i j + (µni − µi)(µnj − µ j) (19)

in which µnj is the jth component of µn , and (!n)i j is the i jth entry of !n . Therefore, we find that the covariance matrix 
M is given by:

(!)i j = 1
'

∑

n

wn
(
(!n)i j + (µni − µi)(µnj − µ j)

)
. (20)

In matrix form:

! = 1
'

∑

n

wn

(
!n + (µn − µ)(µn − µ)T

)
. (21)

Then we describe the method to determine which particles should be combined. We choose criteria for combining 
particles based on their distance being sufficiently close, and the combined particle does not need to be immediately split. 
Since we are more concerned about the computation time for finding combinations rather than having the minimum count 
of new particles, here we describe a method that scales linearly in the count of particles.

To try combining a particle with others, one can first find all neighbors within a fixed radius, then combine with these 
neighbors, and iterate through all particles. While finding all particles within a radius threshold appears to need to com-
pute pairwise distance, it turns out that this fixed-radius near neighbors problem achieves linear scaling in the number 
of particles [25]. Unfortunately, there is a lack of implementation for these algorithms for dimensions higher than 3. Here 
we describe a much-simplified version that only finds a subset of all neighbors within a fixed radius since we are only 
interested in reducing particles quickly, not optimally.

The method is based on a subdivision of the state-space into cubic-shaped buckets and using a hash function to utilize 
the sparsity, as illustrated in Fig. 4. For the sake of simplicity, let us assume the combining criteria is that the distance be-
tween particles is less than radius r. Since the particles are not structured, a pairwise computation of the distance between 
particles would scale quadratically with the number of particles. However, we divide the state space into cubic-shaped 
buckets with sidelength larger than r, and only lookup for pairs of particles within each bucket, then the computational 
should scale by the number of particles multiplied by the average number of particles in a bucket. Table 4 gives an outline 
of the method.

The challenge is that this would use a prohibitively large amount of memory, as discretization is required in every 
dimension. However, as the population is sparsely distributed in the whole space, we can use a hash function to store the 
occupied buckets: First, we pick the sidelength of the spatial grid. Since the state space is bounded, each cubic bucket can 
be indexed by its order in each direction. Then, we iterate through particles to find the buckets they are in and store the 
nonempty buckets in a hash table. After all the points are checked, we iterate through each nonempty bucket and combine 
particles inside into a single particle.

The advantage of using a hash table is that it is asymptotically efficient in both space and time: While the length of 
the keys grows linearly with the spatial dimension d, the time taken to evaluate the hash function can be considered 
a constant. Under this assumption, the average case writes and access time for a hash table of the occupied bins are 
practically constant. Hence we achieve practically linear scaling in the number of particles and constant scaling in the 
number of dimensions if the number of particles is fixed. A hash table also takes space that asymptotically grows linearly 
with the number of occupied buckets. Hash tables are also suitable for a parallel algorithm. In our implementation, we used 
the concurrent_hash_map included in the open-source intel oneAPI library.

The choice of grid sidelength is controlled by the parameter τ . The choice of optimal τ is affected by both the charac-
teristic of the problem and the tolerance defined in (12). Larger grids miss fewer possible combinations at the expense of 
more pairwise computations, as illustrated in Fig. 3. The effect of τ in computation time is further discussed in Sec. 3.2
with actual timing in Fig. 7. In addition to combining particles, we remove particles with very small (less than 10−8 of 
the population) weights due to successive splitting without combination and redistribute the removed weight evenly to all 
particles. This is needed since one can otherwise run into floating point underflow, which could then cause a division by 
zero error.

7
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Fig. 3. Tradeoff for grid sidelength: larger grids miss fewer possible combinations between cubic blocks, at the expense of more pairwise comparisons.

Fig. 4. Particle combination with hashed buckets: Instead of storing all the buckets A1 to G7, only the hash table is stored in memory. A hash function 
(mapping indicated by arrows) maps occupied buckets to the hash table. In case of clashing hash values (indicated by a dashed arrow), the hash table 
automatically maps to an unoccupied place in the hash table. The combine particle algorithm only checks within each bucket.

Table 4
The particle combine algorithm.

Algorithm 4 Particle Combine.

Divide the state space into sufficiently small grids, and find which grid block each particle has its center located (using a Hash function)
for each grid block containing more than one particle do

combine particles with center location defined as (17), and covariance matrix defined as (21)
end for

3. Simulation results and discussion

3.1. Motivating example: Van der Pol oscillators

First, consider a motivating example of a population of Van der Pol oscillators as an illustration of the method. Recall 
(1):

∂u
∂t

= ∇ · K∇u − ∇ · (vu) (22)

where, v = vd + vc . In the case of the Van der Pol model, the oscillator dynamic velocity field vd = ∂x/∂t is defined by:

[
v1
v2

]
=

[
µ(x1 − 1

3 x3
1 − x2)

1
µ x1

]

. (23)

The coupling velocity vc = vc(u) is defined by:

vc(u) = α

∫

R2

y1u(y)dy (24)
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Fig. 5. The population Van der Pol oscillator with µ = 1.5, α = 0.5 and diffusion coefficient k = 0.05 (top panels) and k = 0.1 (bottom panels). The left 
panels show the number of particles versus time. In the middle panels, the heat map of the distribution at t = 100. In the right panels: the location and 
geometry of particles at t = 100: the red circles indicate the weight of individual particles, while the black and green lines are the eigenvectors of the 
covariance matrix scaled by their corresponding eigenvalues. Movies are provided in the supplement.

in which α is a coupling coefficient. This is commonly referred to as a mean-field coupling. We set up the initial popu-
lation along the limit cycle of this oscillator without coupling. The results from a sample simulation are shown in Fig. 5, 
which serves as an illustrative example of how the APPD method represents the population and noise over the process of 
simulation.

We choose the Van der Pol oscillator to serve as an illustrative example for the usage of our algorithm, as the state space 
is 2-dimension and can be plotted without projection. In the example used in Fig. 5, we select an uncoupled initial condition 
along the limit cycle and observe the effects of coupling. It can be seen that both populations are coupled; however, there 
is a slight phase difference due to the noise level difference. It started at a high value since the population is set to start in 
an uncoupled state. As the coupling synchronizes the population, the population density is concentrated in a smaller region, 
and the number of particles drops accordingly. Since the computational cost is proportional to particle count, our method 
is more efficient if there is stronger coupling and weaker diffusion.

Additionally, we note that synchronization occurs unevenly and that once enough particles start to synchronize, many 
of the other particles quickly follow suit. This occurs in a similar way to the phase transitions seen in coupled oscillator 
theory [26]. As the population synchronizes, the number of particles shrinks.

3.2. Hodgkin-Huxley model with threshold coupling

The Hodgkin-Huxley model is a model that describes the electrical activity of a neuron based on ionic currents. Coupled 
neurons form the basis of computational neuroscience. These models are highly nonlinear and have multiple attractors, 
which creates challenges for simulation. Additionally, the model exhibits complex behaviors that are highly dependent 
on the noise level, such as noise-induced synchronization [27,28], and a noise-induced coexistence of firing and resting 
neurons [29]. These interesting macroscopic phenomena require an accurate simulation of noise to reproduce. We use the 
Hodgkin-Huxley model in two ways. First, we show that the APPD method accurately reproduces the mentioned phenomena, 
which can be further separated into two cases. Then, we compare it against direct Monte Carlo simulation to show that the 
method is accurate and fast.

The Hodgkin-Huxley model used here is described as follows: We take x = (0.01V , m, n, h), where V is the membrane 
potential in millivolts, m, h are proportion (for each cell) of activating and inactivating subunits of the sodium channel, and 
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n corresponds to that of potassium channel subunits. Here V is scaled by 0.01 such that all the values have the same order 
of magnitude since the particle combination method described in Sec. 2.5 uses cubic-shaped buckets.

The model equations are as follows:

C
∂

∂t
V = −GNam3h(V − V Na) − GKn4(V − V K) (25)

− G L(V − V L) − Gcoupling(V − V coupling) − Iapp,

∂m
∂t

= αm(V )(1 − m) − βm(V )m, (26)

∂h
∂t

= αh(V )(1 − h) − βh(V )h, (27)

∂n
∂t

= αn(V )(1 − n) − βn(V )n (28)

with the following equations for the subunit dynamics:

αm(V ) = 0.1
V − 25

1 − exp(− V −25
10 )

, (29)

βm(V ) = 4 exp(− V
18

), (30)

αh(V ) = 0.07 exp(− V
20

), (31)

βh(V ) = 1

1 + exp(− V −30
10 )

, (32)

αn(V ) = 0.01
V − 10

1 − exp(− V −10
10 )

, (33)

βn(V ) = 0.125 exp(− V
80

) (34)

in which Gcoupling is conductance due to coupling, as explained below.
In a neuron population, it is usually assumed that individual neurons are independent, except when a neuron firing 

occurs and post-synaptic neurons are coupled with the firing neuron. In a population density model, the neurons are indis-
tinguishable except for their state; therefore, an all-to-all coupling (or probabilistic coupling) between neurons is assumed. 
However, contrary to a neural mass model where coupling strength is determined from the average membrane poten-
tial [7,30], the more realistic threshold coupling can be implemented. Specifically, Gcoupling is proportional to the flow rate 
across the hyperplane V = V threshold from V < V threshold to V > V threshold side. Since the threshold value is chosen where 
the voltage changes quickly, the contribution of diffusion to coupling can be ignored, and the flow rate is given by the 
velocity of particles multiplied by the marginal density along V threshold . In the actual implementation, we used the averaged 
flow rate over the previous timestep as the flow rate for the current step, which, considering that actual coupling is not 
instantaneous, is still a reasonable assumption. The threshold firing potential is chosen at V threshold = 45 mV.

Since the subunit variables are proportions of some quantity, their domain is restricted in [0, 1]. The dynamics have 
inward-pointing velocity on the boundary. Therefore the center of particles will not leave the domain without splitting. 
However, as the particles have volume, the support of centers can be outside this domain due to the effects of Gaussian 
noise. [31] and [32] discuss more detailed handling of the noise near boundary conditions. Nevertheless, the following 
alternative method can still produce sufficiently accurate results.

The noise can result in off-domain points in two ways: When a split occurs and when checking an off-center point of 
a particle in the LSKF method. If a split result in the center of a particle outside the domain, the center is shifted to the 
closest location inside the domain. If an off-center point is outside the domain while the center is inside, we choose the 
offset of the point from the particle’s center to be its negative, which will be inside the domain and on the level set.

The value of the constants are listed as follows: C = 1 µF cm−2, GNa = 120 µA mV−1 cm2, ENa = 115 mV, GK =
36 µA mV−1 cm2, EK = −12 mV, G L = 0.3 µA mV−1 cm2, E L = 10.613 mV, Iapp = 10 µA. The coupling potential V coupling =
−35 mV for the inhibitory case, and V coupling = 50 mV for the excitatory case, keeping in mind that in this original Hodgkin-
Huxley model, the neuron rests near 0 mV. We choose the diffusion to be homogeneous after V is scaled, with a diffusion 
matrix K = kId .

The coupling is defined analogously to neuron firing: That is, when a neuron reaches a threshold membrane potential 
from below, the neuron sends a signal to all post-synaptic neurons. Consequently, Gcoupling in (25) is defined by Gcoupling =

10
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Fig. 6. The Hodgkin-Huxley model: Comparing APPD and Monte Carlo. Top panel: the Average membrane potential V versus time in milliseconds. From 
left to right, the coupling coefficient c increases from 0.1 to 0.3 with a stepsize of 0.05. From top to bottom, the diffusion coefficient increases, with 
k = 0.5, 1, 2, 3, 4 × 10−5. The APPD curve is in blue; the Monte Carlo curve is in orange. Lower panels: the computation time with the same parameters: 
the left panel shows the computation time, whereas the right panel shows the relative performance improvement over the Monte Carlo method. Note for 
the APPD method, the computation is faster when the population is more synchronized, indicated by drastically changing average membrane potential in 
the top panel.

20Q c, where constant c is the coupling coefficient, Q is the flow rate of neurons as a proportion of total population per 
millisecond. Therefore, Q has the unit ms−1.

We compare our simulations to direct Monte Carlo simulations. Note we choose the number of elements N = 41080
for the Monte Carlo simulation, and the improvement in performance would be more significant if a larger number of 
elements is used. For the range of parameters chosen and our implementation of the Monte Carlo method, the APPD 
method is faster than the direct Monte Carlo method, as shown in Fig. 6. It is important to note that while the Monte Carlo 
method takes about a constant amount of time for all simulation cases, there are large variations for the APPD. At a high 
noise, low coupling scenario (k = 4 × 10−5, c = 0.1) where the population is asynchronous at the end of the simulation, 
the APPD method is faster than the Monte Carlo simulation by 20%. Whereas for a low noise strong coupling scenario 
(k = 0.5 × 10−5, c = 0.3), the population remains synchronized, and the APPD method is 200% faster, as shown in the lower-
right panel of Fig. 6. This again shows that the APPD method is most suitable to simulate neurons with strong coupling at 
a lower noise level and that the APPD method can adapt to create computational efficiencies.

We now explore the choice of tolerance ε in (12) and its effect on computation time. It should be noted that the 
tolerance ε also affects the optimal choice of grid sidelength τ . The effect of ε , τ and computation time is investigated in 
Fig. 7.

We asserted that the distribution is compressed in some directions, and asymmetric particles are introduced to fully 
take advantage of this fact. With the Hodgkin-Huxley example, we investigate the extent of the asymmetry by plotting how 
fast the singular value of the covariance matrix decays in Fig. 8. Notice that the fourth singular value can be less than 
10−4 of the largest singular value. The number of dimensions combined with the difference of magnitude makes evaluating 
Laplacian using numerical differentiation infeasible, and the particle split criteria (12) in Sec. 2.4 is defined in a single 
direction as a result.
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Fig. 7. Relation between computational time, tolerance ε , and grid sidelength factor τ .

Fig. 8. Decay of singular value: The plot shows the distribution of the ratio of the second, third, and fourth singular value versus the first singular value 
of the covariance matrices of particles. The covariance matrix is taken from a snapshot of the distribution from the Hodgkin-Huxley simulation with 1732
particles. The ratio is ranked in descending order, with the percentage ratio indicated on the horizontal axis. Since the values are orders of magnitude 
different, the ratio is plotted in the common log of base 10, as indicated by the vertical axis.

4. Conclusions

The APPD method provides a fast and accurate method to study population-level behaviors while accounting for noise 
and coupling in biologically realistic models. We compared our method against direct Monte Carlo simulation and tested its 
ability to reproduce complex macroscopic phenomena across various parameters.

While the APPD method is conceptually inspired by the particle method by Stinchcombe and Forger [10], the method 
presented here has two significant improvements: 1) particles are asymmetric, allowing it to better track the population; 
2) computation of the noise term is computed by modifying a single particle instead of interactions between nearby par-
ticles, which reduces computation, and allows almost perfect parallel implementation. When compared against existing 
asymmetric particle methods [17,18,20,22], our method is the first to be applied to a 4-dimensional problem instead of 
the typically considered 2-dimensional problems. Such an extension is nontrivial as it depends on the improved numerical 
stability of our method by tracking a square-root of the covariance instead of the covariance.

Looking at the examples, we checked whether we achieved the goal of developing a middle ground between the di-
rect simulation and existing population density-based methods. From the form of (10), it is evident that the dynamics of 
the oscillator are retained, and no manual dimension reduction is required. The choice of the kernel (5) enabled an ac-
curate representation of the effect of noise. Through the examples, we implemented both all-to-all-coupled oscillators and 
threshold-coupled oscillators; both resemble the direct simulation.
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The advantages of the APPD method are the versatility through different models and a range of parameters without 
any model-specific simplifications and the robustness that the macroscopic behavior matches the direct simulation (Fig. 6). 
These observations lead us to conclude that the APPD method can be applied to analyze the complex macroscopic behaviors 
of a population of coupled noisy oscillators, which is in contrast to many population density approaches that require a 
model-specific understanding of its behavior to be implemented.

APPD can be extended by future work in the following ways: First, the derivation in Sec. 2.3 assumed the diffusion 
matrix and velocity field are constant in time or change slowly, but it could be extended to a more general situation. 
Second, the criteria for combining particles can be improved; for example, particles with small weights can be combined 
more aggressively.
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