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ARTICLE INFO ABSTRACT

Keywords: Background: Walking and running are common forms of locomotion, both of which exhibit variability over many
Cofnple"ity gait cycles. Many studies have investigated the patterns generated from that ebb and flow, and a large proportion
Gait ati suggests human gait exhibits Long Range Correlations (LRCs). LRCs refer to the observation that healthy gait
;Ziiif;ge correlations characteristic, like stride times, are positively correlated to themselves over time. Literature on LRCs in walking

gait is well known but less attention has been given to LRCs in running gait.

Research question: What is the state of the art concerning LRCs in running gait?

Methods: We conducted a systematic review to identify the typical LRC patterns present in human running gait, in
addition to disease, injury, and running surface effects on LRCs. Inclusion criteria were human subjects, running
related experiments, computed LRCs, and experimental design. Exclusion criteria were studies on animals, non-
humans, walking only, non-running, non-LRC analysis, and non-experiments.

Results: The initial search returned 536 articles. After review and deliberation, our review included 26 articles.
Almost every article produced strong evidence for LRCs apparent in running gait and in all running surfaces.
Additionally, LRCs tended to decrease due to fatigue, past injury, increased load carriage and seem to be lowest
at preferred running speed on a treadmill. No studies investigated disease effects on LRCs in running gait.
Significance: LRCs seem to increase with deviations away from preferred running speed. Previously injured
runners produced decreased LRCs compared to non-injured runners. LRCs also tended to decrease due to an
increase in fatigue rate, which has been associated with increased injury rate. Lastly, there is a need for research
on the typical LRCs in an overground environment, for which the typical LRCs found in a treadmill environment
may or may not transfer.

Variability

1. Introduction

Walking and running are ubiquitous forms of human locomotion.
People naturally adjust their walking and running patterns to meet ever-
changing task demands and adapt to new environmental constraints [1].
Gait variability refers to the changes in gait characteristics that occur
from one step to the next [2] such as timing differences that occur across
gait cycles. Gait variability can be defined in terms of its magnitude (i.e.,
standard deviation) and its structure (i.e., patterns expressed over time)
[1]. Those properties depend on many sources of influence such as a
person’s state of learning [1,3,4], the task at-hand [1,4,5], and/or
environmental constraints [1,4].

Variability in walking has been studied extensively in healthy pop-
ulations and in many clinically relevant settings, revealing many
important distinctions [1,2,6-17]. Typically, the magnitude of vari-
ability increases with disease progression and aging, where older adults
and those with neurodegenerative diseases tend to have a larger
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magnitude of variability than younger persons and diseased individuals
tend to have a larger magnitude of variability than healthy individuals
[1,2,10,18]. Furthermore, the structure of variability, as described in
more detail below, is more complex and somewhat predictable for
healthy and younger individuals but less complex in older or diseased
individuals [1,10,19]. Moreover, relative to young, healthy counter-
parts, those individuals produce variability that tends towards becoming
both overly determined and unpredictable, depending on the context.
The overwhelming majority of research has investigated gait variability
from the perspective of walking with fewer studies examining variability
in running gait [6,8,9,11,14,15,20-22]. Thus, a more complete inves-
tigation is needed to determine the similarities in walking and running
gait variability, particularly in terms of a property known as long range
correlations.

Long Range Correlations (LRCs) characterize the degree to which
movements are related from one moment to the next. The presence of
LRCs signifies that the timing from one step would be positively
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correlated with step timing from many steps earlier. That is, the vari-
ability of a person’s steps in the past could have dramatic effects on the
variability of current and future steps when walking or running. The
most common method to measure LRCs in human movement science is
Detrended Fluctuation Analysis (DFA) [23]. In short, DFA provides an
output variable alpha (a), where 0.5 < @ < 1 is mathematically indic-
ative of LRCs, although other ranges have been suggested based on
empirical observations in human gait and positive bias in the DFA al-
gorithm [5,10,23-26]. Other methods to measure LRCs in human
movement science that are included in this review include the Fractal
Dimension (FD) of a curve, Higuchi’s Fractal Dimension (HFD), or Rescaled
Range Analysis (R/S). The FD of a curve depicts LRCs when 1 < FD < 2
[27]. Similarly, LRCs are apparent when 1 < HFD < 2, where HFD — 1 is
indicative of weaker LRCs and HFD — 2 is indicative of stronger LRCs
[28]. Further, R/S produces the Hurst (H) exponent, which is equivalent
to o for measuring LRCs, where 0.5 < H < 1 is indicative of a persistent
time series, hence LRCs [29,30]. Measuring LRCs in human performance
variables is important because LRCs have been proposed as a sign of
healthy physiological systems [31-33] as proposed in the Optimal
Movement Variability Hypothesis (OMVH) [3,34].

The OMVH suggests that variability in mature motor skills strikes a
balance between complexity and predictability [34-36]. Human gait
entails coordination of many underlying physiological interactions, in
addition to task and environmental constraints. Complexity in human
movements — the richness of one’s behavioral repertoire — are thought to
reflect one’s ability to adapt to novel circumstances while coordinating
those influences. Predictability refers to the consistency in movement
patterns such as the consistency of spatiotemporal features of gait. On
the one hand, healthy human movements require a balance between
those properties, maintaining patterns appropriate for a given context
while remaining flexible to draw on one’s repertoire to meet changes in
context. On the other hand, OMVH suggests that unhealthy human
movements deviate from optimality in two ways. First, when a system’s
predictability is high and complexity is low, this reflects a reduced
flexibility to adapt to environmental perturbations (green time series in
Fig. 1, where a is not defined) [19,34]. Second, if the system’s predict-
ability and complexity are both low, movement will exhibit less regu-
lated behavior (a closer to 0.5, blue structure in Fig. 1) [19,34]. Both
situations make the system less adaptable to perturbations and are
directly related to an increased presence of disease and/or the natural
aging process [14,19,33,37-39]. The OMVH proposes that skilled and
coordinated action, like walking, should strike a balance between the
extremes implied in Fig. 1 [34]. LRCs fit within the OMVH because they
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Fig. 1. Optimal movement variability hypothesis. Less than optimal could be
too random and unstable (blue) or too predictable and rigid (green). An optimal
structure (pink) indicates higher adaptive ability.
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represent the multiple interactions of a system within the body [31,37,
40] and indicate an optimal state of motor performance [33,40,41]. In
this review, we draw upon the OMVH as a theoretical framework with
which to interpret LRCs that may be present in running gait, given its
proven utility in interpreting gait dynamics observed during walking [4,
41,42].

As mentioned above, LRCs have been studied extensively in walking
gait. Past literature has reported that normal walking gait, without
perturbations, exhibit LRCs [9,11,22,43-45], with some articles indi-
cating LRCs in slow, preferred, and fast paced walking [8,15]. Persons
with neurodegenerative diseases, like Parkinson’s and Huntington’s
disease, show a decrease in their LRCs compared to healthy subjects
when walking [43,44], in line with the OMVH. Additionally, LRCs tend
to decrease naturally as we age [14,44]. LRCs of the system are
detectable through walking gait parameters, but similar dynamics may
be detectable in other forms of locomotion.

Although LRCs have been studied considerably in walking gait, fewer
experiments have examined LRCs while running. In those cases, a
cursory review of the literature implies inconsistent findings concerning
the nature of LRCs in running gait. One study [16] looked at the stability
and time dependent structure of gait in walking compared to running on
a treadmill, as well as the transition between walking and running and
vice versa. When comparing walking and running stride intervals, the
LRCs were more apparent when measured from the ankle during
walking (walking @ ~ 0.78, running a ~ 0.75), while LRCs were more
apparent when measured at the head during running (walking a ~ 0.76,
running a ~ 0.80). Those results could suggest that different body seg-
ments produce different LRC patterns. Alternatively, those patterns
could imply conflicting evidence about the differences in LRCs between
walking and running. Such potential contradictions suggest a need to
aggregate the extant literature regarding LRCs comparing running and
walking. To that end, we conducted a systematic review to investigate
the effects that running has on LRCs and the consequent implications for
human health, performance, and rehabilitation. Our aim was to identify
the typical LRC patterns for human running gait, the differential effects
that running and walking have on LRCs, the effects of injury and disease
on running gait LRCs, and the effect that surface has on the LRCs in
running gait.

2. Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines were followed for this systematic review [46].
PubMed, IEEExplore, Scopus and Web of Science were used from August
2020 to December 2022 using the following Boolean string:

(“fractal” OR “multifractal” OR “complexity” OR “long range corre-
lation” OR “long range dependence” OR “serial dependence” OR “self-
similar*” OR “detrended fluctuation analysis” OR “rescaled range
analysis” OR “power spectral density” OR “pink noise””) AND (“running”
OR “run” OR “sprint” OR “sprinting” OR “jog” OR “jogging”) AND
(“gait” OR “stride” OR “treadmill”).

Due to the limitation of search characters in the Scopus engine in
2020, the Boolean string had to be split into three separate, smaller
strings to include all articles, as follows:

1. (“fractal” OR “multifractal” OR “complexity” OR “long range corre-
lation”) AND (“running” OR “run” OR “sprint” OR “sprinting” OR
“jog” OR “jogging™) AND (“gait” OR “stride” OR “treadmill”)

. (“long range dependence” OR “serial dependence” OR “self-similar*”
OR “detrended fluctuation analysis”) AND (“running” OR “run” OR
“sprint” OR “sprinting” OR “jog” OR “jogging”) AND (“gait” OR
“stride” OR “treadmill”)

. (“rescaled range analysis” OR “power spectral density” OR “pink
noise”) AND (“running” OR “run” OR “sprint” OR “sprinting” OR
“jog” OR “jogging™) AND (“gait” OR “stride” OR “treadmill”)
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Inclusion criteria of the initial screening were: Human subjects,
running related experiment, computed LRC analysis on running, and
must be an experiment. Studies on animals, non-humans, walking only,
non-running, non-LRC analysis, and non-experiments (systematic re-
views, meta-analysis’, theoretical frameworks, etc.) were removed. The
initial screening was done by two investigators (TW and AL), and an

Records included: 31
Records excluded: 245
Reasons:
Non-experiment 28
Non-human 85
Non-running 33
Non-LRC analysis on
running gait 100
Non-experiment 9
5 | Records included: 35
Records excluded: 241
Reasons:
Wrong study design 99
Wrong population 38
Wrong outcome 91
Wrong publication type 19
Foreign language 1
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Non-experiment 1
Non-LRC analysis on
running gait 7
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initial article selection was identified by the title and abstract, while
reviewing full text if necessary, using the systematic review device
Rayyan (Qatar Computing Research Institute) [47]. Screeners were
blinded to each other’s evaluations. Conflicts about inclusion and
exclusion decisions were resolved by deliberation between the two in-
vestigators (TW & AL).

Fig. 2. Article search and screening process.
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Once the final articles were selected for review, a quality assessment
was performed based on methods in previous literature [48], and
tailored to the specific aims of this systematic review:

. Sample size greater or equal to 10.

. Specified inclusion/exclusion criteria of research participants.

. Defined the protocol.

. Defined the surface on which the subjects locomoted.

. Specified aim/purpose of study.

. Specified long-range correlations.

. Used a minimum of 600 strides when utilizing non-linear analyses.

NO U~ WNHR

For each item on the list, papers were scored with a 1 for meeting the
criteria or a O for not meeting the criteria. Papers that received a Quality
of Assessment Score (QAS) of 6 or above received a rating of “high
quality”, a QAS of 4 or 5 were deemed a rating of “medium quality” and
papers a QAS of 3 or lower were categorized as “low quality”. The score
given in this systematic review does not reflect the overall ability of the
articles to assess the subject(s) but gives a qualitative interpretation of
the study design, in addition to methodological reliability when calcu-
lating and explicating the LRCs regarding running gait. (Fig. 2).

3. Results

After removing duplicates from the initial 536 search results, 276
studies were identified based on our search terms (Fig. 2). Two re-
viewers (TW & AL) conducted blind reviews on the 276 articles in
Rayyan based on title and abstract alone. While TW excluded 245 arti-
cles (31 included articles), AL excluded 241 articles (35 included arti-
cles). A deliberation meeting was held to resolve the five-article
difference. TW and AL initially agreed on the inclusion/exclusion of 21
articles. Based on reading the full text of the 13 articles that produced a
conflict of inclusion and exclusion, five articles were included and eight
were excluded. After a unanimous decision between TW and AL, the
final selection of 26 articles were included based on title, abstract and
full text.

Of the 26 included articles, 21 articles looked at the LRCs of treadmill
running alone [16,28,49-67], three articles looked at overground
running alone (two articles tested on an oval track [68,69], and one
article tested on multiple half-marathon racecourses [27]), and two
articles compared treadmill and overground running (one article tested
on an oval track [70], while the other tested on a straight overground
surface [71]). The mean number of participants among the 26 studies
was 20.7 participants, and ranged between 1 [61] and 90 [57]. The
average trial length was 9.5-minutes, and ranged from one minute [55]
to 97 min and 35s [27]. Twenty-two articles used DFA [16,49-66,
68-70], while the remaining articles used the FD [27], HFD [28,67], or
R/S [71]. Lastly, our quality assessment revealed 20 high quality articles
[16,27,28,49,50-52,54,55-59,62,63,65,66,68,69,71] and 6 medium
quality articles [53,60,61,64,67,70] based on the QAS given to each
article (Supplementary Excel File — Quality Assessment).

LRC characteristics of running gait were apparent in 24 articles [16,
27,28,49-64,66,66,68-70], based on statistical output values explicitly,
but are not apparent in two articles [65,67]. LRCs in stride length (SL)
were similar for both elite and recreational runners, a = 0.80 &+ 0.12
and a = 0.83 £ 0.12, respectively [68]. In agreeance, Panday and col-
leagues found no difference in LRCs between expert and novice runners
for SL, stride time (ST), and stride width (SW) at each 5-minute interval of
observation (P1: 0 — 5 min, P2: 5 — 10 min, P3: 10 — 15 min, P4: 15 —
20 min) [66]. While walking gait « tended to increase with an increase
in locomotion speed, the @ in running gait tended to decrease with an
increase in locomotion speed [16]. Another article by Jordan and col-
leagues [53] found LRCs fit a U-shaped curve in relation to running
speed, where the stride interval (SI) LRCs of running gait were higher at
slow (#~0.89) and fast speeds (a~0.85) relative to preferred running
speed (PRS, @~0.78). LRCs were also apparent during the transition
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speed from walking to running (ankle marker a = 0.74; head marker
a = 0.81) and during transition speed from running to walking (ankle
marker @ = 0.72; head marker a = 0.73) [16]. Additionally, one article
found that the LRCs between the left, « = 0.885, 95% confidence in-
terval (CI) = (0.834, 0.935) and right leg « = 0.884, 95% CI = (0.834,
0.933), were highly symmetrical [59].

Heavy training and overreaching states tended to influence the LRCs
of running gait. Bellenger and colleagues [50] and Fuller and colleagues
[52] both examined the effects of heavy training on the LRC charac-
teristics in running gait. A significant decrease in @ due to heavy training
was reported at 65% maximum heart rate (HRmax) (a = 0.68 + 0.13)
compared to baseline (a¢ = 0.80 + 0.09), but not at 85% HRmax
(¢ =0.71 £ 0.22) compared to baseline (a=0.74 +0.09) [50].
Changes in a at 65% HRmax also correlated with changes in the Daily
Analysis of Life Demands for Athletes (DALDA) questionnaire (r = —0.52;
p = 0.021) but did not correlate at 85% HRmax (r = 0.16; p = 0.0517)
[50]. In agreeance with Bellenger and colleagues, albeit not signifi-
cantly, Fuller and colleagues [52] found that « decreased for treadmill
running after heavy training at 10.5 km/h (a = 0.61 + 0.06) compared
to light training at the same speed (@ = 0.66 + 0.05), and found no ef-
fect of training (112 = 0.07, p = 0.55) or speed (;12 = 0.05, p = 0.65) on
the SI LRCs in running gait.

Load carriage, as a percent of bodyweight (BW), also influenced the
LRCs of running gait. One study by Krajewski and colleagues [55]
compared the LRCs in running gait versus marching gait at 100% BW,
125% BW, and 145% BW. While running gait on the treadmill exhibited
an a close to pink noise for both SL (@ = 0.88 + 0.31) and ST (@ = 1.04
+ 0.50) for 100% BW; LRCs tended to decrease as load magnitude
increased to 125% BW (SL: a = 0.63 4 0.26, ST: a = 1.09 & 1.02) and
145% BW (SL: @ = 0.27 + 0.63, ST: a = 0.15 + 0.54) [55]. Another
study by Krajewski and colleagues [65] compared the LRCs in running
gait versus marching gait at 100% BW, 125% BW, and 145% BW; but ran
DFA on joint work (JW) at the ankle, knee, and hip. In opposition to the
previous article [55], Krajewski and colleagues found o tending away
from 1 (decrease in LRCs) at 100% BW for both positive JW (JWpos) at
the ankle (¢ = 0.63 + 0.26), knee (¢ = 0.36 + 0.51), and hip (a = 0.81
+ 0.76) and negative JW (JWneg) at the ankle (¢« = 0.58 + 0.25), knee
(0 =0.40 £ 0.44), and hip (a=0.69 £ 0.59), respectively [65].
Although not statistically analyzed in the article, « means tended to
decrease when BW increased to 125% BW for JWpos at the ankle
(o = 0.37 £ 0.75), knee (x = 0.22 + 0.81), and for JWneg at the ankle
(o = 0.38 + 0.73) and knee (o« = 0.31 + 0.85), but not for JWpos at the
hip (e = 1.00 £ 0.52) or JWneg at the hip (x = 0.77 + 0.42). Further,
145% BW o means tended to decrease compared to 100% BW for all
JWpos at the ankle (o« = 0.19 + 0.93), knee (e = 0.05 + 0.82), and hip
(0 =0.79 £ 0.75) and for all JWneg at the ankle (o = 0.24 + 0.89),
knee (a = 0.27 + 0.83), and hip (a = 0.66 + 0.54). To note however,
there are high standard deviation values of a for all JW a, ranging from
0.25 to 0.93.

Fatigue seemed to influence LRCs over time. Four articles looked at
the effects that fatigue had on the LRCs in running gait [27,58,68,69].
LRCs decreased over time during a prolonged overground run to
exhaustion for both SL in experienced (beginning a = 0.89 + 0.15, end
a = 0.77 + 0.08) and recreational runners (beginning a = 0.91 + 0.14,
end a = 0.77 + 0.13) and for ST in experienced (beginning a = 0.86
+0.09, end a=0.73 +0.14) and recreational runners (beginning
a=0.84 +0.11, end @ = 0.73 £ 0.14) [68]. This agreed with Meardon
and colleagues [69], in which an overall decrease of LRCs was found
over the course of the run for both injured (beginning « = 0.92, middle
a =0.68, end @ = 0.77) and non-injured runners (beginning a = 1.19,
middle a = 0.86, end a = 0.85). Mo & Chow [58] found a U-shaped
trend in « for SI in both experienced runners (beginning a = 0.74
4 0.07, middle « = 0.67 & 0.09, end a = 0.75 4 0.10) and novice run-
ners (beginning a = 0.72 + 0.07, middle « = 0.64 + 0.10, end a = 0.69
=+ 0.08) over a prolonged run. However, that difference is not straight-
forward. Only injured runner’s displayed a somewhat U-shaped trend in
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a —non-injured runners exhibited a more pronounced linear trend [69].

Reported effects of speed reflect a mixture of trends when comparing
PRS to higher or lower speeds. Seven articles looked at the LRCs of PRS
and at different percentages of PRS [53,54,56,60,61,63,70]. Four out of
the seven articles looking at PRS [53,54,61,70], indicated that LRCs are
reduced at PRS (U-shaped trend), compared to Mann and colleagues
[56] who found an opposite trend. Further, Nakayama and colleagues
[60] showed that while the non-runner group showed a U-shape trend of
a at 80% (a ~ 0.92), 100% (@ ~ 0.90) and 120% PRS (a ~ 0.93), the
experienced runner group claimed that a increased as PRS increased,
from 80% (a ~ 0.75) to 100% (a ~ 0.78) then to 120% PRS (a ~ 0.79),
but did not reach statistical significance. Walsh found no differences
between PRS and 120% PRS in the anterior/posterior, medial/lateral, or
vertical positions when measuring LRCs at the center of mass and in
motor primitives measured by muscle synergies [28].

Speed effects also show a mixture of trends at different critical ve-
locities (CV, different than the PRS metric) [64] and at specific running
speeds ranging from 2.0 m/s to 3.5 m/s in long distance runners and
from 4.2 m/s to 9.5 m/s in sprint athletes [67]. One article looked at «
values at the ankle, knee, and hip during 95%, 100%, 105%, and 115%
CV, where exercise above CV is characterized by metabolic flux and
systemic responses to exercise and below CV represents a steady state to
attain exercise for a prolonged period of time [64]. Hunter and col-
leagues applied DFA to the steadiest 20 s epochs in the beginning and
end of a 20 min run at 95%, 100%, 105%, and 115% CV. Overall, a
decrease in LRCs was found at 115% CV, compared to lower velocities at
the ankle, knee, and hip. In addition, the only difference in LRCs be-
tween the beginning and end of the run occurred at knee internal and
external rotation at 95% CV (beginning a = 0.631 + 0.071 and end
a = 0.660 + 0.072) and at 100% CV (beginning o« = 0.624 + 0.066 and
end o = 0.640 + 0.067). Lastly, one article looked at LRC changes be-
tween running speeds at 2.0, 3.0, and 3.5m/s in recreational
long-distance runners and the LRC changes between running speeds at
2.8,4.2,5.6, 6.9, 8.3, and 9.5 m/s in sprint athletes [67]. In recreational
runners, Santuz and colleagues found a decrease in LRCs from 2.0 m/s
(HFD ~ 1.18) to 3.0 m/s (HFD ~ 1.13). A decrease in LRCs with an
increase in speed was also found in the sprinting group from 2.8 m/s
(HFD ~ 1.17) to 9.5 m/s (HFD ~ 1.14), but no significant differences in
LRCs were found between 4.2 m/s and 5.6 m/s, 6.9 m/s and 8.3 m/s,
and 8.3 m/s and 9.5 m/s.

LRCs were apparent in running gait for all surfaces and interfaces
between the surface in one study [70], while LRCs were not found on
either surface in accordance to another study [71]. Treadmill running
produced higher LRCs (a =1.02 + 0.18) compared to overground
running (a = 0.85 + 0.15) [70]. Given the constant speed and pace of
locomoting on a treadmill, it’s not surprising that human gait would
exhibit LRCs that are different than an overground environment. The
treadmill environment produces constraints on the system, due to the
constant speed, straight path, and size of the treadmill. This limits the
available degrees of freedom and solutions the system can use to pro-
duce the required outcome of running stably, yet adaptively on a
treadmill environment. However, the direction of LRCs was surprising,
and is at odds with walking gait [22]. One might have expected that
because treadmills act as a constraint or pacing device, then the LRCs
would be weakened as is seen in walking gait [22,72,73]. If the results
were to replicate, such findings would raise theoretical questions about
how pacing affects LRCs in gait. Agresta and colleagues [49] used a
combination of treadmill and metronomes but found little effect of
metronomes, possibly because the pacing from the treadmill is such a
heavy-handed constraint. Indeed, an interesting follow up experiment
would be to investigate how pacing signals (e.g., metronomes) affect
overground running gait. In contrast to Lindsay and colleagues [70],
Mileti and colleagues used R/S on motor primitives that produced lower
H values on a treadmill (H ~ 0.30) compared to an overground envi-
ronment (H ~ 0.35) [71]. Further, H values for both treadmill and
overground running were lower than 0.5, signifying no LRCs when
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measuring at motor primitives. Based on the findings between these two
articles [70,71], it is unclear if the trend of higher LRCs in a treadmill
surface hold true compared to an overground surface, or if the lack of
LRCs found in both environments holds true. To note, LRCs were
detected differently where Lindsay and colleagues applied DFA to stride
time series [70], where Mileti and colleagues applied R/S to motor
primitives [71], in which could affect the accuracy of detecting LRCs.

In addition to surface, LRCs were apparent for different interfaces of
traversal and landing technique. Fuller and colleagues [51] and Mann
and colleagues [57] concluded that LRCs were apparent in the interface
of both minimalist shoes (MS) and conventional shoes (CS). These articles
[51,57] showed no significant differences in LRCs between subjects
using MS versus CS. Additionally, Garofolini and colleagues found no
difference in LRCs between a low minimalist index (MI) shoe (MI =
18%), medium MI shoe (MI = 56%), and high MI shoe (MI = 96%);
where MI is defined from 0 (maximum assistance) to 100% (least
assistance with the foot) [63]. This article also looked at the difference in
LRCs in leg stiffness between forefoot strikers (FFS) and rearfoot strikers
(RFS) at touch-down (0.2-1BW), loading (1BW to peak ground reaction
force (GRF)) and unloading phases (peak GRF to 0.2BW). FFS had higher
LRCs than RFS only at the touch-down phase (FFS a ~ 0.68 vs RFS o ~
0.60). Further, there was a difference in LRCs for FFS between
touch-down (o ~ 0.68) and loading (a ~ 0.64) and between loading (a ~
0.64) and unloading phases (a« ~ 0.73). On the other hand, RFS showed
no difference in LRCs between all three phases.

Injury rate is a big obstacle in terms of running gait, where at least
50% of runners obtain an injury in a year [74]. Only a couple of articles
in our search touched upon the effects of injury on LRCs, in which two
articles [69,70] found conflicting results. Mann and colleagues [56]
found a higher « in previously injured runners than non-injured runners
from 80% to 110% PRS, but the difference in ST a was not significant.
This disagreed with Meardon and colleagues [69] who found that pre-
viously injured runners demonstrated lower LRCs overall (a = 0.79)
compared to non-injured runners (a = 0.96).

4. Discussion

The overarching goal of this systematic review was to document the
state of the art concerning LRCs in running. In particular, we aimed to
identify typical ranges of a in running gait, understand differences in «
across tasks (e.g., walking and running), as well as how running gait
LRCs might be altered in other cases such as disease and injury. Ulti-
mately, our review of the literature may have returned too few studies to
rigorously address that aim; however, we feel that these results point to
a large opportunity for future research given that so little is known about
LRCs in running gait. Without exception our results showed that the
typical LRCs of running gait tend to exhibit a close to 1.0 and, in that
sense, mimic the ubiquity of LRCs found in walking gait. Importantly,
the literature also suggests that the strength of LRCs depends on context.
For example, LRCs in running gait seem to depend on speed in a
nonlinear way with deviations away from PRS producing slightly higher
a than PRS. Moreover, fatigue tends to reduce the strength of LRCs,
although fatigue effects may depend on the expertise of the runner. As a
caveat, we note that most of the studies included in our review were
mostly on LRCs found in treadmill running. Hence, interpretations of
trends may have limited generality outside that domain. The remainder
of this discussion is organized as follows: First, we address how the
observed trends in the literature align with the OMVH, articulating areas
of convergence and apparent divergence. Second, we discuss potential
implications of our results from clinical/rehabilitative perspective.
Third, we propose several future directions that need to be engaged in
order to move this line of research forward.

4.1. Running Gait LRCs in the context of human movement variability

Distilled, the OMVH makes key predictions about those that may be
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considered optimal patterns of variability. Optimal patterns, typified by
pink noise, represents a “sweet spot” that balances complexity and
predictability to putatively allow for flexibility and adaptability as the
context of movement changes. As such, a following prediction is that the
“default mode” of locomotion should likewise exhibit pink noise. The
experimental data returned in our search provides strong evidence in
support of that claim. Almost unanimously, those papers demonstrate
that, like walking gait, healthy young adults adopt running gait vari-
ability patterns that are well described as producing LRCs, with as that
tend towards one. That is, in agreement with the OMVH, the “default
mode” in running seems to exhibit patterns consistent with pink noise.

The OMVH also predicts that non-optimal patterns of variability
should deviate away from characteristic pink noise, deviating in one of
two directions — either becoming overly random or overly predictable.
Evidence from fatigue-related research likewise supports this prediction
[52,69,75]. For example, increasing physical stress due to load carriage
drastically reduces LRCs, producing anticorrelated patterns in spatio-
temporal gait features when participants donned 145% their body
weight [55]. Similarly, some authors have demonstrated that fatigue
tends to reduce the strength of LRCs in running when measured over the
time course of long running protocols in both overground [68,69] and
treadmill environments [64], but others suggest no significant decreases
in LRCs on a treadmill environment due to fatigue [57,58]. In short,
LRCs decreased due to fatigue, but predominately in an overground
environment. Moreover, heavy training also seems to reduce the
strength of LRCs [50]. The implication across those findings is that, as
physical stress becomes more extreme, as likelihood of fatigue increases,
the runner becomes less adaptable. Consistent with the OMVH, fatigue
may induce deviations away from optimal movement variability, as
evident from reductions in LRCs.

So far, we have interpreted evidence in our review in positive sup-
port of the OMVH. Those interpretations, however, are not without
exception. Given predictions of the OMVH, one might speculate running
variability should be optimal at PRS. If that were the case, then one
would likewise anticipate that deviations from PRS should produce
deviations from optimality similar to those reported in the context of
fatigue above [55], i.e., an inverted-U shaped function relating speed to
a. The papers returned in our review did return a concave trend but not
in direction specified by the OMVH. That is, most articles showed that «
was lowest at PRS and tending higher at running speeds slower and
faster than PRS (Table 1) [53,54,61,70]. Another paper in our review
that investigated the fractal dimension of center of mass variability
found no differences between PRS and 120% PRS in either walking or
running [28]. Consequently, most effects of speed seem to contradict a
central concept of the OMVH.

An important feature of the aforementioned studies, though, is that
most studies took place on a treadmill [53,54,61,70]. Treadmills are
known to influence gait dynamics in walking, reducing a observed from
spatiotemporal gait features relative to overground walking [22]. One
article we reviewed compared treadmill and overground running and
found that treadmill running produced higher a than overground
running, at all speeds [70]. Thus, an alternative explanation for the
speed effects is that the observed U-shaped functions relating speed and

Table 1

« as a function of surface and preferred running speed (PRS).
PRS
Article Surface 80% 90% 100% 110% 120%
Norris et al. 2016 Treadmill 0.85 - 0.80 - 0.92
Jordan et al. 2006* Treadmill 0.86 0.83 0.73 0.77 0.76
Jordan et al. 2007* Treadmill 0.89 0.82 0.78 0.83 0.85
Lindsay et al. 2014 Treadmill 1.04 - 0.98 - 1.05
Lindsay et al. 2014 Track 0.86 - 0.86 0.85

e

Note. Reported o are means or approximate means (*), wi
data at that PRS.

indicating no
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a reflect a nonlinear interaction between running speed and altered
dynamics elicited from constraints of treadmill running. Lindsay and
colleagues [70] investigated that question and found little evidence of
such an interaction. Instead, it is possible that higher o in treadmill
environments compared to overground environments is related to the
speed constraints of locomoting on a treadmill. Because speed cannot be
varied easily on the treadmill (speed control is effectively off-loaded to
the treadmill belt), the motor system may prefer a more structured gait
pattern to complete the task of running on a treadmill because the
environment is more predictable. Large o (close to 1) may reflect that
tendency. However, that explanation is also strained because o also
seems to increase at speeds slower than PRS [53,54,61,70]. Clearly,
more research is needed to discern if surface and speed combine to
produce alterations to gait dynamics. Regardless, treadmill running at
speeds different than PRS remain a challenge for the OMVH to explain.

4.2. Running Gait LRCs in clinical settings and rehabilitation

The seeming ubiquity of LRCs in running gait leads us to question
why little work has been conducted on the topic from a clinical
perspective. Our search failed to return any articles that measured the
effect of disease on running gait LRCs. Perhaps this is not surprising.
Individuals with neurodegenerative diseases often have difficulty
walking for more than a few minutes, let alone running. Lack of data on
running LRCs in clinical populations is further complicated by chal-
lenges in measuring LRCs in short time series [76,77]. Despite those
challenges, we argue that, when possible, to collect sufficient data (e.g.,
early stages of disease progression), LRCs in running gait could provide
additional diagnostic power for early detection of disease. For example,
one large scale study investigating LRCs derived from long term activity
data found that reductions in LRCs often preceded typical clinical pre-
sentations of neurological symptoms [78-80]. Given the relative phys-
ical demand of running compared to walking, altered dynamics may be
present sooner in running than walking gait. In that sense, further
investigation of how running gait dynamics change over the time course
of disease could provide early warning signals of disease onset, partic-
ularly in those people that run daily.

Furthermore, investigations into the evolution of running gait dy-
namics over time could provide insight into early warning signs of injury
onset and promote injury prevention. One meta-analysis reported that
injury prevalence in runners lies between 19% and 79% [81]. Others
have noted annual injury rates of up to 52% [82]. There are also studies
that hint at a relationship between injury and altered LRCs. For example,
LRCs have been shown to decrease due to injury status [69], declining
physical function [14], and have also been shown to decline and remain
low up to ten days after functional overreaching [50,52]. Further, LRCs
decreased significantly during a prolonged run right before the onset of
fatigue [68] — while running when fatigued increases injury rate [83].
Combined, those studies imply that LRCs may decrease right before
injury onset. Although we are optimistic that measurement of LRCs
could assist in injury detection, more research is needed to support our
optimism. Our search only found two papers that compared previously
injured versus non-injured runners and those studies produced con-
flicting results. One paper [69] found lower LRCs in injured runners
during a prolonged run (a = 0.79) compared to non-injured runners
(a = 0.96), but the other [56] found no reliable differences in LRCs
between injured and non-injured runners. Clearly, more research is
needed that makes direct comparisons between injured and non-injured
runners to evaluate the utility of LRCs as a running injury diagnostic
tool.

4.3. Needed: future research on LRCs in running gait
Our review of this literature suggests a number of areas that would be

fruitful topics for future research. Some topics relate to resolving
confusing trends in the literature. These trends include surface effects on



T.J. Wilson and A.D. Likens

LRCs (treadmill versus overground), overground surface effects on LRCs
(sand, gravel, dirt, cement, etc.), jogging versus sprinting LRCs, asym-
metries in LRCs between the left and right leg, speed, and fatigue effects
on overground LRCs, and the healthy range of LRCs () in running gait.
Overall, LRCs were found in running gait, but more research should be
conducted to support the trends that were found in the current
literature.

It is apparent that most of the articles in this systematic review
investigated LRCs in a treadmill environment (23/26 articles) compared
to an overground environment (5/26 articles). As apparent by the arti-
ficiality of a treadmill environment, the constraints (fixed speed, surface
stiffness, space given for locomotion) placed on the system could have
an influence on the emergent properties of LRCs. While some literature
state similarities between treadmill and overground running in terms of
the temporal characteristics of stance and stride [84] and level surface
running kinetics [85]; others found differences in terms of uphill and
downhill running kinetics [85] and level surface running kinematics
[86]. The locomotive environment may potentially have an ineffective
role in LRCs due to the rapid adjustment of leg stiffness (underlying
physiological response) to offset surface stiffness [87]. Further, given
that the treadmill represents an artificial environment and hence con-
straining the system’s ability to adapt, one might state that detecting
LRCs in a treadmill environment is not worthwhile. However, because
treadmills are pervasive in both medical settings (i.e., physical therapy,
cardio stress tests, etc.) and daily life (largely due to convenience), one
might argue that it is crucial to understand how gait is modified when
running (or walking) on a treadmill. Taken together, it is useful to
determine if the differences in LRCs found between these two environ-
ments [70], and the typical LRCs on an overground surface, hold true. In
addition, we highlight below several issues for future research that may
be limiting the presence of strong trends in the literature.

A critical aspect of future research involving LRCs in running is the
application of non-linear analyses on time series of sufficient length and
appropriate type. For instance, it has been found that > 500 data points
is recommended for the commonly used DFA algorithm to detect LRCs
with an accuracy of a + 0.1 [76,88]. Furthermore, DFA tends to be
positively biased, an effect exacerbated by short time series, suggesting
that large as observed in some contexts could be explained by such is-
sues. Nearly half the studies in our review, 11 out of 26 articles, failed to
meet this minimum amount of data points [50-52,55-58,64,65,67,69].
Furthermore, DFA assumes time series do not have dominant fre-
quencies (i.e., not cyclical, like joint angles). However, several articles
we reviewed used DFA on cyclical data [28,64,65,67,71], so the results
of o and interpretations of LRCs are questionable. Additionally, there is
considerable inconsistency in terms of the input variables from which
LRCs were estimated, producing different outcomes and interpretations
depending on which variable one investigates. For instance, in one study
[63], GRF o was different than leg effector length o and leg stiffness o
during touch-down (¢ ~ 0.53 vs a ~ 0.63 and 0.66, respectively),
loading (¢« ~ 0.70 vs @ ~ 0.65 and 0.61, respectively), and unloading
phases (@ ~ 0.77 vs a ~ 0.66 and 0.70, respectively). Thus, new ex-
periments, as well as replications, are needed to address potential
methodological confounds and inconsistencies present in the running
literature concerning LRCs. The inconsistencies of variable type (GRF,
leg stiffness, joint angle, stride intervals, etc.) and improper statical
utilization populate the literature on LRCs, for which comparisons be-
tween studies and the interpretation of LRCs becomes confusing,
confounded, and unreliable at times.

Of course, it is likewise possible that the lack of strong trends or
patterns in the manuscripts we reviewed carries a stronger message.
Perhaps LRCs are simply not a meaningful metric of running health.
However, we would argue that statement may be premature. Our hesi-
tance to draw that conclusion is based on at least two sets of facts. First,
LRCs have proven useful in characterizing walking gait for decades,
distinguishing health from pathology as well as articulating differences
in experimental conditions [6,8,9,11,14,15,20-22]. It would be
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genuinely surprising and portend serious theoretical consequences were
LRCs to be relevant for one aspect of gait but not another. Second, we
have highlighted several inconsistencies in the literature that make
synthesizing the state of the art challenging. We contend that more
research is needed with careful selection of input variables and watchful
attention to assumptions of time series analysis tools.

5. Conclusion

The goal of this systematic review was to evaluate the state of the art
concerning LRCs in running. To do so, we identified articles that
measured the LRCs of running gait, along with the effects that injury,
speed, and surface have on running gait LRCs. Without exception our
review found that running gait exhibits strong evidence of LRCs, a
finding consistent with trends observed in walking gait [1,2,6-17,20,
36]. Moreover, we found that measures of LRCs tend to negatively
correlate with fatigue. Although LRCs at the preferred running speeds
support major aspects of the OMVH, increased LRCs during treadmill
running at speeds different than PRS present a challenge for the model to
explain. Based on our review, we contend that the field would benefit
from systematic investigations of LRCs in the context of overground
running, injury, shod and barefoot running, and differing support sur-
faces. Given the apparent ubiquity in running, a better understanding of
the LRCs could aid in injury prevention, increase performance, and
potentially detect the onset of diseases in avid runners.
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