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Running gait produces long range correlations: A systematic review 
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A B S T R A C T   

Background: Walking and running are common forms of locomotion, both of which exhibit variability over many 
gait cycles. Many studies have investigated the patterns generated from that ebb and flow, and a large proportion 
suggests human gait exhibits Long Range Correlations (LRCs). LRCs refer to the observation that healthy gait 
characteristic, like stride times, are positively correlated to themselves over time. Literature on LRCs in walking 
gait is well known but less attention has been given to LRCs in running gait. 
Research question: What is the state of the art concerning LRCs in running gait? 
Methods: We conducted a systematic review to identify the typical LRC patterns present in human running gait, in 
addition to disease, injury, and running surface effects on LRCs. Inclusion criteria were human subjects, running 
related experiments, computed LRCs, and experimental design. Exclusion criteria were studies on animals, non- 
humans, walking only, non-running, non-LRC analysis, and non-experiments. 
Results: The initial search returned 536 articles. After review and deliberation, our review included 26 articles. 
Almost every article produced strong evidence for LRCs apparent in running gait and in all running surfaces. 
Additionally, LRCs tended to decrease due to fatigue, past injury, increased load carriage and seem to be lowest 
at preferred running speed on a treadmill. No studies investigated disease effects on LRCs in running gait. 
Significance: LRCs seem to increase with deviations away from preferred running speed. Previously injured 
runners produced decreased LRCs compared to non-injured runners. LRCs also tended to decrease due to an 
increase in fatigue rate, which has been associated with increased injury rate. Lastly, there is a need for research 
on the typical LRCs in an overground environment, for which the typical LRCs found in a treadmill environment 
may or may not transfer.   

1. Introduction 

Walking and running are ubiquitous forms of human locomotion. 
People naturally adjust their walking and running patterns to meet ever- 
changing task demands and adapt to new environmental constraints [1]. 
Gait variability refers to the changes in gait characteristics that occur 
from one step to the next [2] such as timing differences that occur across 
gait cycles. Gait variability can be defined in terms of its magnitude (i.e., 
standard deviation) and its structure (i.e., patterns expressed over time) 
[1]. Those properties depend on many sources of influence such as a 
person’s state of learning [1,3,4], the task at-hand [1,4,5], and/or 
environmental constraints [1,4]. 

Variability in walking has been studied extensively in healthy pop-
ulations and in many clinically relevant settings, revealing many 
important distinctions [1,2,6–17]. Typically, the magnitude of vari-
ability increases with disease progression and aging, where older adults 
and those with neurodegenerative diseases tend to have a larger 

magnitude of variability than younger persons and diseased individuals 
tend to have a larger magnitude of variability than healthy individuals 
[1,2,10,18]. Furthermore, the structure of variability, as described in 
more detail below, is more complex and somewhat predictable for 
healthy and younger individuals but less complex in older or diseased 
individuals [1,10,19]. Moreover, relative to young, healthy counter-
parts, those individuals produce variability that tends towards becoming 
both overly determined and unpredictable, depending on the context. 
The overwhelming majority of research has investigated gait variability 
from the perspective of walking with fewer studies examining variability 
in running gait [6,8,9,11,14,15,20–22]. Thus, a more complete inves-
tigation is needed to determine the similarities in walking and running 
gait variability, particularly in terms of a property known as long range 
correlations. 

Long Range Correlations (LRCs) characterize the degree to which 
movements are related from one moment to the next. The presence of 
LRCs signifies that the timing from one step would be positively 
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correlated with step timing from many steps earlier. That is, the vari-
ability of a person’s steps in the past could have dramatic effects on the 
variability of current and future steps when walking or running. The 
most common method to measure LRCs in human movement science is 
Detrended Fluctuation Analysis (DFA) [23]. In short, DFA provides an 
output variable alpha (α), where 0.5 < α ≤ 1 is mathematically indic-
ative of LRCs, although other ranges have been suggested based on 
empirical observations in human gait and positive bias in the DFA al-
gorithm [5,10,23–26]. Other methods to measure LRCs in human 
movement science that are included in this review include the Fractal 
Dimension (FD) of a curve, Higuchi’s Fractal Dimension (HFD), or Rescaled 
Range Analysis (R/S). The FD of a curve depicts LRCs when 1 < FD < 2 
[27]. Similarly, LRCs are apparent when 1 < HFD < 2, where HFD → 1 is 
indicative of weaker LRCs and HFD → 2 is indicative of stronger LRCs 
[28]. Further, R/S produces the Hurst (H) exponent, which is equivalent 
to α for measuring LRCs, where 0.5 < H ≤ 1 is indicative of a persistent 
time series, hence LRCs [29,30]. Measuring LRCs in human performance 
variables is important because LRCs have been proposed as a sign of 
healthy physiological systems [31–33] as proposed in the Optimal 
Movement Variability Hypothesis (OMVH) [3,34]. 

The OMVH suggests that variability in mature motor skills strikes a 
balance between complexity and predictability [34–36]. Human gait 
entails coordination of many underlying physiological interactions, in 
addition to task and environmental constraints. Complexity in human 
movements – the richness of one’s behavioral repertoire – are thought to 
reflect one’s ability to adapt to novel circumstances while coordinating 
those influences. Predictability refers to the consistency in movement 
patterns such as the consistency of spatiotemporal features of gait. On 
the one hand, healthy human movements require a balance between 
those properties, maintaining patterns appropriate for a given context 
while remaining flexible to draw on one’s repertoire to meet changes in 
context. On the other hand, OMVH suggests that unhealthy human 
movements deviate from optimality in two ways. First, when a system’s 
predictability is high and complexity is low, this reflects a reduced 
flexibility to adapt to environmental perturbations (green time series in  
Fig. 1, where α is not defined) [19,34]. Second, if the system’s predict-
ability and complexity are both low, movement will exhibit less regu-
lated behavior (α closer to 0.5, blue structure in Fig. 1) [19,34]. Both 
situations make the system less adaptable to perturbations and are 
directly related to an increased presence of disease and/or the natural 
aging process [14,19,33,37–39]. The OMVH proposes that skilled and 
coordinated action, like walking, should strike a balance between the 
extremes implied in Fig. 1 [34]. LRCs fit within the OMVH because they 

represent the multiple interactions of a system within the body [31,37, 
40] and indicate an optimal state of motor performance [33,40,41]. In 
this review, we draw upon the OMVH as a theoretical framework with 
which to interpret LRCs that may be present in running gait, given its 
proven utility in interpreting gait dynamics observed during walking [4, 
41,42]. 

As mentioned above, LRCs have been studied extensively in walking 
gait. Past literature has reported that normal walking gait, without 
perturbations, exhibit LRCs [9,11,22,43–45], with some articles indi-
cating LRCs in slow, preferred, and fast paced walking [8,15]. Persons 
with neurodegenerative diseases, like Parkinson’s and Huntington’s 
disease, show a decrease in their LRCs compared to healthy subjects 
when walking [43,44], in line with the OMVH. Additionally, LRCs tend 
to decrease naturally as we age [14,44]. LRCs of the system are 
detectable through walking gait parameters, but similar dynamics may 
be detectable in other forms of locomotion. 

Although LRCs have been studied considerably in walking gait, fewer 
experiments have examined LRCs while running. In those cases, a 
cursory review of the literature implies inconsistent findings concerning 
the nature of LRCs in running gait. One study [16] looked at the stability 
and time dependent structure of gait in walking compared to running on 
a treadmill, as well as the transition between walking and running and 
vice versa. When comparing walking and running stride intervals, the 
LRCs were more apparent when measured from the ankle during 
walking (walking α ~ 0.78, running α ~ 0.75), while LRCs were more 
apparent when measured at the head during running (walking α ~ 0.76, 
running α ~ 0.80). Those results could suggest that different body seg-
ments produce different LRC patterns. Alternatively, those patterns 
could imply conflicting evidence about the differences in LRCs between 
walking and running. Such potential contradictions suggest a need to 
aggregate the extant literature regarding LRCs comparing running and 
walking. To that end, we conducted a systematic review to investigate 
the effects that running has on LRCs and the consequent implications for 
human health, performance, and rehabilitation. Our aim was to identify 
the typical LRC patterns for human running gait, the differential effects 
that running and walking have on LRCs, the effects of injury and disease 
on running gait LRCs, and the effect that surface has on the LRCs in 
running gait. 

2. Methods 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines were followed for this systematic review [46]. 
PubMed, IEEExplore, Scopus and Web of Science were used from August 
2020 to December 2022 using the following Boolean string: 

(“fractal” OR “multifractal” OR “complexity” OR “long range corre-
lation” OR “long range dependence” OR “serial dependence” OR “self- 
similar*” OR “detrended fluctuation analysis” OR “rescaled range 
analysis” OR “power spectral density” OR “pink noise”) AND (“running” 
OR “run” OR “sprint” OR “sprinting” OR “jog” OR “jogging”) AND 
(“gait” OR “stride” OR “treadmill”). 

Due to the limitation of search characters in the Scopus engine in 
2020, the Boolean string had to be split into three separate, smaller 
strings to include all articles, as follows: 

1. (“fractal” OR “multifractal” OR “complexity” OR “long range corre-
lation”) AND (“running” OR “run” OR “sprint” OR “sprinting” OR 
“jog” OR “jogging”) AND (“gait” OR “stride” OR “treadmill”)  

2. (“long range dependence” OR “serial dependence” OR “self-similar*” 
OR “detrended fluctuation analysis”) AND (“running” OR “run” OR 
“sprint” OR “sprinting” OR “jog” OR “jogging”) AND (“gait” OR 
“stride” OR “treadmill”)  

3. (“rescaled range analysis” OR “power spectral density” OR “pink 
noise”) AND (“running” OR “run” OR “sprint” OR “sprinting” OR 
“jog” OR “jogging”) AND (“gait” OR “stride” OR “treadmill”) 

Fig. 1. Optimal movement variability hypothesis. Less than optimal could be 
too random and unstable (blue) or too predictable and rigid (green). An optimal 
structure (pink) indicates higher adaptive ability. 
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Inclusion criteria of the initial screening were: Human subjects, 
running related experiment, computed LRC analysis on running, and 
must be an experiment. Studies on animals, non-humans, walking only, 
non-running, non-LRC analysis, and non-experiments (systematic re-
views, meta-analysis’, theoretical frameworks, etc.) were removed. The 
initial screening was done by two investigators (TW and AL), and an 

initial article selection was identified by the title and abstract, while 
reviewing full text if necessary, using the systematic review device 
Rayyan (Qatar Computing Research Institute) [47]. Screeners were 
blinded to each other’s evaluations. Conflicts about inclusion and 
exclusion decisions were resolved by deliberation between the two in-
vestigators (TW & AL). 

Fig. 2. Article search and screening process.  
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Once the final articles were selected for review, a quality assessment 
was performed based on methods in previous literature [48], and 
tailored to the specific aims of this systematic review:  

1. Sample size greater or equal to 10.  
2. Specified inclusion/exclusion criteria of research participants.  
3. Defined the protocol.  
4. Defined the surface on which the subjects locomoted.  
5. Specified aim/purpose of study.  
6. Specified long-range correlations.  
7. Used a minimum of 600 strides when utilizing non-linear analyses. 

For each item on the list, papers were scored with a 1 for meeting the 
criteria or a 0 for not meeting the criteria. Papers that received a Quality 
of Assessment Score (QAS) of 6 or above received a rating of “high 
quality”, a QAS of 4 or 5 were deemed a rating of “medium quality” and 
papers a QAS of 3 or lower were categorized as “low quality”. The score 
given in this systematic review does not reflect the overall ability of the 
articles to assess the subject(s) but gives a qualitative interpretation of 
the study design, in addition to methodological reliability when calcu-
lating and explicating the LRCs regarding running gait. (Fig. 2). 

3. Results 

After removing duplicates from the initial 536 search results, 276 
studies were identified based on our search terms (Fig. 2). Two re-
viewers (TW & AL) conducted blind reviews on the 276 articles in 
Rayyan based on title and abstract alone. While TW excluded 245 arti-
cles (31 included articles), AL excluded 241 articles (35 included arti-
cles). A deliberation meeting was held to resolve the five-article 
difference. TW and AL initially agreed on the inclusion/exclusion of 21 
articles. Based on reading the full text of the 13 articles that produced a 
conflict of inclusion and exclusion, five articles were included and eight 
were excluded. After a unanimous decision between TW and AL, the 
final selection of 26 articles were included based on title, abstract and 
full text. 

Of the 26 included articles, 21 articles looked at the LRCs of treadmill 
running alone [16,28,49–67], three articles looked at overground 
running alone (two articles tested on an oval track [68,69], and one 
article tested on multiple half-marathon racecourses [27]), and two 
articles compared treadmill and overground running (one article tested 
on an oval track [70], while the other tested on a straight overground 
surface [71]). The mean number of participants among the 26 studies 
was 20.7 participants, and ranged between 1 [61] and 90 [57]. The 
average trial length was 9.5-minutes, and ranged from one minute [55] 
to 97 min and 35 s [27]. Twenty-two articles used DFA [16,49–66, 
68–70], while the remaining articles used the FD [27], HFD [28,67], or 
R/S [71]. Lastly, our quality assessment revealed 20 high quality articles 
[16,27,28,49,50–52,54,55–59,62,63,65,66,68,69,71] and 6 medium 
quality articles [53,60,61,64,67,70] based on the QAS given to each 
article (Supplementary Excel File – Quality Assessment). 

LRC characteristics of running gait were apparent in 24 articles [16, 
27,28,49–64,66,66,68–70], based on statistical output values explicitly, 
but are not apparent in two articles [65,67]. LRCs in stride length (SL) 
were similar for both elite and recreational runners, α = 0.80 ± 0.12 
and α = 0.83 ± 0.12, respectively [68]. In agreeance, Panday and col-
leagues found no difference in LRCs between expert and novice runners 
for SL, stride time (ST), and stride width (SW) at each 5-minute interval of 
observation (P1: 0 – 5 min, P2: 5 – 10 min, P3: 10 – 15 min, P4: 15 – 
20 min) [66]. While walking gait α tended to increase with an increase 
in locomotion speed, the α in running gait tended to decrease with an 
increase in locomotion speed [16]. Another article by Jordan and col-
leagues [53] found LRCs fit a U-shaped curve in relation to running 
speed, where the stride interval (SI) LRCs of running gait were higher at 
slow (α~0.89) and fast speeds (α~0.85) relative to preferred running 
speed (PRS, α~0.78). LRCs were also apparent during the transition 

speed from walking to running (ankle marker α = 0.74; head marker 
α = 0.81) and during transition speed from running to walking (ankle 
marker α = 0.72; head marker α = 0.73) [16]. Additionally, one article 
found that the LRCs between the left, α = 0.885, 95% confidence in-
terval (CI) = (0.834, 0.935) and right leg α = 0.884, 95% CI = (0.834, 
0.933), were highly symmetrical [59]. 

Heavy training and overreaching states tended to influence the LRCs 
of running gait. Bellenger and colleagues [50] and Fuller and colleagues 
[52] both examined the effects of heavy training on the LRC charac-
teristics in running gait. A significant decrease in α due to heavy training 
was reported at 65% maximum heart rate (HRmax) (α = 0.68 ± 0.13) 
compared to baseline (α = 0.80 ± 0.09), but not at 85% HRmax 
(α = 0.71 ± 0.22) compared to baseline (α = 0.74 ± 0.09) [50]. 
Changes in α at 65% HRmax also correlated with changes in the Daily 
Analysis of Life Demands for Athletes (DALDA) questionnaire (r = −0.52; 
p = 0.021) but did not correlate at 85% HRmax (r = 0.16; p = 0.0517) 
[50]. In agreeance with Bellenger and colleagues, albeit not signifi-
cantly, Fuller and colleagues [52] found that α decreased for treadmill 
running after heavy training at 10.5 km/h (α = 0.61 ± 0.06) compared 
to light training at the same speed (α = 0.66 ± 0.05), and found no ef-
fect of training (η2 = 0.07, p = 0.55) or speed (η2 = 0.05, p = 0.65) on 
the SI LRCs in running gait. 

Load carriage, as a percent of bodyweight (BW), also influenced the 
LRCs of running gait. One study by Krajewski and colleagues [55] 
compared the LRCs in running gait versus marching gait at 100% BW, 
125% BW, and 145% BW. While running gait on the treadmill exhibited 
an α close to pink noise for both SL (α = 0.88 ± 0.31) and ST (α = 1.04 
± 0.50) for 100% BW; LRCs tended to decrease as load magnitude 
increased to 125% BW (SL: α = 0.63 ± 0.26, ST: α = 1.09 ± 1.02) and 
145% BW (SL: α = 0.27 ± 0.63, ST: α = 0.15 ± 0.54) [55]. Another 
study by Krajewski and colleagues [65] compared the LRCs in running 
gait versus marching gait at 100% BW, 125% BW, and 145% BW; but ran 
DFA on joint work (JW) at the ankle, knee, and hip. In opposition to the 
previous article [55], Krajewski and colleagues found α tending away 
from 1 (decrease in LRCs) at 100% BW for both positive JW (JWpos) at 
the ankle (α = 0.63 ± 0.26), knee (α = 0.36 ± 0.51), and hip (α = 0.81 
± 0.76) and negative JW (JWneg) at the ankle (α = 0.58 ± 0.25), knee 
(α = 0.40 ± 0.44), and hip (α = 0.69 ± 0.59), respectively [65]. 
Although not statistically analyzed in the article, α means tended to 
decrease when BW increased to 125% BW for JWpos at the ankle 
(α = 0.37 ± 0.75), knee (α = 0.22 ± 0.81), and for JWneg at the ankle 
(α = 0.38 ± 0.73) and knee (α = 0.31 ± 0.85), but not for JWpos at the 
hip (α = 1.00 ± 0.52) or JWneg at the hip (α = 0.77 ± 0.42). Further, 
145% BW α means tended to decrease compared to 100% BW for all 
JWpos at the ankle (α = 0.19 ± 0.93), knee (α = 0.05 ± 0.82), and hip 
(α = 0.79 ± 0.75) and for all JWneg at the ankle (α = 0.24 ± 0.89), 
knee (α = 0.27 ± 0.83), and hip (α = 0.66 ± 0.54). To note however, 
there are high standard deviation values of α for all JW α, ranging from 
0.25 to 0.93. 

Fatigue seemed to influence LRCs over time. Four articles looked at 
the effects that fatigue had on the LRCs in running gait [27,58,68,69]. 
LRCs decreased over time during a prolonged overground run to 
exhaustion for both SL in experienced (beginning α = 0.89 ± 0.15, end 
α = 0.77 ± 0.08) and recreational runners (beginning α = 0.91 ± 0.14, 
end α = 0.77 ± 0.13) and for ST in experienced (beginning α = 0.86 
± 0.09, end α = 0.73 ± 0.14) and recreational runners (beginning 
α = 0.84 ± 0.11, end α = 0.73 ± 0.14) [68]. This agreed with Meardon 
and colleagues [69], in which an overall decrease of LRCs was found 
over the course of the run for both injured (beginning α = 0.92, middle 
α = 0.68, end α = 0.77) and non-injured runners (beginning α = 1.19, 
middle α = 0.86, end α = 0.85). Mo & Chow [58] found a U-shaped 
trend in α for SI in both experienced runners (beginning α = 0.74 
± 0.07, middle α = 0.67 ± 0.09, end α = 0.75 ± 0.10) and novice run-
ners (beginning α = 0.72 ± 0.07, middle α = 0.64 ± 0.10, end α = 0.69 
± 0.08) over a prolonged run. However, that difference is not straight-
forward. Only injured runner’s displayed a somewhat U-shaped trend in 
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α – non-injured runners exhibited a more pronounced linear trend [69]. 
Reported effects of speed reflect a mixture of trends when comparing 

PRS to higher or lower speeds. Seven articles looked at the LRCs of PRS 
and at different percentages of PRS [53,54,56,60,61,63,70]. Four out of 
the seven articles looking at PRS [53,54,61,70], indicated that LRCs are 
reduced at PRS (U-shaped trend), compared to Mann and colleagues 
[56] who found an opposite trend. Further, Nakayama and colleagues 
[60] showed that while the non-runner group showed a U-shape trend of 
α at 80% (α ~ 0.92), 100% (α ~ 0.90) and 120% PRS (α ~ 0.93), the 
experienced runner group claimed that α increased as PRS increased, 
from 80% (α ~ 0.75) to 100% (α ~ 0.78) then to 120% PRS (α ~ 0.79), 
but did not reach statistical significance. Walsh found no differences 
between PRS and 120% PRS in the anterior/posterior, medial/lateral, or 
vertical positions when measuring LRCs at the center of mass and in 
motor primitives measured by muscle synergies [28]. 

Speed effects also show a mixture of trends at different critical ve-
locities (CV, different than the PRS metric) [64] and at specific running 
speeds ranging from 2.0 m/s to 3.5 m/s in long distance runners and 
from 4.2 m/s to 9.5 m/s in sprint athletes [67]. One article looked at α 
values at the ankle, knee, and hip during 95%, 100%, 105%, and 115% 
CV, where exercise above CV is characterized by metabolic flux and 
systemic responses to exercise and below CV represents a steady state to 
attain exercise for a prolonged period of time [64]. Hunter and col-
leagues applied DFA to the steadiest 20 s epochs in the beginning and 
end of a 20 min run at 95%, 100%, 105%, and 115% CV. Overall, a 
decrease in LRCs was found at 115% CV, compared to lower velocities at 
the ankle, knee, and hip. In addition, the only difference in LRCs be-
tween the beginning and end of the run occurred at knee internal and 
external rotation at 95% CV (beginning α = 0.631 ± 0.071 and end 
α = 0.660 ± 0.072) and at 100% CV (beginning α = 0.624 ± 0.066 and 
end α = 0.640 ± 0.067). Lastly, one article looked at LRC changes be-
tween running speeds at 2.0, 3.0, and 3.5 m/s in recreational 
long-distance runners and the LRC changes between running speeds at 
2.8, 4.2, 5.6, 6.9, 8.3, and 9.5 m/s in sprint athletes [67]. In recreational 
runners, Santuz and colleagues found a decrease in LRCs from 2.0 m/s 
(HFD ~ 1.18) to 3.0 m/s (HFD ~ 1.13). A decrease in LRCs with an 
increase in speed was also found in the sprinting group from 2.8 m/s 
(HFD ~ 1.17) to 9.5 m/s (HFD ~ 1.14), but no significant differences in 
LRCs were found between 4.2 m/s and 5.6 m/s, 6.9 m/s and 8.3 m/s, 
and 8.3 m/s and 9.5 m/s. 

LRCs were apparent in running gait for all surfaces and interfaces 
between the surface in one study [70], while LRCs were not found on 
either surface in accordance to another study [71]. Treadmill running 
produced higher LRCs (α = 1.02 ± 0.18) compared to overground 
running (α = 0.85 ± 0.15) [70]. Given the constant speed and pace of 
locomoting on a treadmill, it’s not surprising that human gait would 
exhibit LRCs that are different than an overground environment. The 
treadmill environment produces constraints on the system, due to the 
constant speed, straight path, and size of the treadmill. This limits the 
available degrees of freedom and solutions the system can use to pro-
duce the required outcome of running stably, yet adaptively on a 
treadmill environment. However, the direction of LRCs was surprising, 
and is at odds with walking gait [22]. One might have expected that 
because treadmills act as a constraint or pacing device, then the LRCs 
would be weakened as is seen in walking gait [22,72,73]. If the results 
were to replicate, such findings would raise theoretical questions about 
how pacing affects LRCs in gait. Agresta and colleagues [49] used a 
combination of treadmill and metronomes but found little effect of 
metronomes, possibly because the pacing from the treadmill is such a 
heavy-handed constraint. Indeed, an interesting follow up experiment 
would be to investigate how pacing signals (e.g., metronomes) affect 
overground running gait. In contrast to Lindsay and colleagues [70], 
Mileti and colleagues used R/S on motor primitives that produced lower 
H values on a treadmill (H ~ 0.30) compared to an overground envi-
ronment (H ~ 0.35) [71]. Further, H values for both treadmill and 
overground running were lower than 0.5, signifying no LRCs when 

measuring at motor primitives. Based on the findings between these two 
articles [70,71], it is unclear if the trend of higher LRCs in a treadmill 
surface hold true compared to an overground surface, or if the lack of 
LRCs found in both environments holds true. To note, LRCs were 
detected differently where Lindsay and colleagues applied DFA to stride 
time series [70], where Mileti and colleagues applied R/S to motor 
primitives [71], in which could affect the accuracy of detecting LRCs. 

In addition to surface, LRCs were apparent for different interfaces of 
traversal and landing technique. Fuller and colleagues [51] and Mann 
and colleagues [57] concluded that LRCs were apparent in the interface 
of both minimalist shoes (MS) and conventional shoes (CS). These articles 
[51,57] showed no significant differences in LRCs between subjects 
using MS versus CS. Additionally, Garofolini and colleagues found no 
difference in LRCs between a low minimalist index (MI) shoe (MI =
18%), medium MI shoe (MI = 56%), and high MI shoe (MI = 96%); 
where MI is defined from 0 (maximum assistance) to 100% (least 
assistance with the foot) [63]. This article also looked at the difference in 
LRCs in leg stiffness between forefoot strikers (FFS) and rearfoot strikers 
(RFS) at touch-down (0.2–1BW), loading (1BW to peak ground reaction 
force (GRF)) and unloading phases (peak GRF to 0.2BW). FFS had higher 
LRCs than RFS only at the touch-down phase (FFS α ~ 0.68 vs RFS α ~ 
0.60). Further, there was a difference in LRCs for FFS between 
touch-down (α ~ 0.68) and loading (α ~ 0.64) and between loading (α ~ 
0.64) and unloading phases (α ~ 0.73). On the other hand, RFS showed 
no difference in LRCs between all three phases. 

Injury rate is a big obstacle in terms of running gait, where at least 
50% of runners obtain an injury in a year [74]. Only a couple of articles 
in our search touched upon the effects of injury on LRCs, in which two 
articles [69,70] found conflicting results. Mann and colleagues [56] 
found a higher α in previously injured runners than non-injured runners 
from 80% to 110% PRS, but the difference in ST α was not significant. 
This disagreed with Meardon and colleagues [69] who found that pre-
viously injured runners demonstrated lower LRCs overall (α = 0.79) 
compared to non-injured runners (α = 0.96). 

4. Discussion 

The overarching goal of this systematic review was to document the 
state of the art concerning LRCs in running. In particular, we aimed to 
identify typical ranges of α in running gait, understand differences in α 
across tasks (e.g., walking and running), as well as how running gait 
LRCs might be altered in other cases such as disease and injury. Ulti-
mately, our review of the literature may have returned too few studies to 
rigorously address that aim; however, we feel that these results point to 
a large opportunity for future research given that so little is known about 
LRCs in running gait. Without exception our results showed that the 
typical LRCs of running gait tend to exhibit α close to 1.0 and, in that 
sense, mimic the ubiquity of LRCs found in walking gait. Importantly, 
the literature also suggests that the strength of LRCs depends on context. 
For example, LRCs in running gait seem to depend on speed in a 
nonlinear way with deviations away from PRS producing slightly higher 
α than PRS. Moreover, fatigue tends to reduce the strength of LRCs, 
although fatigue effects may depend on the expertise of the runner. As a 
caveat, we note that most of the studies included in our review were 
mostly on LRCs found in treadmill running. Hence, interpretations of 
trends may have limited generality outside that domain. The remainder 
of this discussion is organized as follows: First, we address how the 
observed trends in the literature align with the OMVH, articulating areas 
of convergence and apparent divergence. Second, we discuss potential 
implications of our results from clinical/rehabilitative perspective. 
Third, we propose several future directions that need to be engaged in 
order to move this line of research forward. 

4.1. Running Gait LRCs in the context of human movement variability 

Distilled, the OMVH makes key predictions about those that may be 
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considered optimal patterns of variability. Optimal patterns, typified by 
pink noise, represents a “sweet spot” that balances complexity and 
predictability to putatively allow for flexibility and adaptability as the 
context of movement changes. As such, a following prediction is that the 
“default mode” of locomotion should likewise exhibit pink noise. The 
experimental data returned in our search provides strong evidence in 
support of that claim. Almost unanimously, those papers demonstrate 
that, like walking gait, healthy young adults adopt running gait vari-
ability patterns that are well described as producing LRCs, with αs that 
tend towards one. That is, in agreement with the OMVH, the “default 
mode” in running seems to exhibit patterns consistent with pink noise. 

The OMVH also predicts that non-optimal patterns of variability 
should deviate away from characteristic pink noise, deviating in one of 
two directions – either becoming overly random or overly predictable. 
Evidence from fatigue-related research likewise supports this prediction 
[52,69,75]. For example, increasing physical stress due to load carriage 
drastically reduces LRCs, producing anticorrelated patterns in spatio-
temporal gait features when participants donned 145% their body 
weight [55]. Similarly, some authors have demonstrated that fatigue 
tends to reduce the strength of LRCs in running when measured over the 
time course of long running protocols in both overground [68,69] and 
treadmill environments [64], but others suggest no significant decreases 
in LRCs on a treadmill environment due to fatigue [57,58]. In short, 
LRCs decreased due to fatigue, but predominately in an overground 
environment. Moreover, heavy training also seems to reduce the 
strength of LRCs [50]. The implication across those findings is that, as 
physical stress becomes more extreme, as likelihood of fatigue increases, 
the runner becomes less adaptable. Consistent with the OMVH, fatigue 
may induce deviations away from optimal movement variability, as 
evident from reductions in LRCs. 

So far, we have interpreted evidence in our review in positive sup-
port of the OMVH. Those interpretations, however, are not without 
exception. Given predictions of the OMVH, one might speculate running 
variability should be optimal at PRS. If that were the case, then one 
would likewise anticipate that deviations from PRS should produce 
deviations from optimality similar to those reported in the context of 
fatigue above [55], i.e., an inverted-U shaped function relating speed to 
α. The papers returned in our review did return a concave trend but not 
in direction specified by the OMVH. That is, most articles showed that α 
was lowest at PRS and tending higher at running speeds slower and 
faster than PRS (Table 1) [53,54,61,70]. Another paper in our review 
that investigated the fractal dimension of center of mass variability 
found no differences between PRS and 120% PRS in either walking or 
running [28]. Consequently, most effects of speed seem to contradict a 
central concept of the OMVH. 

An important feature of the aforementioned studies, though, is that 
most studies took place on a treadmill [53,54,61,70]. Treadmills are 
known to influence gait dynamics in walking, reducing α observed from 
spatiotemporal gait features relative to overground walking [22]. One 
article we reviewed compared treadmill and overground running and 
found that treadmill running produced higher α than overground 
running, at all speeds [70]. Thus, an alternative explanation for the 
speed effects is that the observed U-shaped functions relating speed and 

α reflect a nonlinear interaction between running speed and altered 
dynamics elicited from constraints of treadmill running. Lindsay and 
colleagues [70] investigated that question and found little evidence of 
such an interaction. Instead, it is possible that higher α in treadmill 
environments compared to overground environments is related to the 
speed constraints of locomoting on a treadmill. Because speed cannot be 
varied easily on the treadmill (speed control is effectively off-loaded to 
the treadmill belt), the motor system may prefer a more structured gait 
pattern to complete the task of running on a treadmill because the 
environment is more predictable. Large α (close to 1) may reflect that 
tendency. However, that explanation is also strained because α also 
seems to increase at speeds slower than PRS [53,54,61,70]. Clearly, 
more research is needed to discern if surface and speed combine to 
produce alterations to gait dynamics. Regardless, treadmill running at 
speeds different than PRS remain a challenge for the OMVH to explain. 

4.2. Running Gait LRCs in clinical settings and rehabilitation 

The seeming ubiquity of LRCs in running gait leads us to question 
why little work has been conducted on the topic from a clinical 
perspective. Our search failed to return any articles that measured the 
effect of disease on running gait LRCs. Perhaps this is not surprising. 
Individuals with neurodegenerative diseases often have difficulty 
walking for more than a few minutes, let alone running. Lack of data on 
running LRCs in clinical populations is further complicated by chal-
lenges in measuring LRCs in short time series [76,77]. Despite those 
challenges, we argue that, when possible, to collect sufficient data (e.g., 
early stages of disease progression), LRCs in running gait could provide 
additional diagnostic power for early detection of disease. For example, 
one large scale study investigating LRCs derived from long term activity 
data found that reductions in LRCs often preceded typical clinical pre-
sentations of neurological symptoms [78–80]. Given the relative phys-
ical demand of running compared to walking, altered dynamics may be 
present sooner in running than walking gait. In that sense, further 
investigation of how running gait dynamics change over the time course 
of disease could provide early warning signals of disease onset, partic-
ularly in those people that run daily. 

Furthermore, investigations into the evolution of running gait dy-
namics over time could provide insight into early warning signs of injury 
onset and promote injury prevention. One meta-analysis reported that 
injury prevalence in runners lies between 19% and 79% [81]. Others 
have noted annual injury rates of up to 52% [82]. There are also studies 
that hint at a relationship between injury and altered LRCs. For example, 
LRCs have been shown to decrease due to injury status [69], declining 
physical function [14], and have also been shown to decline and remain 
low up to ten days after functional overreaching [50,52]. Further, LRCs 
decreased significantly during a prolonged run right before the onset of 
fatigue [68] – while running when fatigued increases injury rate [83]. 
Combined, those studies imply that LRCs may decrease right before 
injury onset. Although we are optimistic that measurement of LRCs 
could assist in injury detection, more research is needed to support our 
optimism. Our search only found two papers that compared previously 
injured versus non-injured runners and those studies produced con-
flicting results. One paper [69] found lower LRCs in injured runners 
during a prolonged run (α = 0.79) compared to non-injured runners 
(α = 0.96), but the other [56] found no reliable differences in LRCs 
between injured and non-injured runners. Clearly, more research is 
needed that makes direct comparisons between injured and non-injured 
runners to evaluate the utility of LRCs as a running injury diagnostic 
tool. 

4.3. Needed: future research on LRCs in running gait 

Our review of this literature suggests a number of areas that would be 
fruitful topics for future research. Some topics relate to resolving 
confusing trends in the literature. These trends include surface effects on 

Table 1 
α as a function of surface and preferred running speed (PRS).  

PRS 

Article Surface 80% 90% 100% 110% 120% 

Norris et al. 2016 Treadmill  0.85  -  0.80  -  0.92 
Jordan et al. 2006* Treadmill  0.86  0.83  0.73  0.77  0.76 
Jordan et al. 2007* Treadmill  0.89  0.82  0.78  0.83  0.85 
Lindsay et al. 2014 Treadmill  1.04  -  0.98  -  1.05 
Lindsay et al. 2014 Track  0.86  -  0.86  -  0.85 

Note. Reported α are means or approximate means (*), with “-“ indicating no 
data at that PRS. 

T.J. Wilson and A.D. Likens                                                                                                                                                                                                                  



Gait & Posture 102 (2023) 171–179

177

LRCs (treadmill versus overground), overground surface effects on LRCs 
(sand, gravel, dirt, cement, etc.), jogging versus sprinting LRCs, asym-
metries in LRCs between the left and right leg, speed, and fatigue effects 
on overground LRCs, and the healthy range of LRCs (α) in running gait. 
Overall, LRCs were found in running gait, but more research should be 
conducted to support the trends that were found in the current 
literature. 

It is apparent that most of the articles in this systematic review 
investigated LRCs in a treadmill environment (23/26 articles) compared 
to an overground environment (5/26 articles). As apparent by the arti-
ficiality of a treadmill environment, the constraints (fixed speed, surface 
stiffness, space given for locomotion) placed on the system could have 
an influence on the emergent properties of LRCs. While some literature 
state similarities between treadmill and overground running in terms of 
the temporal characteristics of stance and stride [84] and level surface 
running kinetics [85]; others found differences in terms of uphill and 
downhill running kinetics [85] and level surface running kinematics 
[86]. The locomotive environment may potentially have an ineffective 
role in LRCs due to the rapid adjustment of leg stiffness (underlying 
physiological response) to offset surface stiffness [87]. Further, given 
that the treadmill represents an artificial environment and hence con-
straining the system’s ability to adapt, one might state that detecting 
LRCs in a treadmill environment is not worthwhile. However, because 
treadmills are pervasive in both medical settings (i.e., physical therapy, 
cardio stress tests, etc.) and daily life (largely due to convenience), one 
might argue that it is crucial to understand how gait is modified when 
running (or walking) on a treadmill. Taken together, it is useful to 
determine if the differences in LRCs found between these two environ-
ments [70], and the typical LRCs on an overground surface, hold true. In 
addition, we highlight below several issues for future research that may 
be limiting the presence of strong trends in the literature. 

A critical aspect of future research involving LRCs in running is the 
application of non-linear analyses on time series of sufficient length and 
appropriate type. For instance, it has been found that > 500 data points 
is recommended for the commonly used DFA algorithm to detect LRCs 
with an accuracy of α ± 0.1 [76,88]. Furthermore, DFA tends to be 
positively biased, an effect exacerbated by short time series, suggesting 
that large αs observed in some contexts could be explained by such is-
sues. Nearly half the studies in our review, 11 out of 26 articles, failed to 
meet this minimum amount of data points [50–52,55–58,64,65,67,69]. 
Furthermore, DFA assumes time series do not have dominant fre-
quencies (i.e., not cyclical, like joint angles). However, several articles 
we reviewed used DFA on cyclical data [28,64,65,67,71], so the results 
of α and interpretations of LRCs are questionable. Additionally, there is 
considerable inconsistency in terms of the input variables from which 
LRCs were estimated, producing different outcomes and interpretations 
depending on which variable one investigates. For instance, in one study 
[63], GRF α was different than leg effector length α and leg stiffness α 
during touch-down (α ~ 0.53 vs α ~ 0.63 and 0.66, respectively), 
loading (α ~ 0.70 vs α ~ 0.65 and 0.61, respectively), and unloading 
phases (α ~ 0.77 vs α ~ 0.66 and 0.70, respectively). Thus, new ex-
periments, as well as replications, are needed to address potential 
methodological confounds and inconsistencies present in the running 
literature concerning LRCs. The inconsistencies of variable type (GRF, 
leg stiffness, joint angle, stride intervals, etc.) and improper statical 
utilization populate the literature on LRCs, for which comparisons be-
tween studies and the interpretation of LRCs becomes confusing, 
confounded, and unreliable at times. 

Of course, it is likewise possible that the lack of strong trends or 
patterns in the manuscripts we reviewed carries a stronger message. 
Perhaps LRCs are simply not a meaningful metric of running health. 
However, we would argue that statement may be premature. Our hesi-
tance to draw that conclusion is based on at least two sets of facts. First, 
LRCs have proven useful in characterizing walking gait for decades, 
distinguishing health from pathology as well as articulating differences 
in experimental conditions [6,8,9,11,14,15,20–22]. It would be 

genuinely surprising and portend serious theoretical consequences were 
LRCs to be relevant for one aspect of gait but not another. Second, we 
have highlighted several inconsistencies in the literature that make 
synthesizing the state of the art challenging. We contend that more 
research is needed with careful selection of input variables and watchful 
attention to assumptions of time series analysis tools. 

5. Conclusion 

The goal of this systematic review was to evaluate the state of the art 
concerning LRCs in running. To do so, we identified articles that 
measured the LRCs of running gait, along with the effects that injury, 
speed, and surface have on running gait LRCs. Without exception our 
review found that running gait exhibits strong evidence of LRCs, a 
finding consistent with trends observed in walking gait [1,2,6–17,20, 
36]. Moreover, we found that measures of LRCs tend to negatively 
correlate with fatigue. Although LRCs at the preferred running speeds 
support major aspects of the OMVH, increased LRCs during treadmill 
running at speeds different than PRS present a challenge for the model to 
explain. Based on our review, we contend that the field would benefit 
from systematic investigations of LRCs in the context of overground 
running, injury, shod and barefoot running, and differing support sur-
faces. Given the apparent ubiquity in running, a better understanding of 
the LRCs could aid in injury prevention, increase performance, and 
potentially detect the onset of diseases in avid runners. 
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