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ABSTRACT: Generative Adversarial Networks trained on samples of simulated or actual events
have been proposed as a way of generating large simulated datasets at a reduced computational
cost. In this work, a novel approach to perform the simulation of photodetector signals from the
time projection chamber of the EXO-200 experiment is demonstrated. The method is based on a
Wasserstein Generative Adversarial Network — a deep learning technique allowing for implicit
non-parametric estimation of the population distribution for a given set of objects. Our network
is trained on real calibration data using raw scintillation waveforms as input. We find that it is
able to produce high-quality simulated waveforms an order of magnitude faster than the traditional
simulation approach and, importantly, generalize from the training sample and discern salient
high-level features of the data. In particular, the network correctly deduces position dependency of
scintillation light response in the detector and correctly recognizes dead photodetector channels. The
network output is then integrated into the EXO-200 analysis framework to show that the standard
EXO-200 reconstruction routine processes the simulated waveforms to produce energy distributions
comparable to that of real waveforms. Finally, the remaining discrepancies and potential ways to
improve the approach further are highlighted.

Keyworbps: Analysis and statistical methods; Double-beta decay detectors; Simulation methods and
programs; Time projection chambers
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1 Introduction

Computer simulations play a crucial role in many aspects of experimental nuclear and particle physics,
including detector design optimization, data analysis, and new physics searches. A typical simulation
uses a Monte Carlo approach that starts with a generation of a primary particle that is then propagated
through the detailed detector geometry taking into account the stochastic nature of relevant physics
processes and detector responses. For simulation of the response to scintillation light produced
by ionizing radiation, tens of thousands of photons need to be generated for each O(MeV) energy
deposition in liquid xenon. Since the trajectory of each photon is tracked throughout its propagation
by simulation packages, such as Geant4 [1], the process is computationally expensive and time
consuming. Recent development has significantly sped up the scintillation light simulation through
the use of software packages that utilize graphical processing units (GPUs), like Chroma [2-5], but
even these highly parallel simulations still require large computational resources. Another issue
is that optical properties of materials and detector geometry are often not precisely known, which
contributes to differences between the simulation and experimental detector response.

Recent developments in machine learning based generative models offer alternative approaches
to physics event generation, including Generative Adversarial Networks (GANs) [6], Variational Au-
toencoders (VAEs) [7], and Normalizing Flows (NFs) [8]. These techniques allow for non-parametric
learning of the data distribution, with sampling being as fast as a single forward pass through the neural
network. GAN was invented for computer image generation. It consists of two competing networks,
a generator and a discriminator. While the generator does its best to mimic the training images, the
discriminator aims to separate the real images from the generated image [9]. Successful training of the



GAN network can lead to the generation of new images indistinguishable from the training images. An
obvious caveat is that training images must be available, either from the specific detector to be studied
or from essentially similar detectors. Several groups have demonstrated GANS as a tool for fast sim-
ulation of Cherenkov detectors [10], muon production through the interaction of a proton beam with
dense targets [11], liquid argon time projection chambers [12], and high-granularity calorimeters [13].

In this work, we apply the GAN technique to the simulation of scintillation light in the
EXO-200 experiment [14]. EXO-200 is a 175-kg liquid xenon (LXe) detector built to search for
the neutrinoless double beta decay of '3°Xe. The scintillation light is collected by two planes of
avalanche photo-diodes (APDs). While some progress was made on developing a detailed optical
simulation of the EXO-200 detector, the discrepancies between data and simulation, likely caused by
poorly known optical properties, and computational costs of photon tracking through a complex
detector geometry led to EXO-200 using a simplified, parametric optical simulation of the overall
light yield per one array of APDs. In this work, we demonstrate that one can train a GAN network
directly with calibration data from EXO-200, bypassing the needs for detailed knowledge of optical
properties and detector geometry. Once well-trained, the generator is able to produce accurate
response of individual APDs at given positions and energies, with better fidelity and faster speed
compared with conventional MC simulation. Section 2 provides a brief overview of the EXO-200
detector, its simulation and event reconstruction. Section 3 describes the GAN models developed for
generating raw signals deposited on APD channels, including section 3.4 that explains our approach
to simulating APD signals with GANs. Results of the simulations are presented in section 4. The
last section summarizes the findings and discusses the limitations and future directions of the work.

2 The EXO-200 experiment

The EXO-200 detector is a cylindrical time projection chamber containing 175 kg of LXe enriched
to 80.6% in '3®Xe. The chamber is divided into two equal drift volumes by a photo-etched phosphor
bronze cathode plane in the middle, as shown in figure 1. At each end of the chamber there are two
instrumented wire planes crossed at 60° to measure charge. When ionizing radiation interacts in
liquid xenon, the produced electrons are drifted towards the wire planes by a main drift field applied
between the wires and the cathode plane. The V wires are located closer to the cathode and measure
the induction of the passing electrons, which are collected onto the U wires that are located 9 mm
behind. The U- and V-wire planes together have 91.8% optical transparency. The APDs are located
on a platter behind the wire planes looking at the drift volume. The APDs combine high quantum
efficiency for the scintillation light with ultra-low levels of radioactivity [15]. The wire signals
provide two-dimensional position information of the event. The position in the drift direction can
be obtained using the known drift speed and the time difference between the light signal collected
by the APDs and charge signals collected by the U wires. Given the drift speed and the size of the
detector, the maximum drift time is on the order of 120 ps. The charge and light signals in LXe are
anti-correlated [16, 17]. Consequently, the two signals are combined for energy measurements to
achieve optimal energy resolution. Both the wire and APD signals are read out by charge-sensitive
preamplifiers outside the lead shielding. A detailed description of the detector can be found in [14].

When a detector trigger condition is met, the data acquisition (DAQ) system records digitized raw
waveforms of 152 charge channels and 74 light channels. Each waveform consists of 2048 samples taken
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Figure 1. Schematic of the inner EXO-200 TPC. The cathode voltage was set to —8 kV (—12kV) for Phase

I(I) operations. The ionization electrons are drifted to the U wire plane that is grounded and serves as an
anode. The scintillation light of ~ 175 nm [18] is detected by APDs behind the grids.

at 1 MS/s with 1024 samples occurring before the trigger and 1024 samples after the trigger. The raw
waveforms are processed by an algorithm that reconstructs the energy depositions inside the detector.
Briefly, an initial signal-finding stage identifies channels containing a signal above a given noise thresh-
old. After the signal-finding stage is the parameter estimation stage, where each of the identified signals
is analyzed to extract parameters relevant for the analysis. Then, the set of signals and signal parameters
for each event is combined to determine event topology and event energy. The reconstructed signals are
calibrated by radioactive sources emitting y rays with known energy. The charge and light signals are
calibrated separately, then combined to form a rotated energy scale with improved energy resolution.

To understand the detector response to energy deposits in the detector volume, a Geant4-based
Monte Carlo simulation is employed. The simulation can accurately simulate the charge depositions. It
does not produce an accurate response for individual APD channels because of the uncertainty of optical
properties and difficulties with implementing the anti-correlation between charge and light responses.
Instead, it avoids the computational cost of tracking individual photons by using a parameterized light
response function to simulate the light yield on each plane of the APDs based on the position of the en-
ergy deposit in the detector. The light response is then evenly distributed among all APD channels of the
given plane with randomized noise added to each waveform. This light simulation is used only to approx-
imately simulate the light reconstruction threshold and is not used to determine the Monte Carlo energy.
Following other successful applications of Chroma to optical simulations [2, 3], a Chroma-based photon
tracking was later developed in EXO-200. This approach matched with the data better but still required
tuning of material optical properties and has not yet been published. The difficulties with the scintillation
light simulation motivate us to apply the GAN approach to improve the simulation quality and speed.

3 GAN Description

3.1 APD waveform image

Since the GAN framework was developed for image generation, we convert the 74 channels of APD
digitized waveforms into images for ease of integration into the software framework. We remove
the baseline of the waveforms by subtracting the average of the first 300 ps. We do not scale the



waveforms, as it did not improve training. A typical waveform’s values range between —100 to
500 ADC units. To reduce the number of dimensions of the target space, we select 350 ps samples
of the waveform around the signal. Since the rest of the samples only contain noise, this achieves a
substantial reduction in complexity without an appreciable reduction in accuracy. The location of
the signal depends on the trigger type — at the center of the waveform for events triggered by APDs
and off-center but within the maximal drift time for events triggered by wires. The resulting image
of an event consists of 74 channels, each having 350 entries, as shown in figure 2.
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Figure 2. (Left) Example waveforms of the APDs showing pulses from a cluster at certain position and
energy. For clarity, the signals on each APD are offset vertically in order of channel number and separated by
a constant of 20 units in the y direction. Due to computational reasons, raw waveforms of 2048 ps (gray)
are truncated to 350 ps (black) before being fed to the neural network. (Right) Same as the left panel but
zoomed-in around the peak positions and showing every fourth APD channel for clarity.

3.2 Network structure

To simulate the raw waveforms of APDs, we use the Keras framework [19] to build a network
based on Wasserstein GAN [6] with label conditioning. The network consists of a discriminator
and a generator. The generator takes in an array of uniform random values, specified position and
energy of the scintillation cluster as inputs, then generates artificial waveforms mimicking the real
APD responses. The discriminator measures the similarity between the generated and real samples,
providing feedback to the generator to improve its performance. Training of such an adversarial
framework allows the generator to produce data-like samples x, = G(z) out of noise z. The original
GAN [9] architecture has shown impressive results but turned out to be unstable and hard to monitor
during the training process. The Wassertein GAN is, with its improvement, a network that allows for
a stabilized training procedure by delivering adequate gradients to the generator, which provide a
meaningful loss metric not susceptible to training collapse. The Wassertein GAN is enforced by the
Lipschitz constraint on the discriminator to calculate the 1-Wasserstein (or, simply, Wasserstein)
distance. A differentiable function f is 1-Lipschitz if and only if it has gradients with norm at most
1 everywhere, Vx : |f’(x)| < 1. A later study [20] proves that points interpolated between the
real and generated data should have a gradient norm of 1 for f. Hence, instead of applying weight



clipping which manually forces hyperparameters of network in the Lipschitz constraint, Wassertein
GAN gradient penalty (WGAN-GP) penalizes the model if the gradient norm moves away from its
target norm value of 1, as shown in eq. 3.1 from [20].

L= _E [D®]- E [D@]+4 E [(IVD®)2 - 1)?] (3.1)

X~Pg x~P,

Wasserstein distance gradient penalty

where D is the discriminator, £ = ex + (1 — €)X, € € U(0, 1), A is the gradient penalty’s weighting
coefficient, and ||||, denotes the Euclidean norm. The gradient penalty term, (||VD (%) — 1)2,
encourages the norm of the gradient to go towards 1. The point x used to calculate the gradient norm
is any point sampled between the GAN-generated distribution, P, and real data distribution, P,. A
gradient penalty is a soft version of the Lipschitz constraint that removes the undesirable behaviour
of gradient explosion/vanishing when the weight clipping parameter is not carefully tuned in the
earlier Wassertein GAN design.

Wasserstein Distance is also known as Earth mover’s distance, as it defines the cost for moving
a distribution onto a target distribution using optimal transport. The original GAN is trained to
minimize the Jensen-Shannon Divergence (JD) [9]. Comparing with JD, the Wasserstein Distance
has the following advantages:

¢ Wasserstein Distance is a continuous and almost differentiable function which is easier to
optimize.

* As the discriminator gets better, JD locally saturates and thus the gradient becomes zero and
vanishes.

* Wasserstein Distance is a meaningful function as its converges to O while two distributions are
getting closer together and diverges when they are moving apart.

* Wasserstein Distance is more stable than JD, and the model is hard to collapse when using
Wasserstein Distance as the objective function.

Lastly, to generate samples with specific characteristics, in this case, the position and energy of the
scintillation, the generator is provided with the labels through label conditioning by an Auxilliary
Classifier, as described in [21]. Using this Generator model, the training process becomes more
stable and can now be used to generate images of a specific type using the class label.

The schematic diagram in figure 3 shows the overall structure of the GAN model. The detailed
layer structure of the generator and the discriminator network can be found in appendix A. The
generator dependency can be written as G = G(N, E, P), where N is random noise and £ and P are
physics labels corresponding to scintillation energy E and the deposit coordinates P = (P, Py, P_).
Because we use calibration data for training the network, we do not know the precise energy and
position of the scintillation cluster, and need to use the EXO-200 reconstruction algorithm to provide
labels for the events. There are two choices for the scintillation energy label, one is the reconstructed
scintillation energy and the other is a combined, also called rotated, reconstructed energy that uses
both charge and light information. Although the rotated energy has better energy resolution of ~1.2%
at the Q value of the 13Xe double-beta decay [22], it removes the anti-correlation between the charge
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Figure 3. The schematic training diagram of generator and discriminator for the GAN network. Labels,
(X,Y,Z,E), are also inputs of discriminator to allow training of generator with specific characteristics.

and light responses and so is a biased estimate of an event’s true scintillation energy. The reconstructed
scintillation energy, despite its larger energy resolution of ~ 5.1% at the same energy, is thus a better
estimate of the true scintillation energy and is chosen as the energy label for the data in this work.
The physics labels are tiled to the convolutional layers as shown in figure 10 in appendix A. Each
value of the input dimensions, x;, is copied to a new convolutional layer filled with that value, so four
additional layers are concatenated to the image input, changing the dimension from (74, 350, 1) to
(74,350, 5). Furthermore, we also concatenate the label vector to the dense representation layers at
the end of the convolutional part of the discriminator network. This design is inspired by the concept
of residual learning [23] which simplifies learning when the output is expected to be close to input.

3.3 Training and test datasets

The training dataset is obtained from 2*8Th calibration runs of the EXO-200 experiment. The data
are separated into two phases: phase I, which took place from 2011 to 2014, and phase II (2016 to
2018). The noise of the APD channels is different in the two phases because the frontend electronics
were upgraded at the start of phase II. In this work, we focus on the simulation of the phase II
data. The training set is created by randomly picking events from the calibration runs. The events
are selected to only have one scintillation and one charge cluster, with fully reconstructed energy
and position. The training objects are created by combining the waveforms of all individual APD
channels to form an image. The pixel values of the image correspond to the waveforms’ amplitudes
at a particular time. The reconstructed energy and position serve as event labels. To reduce bias,
the energy distribution of the training sets is flattened. The same method was applied to flatten the
spatial distribution of events. However, since the calibration source positions are limited, and certain
regions of the detector have very few events due to a limited amount of nearby source deployments,
we cannot completely flatten the training dataset in the spatial dimension, as shown in figure 4. The
final training set contains 215,789 events from phase II. Similarly, a test dataset is obtained in the
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Figure 4. The spatial and energy distribution of training dataset.

same way after event selection for the training dataset. The ratio of the total number of events of test
and training datasets is close to 7:3.

3.4 Network training process

Because a GAN contains two separate networks, its training algorithm must deal with two different
kinds of training. Typically, the algorithm proceeds in alternating training of the discriminator and
the generator. During training of the discriminator, the real data and the generated data serve as
inputs. Then the training switches to the generator. The generator performance improves with the
discriminator providing the feedback. The cycle continues until the Wasserstein distance becomes
close to zero, indicating that the generator produces objects that the discriminator cannot effectively
distinguish from the real ones. The convergence of the GAN network can be difficult to achieve and
identify, as it requires a delicate balance between the discriminator and the generator networks.

In this work, we train both generator and discriminator using the Adam optimizer [24] with
the learning rate starting at 10~ at the beginning of the training process and with the optimizer
parameters $; = 0.5 and B, = 0.9. The loss function coefficient number 4 = 10. We train the
discriminator for five iterations, before updating the generator for one iteration. In each iteration step,
the network is trained with a 20 events batch. One epoch counts as a loop over the entire phase 11
training set. We train the networks on a computing cluster in successive batch jobs running for 10
epochs each, while decreasing training rate gradually from 10~* to 10~# for the discriminator and
5 times faster for the generator.
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The gradient penalty and Wasserstein distance drop quickly during the initial training, but the
rate of decrease slows down and gradually approaches zero, as shown in figure 5. The training
results were evaluated during the training using the metrics described in the next section. We stop
the training if absolute values of the gradient penalty and Wasserstein distance are less than 10, and
the loss is close to zero, which typically occurs after 2.8 million batches, or about 260 epochs. The
training process takes about 500 GPU-hours on the Nvidia GeForce 1080Ti GPU with 11 GB RAM.

4 Results and validation

For evaluating the model, we pair up the events from the test dataset with the ones generated with
the GAN for the same energy and position parameters. The generated events not only need to
“look similar” but also need to have similar features such as the energy and position information
after reconstruction. Thus we introduce a set of metrics including the raw waveforms, the features
extracted from the pulses, such as amplitudes and spatial dependency, and reconstructed physical
information, such as scintillation and rotated energy. The validation tests for the training results are
conducted in following levels:

* Raw waveform level: directly compare raw waveforms
 Signal level: compare signal features and its spatial dependence

* Reconstruction level: compare information from the EXO-200 reconstruction, e.g., scintillation
energy spectrum.



Because the length of the GAN-generated waveforms is 350 ps, shorter than the full EXO-200
event size of 2048 ps, they are stitched back to the full waveform with the section centered around
the event trigger replaced by the generated waveforms. We visually compare the generated and real
events in different energy ranges, low (< 1 MeV), middle (1-2 MeV), and high (> 2 MeV), and find
that the generated waveforms reproduce the main features of the real events. The signals in each of
the waveforms are aligned in time as one would expect from scintillation events. The signal shapes,
channel noise, and amplitude distribution in the generated image is also similar to the real events.
Figure 6 shows a sample event with energy > 2 MeV.
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Figure 6. Example of the generated (top left) and real (top right) APD signal waveforms. Vertical and
horizontal axes correspond to the amplitude + channel number X A.U. and time bins, respectively. The
waveforms are obtained for the same values of the conditional variables and look qualitatively very similar.
The two bottom panels are the same as the top ones but zoomed-in around the peak positions and showing
every fourth APD channel for clarity.

Another feature that is easy to spot is that several waveforms do not have signals. These
correspond to five channels disconnected due to excessive leakage current of the APDs. We can
examine the disconnected channels further by looking at the average signal amplitude of all events in
one typical calibration run. Figure 7 shows the pattern of APDs in two planes and its corresponding



signal amplitude for both GAN and real waveforms. The APDs are arranged in two hexagonal
planes and grouped in gangs of 6 or 7. The amplitudes are represented in grey-scale in the plot
with darker color representing larger amplitudes. As shown in figure 7(a) and 7(b), the model finds
the disconnected APD channels and reproduces an average amplitude pattern similar to the real
calibration data. The average amplitude of the disconnected APDs in the generated waveforms
does not completely go to zero, as some GAN-generated events have small residual pulses in these
channels. The average amplitudes are around 5 ADC units slightly larger than the noise RMS value
of 2 ADC units, but negligible compared to amplitudes of connected channels.
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(a) APD channels’ luminosity of GAN-generated waveforms.
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Figure 7. Summed amplitude of all events in a run for each of the APD channels. GAN-generated (top) and
real (bottom) data are shown. Two APD planes are shown separately. Darker color means higher amplitude.
White areas show the dead channels. We can identify the disconnected channels in GAN data (a) that matches
with calibration data in (b).

To make a more precise evaluation, we apply the EXO-200 reconstruction algorithm to both
GAN-generated waveforms and the real data. Since the reconstruction requires wire signals to
determine the position of the events, we copied the wire signals of the real data to the generated
APD waveforms. Since the wire signals are identical, the reconstruction returns the same position
and charge energy information for both the GAN and real data. The only difference comes from the
reconstructed scintillation energy. To extract the scintillation energy, the reconstruction algorithm
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adds all waveforms from plane 1 and plane 2 to produce two sum waveforms, then fits the sum
waveforms to extract the summed amplitudes. In figure 8, we plot the spatial dependence of the
sum waveform amplitude of each APD plane for both real data and data generated with the energy
and position as labels. Plane 1 is located at z = 200 mm while plane 2 is located at z = =200 mm,
thus the plane 1 amplitude becomes higher when a cluster is closer to the plane 1 while the plane 2
amplitude becomes lower. There is no large R or ¢ dependence due to high reflectivity of the PTFE
reflector surrounding the TPC. The plot shows that GAN accurately reproduces the plane 1 and
plane 2 average amplitudes and that standard deviation matches well with the real data in all three
cylindrical spatial dimensions.

After signal fitting, the extracted amplitudes go through energy calibration procedure to convert
them into scintillation energy measurements. The scintillation spectra of the generated and real data
for one 2?Th calibration run are shown in figure 9(a). The agreement is fairly good across the entire
energy range, but the GAN generated spectrum has slightly worse energy resolution. The energy
resolution (o/E) of the 2.614 MeV 22Th peak is 7.6% for real data, and 9.1% for GAN-generated
data. The degradation of the resolution is likely a consequence of the uncertainty of the energy
labels used to train the network, rather than the inherent issue with the GAN network.

As mentioned in section 2, using a linear combination of the charge and light signals can improve
the energy resolution of the detector. In a 2-D scatter plot of scintillation energy and charge energy,
this corresponds to a projection to a rotated axis, as shown in figure 9(b). The GAN-generated
data reproduces the anti-correlation between the charge and light signals, confirming that the good
agreement between true and generated scintillation energies is achieved on the event-by-event basis.
The optimal rotation angle, which in EXO-200 was treated as a free parameter chosen to optimize
rotated resolution, is slightly different from the real data. If we project the GAN and real datasets
onto their optimal axes, the rotated spectra match well with each other, as shown in figure 9(c). The
energy resolution of the ?Th peak is 2.24% for the real data and 2.47% for the GAN generated data.

The energy resolution can be further improved by correcting position dependency of the light
response. To that end, the detector is divided into cylindrical voxels with 13 sections in Z and R
directions and 8 sections in ¢ direction. The >?Th calibration data in each voxel is fitted to extract
the position of the 2.614 MeV peak. The ratio between the voxel peak position and the overall peak
position is the correction factor for the voxel. We call this the light map correction [25]. The light
map records the correction factor in the reconstruction space. If we apply the light map to both the
real and GAN generated data, the energy resolution improves to ~ 1.3% for the real data, and ~2.0%
for the GAN data, as shown in figure 9(d). The fact that the light map correction improves the GAN
resolution demonstrates that GAN network is able to reproduce, at least to a good degree, the position
dependence of the scintillation signal. Like in the previous two tests, the worse resolution for the
GAN images is likely also impacted by the imperfect energy labels used in training. If so, then using
a light source with known intensity adjustable to span the relevant energy range and deployed at
relevant positions inside the detector [26-30] to train the network would lead to better results.

To compare the simulation speed, we generate scintillation waveforms for several thousands
228Th events inside the detector using the EXO-200 Monte Carlo framework and GAN network. The
EXO-200 framework first utilizes Geant4 to simulate energy depositions of the 2>Th gammas, then
uses a fast parametric optical simulation that produces expected number of photons detected by the
APD planes, and finally generates the APD waveforms using transfer functions that depend on the
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Figure 8. Profiles of the validation metric distributions as the function of the spatial components. For each
metric i, we show its average value y; (middle thick line), as well as the one standard deviation band of the
metric distribution y; + o; (top and bottom band edge). GAN-generated distributions (red) show a strong
overlap with real data (blue).

parameters of the APD electronics. By default, an analogous “digitization” process is performed for
the wires, but we switch the wire digitization off for a more fair comparison. We observe an average
simulation rate of ~ 4.2 events/s, with the Geant4 and digitization steps taking roughly the same
time. The test was run on a machine with an Intel Xeon Gold 6226R CPU [31] and 12 GB RAM.
In contrast, GAN directly simulates APD waveforms given 2>Th event energy and position. We
observe an average simulation rate of ~ 69 events/s when ran on Nvidia GeForce 1080Ti GPU [32]
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Figure 9. Reconstructed light energy distributions for the GAN-generated and real data.

with 11 GB RAM. While not a precise back-to-back comparison, the test shows that the new approach
can simulate light waveforms at a rate that is roughly an order of magnitude faster than with the
traditional approach.

5 Conclusions

In this work, we applied Wasserstein GAN technique to generate raw APD signal waveforms for
the EXO-200 experiment. Detector calibration data was used as the training samples bypassing the
need for computationally intensive scintillation simulation and inaccuracies of the MC simulation
models. Using reconstructed event position and energy as labels, the network was successfully
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trained to generate raw waveforms that mimic main features of the real waveforms, including signal
arriving time, pulse shape, and channel noise. At the signal level, the network learned the missing
channels and spatial dependency of the pulse amplitudes. Furthermore, the GAN could reproduce
the energy spectrum of the calibration data after reconstruction. Combined with corresponding
charge waveforms, the anti-correlation between the scintillation and charge channels was reproduced,
confirming that the good agreement between true and generated scintillation energies is done
event-by-event. The energy resolution of the scintillation and rotated spectra are slightly worse for
the GAN-generated data than for the real data.

In this study, events that contain single spatially-distinct charge deposition (so-called single-site
events) for both training and validation were used. Although there are also multi-site events in the
dataset, the only difference between them as far as this work is concerned is the spatial distribution
of the scintillation light. Since the GAN was able to reproduce spatial distribution of the signal for
single-site events, it is reasonable to expect a similar performance on multi-site events, which are
effectively a combination of several independent sites. We concentrated on the single-site events for
simplicity in this novel work, leaving the multi-site events as a potential future direction. It should
also be noted that since the approach described here requires training on real data, it can not be used
to optimize the design of future detectors as effectively as the traditional MC frameworks.

We have demonstrated that using the GAN network and calibration data can be a powerful
approach to generate simulation data faster and more accurately than with traditional Monte Carlo
simulation. One drawback of the approach is that the labels of the training data are derived
from reconstructed scintillation energy, which in case of EXO-200 carries a ~ 5% uncertainty.
Experiments that can utilize a set of training events with better truth labels would see better results.
For example, some experiments may be able to use an LED or laser source with known, variable
intensity, and which can illuminate all relevant parts of the detector. An interesting alternative
possibility, which we also consider an avenue for future work, is training the network on both charge
and light waveforms simultaneously. If the network is able to deduce the anti-correlation between
the two signals, then one could potentially harness the advantage of the improved accuracy of the
rotated energy labels.

In summary, GAN is a promising tool to accelerate and improve simulation for particle physics.
Using calibration data directly as inputs can simplify the simulation and avoid inaccuracies of the
simulation model.
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A Network architecture

The neural network architectures for the discriminator and generator are shown in 10.
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