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ABSTRACT
One of the fundamental problems in network analysis is detecting community structure in multi-layer
networks, of which each layer represents one type of edge information among the nodes. We propose
integrative spectral clustering approaches based on e!ective convex layer aggregations. Our aggregation
methods are strongly motivated by a delicate asymptotic analysis of the spectral embedding of weighted
adjacency matrices and the downstream k-means clustering, in a challenging regime where community
detection consistency is impossible. In fact, the methods are shown to estimate the optimal convex
aggregation, which minimizes the misclustering error under some specialized multi-layer network models.
Our analysis further suggests that clustering using Gaussian mixture models is generally superior to
the commonly used k-means in spectral clustering. Extensive numerical studies demonstrate that our
adaptive aggregation techniques, together with Gaussian mixture model clustering, make the new spectral
clustering remarkably competitive compared to several popularly used methods. Supplementary materials
for this article are available online.
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1. Introduction

Clustering network data is termed community detection, where
communities are understood as groups of nodes that share more
similarities with each other than with other nodes. Examples
include social groups in a social network and papers on the
same research topic in a citation network. Community detec-
tion is one of the fundamental problems in network anal-
ysis to understand the network structure and functionality
(Newman 2018). With enormous e!ort from a broad spec-
trum of disciplines, a large set of methodologies have been
proposed and can be roughly classi"ed into algorithmic and
model-based ones (Zhao, Levina, and Zhu 2012). Examples
of algorithmic methods include divisive algorithms using edge
betweenness (Girvan and Newman 2002), network random
walk (Zhou 2003), spectral method (Hagen and Kahng 1992;
Shi and Malik 2000), modularity optimization (Newman 2006),
and information-theoretic approaches (Rosvall and Bergstrom
2008). We refer to Fortunato (2010) for a thorough and in-
depth review of algorithmic community detection techniques.
The class of model-based methods relies on "tting probabilistic
models and applying statistical inference tools. Several widely
studied models include stochastic block model (SBM) (Holland,
Laskey, and Leinhardt 1983), degree-corrected stochastic block
model (DSBM) (Karrer and Newman 2011), mixed membership
stochastic block model (Airoldi et al. 2008), and latent variable
models (Handcock, Ra#ery, and Tantrum 2007; Ho! 2008),
among others.

In the past decade, there have been increasingly active
researches toward understanding the theoretical performance of
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community detection methods under di!erent types of models.
The seminal work by Bickel and Chen (2009) introduced an
asymptotic framework for the study of community detection
consistency, and developed a general theory for checking the
consistency properties of a range of methods including mod-
ularity and pro"le likelihood maximization, under SBM. Their
consistency framework and results have been generalized to
DSBM (Zhao, Levina, and Zhu 2012), to allow the number of
communities to diverge with network size for maximum likeli-
hood estimator under SBM (Choi, Wolfe, and Airoldi 2012), and
to scalable pseudo-likelihood method (Amini et al. 2013). The
consistency and asymptotic normality of maximum likelihood
and variational estimators for other model parameters were
also established under both SBM and DSBM (Celisse, Daudin,
and Pierre 2012; Bickel et al. 2013). Another important line of
research focuses on the analysis of spectral clustering. Consis-
tency or misclustering error rate of di!erent variants of spectral
clustering approaches have been investigated under SBM (Rohe,
Chatterjee, and Yu 2011; Lei and Rinaldo 2015; Yu, Wang, and
Samworth 2015; Le, Levina, and Vershynin 2017), DSBM (Qin
and Rohe 2013; Jin 2015), mixed membership models (Jin, Ke,
and Luo 2017; Mao, Sarkar, and Chakrabarti 2020; Zhang, Lev-
ina, and Zhu 2020), and SBM with covariates (Zhang, Levina,
and Zhu 2016; Weng and Feng 2022). A class of semide"nite
optimization approaches with established strong performance
guarantees has been developed (Cai and Li 2015; Guédon and
Vershynin 2016; Amini and Levina 2018). Moreover, there is
one major stream of research focused on characterizing the
fundamental limits of community detection, under the minimax
framework (Zhang and Zhou 2016; Gao et al. 2017; Xu, Jog, and
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Loh 2020), and with respect to sharp information-theoretic and
computational thresholds (Decelle et al. 2011; Krzakala et al.
2013; Abbe, Bandeira, and Hall 2015; Mossel, Neeman, and Sly
2015; Abbe 2017).

All the aforementioned methods perform community detec-
tion based on a single-layer network that only retains one
speci"c type of edge information. However, multi-layer net-
works with multiple types of edge information are ubiquitous
in the real world. For example, employees in a company can
have various types of relations such as Facebook friendship
and coworkership; genes in a cell can have both physical and
coexpression interactions; stocks in the U.S. "nancial market
can have di!erent levels of stock price correlations in di!erent
time periods. See Kim and Lee (2015) for a comprehensive
report of multi-layer network data. Each type of relationship
among the nodes forms one layer of the network. Each layer
can carry potentially useful information about the underlying
communities. Integrating the edge information from all the
layers to obtain a more accurate community detection is of great
importance. This problem of community detection for multi-
layer networks has received signi"cant interest over the last
decade. The majority of existing algorithmic methods base on
either spectral clustering (Long et al. 2006; Zhou and Burges
2007; Kumar, Rai, and Daume 2011; Dong et al. 2012) or low-
rank matrix factorization (Singh and Gordon 2008; Tang, Lu,
and Dhillon 2009; Nickel, Tresp, and Kriegel 2011; Liu et al.
2013), and combine information from di!erent layers via some
form of regularization. An alternative category of methods relies
on "tting probabilistic generative models. Various extensions of
single-layer network models to multi-layer settings have been
proposed, including multi-layer stochastic block models (Han,
Xu, and Airoldi 2015; Stanley et al. 2016; Valles-Catala et al.
2016; Paul and Chen 2016), multi-layer mixed-membership
stochastic block model (De Bacco et al. 2017), Poisson Tucker
decomposition models (Schein et al. 2015, 2016), and Bayesian
latent factor models (Jenatton et al. 2012), among others. How-
ever, the theoretical understanding of multi-layer community
detection methods has been rather limited. Under multi-layer
stochastic block models, Han, Xu, and Airoldi (2015) proved
the consistency of maximum likelihood estimation (MLE) as the
number of layers goes to in"nity and the number of nodes is
"xed. Paul and Chen (2016) established the consistency of MLE
under much more general conditions that allow both the num-
bers of nodes and layers to grow. The authors further obtained
the minimax rate over a large parameter space. Paul and Chen
(2020) derived the asymptotic results for several spectral and
matrix factorization based methods in the high-dimensional
setting where the numbers of layers, nodes, and communities
can all diverge. Bhattacharyya and Chatterjee (2018) proposed
a spectral clustering method that can consistently detect com-
munities even if each layer of the network is extremely sparse.
They then generalized their method and results to multi-layer
degree-corrected block models.

In this article, we consider spectral clustering a#er convex
layer aggregation, a two-step framework for multi-layer network
community detection. Our contribution is 2-fold. First, with a
sharp asymptotic characterization of the misclustering error, we
reveal the impact of a given convex aggregation on the com-
munity detection performance. This motivates us to develop

two adaptive aggregation methods that can e!ectively use
community structure information from di!erent layers. Second,
our study of the spectral embedding suggests using clustering
with Gaussian mixture models as a substitute for the commonly
adopted k-means in spectral clustering. Together, these two pro-
posed recipes strengthen the two-step procedure to be an e$-
cient community detection approach that outperforms several
popular methods, especially for networks with heterogeneous
layers. Throughout the article, our treatment will be mainly
focused on networks with assortative community structures in
all layers. We discuss the application of our proposed methods to
networks of a mixed community structure (with both assortative
and disassortative structures) in Section 4. We refer the reader
to Bhattacharyya and Chatterjee (2020), Paul and Chen (2020),
Lei, Chen, and Lynch (2020), and Lei and Lin (2022) for recent
developments toward e!ectively combining both assortative and
disassortative community structures in multi-layer networks.
We should also point out that our asymptotic analysis considers
the partial recovery regime (Abbe 2017) where the node degrees
diverge to in"nity su$ciently fast while the gap between the
within and between community probabilities remains small.
Such asymptotics yields precise error characterization that moti-
vates the proposed approaches. We discuss this asymptotic
regime in detail in Section 2.2.

2. Detecting Communities in Multi-Layer Networks
using New Spectral Methods

2.1. De!nitions and Problem Statement

We focus on undirected networks throughout the article. The
observed edge information of a single-layer network with n
nodes can be represented by the symmetric adjacency matrix
A = (Aij) ∈ {0, 1}n×n, where Aij = Aji = 1 if and only if
there exists a connection between nodes i and j. Suppose the
network can be divided into K nonoverlapping communities,
and let −→c = (c1, . . . , cn)T be latent community membership
vector corresponding to nodes 1, . . . , n, taking values in [K] :=
{1, . . . , K}. Arguably, the most studied network model for com-
munity detection is the stochastic block model (SBM) (Holland,
Laskey, and Leinhardt 1983).

De!nition 1 (Stochastic Block Model). The latent community
labels {ci}n

i=1 are independently sampled from a multinomial
distribution, that is, for i ∈ [n] and k ∈ [K], pr(ci = k) = πk
with constraint

∑K
k=1 πk = 1, 0 < πk < 1. De"ne a symmetric

connectivity matrix " = ("ab) ∈ (0, 1)K×K . Conditioning
on −→c , the adjacency matrix A has independent entries with
Aij ∼Bernoulli("cicj) for all i ≤ j. We denote the model by A ∼
SBM(", −→π ).

Under SBM, the distribution of the edge between nodes i
and j only depends on their community assignments ci and cj.
Nodes from the same community are stochastically equivalent.
The parameters −→π = (π1, . . . , πK)T control sizes of the K
communities. We call the network balanced when π1 = · · · =
πK = 1/K. The symmetric matrix " represents the connectivity
probabilities among the communities. A special case of SBM
that has been widely studied in theoretical computer science
is called the planted partition model (Bui et al. 1987; Dyer
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and Frieze 1989), where the values of the probability matrix "

are one constant on the diagonal and another constant o! the
diagonal.

De!nition 2 (Planted Partition Model). A planted partition
model (PPM) is a special homogeneous SBM, of which the
connectivity matrix is " = (p − q)IK + qJK ∈ (0, 1)K×K ,
where IK is the identity matrix and JK is the matrix of ones.
This means the within-community connectivity probabilities of
PPM are all p while the between-community probabilities are all
q. Given that our focus is on assortative networks, we assume
p > q throughout this article. The model is written as A ∼
PPM(p, q, −→π ).

In this article, we consider a multi-layer network of L layers
to be a collection of L single-layer networks that share the
same nodes but with di!erent edges. For each # ∈ [L], the
adjacency matrix A(#) = (A(#)

ij ) ∈ {0, 1}n×n represents edge
information from the #th layer. The multi-layer stochastic block
model (MSBM) (Han, Xu, and Airoldi 2015; Paul and Chen
2016; Bhattacharyya and Chatterjee 2018) is a natural extension
of the standard SBM to the multi-layer case.

De!nition 3 (Multi-layer Stochastic Block Model). The layers of
a multi-layer stochastic block model share the common commu-
nity assignments −→c = (c1, . . . , cn)T ∈ [K]n which are indepen-
dently sampled from a multinomial distribution with parame-
ters −→π = (π1, . . . , πK)T . Conditioning on −→c , all the adjacency
matrices have independent entries with A(#)

ij ∼Bernoulli("(#)
cicj)

for all # ∈ [L] and i ≤ j. We write the model as A[L] ∼
MSBM("[L], −→π ) for short.

Under MSBM, each layer follows an SBM with consensus
community assignments −→c , but with possibly di!erent connec-
tivity patterns as characterized by the set of parameters "[L] =
{"(#)}L

#=1. A multi-layer planted partition model is a special type
of MSBM when each layer follows a planted partition model.

De!nition 4 (Multi-layer Planted Partition Model). A multi-
layer planted partition model (MPPM) is a special MSBM with
A(#) ∼ PPM(p(#), q(#), −→π ) for each # ∈ [L], that is, "(#) =
(p(#) − q(#))IK + q(#)JK ∈ (0, 1)K×K , # ∈ [L]. The model is
written as A[L] ∼ MPPM(p[L], q[L], −→π ).

We consider the following two-step framework for multi-
layer community detection:

1. Convex layer aggregation. Form the weighted adjacency
matrix A

−→w = ∑L
#=1 w#A(#), for some −→w ∈ W =

{−→w :∑L
#=1 w# = 1, w# ≥ 0, # ∈ [L]

}
.

2. Spectral clustering. Suppose the spectral decomposition of
A

−→w is given by A
−→w = ∑n

i=1 λiuiuT
i , where {λi}n

i=1 are the
eigenvalues and {ui}n

i=1 are the corresponding orthonormal
eigenvectors. The eigenvalues are ordered in magnitude so
that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Form the eigenvector matrix
U = (u1, u2, . . . , uK) ∈ Rn×K . Treat each row of U as a data
point in RK and run the k-means clustering on the n data
points. The cluster label outputs from the k-means are the
community membership estimates for the n nodes.

In the "rst step, the community structure information from
di!erent layers is integrated by a simple convex aggregation of
the adjacency matrices. The second step runs spectral clustering
on the weighted adjacency matrix. A similar two-step spectral
method has been considered in Chen and Hero (2017), where
the authors presented a phase transition analysis of clustering
reliability. With a distinctly di!erent focus, we will provide novel
solutions to re"ne the framework toward a better community
detection approach. In the case when −→w = (1/L, . . . , 1/L), the
two-step procedure is considered as a generally e!ective baseline
method in the literature (Tang, Lu, and Dhillon 2009; Kumar,
Rai, and Daume 2011; Dong et al. 2012; Bhattacharyya and
Chatterjee 2018; Paul and Chen 2020). However, it is common
that di!erent levels of signal-to-noise ratios exist across the
layers; hence, aggregation with equal weights may not be the
optimal choice. Thusly motivated, we propose two approaches
that can adaptively choose a favorable weight vector −→w ∈
W leading to superior community detection results. The two
methods are simple and intuitive while having strong theoret-
ical motivations. We provide analytical calculations to reveal
that the two approaches, in fact, are estimating the optimal
weight vector that minimizes the misclustering error (see formal
de"nition of the error in Section 2.2) under balanced multi-
layer planted partition models. Moreover, we present convincing
arguments to show that, the k-means clustering in the spectral
clustering step should be replaced by clustering using Gaus-
sian mixture models to e!ectively capture the shape of spectral
embedded data thus yielding improved community detection
performances. In a nutshell, the proposed weight selection and
change of the clustering method make the two-step framework a
highly competitive multi-layer community detection procedure,
as will be demonstrated by extensive numerical experiments in
Sections 3.1 and 3.2.

2.2. Asymptotic Misclustering Error under Balanced MPPM

We "rst provide some asymptotic characterization of the two-
step framework introduced in Section 2.1. The asymptotic anal-
ysis paves the way to develop two adaptive layer aggregation
methods in Sections 2.3 and 2.4. Toward this end, let δ : [K] →
[K] denote a permutation of [K], and −→c = (c1, . . . , cn)T ∈ [K]n

be the latent community assignments. The misclustering error
for a given community estimator −̂→c = (ĉ1, . . . , ĉn)T is de"ned
as r(−̂→c ) = infδ

∑n
i=1 1(δ(ĉi) (= ci)/n, which is the proportion

of nodes that are misclustered, modulo permutations of the
community labels. We consider a sequence of balanced multi-
layer planted partition models indexed by the network size n:
A[L]

n ∼ MPPM(p[L]
n , q[L]

n , −→π ) with both K and L "xed. For a
given weight −→w ∈ W , we introduce the following quantity that
plays a critical role in the error characterization:

τ
−→w
n = n

[∑L
#=1 w#(p(#)

n − q(#)
n )

]2

∑L
#=1 w2

#

[
p(#)

n (1 − p(#)
n ) + (K − 1)q(#)

n (1 − q(#)
n )

] . (1)

Theorem 1. Recall the two-step procedure in Section 2.1. For a
given weight −→w ∈ W , let −̂→c −→w be the corresponding commu-
nity estimator. Assume the following conditions
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(i)
∑L

#=1 w2
#

[
p(#)

n (1 − p(#)
n ) + (K − 1)q(#)

n (1 − q(#)
n )

]
=

"(n−1 log4 n),
(ii) [∑L

#=1 w2
#p(#)

n (1 − p(#)
n )] · [∑L

#=1 w2
#q(#)

n (1 − q(#)
n )]−1 → 1,

(iii) τ
−→w
∞ ≡ limn→∞ τ

−→w
n < ∞,

where for two sequences an and bn, an = "(bn) means that
lim supn→∞ |an/bn| > 0. It holds that for τ

−→w
∞ ∈ (K, ∞), as

n → ∞,
E[r(−̂→c −→w )] → 1 − pr(ai ≥ 0, i = 1, 2, . . . , K − 1), (2)

where −→a = (a1, . . . , aK−1)T ∼ N (−→µ , ') with −→µ =√
τ

−→w∞ − K · (1, 1, . . . , 1)T , ' = IK−1 + JK−1. Moreover, the
asymptotic error 1 − pr(ai ≥ 0, i = 1, 2, . . . , K − 1) is a strictly
monotonically decreasing function of τ

−→w
∞ over (K, ∞).

Remark 1. In light of the asymptotic error characterization in
Theorem 1, τ

−→w
∞ can be interpreted as the signal-to-noise ratio

(SNR) for the two-step procedure with a given weight −→w . The
assumption τ

−→w
∞ > K is critical. As will be clear from Propo-

sition 2, if the SNR is below the threshold K, the informative
eigenvalues and eigenvectors of the weighted adjacency matrix
A

−→w cannot be separated from the noisy ones. As a result, the
spectral clustering in the second step will completely fail. Some
supporting simulations are shown in Figure 1. As the le# plot
demonstrates, the two-step method performs like random guess
when τ

−→w
n is smaller than the cuto! point K = 2.

Remark 2. A general scenario where the conditions in Theo-
rem 1 will hold for all −→w ∈ W is p(#)

n = "(n−1 log4 n), n(p(#)
n −

q(#)
n )2(p(#)

n )−1 = ((1). This implies that p(#)
n − q(#)

n + q(#)
n ∝

p(#)
n , that is, the gap between within-community and between-

community connectivity probabilities is of smaller order com-
pared to the connectivity probabilities themselves. This is in
marked contrast to the equal order assumption that is typically
made in the statistical community detection literature (Zhao
2017; Abbe 2017). The minimax rate result in Zhang and Zhou
(2016) shows that for "nite number of communities, the su$-
cient and necessary condition for consistent single-layer com-
munity detection is n(p(#)

n − q(#)
n )2(p(#)

n )−1 → ∞. As a result,

under our conditions the misclustering error will not vanish
asymptotically even though the sequence of networks are su$-
ciently dense p(#)

n = "(n−1 log4 n). We believe this asymptotic
set-up where community detection consistency is unattainable,
is a more appropriate analytical platform to understand real
large-scale networks which are dense but not necessarily have
strong community structure signals. Furthermore, it enables us
to obtain the asymptotically exact error formula that reveals the
precise impact of the weight −→w on community detection.

Remark 3. Because of the distinct asymptotic regime as
explained in the last paragraph, existing works on the asymp-
totic properties of eigenvectors of random matrices (Tang and
Priebe 2018; Cape, Tang, and Priebe 2019; Fan et al. 2019;
Abbe et al. 2020) cannot be directly applied or adapted to the
current setting. Our asymptotic analysis is motivated by the
study of eigenvectors of large Wigner matrices in Bai and Pan
(2012). A similar asymptotic setting to ours was adopted in
Deshpande, Abbe, and Montanari (2017) and Deshpande et al.
(2018). However, notably di!erent from our study, these two
works focused on characterizing the information-theoretical
limit of community detection for single-layer networks via
message passing or belief propagation algorithms. We should
also point out that community detection inconsistency can also
arise for sparse networks where the degree of nodes remains
bounded (see Decelle et al. 2011; Krzakala et al. 2013; Abbe 2017
and references therein). Nevertheless, to our best knowledge,
the asymptotically exact error characterization in this regime is
largely unknown.

Remark 4. We conduct a small simulation to evaluate the results
of Theorem 1. As is clear from the le# panel of Figure 1, the
asymptotic error is a rather accurate prediction of the "nite-
sample error over a wide range of SNR when the network size
is large. Moreover, using the parameter values speci"ed in the
caption of Figure 1, it is straightforward to compute τ

(1,0)T
n =

0.64, τ (0,1)T
n = 9.07. Hence, the second layer is much more

informative than the "rst one. The right panel reveals that
the optimal weight is located around −→w = (0.2, 0.8)T . It is

Figure 1. Consider a balanced multi-layer planted partition model with K = 2, L = 2, n = 6000, p(1) = 0.02, q(1) = 0.018, p(2) = 0.02, q(2) = 0.013. Left panel:
“asymptotic error” is calculated according to the limit formula (2) in Theorem 1; “empirical error I” denotes the !nite-sample error of the two-step procedure described
in Section 2.1; “empirical error II” represents the !nite-sample error of the modi!ed two-step procedure with k-means replaced by clustering using Gaussian mixture
models; both empirical errors are calculated for the procedures without making use of the oracle information of parameters. Finite-sample errors are the averages over !ve
repetitions. Right panel: the y-axis refers to the !rst component of the weight vector.
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interesting to observe that although the "rst layer alone acts like
random noise to spectral clustering (since τ

(1,0)T
n < K = 2;

see also the le# panel), appropriately combined with the second
layer it provides useful community structure information that
contributes to a decent performance boost compared to the
result solely based on the second layer. We, therefore, see the
importance of weight tuning in the two-step procedure.

2.3. Iterative Spectral Clustering

We are in the position to introduce the "rst adaptive layer
aggregation method. Theorem 1 reveals that the asymptotic
misclustering error depends on τ

−→w
∞ in a strictly monotonically

decreasing fashion. Hence, the optimal −→w that will minimize
the asymptotic error can be found by solving max−→w ∈W τ

−→w
∞ .

Naturally, in the realistic "nite-sample scenario where a multi-
layer network with n nodes is given, we would like to use the
weight vector that maximize τ

−→w
n .

Proposition 1. Recall τ
−→w
n de"ned in (1). Denote −→w ∗ =

(w∗
1, . . . , w∗

L)
T = arg max−→w ∈W τ

−→w
n . Then −→w ∗ exists and is

unique, admitting the explicit expression:

w∗
l ∝ p(l)

n − q(l)
n

p(l)
n (1 − p(l)

n ) + (K − 1)q(l)
n (1 − q(l)

n )
, for l ∈ [L],

(3)

where a normalization constant is taken to ensure −→w ∗ ∈ W .

Formula (3) has a simple and intuitive interpretation. Each
w∗

# is determined by the layer’s own parameters. It measures
the standardized di!erence between the within and between
community connectivity probability, where the standardization
(ignoring the smaller order terms (p(#)

n )2, (q(#)
n )2 in the denomi-

nator) is essentially the averaged connectivity probability over
all pairs of nodes. A larger standardized di!erence implies a
stronger community structure signal, deserving a larger weight
on the corresponding layer.

The weight vector −→w ∗ cannot be directly used in the
two-step procedure as it depends on unknown parameters
{(p(#)

n , q(#)
n )}L

#=1. To address this issue, we propose an iterative
spectral clustering (ISC) method. For each # ∈ [L], we "rst run
spectral clustering on the layer’s own adjacency matrix A(l) to
obtain an initial community estimator −̂→c

(#)
and compute the

weight estimates:

ŵ∗
# ∝ p̂(#)

n − q̂(#)
n

p̂(#)
n (1 − p̂(#)

n ) + (K − 1)q̂(#)
n (1 − q̂(#)

n )
, (4)

where

p̂(#)
n =

∑
ij A(#)

ij 1(ĉ(#)
i = ĉ(#)

j )
∑

ij 1(ĉ(#)
i = ĉ(#)

j )
, q̂(#)

n =
∑

ij A(#)
ij 1(ĉ(#)

i (= ĉ(#)
j )

∑
ij 1(ĉ(#)

i (= ĉ(#)
j )

.

(5)
We then run spectral clustering on the weighted adjacency
matrix A

−̂→w
∗

= ∑L
l=1 ŵ∗

l A(l) to obtain a re"ned community esti-
mate −̂→c . Such re"nement can be repeatedly applied until con-
vergence. We summarize the outlined method as Algorithm 1.

Algorithm 1 Iterative spectral clustering [ISC].
Require: L layers of adjacency matrices [A(l), l = 1, . . . , L], the

number of communities K, and the precision parameter ε0.
Ensure: −̂→w new and the community estimate −̂→c by apply spec-

tral clustering on A
−̂→w new .

1: Initialization: Apply spectral clustering on every single A(l),
and compute the initial weight estimates according to (4)
and (5). Denote it by −̂→w old. Set ε = ε0 + 1.

2: while ε > ε0 do
3: Apply spectral clustering on A

−̂→w old and compute updated
weights −̂→w new as in (4) and (5).

4: Assign ε ← ‖−̂→w old − −̂→w new‖ and −̂→w old ← −̂→w new.
5: end while

Remark 5. Algorithm 1 is motivated by the asymptotic analysis
of the misclustering error under balanced multi-layer planted
partition models. However, as will be demonstrated by extensive
numerical experiments in Sections 3.1 and 3.2, it works well for
a much larger family of multi-layer stochastic block models. An
intuitive explanation is that for general stochastic block models,
(5) is estimating the averaged within and between community
probabilities; and the weight formula (4) represents a certain
normalized gap between the aforementioned two probabilities
which can be considered as a measure of the community signal
strength, thus, providing useful aggregation information. That
being said, the weight formula (4) is not necessarily estimating
the optimal weights for general multi-layer stochastic block
models. Deriving the optimal weight formulas in such a general
setting is an interesting and important future research. On a
related note, since our focus is on the partial recovery regime
(see Section 2.2 for detailed discussions), it would be interesting
to investigate how well the optimal weight is estimated under
MPPM cases. To our best knowledge, in the partial recovery
regime when the node degrees diverge with n, the fundamental
limits for parameter estimation have not been established in
the literature. We defer a thorough evaluation and discussion
of Algorithm 1 to Sections 3.1 and 3.2.

2.4. Spectral Clustering with Maximal Eigenratio

We now present the second method to select the weight −→w . Let
λ

−→w
i be the ith largest (in magnitude) eigenvalue of the weighted

adjacency matrix A
−→w . The spectral clustering in the two-step

procedure is implemented using the eigenvectors corresponding
to the "rst K eigenvalues {λ−→w

i , i = 1, . . . , K}. We will show that
in addition to these eigenvectors, the eigenvalues of A

−→w can
be used for community detection. In particular, the eigenvalue
ratio λ

−→w
K /λ

−→w
K+1 holds critical information about how −→w a!ects

misclustering error, as shown in following proposition.

Proposition 2. Under the same conditions of Theorem 1, it holds
that

|λ−→w
K |

|λ−→w
K+1|

a.s.→





1
2

(√
τ

−→w∞
K +

√
K

τ
−→w∞

)
, if τ

−→w
∞ > K,

1, if τ
−→w
∞ ≤ K.

Here, we have suppressed the dependence of λ
−→w
K and λ

−→w
K+1 on n

to simplify the notation.
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Figure 2. The same setting as in Figure 1. (i). The asymptotic prediction is calculated via the limit in Proposition 2. The empirical value is computed over one repetition
without using any oracle information of the parameters. (ii). Proposition 3 shows that the !rst eigenvector is uninformative for clustering. We thus focus on the second one.
There are two population centers that are calculated according to Proposition 3. The center estimates from k-means (“k-means estimate”) and MLE under Gaussian mixture
distribution (“GMM estimate”) are computed over !ve repetitions.

Proposition 2 reveals that the absolute eigenratio
|λ−→w

K |/|λ−→w
K+1| undergoes a phase transition: it remains a constant

one when the SNR τ
−→w
∞ is smaller than K; the ratio will be strictly

increasing in τ
−→w
∞ once τ

−→w
∞ > K. This phenomenon is consistent

with Theorem 1. Indeed, when τ
−→w
∞ is below the threshold K, the

informative eigenvalue λ
−→w
K is indistinguishable from the noisy

one λ
−→w
K+1. Spectral clustering on A

−→w will thus fail. See Remark 1
for more details. On the other hand, as the SNR τ

−→w
∞ increases

over the range (K, ∞), the eigenratio becomes larger so that
λ

−→w
K is better separated from λ

−→w
K+1 and the misclustering error of

spectral clustering on A
−→w is decreased. Figure 2(a) depicts both

the "nite-sample and asymptotic values of the eigenratio from
the same simulation study as described in Figure 1. Clearly the
asymptotic values are "ne predictions of the empirical ones.

Proposition 2 together with Theorem 1 tells us that asymp-
totically the optimal weight achieving the minimum miscluster-
ing error maximizes the absolute eigenratio |λ−→w

K |/|λ−→w
K+1|. This

motivates us to maximize the eigenratio to obtain the weight.
De"ne the objective function g(−→w ) ≡ (λ

−→w
K )2/(λ

−→w
K+1)

2. We aim
to solve the optimization problem: max−→w ∈W g(−→w ).

When the eigenvalues λ
−→w
K and λ

−→w
K+1 are simple (in magni-

tude), it is well known that they are di!erentiable at A
−→w and

admit closed-form gradients (Magnus 1985). Using the chain
rule, we can derive the gradient of g(−→w ): for each # ∈ [L]

∂g(−→w )

∂w#
= 2λ

−→w
K (λ

−→w
K+1)

−3(λ
−→w
K+1∇λ

−→w
K − λ

−→w
K ∇λ

−→w
K+1)

= 2λ
−→w
K (λ

−→w
K+1)

−3(λ
−→w
K+1uT

KA(#)uK − λ
−→w
K uT

K+1A(#)uK+1),

where uK and uK+1 are the eigenvectors associated with the
eigenvalues λ

−→w
K , λ

−→w
K+1, respectively. Hence, we can perform pro-

jected gradient descent to update −→w using
−→w t+1 = PW

(−→w t + γt∇g(−→w t)
)

, (6)

where PW (·) denotes the projection onto unit simplex; γt =
γ0/(1 + rt) is the learning rate that decays with time, r is the
decay rate and t is the number of iterations. The above update

is only feasible when λ
−→w
K and λ

−→w
K+1 are simple. Nevertheless,

we found empirical evidence that A
−→w does not have repeated

eigenvalues (in magnitude) for a wide range of −→w . In fact, it
has been proved that certain types of random matrices have
simple spectrum with high probability (Tao and Vu 2017; Luh
and Vu 2018). For completeness, to handle the rare scenario
when λ

−→w
K or λ

−→w
K+1 is not simple, we resort to coordinate descent

update with one-dimensional line search. Whenever λ
−→w
K and

λ
−→w
K+1 become simple at the current update, the projected gra-

dient descent is resumed. We implement the algorithm with
random initialization. To achieve a better convergence, we run
it independently multiple times and choose the output weight
that gives the largest value of g(−→w ). The method is summarized
as Algorithm 2.
Algorithm 2 Spectral clustering with maximal eigenratio
[SCME].
Require: L layers of adjacency matrices [A(l), l = 1, . . . , L], the

number of communities K, initial learning rate γ0, decay
rate r, maximum number of iterations T, number of random
initializations M, and the precision parameter ε0.

Ensure: −̂→w and the community estimate −̂→c by apply spectral
clustering on A

−̂→w .
1: Initialize m = 1.
2: while m ≤ M do
3: Obtain random initialization and denote it by −̂→w old. Set

ε = ε0 + 1 and t = 1.
4: while ε > ε0 and t ≤ T, do
5: Compute the update −̂→w new{

using (6), if λ
−→w old
K and λ

−→w old
K+1 are simple,

via coordinate descent, otherwise.
6: Assign ε ← ‖−̂→w old − −̂→w new‖, −̂→w old ← −̂→w new, and

t ← t + 1.
7: end while
8: Set −̂→w

m
new = −̂→w new and m ← m + 1.

9: end while
10: Set −̂→w ← −̂→w

m∗

new where m∗ = arg maxm g(−̂→w
m
new).
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Remark 6. This second adaptive layer aggregation method has
an intuitive explanation as well. For networks with K com-
munities, the ratio between the last informative eigenvalue λK
and the "rst noisy eigenvalue λK+1 is a reasonable measure of
the community structure signal strength. Such intuition is well
pronounced under the balanced MPPM: the maximization of
the eigen-ratio leads to the optimal layer aggregation. Extensive
numerical studies in Section 3 will further demonstrate the
robustness and e!ectiveness of the method working beyond
balanced MPPM.

2.5. k-means Clustering Versus Gaussian Mixture Model
Clustering

We have presented two novel methods tailored for adaptive
layer aggregation. We now turn to discuss the spectral clus-
tering step of the two-step framework that is introduced in
Section 2.1. Speci"cally, we will provide convincing evidence to
support clustering using Gaussian mixture models (GMM) as a
substitute for k-means in spectral clustering. Toward this goal,
let U ∈ Rn×K be the eigenvector matrix of which the ith
column is the eigenvector of A

−→w associated with the ith largest
(in magnitude) eigenvalue.

Proposition 3. Under the same conditions as in Theorem 1, there
exists an orthogonal matrix O ∈ RK×K such that for any pair
i, j ∈ [n] conditioning on the community labels ci, cj, it holds
that as n → ∞
(√

nOUTei√
nOUTej

)
d→ N (µ, '), µ =

(
µ(ci)

µ(cj)

)
, ' =

(
( 0
0 (

)
,

where {ei}n
i=1 is the standard basis in Rn. We have omitted

the dependence of O, U on n for simplicity. The mean and
covariance matrix in the multivariate Gaussian distribution take
the following expressions:

µ(ci) =




1√

K(τ
−→w∞ −K)

τ
−→w∞

νci



, µ(cj) =




1√

K(τ
−→w∞ −K)

τ
−→w∞

νcj



,

( = K
τ

−→w∞
·
(

0 0
0 IK−1

)
.

Here, the VK×K−1 = [ν1, ν2, . . . , νK]T such that the K × K
matrix [1/

√
K1K , VK×K−1] is orthogonal, where 1K is a length-

K vector of 1.

Remark 7. We believe that it is possible to have a nontrivial
generalization of our analysis to obtain similar convergence
results under more general multi-layer stochastic block mod-
els. However, the limiting Gaussian mixture distribution will
be much more complicated. Some limiting results have been
obtained under single-layer stochastic block models in Tang
and Priebe (2018). Levin et al. (2017) derives the central lim-
iting theorem for an omnibus embedding of multiple random
graphs for graph comparison inference. However, as explained
in Remarks 2 and 3, we are considering a more challenging
asymptotic regime, which requires notably di!erent analytical
techniques. Given that k-means is invariant under scaling and
orthogonal transformation, the vectors {√nOUTei}n

i=1 can be

considered as the input data points for k-means in spectral
clustering. Proposition 3 establishes that asymptotically all the
spectral embedded data points follow a Gaussian mixture dis-
tribution, and they are pairwise independent. These properties
turn out to be su$cient for the convergence result of k-means
under classical iid settings in Pollard (1981) to carry over to the
current case. With the convergence of estimated centers of k-
means, the misclustering error in Theorem 1 can be derived in
a direct way. See the proof of Theorem 1 for details.

Remark 8. Given a sample of independent observations from a
mixture distribution: x | c = k ∼ f (x; θk), it is known that the
optimal asymptotic misclustering error is

min
g

pr(g(x) (= c) = pr(g∗(x) (= c),

where g∗(x) = argmax
k

pr(c = k | x).

It is straightforward to verify that the asymptotic error in The-
orem 1 coincides with the above optimal error when the mix-
ture distribution is the Gaussian mixture distribution given in
Proposition 3. Combining this fact with Remark 7, we can
conclude that k-means achieves the best possible outcome and
is the proper clustering method to use in spectral clustering
(if the conditions of Theorem 1 hold). However, we would
like to emphasize that the k-means in spectral clustering, in
general, does not consistently estimate the population centers
of the Gaussian mixture distribution. Such a phenomenon is
well recognized in the classical iid scenario (see, e.g., Bryant and
Williamson 1978). It continues to occur in the present case. A
formal justi"cation of the statement can be found in Lemma
1 of the Appendix, supplementary materials. Some supportive
simulation results are shown in Figure 2(b). Given the incon-
sistency of k-means for estimating the population centers, it
is intriguing to ask why k-means is able to obtain the optimal
misclustering error. This is uniquely due to population centers’
symmetry and the simple structure of the covariance matrix in
this speci"c Gaussian mixture distribution. Simple calculations
show that the k-means error will be optimal as long as the
estimated centers (ignoring the irrelevant "rst coordinate) a#er
a common scaling converge to the population centers. This
is veri"ed numerically in Figure 2(b): at each τ

−→w
n , the two

center estimates from the k-means will be compatible with the
population centers a#er a common shrinkage.

In light of Proposition 3, it is appealing to consider using
Gaussian mixture model (GMM) clustering as an alternative
in the spectral clustering, since the spectral embedded data
follows a Gaussian mixture distribution asymptotically. Indeed,
Figures 2(b) and 1 from a simulation study have demonstrated
that GMM clustering is able to recover the population centers
and obtain the optimal misclustering error. Therefore, both k-
means and GMM clustering are optimal clustering methods
that can be implemented in spectral clustering under balanced
multi-layer planted partition models. However, as discussed in
Remark 8, it is the special parameter structures in the Gaussian
mixture distribution that make k-means attain optimal error
even though it is inconsistent for estimating population centers.
Under a general multi-layer stochastic block model, it is likely
that the limiting Gaussian mixture distribution (if exists) will
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Figure 3. Consider a balanced multi-layer stochastic block model with K = 2, L = 1, n = 600, "(1)
11 = 0.053, "(1)

12 = 0.011, "(1)
22 = 0.016. The spectral embedding in

R2 along with the clustering results of k-means, GMM, and ground truth is shown.

have di!erent parameter con"gurations so that the inconsis-
tency of k-means eventually degrades the clustering perfor-
mance. In contrast, GMM clustering speci"es the asymptotically
correct model and is able to better capture various shapes of
embedded data. We therefore expect it to outperform k-means
in general settings. A quick numerical comparison is shown
in Figure 3. We observe that as the model deviates from bal-
anced MPPM, the shapes of mixture components can be fairly
di!erent. The k-means fails to identify the shapes, resulting in
poor clustering performance, while GMM provides an excellent
"t thus gaining signi"cant improvement in clustering. We pro-
vide more numerical experiments regarding the comparison in
Sections 3.1 and 3.2.

3. Numerical Experiments

We have proposed iterative spectral clustering (ISC) and spec-
tral clustering with maximal eigenratio (SCME) for community
detection. With the use of k-means or GMM clustering in
spectral clustering, we in fact have four di!erent methods: ISC
with k-means clustering [ISC_km], ISC with GMM clustering
[ISC_gm], SCME with k-means clustering [SCME_km], and
SCME with GMM clustering [SCME_gm]. In this section, we
present a systematic numerical study of the community detec-
tion performance of the four methods. Moreover, we compare
our methods with three standard spectral methods in the liter-
ature, which are based on mean adjacency matrix [Mean adj.]
(Han, Xu, and Airoldi 2015), aggregate spectral kernel [SpecK]
(Paul and Chen 2017) and module allegiance matrix [Module
alleg.] (Braun et al. 2015). We use the adjusted rand index (ARI)
(Hubert and Arabie 1985) to evaluate the community detection
performance of all the methods. ARI is a common measure
of the similarity between two data clusterings. It is bounded
by 1, with the value of 1 indicating perfect recovery while 0
implying the estimation is no better than a random guess (Stein-
haeuser and Chawla 2010). Finally, to verify that our algorithms
can reach (nearly) optimal layer aggregation under balanced
MPPM, we include the oracle two-step procedure [Grid Search]
which uses the weight that minimizes the empirical ARI (over a
grid).

3.1. Simulation Results

In the simulations, we consider four di!erent cases correspond-
ing to balanced MPPM, imbalanced MPPM, balanced MSBM,

Table 1. Balanced MPPM.

Case n K L cρ
−→p −→q

1a 600 2 2 1.5 (4, 4) (2, 0–4)
1b 600 2–6 2 1.5 (4, 4) (0, 3)
1c 600 2 1-5 1.5 (4, . . ., 4) (0, 4, . . ., 4)
1d 600 2 2 0.4–1.2 (4, 4) (0.5, 2.5)
1e 200–1000 2 2 0.6 (4, 4) (1, 3)

NOTE: The notation “s-t” denotes that a parameter is changed over the range [s, t].

and imbalanced MSBM, respectively. Our methods are moti-
vated by the asymptotic analysis under balanced MPPM. We
thus would like to verify their e!ectiveness under the assumed
models. In addition, we aim to study to what extent our methods
work well for more general models. Each experiment is repeated
100 times.

1. Balanced MPPM case. For a balanced model A[L] ∼
MPPM(p[L], q[L], −→π ), we consider p[L] ≡ (p(1), . . . , p(L))T =
cρ

log n
n

−→p , q[L] ≡ (q(1), . . . , q(L))T = cρ
log n

n
−→q . We vary

values of the "ve parameters n, K, L, cρ , −→q in the model to
investigate settings with di!erent sample sizes, numbers of
communities, numbers of layers, sparsity levels, and connec-
tivity probabilities. Values of model parameters are summa-
rized in Table 1.

Simulation results are presented in Figure 4. We observe
that our four methods show competitive or superior perfor-
mances compared with the other three consistently under
Cases 1a-1e. This lends further strong support to the use of
proposed methods. Moreover, the four methods yield uni-
formly comparable results across all the settings. Such phe-
nomena are consistent with the discussion on the equivalence
of k-means and GMM clustering under balanced MPPM in
Section 2.5.

We now discuss each of the scenarios to shed more light
on the performance of our methods. In Case 1a, we vary the
between-community connectivity probability in the second
layer while keeping all other parameters "xed. As this proba-
bility increases, the second layer becomes less informative for
community detection, so the ARI decreases for all the meth-
ods. However, compared with the three existing methods,
ISC and SCME are both robust to the increased noises in the
second layer, thanks to the adaptive layer aggregation mech-
anism in the new methods. Figure 4(b) depicts the weight for
the "rst layer selected by ISC_gm, ISC_km, SCME_gm, and
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Figure 4. Balanced MPPM case (maximum standard error in the !gure is 0.022).

SCME_km, along with the (empirical) optimal weights. It is
clear that all the four methods successfully found the (nearly)
optimal weights, thus, being able to adaptively down-weigh
the second layer when it becomes noisier. Case 1b changes
the number of communities. As K varies with everything else
"xed, the e!ective information in each layer for every method
tends to change. Take our methods for example. As can be
veri"ed from the optimal weight formula (3), a layer with
a larger ratio of within-community to between-community

connectivity probability should be weighted higher when the
number of communities increases. Referring to Figure 4(c),
we see that our methods provide stable and decent results due
to adaptive layer aggregation, while the other three methods
are comparatively sensitive to the change of K. In Case 1c, we
"x the "rst layer as an informative layer and set other layers to
be random noises. Figure 4(d) clearly shows that our methods
detect communities e!ectively and are remarkably robust to
added noise layers. In contrast, the three existing methods
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perform worse with more noise layers. Case 1d generates
networks with di!erent sparsity levels by simply scaling all
the connectivity probabilities in the model. As the scaling
cρ is getting larger, the network becomes denser and more
informative, so all the methods perform better as seen in
Figure 4(e). Our methods outperform Mead adj. for sparse
networks, even though they are similar in dense settings.
Case 1e examines the performance under di!erent sample
sizes. We notice from Figure 4(f) that our methods can be
advantageous for moderately small-scale networks.

2. Imbalanced MPPM case. For an imbalanced A[L] ∼
MPPM(p[L], q[L], −→π ), the parameter −→π characterizing the
size of each community is of primary interest. Adopting
the same notation from the balanced MPPM case, we list
the parameter values in Table 2. The results are shown in
Figure 5. In all scenarios, our four methods outperform other
methods. ISC_km (ISC_gm) and SCME_km (SCME_gm)
are comparable. One notably di!erent observation from the
balanced MPPM case is that GMM clustering leads to supe-
rior performances than k-means in both ISC and SCME. This
validates our arguments regarding the comparison between
k-means and GMM in Section 2.5: when the model deviates
from balanced MPPM, GMM clustering is expected to better
account for the heterogeneity of spectral embedded data. As
illustrated in Figure 5(a), the improvement of GMM over
k-means becomes more signi"cant as the communities get
more imbalanced. In Case 2b, we keep the communities
imbalanced at a given level and change the sparsity level by
varying cρ . Figure 5(b) shows that SCME is slightly better
than ISC in some settings. Our methods outperform Mean
adj. by a larger margin for sparser networks.

3. Balanced MSBM case. We set "[L] = cρ
log n

n "̄ in the balanced
A[L] ∼ MSBM("[L], −→π ). Table 3 summarizes the parameter
values. We consider two di!erent balanced MSBM scenarios,
both varying the sparsity level by changing cρ .

Table 2. Imbalanced MPPM.

Case n K L cρ
−→p −→q −→π

2a 600 2 2 2 (4, 4) (2, 3.5) (0.25–0.5, 0.75–0.5)
2b 600 2 2 1.5–2.7 (4, 4) (2, 3.5) (0.3, 0.7)

In Case 3a, we consider a two-layer MSBM deviating
moderately from MPPM. As illustrated in Figure 6(a), the
comparison results are similar to what we observe in the
balanced MPPM case: our four methods perform alike and
are uniformly better than the other three methods. In Case
3b, we make the MSBM adequately di!erent from MPPM.
Figure 6(b) shows the results. First, we see that for both ISC
and SCME, GMM outperforms k-means. The same outcomes
occur in the imbalanced MPPM case. We have well discussed
the reason in Section 2.5. Second, ISC_gm (ISC_km) works
better than SCME_gm (SCME_km) in sparse settings while
the latter wins in the dense cases. The result indicates that
eigenratio is more robust to model misspeci"cation as long
as the network is su$ciently dense, while the weight update
(4) used in ISC is less variable when the network is sparse.
We leave a thorough investigation of the distinct impact of
sparsity level on ISC and SCME for future research. We also
observe that SCME_gm continues to outperform the three
standard methods, and ISC_gm does so in all the sparse
settings.

4. Imbalanced MSBM case. We set "[L] = cρ
log n

n "̄ in the imbal-
anced A[L] ∼ MSBM("[L], −→π ). We list the parameter values
in Table 4, where for Case 4a we "x the second community’s
proportion. Results are shown in Figure 7. As expected, we
observe again that GMM performs better than k-means for
both ISC and SCME. Case 4a can be seen as an imbalanced
continuation of Case 3b at a given cρ . Figure 7(a) illustrates
the e!ectiveness of SCME_gm and ISC_gm compared to
the three existing methods over a wide range of imbalanced

Table 3. Balanced MSBM.

Case n K L cρ "̄

3a 600 2 2 0.6–1.6
(

5 2
2 4

)
,
(

4 3.5
3.5 5

)

3b 600 3 5 0.5–3




9 2 2
2 2 2
2 2 9



 ,




2 2 2
2 4 2
2 2 2



 , 2J3, 2J3, 2J3

Figure 5. Imbalanced MPPM case (maximum standard error in the !gure is 0.037).
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Figure 6. Balanced MSBM case (maximum standard error in the !gure is 0.027).

Table 4. Imbalanced MSBM.

Case n K L cρ "̄ −→π

4a
600 3 5

2




9 2 2
2 2 2
2 2 9



 ,




2 2 2
2 4 2
2 2 2



 , 2J3, 2J3, 2J3 (0.17–0.33, 0.33, 0.5–0.34)

4b 0.5–3 (0.25, 0.33, 0.42)

Figure 7. Imbalanced MSBM case (maximum standard error in the !gure is 0.028).

community sizes. Case 4b is an imbalanced variant of Case
3b. We see from Figure 7(b) that the same comparison out-
comes observed in Figure 6(b) for Case 3b remain valid in the
imbalanced case.

5. Summary. The simulations under balanced MPPM demon-
strate that both ISC and SCME are able to select (nearly)
optimal weight for layer aggregation and thus achieve supe-
rior community detection results, which is consistent with
the asymptotic analysis presented in Section 2. Additional
simulations under general MSBM cases support our claim
made in Section 2.5 that GMM is a generally better method
than k-means in spectral clustering. Moreover, ISC_gm and
SCME_gm are rather robust and continue to work well under
general multi-layer stochastic block models. In practice, we
recommend SCME_gm for dense networks and ISC_gm for
sparse ones.

3.2. Real Data Example

In this section, we use S&P 1500 data to evaluate our meth-
ods further and compare them with the three existing spectral
methods. S&P 1500 index is a good representative of the U.S.
economy as it covers 90% of the market value of U.S. stocks.
We obtain the daily adjusted close price of stocks from Yahoo!
Finance (Aroussi 2019) for the period from January 01, 2001
to June 30, 2019, including 4663 trading days in total. We keep
only stocks with less than 50 days’ missing data and forward
"ll the price. This leaves us with 1020 stocks. According to the
newest Global Industry Classi"cation Standard [GICS], there
are in total 11 stock market sectors, of which each consists of
a group of stocks that share some common economic charac-
teristics. Therefore, we treat each sector as a community and
use the sector information as the ground truth for community
detection. We aim to discover the sectors or communities from
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stock prices. One more step of data pre-processing we did is to
remove the sector “Communication Services” due to its small
size, and the sectors “Industrials” and “Materials” because of
their similar performances during economic cycles. The "nal
dataset contains 770 stocks from 8 sectors.

We use the logarithmic return, a standard measure used in
stock price analysis, to construct the network for stocks. Specif-
ically, for a pair of stocks, we compute the Pearson correlation
coe$cient of log-returns (during a period of time) between the
two stocks as the edge among them to measure their similarity.
Note that the constructed network is a weighted graph whose
adjacency matrix takes continuous values in [−1, 1]. A binary
network would have been easily obtained by thresholding. How-
ever, the conversion can result in a substantial loss of community
information. Hence, we will keep the weighted networks for
community detection. We will see that our methods work well
for this type of network as well.

The most straightforward idea is to use the whole time
window to calculate the Pearson correlation among the stocks
and create a single-layer network. However, since "nancial
data is usually nonstationary, correlation tends to change
over time. As a result, the within-community and between-
community connectivity patterns may vary with time. To tackle
such heterogeneity, we split the data into four time periods,
according to the National Bureau of Economic Research
[NBER], which are respectively recession I (2001/03–2001/11),
expansion I (2001/12–2007/12), recession II (2008/01–2009/06)
and expansion II (2009/07–2019/06). The intuition is that the
economy cycle is a determinant of sector performance over the
intermediate term. Di!erent sectors tend to perform di!erently
compared with the market in di!erent phases of the economy.
We then use the Pearson correlation computed within each time
period to construct one layer. We end up having a four-layer
network of stocks.

Table 5 summarizes the community detection results of
di!erent methods. Again, GMM works better than k-means

in both ISC and SCME. Our method SCME_gm outperforms
all the others by a large margin. ISC_gm is also competi-
tive compared with the three spectral methods. For a closer
comparison, Figure 8 shows the confusion matrix from Mean
adj. and SCME_gm. We can clearly see the signi"cant accu-
racy improvements for the consumer discretionary, "nancials,
information technology, and real estate sectors. Table 5 also
shows the weights for the four layers learned by our methods.
In the Appendix, supplementary materials we further explain
the interesting implications of the weights learned by our best
method SCME_gm.

4. Conclusions and Discussions

This article presents a thorough study of the community detec-
tion problem for multi-layer networks via spectral clustering
with adaptive layer aggregation. We develop two eigensystem-
based methods for adaptive selection of the layer weight, and
further provide a detailed discussion on the superiority of
GMM clustering to k-means in the spectral clustering. Extensive
numerical experiments demonstrate the impressive community
detection performance of our algorithms. The proposed ISC
and SCME algorithms are implemented on GitHub (https://
github.com/sihanhuang/Multi-layer-Network). Several impor-
tant directions are le# open for future research.

• The theory and methods are primarily developed for multi-
layer networks with assortative communities structures. It
is interesting to further study how our layer aggregation
methods can be used to discover both assortative and disas-
sortative community structures in multi-layer networks of a
mixed structure, especially given the fact that simply adding
the adjacency matrices from assortative layers and disassor-
tative layers can potentially wash out the community signals
in the data. We have applied the ISC algorithm (without

Table 5. Community detection results for the stock market data.

Method ARI Weights Method ARI Weights

ISC_gm 0.44 [0.52, 0.23, 0.07, 0.18] Mean adj. 0.37 [0.25, 0.25, 0.25, 0.25]
ISC_km 0.35 [0.57, 0.21, 0.07, 0.15] SpecK 0.45 –
SCME_gm 0.65 [0.08, 0.33, 0.01, 0.60] Module alleg. 0.29 –
SCME_km 0.43 [0.08, 0.33, 0.01, 0.60]

Figure 8. Normalized confusion matrix of community detection results.

https://github.com/sihanhuang/Multi-layer-Network
https://github.com/sihanhuang/Multi-layer-Network
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any modi"cation) to balanced MPPM of a mixed structure
in some new simulations (see Section 2 in the Appendix,
supplementary materials for details). The preliminary results
show that like in assortative cases of Section 3.1, our algo-
rithm is able to "nd the (nearly) optimal weight for layer
aggregation. On the other hand, we expect that the SCME
algorithm cannot be directly applied. This is because the
algorithm is looking for maximum eigenratio between the
Kth and (K +1)th eigenvalues, while aggregating assortative
layers (with positive weights) and disassortative layers (with
negative weights) can potentially reduce the number of infor-
mative eigenvalues. Some modi"cations such as taking into
account the "rst K eigenratios |λ1|/|λ2|, . . . , |λK |/|λK+1|
are needed to make it work. We leave a full investiga-
tion of detecting mixed community structures in a separate
project.

• The current article focuses on spectral clustering based on
adjacency matrices. It is well known that variations of spec-
tral clustering using matrices such as normalized or regular-
ized graph Laplacian (Rohe, Chatterjee, and Yu 2011; Qin
and Rohe 2013; Amini et al. 2013; Sarkar and Bickel 2015;
Joseph and Yu 2016; Le, Levina, and Vershynin 2017) can be
useful for community detection under di!erent scenarios. It
is of great interest and feasible to generalize our framework
to incorporate various spectral clustering forms.

• The e!ectiveness of our framework under general MSBM
was illustrated by a wide array of synthetic and real datasets.
A generalization of our asymptotic analysis to general MSBM
will enable us to re"ne the proposed adaptive layer aggre-
gation methods to achieve even higher accuracy. Such a
generalization will rely on more sophisticated random matrix
analysis and is considered as an important yet challenging
future work.

• Our work assumes the number of communities K is given,
which may be unknown in certain applications. Some recent
e!orts for estimating K in single-layer networks include
Le and Levina (2015), Lei (2016), Saldana, Yu, and Feng
(2017), Wang and Bickel (2017), among others. Extending
our framework along these lines is interesting and doable.

Supplementary Materials

1. Appendix: Additional simulation results under balanced MPPM, more
real data analysis results, and all proofs. (pdf)

2. Package: Python package for implementing the proposed algorithms.
https://github.com/sihanhuang/Multi-layer-Network

3. Code: Python codes for reproducing the simulation and real data anal-
ysis results. (zip)
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