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ABSTRACT A wide range of information technology applications require the identification of a particular
message or label that represents the identity of an object at a distance, e.g., over a wireless channel.
Conventionally, the underlying information that represents the identity is transmitted over the channel,
following the information-theoretic concept of message transmission. If the purpose of the interaction over
the channel is only to verify (match) an identity, then the concept of identification over channels—utilizing
the identification codes that have been developed by the information theory community—can provide an
exponential efficiency gain over message transmission. This topical review article conducts for the first time
a comprehensive detailed evaluation of the existing identification codes for the practically relevant regime of
finite parameters. We examine essentially all published identification codes, including codes based on inner
constant weight codes that are concatenated with outer linear block codes, such as Reed-Solomon and Reed-
Muller codes. Specifically, we conduct a holistic identification code comparison based on the logarithm of
the number of representable identities (in shannon), the size (in bit) of the transmitted cue that represents
an identity, and the corresponding type II error probability bound for essentially all existing identification
codes. Based on the resulting insights, we formulate guidelines for the design of practical (finite-parameter)
identification codes. For instance, we find that a linear block code (without concatenationwith a sophisticated
inner constant-weight code) is sufficient for most practical identification code usages.

INDEX TERMS Beyond-Shannon communication, error probability, false-positive identification, goal-
oriented communication, linear block code, identity verification, performance metrics.

I. INTRODUCTION
An identity or a set of identification information is the
main message of interest in various distributed information
technology and communication systems. For instance, radio-
frequency identification (RFID) systems [1], [2], [3], [4], [5]
identify physical objects via attached tags or smart labels
[6], [7], [8], [9] via principles of wireless communication.
Similarly, the connection establishment procedure in cellular
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wireless systems identifies the individual user equipment
(UE) nodes to the corresponding base station via wireless
transmissions [10], [11], [12], [13], [14]. Conventionally, the
identification information is transmitted via communication
channels from a source, e.g., smart label or UE, to a sink,
e.g., warehouse controller or base station, based on Shannon’s
principles of message transmission (communication via
channels). In many operational scenarios, the sink may have
some prior history (e.g., inventory information) or prediction
(e.g., UE mobility prediction) of the source identifiers that
are to be expected. In such scenarios, the sink only needs to
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verify whether the identity of the source matches the identity
that is expected by the sink. This distributed identity verifi-
cation can be conducted through identification via channels
(ID) [15], [16]. With ID, the number of identifiable identities
(messages) scales double exponentially with the block length
and code rate, compared to the single-exponential scaling
with message transmission as introduced by Shannon. Thus,
ID is a specific approach within the wider Beyond-Shannon
communication paradigm [17], [18], [19], [20], [21].

Similar identity verification tasks arise in distributed
information systems that need to maintain consistency
(synchronism). For instance, distributed databases [22], [23],
[24] need to maintain consistency among the different
locations. Also, in multi-access edge computing (MEC),
the computing instances that execute a mobile computing
application need consistent application state information as
the computing instances are moved among MEC servers
to remain in close vicinity of the mobile application [25],
[26], [27], [28]. Similarly, in digital twin systems [29],
[30], [31], [32], [33], [34], [35], the real physical system
and the corresponding digital twin (simulation of the
real physical system) need to stay synchronized. ID can
achieve exponential gains in efficiency compared to con-
ventional Shannon data transmission for such verifica-
tions whether distributed systems have consistent state
information.

A. CONTRIBUTIONS OF THIS TOPICAL REVIEW
ID has to date mainly been studied by the information theory
community; specifically, the focus has been on examining
the fundamental information-theoretic limits (mainly in the
scaling regime of parameters tending to infinity) and on
developing ID codes that achieve these fundamental limits.
We note that [36] and [37] have investigated the computa-
tional complexity of ID codes, specifically of concatenated
PPM-RS2 ID codes (see Section III-A). Also, the Reed-
Muller (RM) ID coding study [38] discusses the complexity.
Thus, these studies consider some aspects of the finite-
parameter regime, because they examine the scaling of the
computational complexity. However, they do not conduct a
holistic investigation of ID coding in the finite-parameter
regime, e.g., they do not investigate which part of the
concatenated code has which impact on the overall ID coding
performance.

Our topical review conducts the first holistic comparison
of essentially all existing ID codes in the practical regime
of finite parameters for the ID codes and the various system
characteristic. Thus, this topical review seeks to provide a
comprehensive critical review of the state-of-the-art of ID
coding so as to inform the usage of ID coding in practical
application contexts. We compare essentially all existing ID
codes; specifically, we compare all existing ID codes, except
the recently proposed random linear ID code [39], in terms of
the number of IDs that they can represent (i.e., the ID size),
the amount of traffic that the ID code incurs (i.e., the cue size),
and the type II error probability (both in the worst case and
on average).

We emphasize that our holistic comparison does not
consider complexity in detail; rather, we only briefly
note elementary general complexity differences between
PPM-RS2 and PPM-RM. Our holistic comparison considers
the ID size, cue size, as well as the error probability
(specifically, bound and mean of error probability) as ID
coding performance metrics. Also, for each concatenated
ID code, we identify the code element that governs the ID
coding performance. We leave a unified comparison of the
computational complexities of the different ID code elements
to future research. We facilitate that future research with
our finding that the commonly used CWC initialization in
ID coding does not improve the ID coding performance.
Therefore, investigating and optimizing the computational
complexity of CWC initializations appears to be not helpful
for advancing ID coding.

B. LITERATURE REVIEW METHODOLOGY
Given the relatively small set of existing published studies
on identification codes, we collected all existing published
ID coding studies for this topical review. We searched
the published literature with the commonly used search
tools for engineering and information systems, including
Google Scholar and IEEE Xplore, with the search terms
‘‘identification via channels’’ as well as ‘‘identification’’
and ‘‘information theory’’ as well as ‘‘identification’’ and
‘‘coding’’ as well as ‘‘identification code’’.We also examined
the references in each of the ID coding studies for additional
published articles. We present the complete set of collected
published ID coding studies in Sections II and III, except for
the study [39].

We exclude the recently proposed random linear ID cod-
ing [39] from this topical review, since the random creation
of the linear codewords fundamentally differs from the
deterministic creation of the codewords of all other existing
ID codes. More specifically, ID codes with deterministically
created codewords employ a deterministically prescribed
codebook, i.e., a set of codewords that is created according
to a prescribed deterministic procedure, e.g., for creating
codewords for Reed-Solomon or Reed-Muller coding. In con-
trast, the random linear ID code [39] independently uniformly
randomly draws the codewords from a given considered field.
Aside from the initial exploratory study in [39], the random
linear ID coding concept has not yet been further investigated.
We leave the topical review of random linear ID codes for
future work.

We emphasize that we conduct a topical review of random
ID coding which randomly selects a cue from a set of cues
(i.e., a set of ID codewords). For the investigated random
ID codes, the set of cues is determined deterministically;
whereas, random linear ID coding [39] generates the set of
cues randomly.

C. ARTICLE STRUCTURE
Section II briefly explains the fundamentals of general code
constructions, identification theory, and specific ID code
constructions. Section III describes the existing (published)
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TABLE 1. Overall length n, overall dimension k , and overall minimum
distance d of different linear block code types.

ID code types in a modular fashion based on the employed
linear block code, and on the manner of constructing a
constant-weight ID code based on the linear block code.
Section IV conducts an in-depth analysis of the error
probability bound and mean error probability. Section V
evaluates the performance of ID codes in terms of the
achieved ID size and the required cue size. Section VI
holistically compares the performance tradeoffs of ID codes
as functions of the various coding parameters. Finally,
based on all findings, Section VII proposes heuristics for
determining ID coding parameters for good performance.
Section VIII summarizes this article.

II. FUNDAMENTALS
A. CODE CONSTRUCTIONS
In this subsection, we briefly describe the linear block
codes, constant-weight codes, and concatenated codes that
are relevant to this article. A Reed-Solomon (RS) code CRS
is an (n, k, d)q linear block code [40], [41], [42]. For given
symbol size q and dimension k of the linear block code,
selecting the linear block code length n = q − 1 and the
minimum distance d = n− k+1 = q− k fully characterizes
the RS code. The result is a linear block code with the
characteristics:

(q− 1, k, q− k)q . (1)

We refer to such RS codes as (q, k) RS codes, with k < q.
A (q,m, r) Reed-Muller (RM) code CRM [43], [44] of

symbol size q, generationm, and order r is an (n, k, d)q linear
block code with the characteristics:(

qm,

(
r + m
m

)
, (q− r)qm−1

)
q
. (2)

For (q,m, r) RM codes, 0 < m ≤ r < q.
Two linear block codes can be concatenated. This requires

the symbol size qo of the outer code C(o) to be a power of the
symbol size qi of the inner code C(i) of dimension ki, i.e., that
qo = qkii . The result is a concatenated linear block code C

(c)
=

C(i) ◦C(o) of symbol size qkii , length nino, dimension kiko, and
distance dido. Concatenating an inner (q, ki) RS code with an
outer (qki , ko) RS code yields a concatenated RS code that
we refer to as (q, ki, ko) RS2 code. We give an overview of
the linear block code characterization of RS, RM, and RS2
codes in Table 1.

Binary constant-weight codes (CWCs) are codes for which
all codewords in the codebook share the same Hamming
weight W . In a binary CWC Ccw, each codeword of block
length S consists of W ones and S − W zeros. The
dimension N of the codebook determines the number of

codewords in the codebook. Finally, the upper bound K
for the codeword overlap specifies in how many positions
(at most) any two codewords take on identical values.
In conclusion, an (S,N ,W ,K ) CWC is characterized by its
block length S, its dimension N , its Hamming weightW , and
its upper bound K for the codeword overlap.

An inner binary (Si,Ni,Wi,Ki) CWC C(i)cw can be concate-
nated with an outer (no, ko, do)qo linear block code C(o). The
result is a new concatenated CWC C(c)cw = C(i)cw ◦ C(o) [45]. For
the resulting CWC C(c)cw, the upper bound Kc on the codeword
overlap is not necessarily tight. The resulting CWC C(c)cw is
characterized by [45]:

Sc = Sino, (3)

Nc = N ko
i , (4)

Wc = Wino, (5)

Kc = Wi(no − do)+ Kino. (6)

Günlü et al. [46, Lemma 3] tightened the bound on the
codeword overlap to

Kc = Wi(no − do)+ Kido. (7)

Since the resulting concatenated code is a CWC, recursive
concatenation with another linear block code is possible.
The concatenation of two outer linear block codes C(i) and
C(o) with an inner CWC C(i)cw results in the concatenated
CWC C(c)cw =

(
C(i)cw ◦ C(i)

)
◦C(o). Because the inner CWC C(i)cw

translates the outer linear block code(s) into a concatenated
CWC, we refer to the inner CWC as the CWC initialization.

B. IDENTIFICATION
The fundamental theory of message identification (ID) was
mainly introduced in [15], [47], and [48]. Identification is a
communication problem, in which the source and the sink
each consider a singular message from a finite set of possible
messages. To highlight the difference between message
identification and message transmission, messages are called
ID messages or simply IDs in message identification. Based
on an ID codeword that the source transmitted over a channel
to the sink, the goal of the sink is to determine whether the
source considers the same ID as the sink. The sink does not
try to find out which message the source tries to convey to
the sink, but rather whether the IDs of the source and sink
are identical, or not. For example, when a traveler waits in a
general waiting room for her number to be called so as to buy
a ticket at one of the counters in a train station, the traveler
is not really interested in which number is displayed on the
screen, but rather whether it is the number printed on the
piece of paper that the traveler drew from the queue number
dispenser.

The ID problem can be solved using message transmis-
sion, however, [15] showed that the ID problem can be
solved much more efficiently than the message transmission
scheme allows for. While message transmission is agnostic
to the goal of the communication, message identification
includes knowledge of the goal of the sink, i.e., the goal of
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identification, and can thus achieve exponential gains over
message transmission.

For a codeword length n, an ID code is defined as
[46, Definition 1]:
Definition 1 (Identification Code): An (n,N , λ1, λ2) ID

code is a collection of N probability distributions pi on X n

and N decoding subsets Di ⊂ Yn such that for a channel
W n

ch(y
n
|xn), xn ∈ X n and yn ∈ Yn the following is true:∑

yn∈Di

∑
xn∈X n

pi(xn)W n
ch(y

n
|xn) ≥ 1− λ1 ∀i ∈ [1 : N ], (8)

∑
yn∈Di

∑
xn∈X n

pj(xn)W n
ch(y

n
|xn) ≤ λ2 ∀i, j i ̸= j, (9)

with

λ2 =
supi̸=j |Di ∩Dj|

n
. (10)

The upper type I error probability bound λ1 depends on the
level of distortion that the channelW n

ch(y
n
|xn) imposes on the

transmitted codeword xn. Following the common convention
in ID studies [37], [38], [46], we only consider noiseless
channels in this article, such that the upper type I error
probability bound λ1 = 0. Thus, we are only interested in the
upper type II error probability bound λ2, which we refer to as
the error probability bound λ2 for brevity for the remainder
of this article. Type-II errors are false-positive verdicts at the
sink, i.e., based on the received ID codeword yn, the sink
considers the ID j of the source to be identical to the ID i
of the sink, even though i ̸= j.

An ID scheme is able to successfully identify a maximum
of N (n, λ1, λ2) different ID messages with the definition of
N (n, λ1, λ2) in Definition 1. As opposed to the exponential
scaling in the number of messages known from message
transmission, for message identification, the number of IDs
scales double-exponentially in the block length:

N (n, λ1, λ2) = exp exp nR ⇐⇒ R =
log logN

n
. (11)

The ID rate R is upper bounded by the channel’s ID
capacity C that is identical to the channel capacity for
message transmission (whereby for a noiseless discrete
memoryless channel C = 1).

C. IDENTIFICATION CODES
Similar to Shannon’s channel coding theorem [49], Ahlswede
and Dueck [15] only proved the existence of ID codes as
defined in Definition 1, but did not provide any explicit
construction of such ID codes. Based on CWCs that result
from concatenating a CWC initialization with outer linear
block codes, Verdú and Wei [50] suggested the first explicit
ID code construction.

Let Cid be a codebook for an (S,N ,W ,K ) ID CWC Cid.
Since the codebook Cid is constructed using a binary CWC,
the codebook can be interpreted as a matrix of 1s and 0s with

N rows and S columns.

Cid =

 c0,0 · · · c0,S−1
...

. . .
...

cN−1,0 · · · cN−1,S−1

 ∈ FN×S
2 . (12)

From an ID coding perspective, every row in this codebook
denotes a codeword ci for an ID mi ∈ W of index
i ∈ [0 : N − 1]. The ID mi is encoded to the ID codeword x
by randomly choosing a position x ∈ [0 : S − 1] from
all symbols ci,x within the codeword ci for which ci,x = 1.
We refer to this randomly chosen position x within the
constant-weight codeword ci as a cue. We call the set of
selectable positions, for which ci,x = 1, the ID codeword set,
or set of cues, of size W . The source randomly determines a
cue x, that is a lossy representation of the ID mi, from the set
of cues, and transmits the cue over the channel to the sink.
The sink wants to verify whether the source transmitted a cue
based on the IDmj, i.e., whethermj = mi. For the verification
of the ID at the sink, the sink selects the row associated with
its chosen ID mj, and checks at the position x (as determined
by the received cue) whether cj,x = 1 or not. If cj,x ̸= 1, then
the sink concludes the IDs to be different. The verification of
an ID is considered a binary hypothesis test that the source
and sink perform jointly.

The number S of columns in the codebook Cid denotes the
length of the constant-weight codeword ci. The cue, that is
the ID codeword transmitted over the channel, is a position
in the constant-weight codeword where the constant-weight
codeword takes on the value 1. Encoding this position
requires

ncue = log S in bit. (13)

Since the cue size ncue determines how much data is
transmitted over the channel, the cue size ncue corresponds
to n in Definition 1. For the remainder of this article,
we understand all logarithms log() as logarithms in base 2.

The number N of rows in the codebook Cid in Equa-
tion (12) determines the size of the message set W , i.e., the
number of IDs that the codebook can represent:

|W| = N with W = [0 : N − 1] . (14)

Since we investigate the use of ID codes instead ofmessage
transmission codes, we do not consider the transmission of
full IDs over a channel, but only the transmission of a cue,
which is a fractional representation of an ID. We determine
the number of shannons required to represent a full ID, and
call it ID size nid.

nid = logN in shannon. (15)

We use the unit shannon for the ID size nid to emphasize
that the ID size does not directly influence the number of bits
that are physically transmitted over the channel. Rather, the
ID size is a measure of the information content of each ID.
Instead of the full ID, only a fractional representation (cue) is
transmitted, and we measure the cue size ncue in bit.
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Using Equation (15), we can rewrite the ID rate determined
in Equation (11) as

R =
log logN
ncue

=
log nid
ncue

. (16)

Next to the ID rate R, the error probability bound λ2 is
the most important theoretical metric to evaluate ID codes.
For ID codes based on binary CWCs, the codeword overlap
bound K determines the number of positions in which
two constant-weight codewords overlap at most, while the
Hamming weight W determines in how many positions the
symbols of the codeword take on values of 1. Considering
that the cue is selected uniformly randomly from all
available positions that take on values of 1, the bound for
the probability of selecting a cue that is shared by two
constant-weight codewords is

λ2 =
K
W

. (17)

For optimality proofs, the error exponent E2 is frequently
used in the literature:

E2 =
− log λ2

ncue
. (18)

A large error exponent E2 corresponds to a small error
probability bound λ2 and is thus desirable. Ahlswede and
Dueck [15] defined an upper bound for the achievable ID
rate R based on the channel capacity C and error exponent E2
[16, Theorem 13ii]:

R+ 2E2 ≤ C . (19)

Hence, for finite-length ID codes, achieving a high ID rate R
limits the lowest achievable error probability bound λ2 and
vice versa. For a comparison of different ID coding schemes
based on the ID rate R and the error exponent E2, we refer to
[46, Fig. 2]. In this article, we do not evaluate ID codes based
on their error exponentE2, but based on their error probability
bound λ2, as the error exponent is a function of the error
probability bound λ2, and the error probability bound λ2 is
closer related to practically relevant measures, such as the
error probability.

To conclude this section, we briefly cover the optimality
of ID codes. Since we consider identification over a noiseless
channel, we consider the channel to be an error-free discrete
memoryless channel of capacity C = 1. An ID code is
considered optimal for ID, i.e., ID capacity-achieving, if its
ID rate R → 1, and its error probability bound λ2 → 0
for infinite block lengths S. Verdú and Wei [50] proposed
the following requirements to validate the capacity-achieving
properties of an ID code:

lim
S→∞

logW
log S

−→ 1, (20)

lim
S→∞

log logN
log S

= lim
S→∞

R −→ 1, (21)

lim
S→∞

K
W

= lim
S→∞

λ2 −→ 0. (22)

From a practical point of view, each of these three equations
describes the asymptotic behavior of certain code character-
istics. Theweight factor states that a good and asymptotically
optimal ID code should have a high weight W compared to
the block length S, cf. Eq. (20). Since only codeword symbols
that are equal to one can be chosen as cues, it is desirable not
to be limited in the choice of those positions. Equation (16)
denotes the second order rate and ensures asymptotically
achieving the double exponential rate, cf. Eq. (21), which is
stated in [15] as the main ID property. Finally, the overlap
fraction asserts decreasing the error probability to zero,
cf. Eq. (22).

III. EXPLICIT ID CODE CONSTRUCTIONS
Before evaluating the error probability bound in Section IV,
and the ID size and cue size in Section V, this section
briefly reviews the evaluated ID code types. We proceed
chronologically: we begin by reviewing the first explicit ID
code construction, and then describe a different form of
representation of ID codes, that is equivalent to the CWC
form of representation.We continue with a short investigation
on the extension of RS codes. Finally, we review alternatives
for the linear block codes and the CWC initialization used for
ID codes.

A. FIRST EXPLICIT ID CODE: PPM-RS2 CODES
1) PPM-RS2 CODING CONCEPT
For the first explicit ID code construction, [50] proposed a
three-layer concatenated binary CWC consisting of a pulse
position modulation (PPM) initialization concatenated with
an inner RS code C(i)RS and an outer RS code C

(o)
RS. This concate-

nated code is optimal for ID, i.e., for infinite block lengths,
the ID rateR approaches 1while simultaneously guaranteeing
that the error probability bound λ2 approaches 0. We refer
to these codes as PPM-RS2 codes for the remainder
of this study; or as RS2 codes if it is clear from the
context that the employed CWC initialization is the PPM
initialization.

The PPM initialization is a (q, q, 1, 0) CWC and does not
have any impact on the code’s performance in terms of the
metrics considered in this study. The inner and outer RS codes
define the ID coding performance. With the definition of an
unextended Maximum Distance Separable (MDS) RS code
in Equation (1), C(i)RS and C

(o)
RS are (n, k, d)q linear block codes

determined by the parameters q, ki, and ko:

C(i)RS : (q− 1, ki, q− ki)q , (23)

C(o)RS :

(
qki − 1, ko, qki − ko

)
qki

. (24)

We do not extend the RS codes, i.e., ni = qi − 1 and no =

qo − 1.
Concatenating a CWC, such as the PPM, with a linear

block code, such as RS, creates a new CWC with parameters
determined by Eqs. (3)–(7). The resulting PPM-RS CWC
can be concatenated again with another linear block code,
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FIGURE 1. ID encoding example using a (q = 5, ki = 2, ko = 5) PPM-RS2 code that forms a concatenated binary
constant-weight code.

yielding the full PPM-RS2 binary CWC with

SPPM-RS2 = q(q− 1)(qki − 1), (25)

NPPM-RS2 = qkiko , (26)

WPPM-RS2 = (q− 1)(qki − 1), (27)

KPPM-RS2 = (q− 1)(ko − 1)+ (qki − ko)(ki − 1).

(28)

A PPM-RS2 CWC is thus characterized by the symbol size q,
as well as the dimensions ki and ko. We denote these three
defining parameters by writing (q, ki, ko) PPM-RS2 code.

2) PPM-RS2 CODING EXAMPLE
Figure 1 visualizes the encoding of an ID with a (q = 5, ki =
2, ko = 5) PPM-RS2 code. The choice of symbol size q =

qi = 5 and dimension ki = 2 of the inner RS code determines
the symbol size qo = qki = 25 of the outer RS code.We select
one of NPPM-RS2 = qkiko = 9, 765, 625 possible IDs, that is
represented in F5

25, namely (11, 12, 22, 7, 4) in the example
illustrated in Figure 1. The ID is encoded by the outer RS
code, yielding its error-correction codeword in F24

25. In order
to enable further encoding by the inner RS code, we perform
a base extension of each symbol in F25 of the error-correction
codeword of the outer RS code. Specifically, each F25 symbol
is cast to F2

5. For example, the symbol 21 is extended to (4, 1).
Since the outer RS codeword consists of no = 24 symbols,
the base extension is performed 24 times in parallel, once
for each symbol. The base extension results in 24 codewords
in F2

5.
Each of the 24 codewords can be interpreted as an ID

in F2
5 that is to be encoded in PPM-RS1, as indicated

on the left side of Figure 1. For the PPM-RS2 encoding

illustrated on the right in Figure 1, each codeword in F2
5 is

separately further encoded by the inner RS code, yielding
an error-correction codeword in F4

5. Whereby, the resulting
24 inner RS codewords can be interpreted as a single
codeword of the PPM-RS2 encoding in (F4

5)
24. This inner RS

encoding step of the PPM-RS2 encoding corresponds to the
first PPM-RS1 encoding step of 24 independent IDs in F2

5,
which results 24 RS codewords in F4

5. Finally, each symbol
in F5 is translated into its PPM representation, resulting in
WPPM-RS2 = ni · no = 4 · 24 = 96 binary codewords.
One symbol of every PPM codeword is set to 1, while the
other four symbols are set to 0. The overall result is a binary
constant-weight codeword in (F5

2)
96.

The ID encoding is completed by selecting a random
position (cue) within the binary constant-weight codeword,
at which the corresponding symbol equals 1. In the example,
counting (indexing) the bit positions from the right side
(starting with 0) to the left side, possible cues include 2,
5, 14, and 16. Transmitting the cue to a receiver requires
only log2(SPPM-RS2) = log2(qi · ni · no) = log2(5 · 4 ·

24) ≈ 8.9 bit, while transmitting the full ID requires
log2(NPPM-RS2) = log2(q

ko
o ) = log2(25

5) ≈ 23.2 bit. For
larger coding parameters, the relative traffic reduction grows
more pronounced.

3) PPM-RS2 CODING CONVENTIONS FOR THIS TOPICAL
REVIEW
The CWC characteristics (S,N ,W ,K ) of PPM RS2 codes
stated in Eqs. (25)–(28) differ from the parameters reported
in the study [50, Proposition 2] on PPM-RS2 codes in two
regards. First, we do not investigate RS codes of length
n > q− 1, as we explain in Section III-C. This changes
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several terms from q to q − 1 and from qki to qki −

1, respectively. Second, we do not use the estimation for
the overlap bound K provided at the end of the proof for
[50, Proposition 2], but the newer result from [46, Lemma 3],
which yields a tighter bound K based on Eq. (28).
In order to achieve the optimality for ID, the choice of

q, ki, and ko is limited to prescribed value ranges when
constructing PPM-RS2 codes. We need to ensure a positive
code distance d = n − k + 1 for RS codes via ki < q
and ko < qki . For PPM-RS2 codes to be optimal for ID,
the following condition is required to fulfill the optimality
requirements in Section II-C [50, Proposition 3]:

ko = qt with t < ki, t ∈ N. (29)

To allow for arbitrary dimensions ko of the outer RS
code, [46] provided an alternative set of optimality con-
ditions for ID CWCs using concatenated RS codes in
[46, Eqs. (19)–(22)], replacing the condition for ko in
Equation (29) by

log ko → ∞,
log ko
ki

→ 0,
ki
q

→ 0,
ko
qki

→ 0. (30)

These conditions state the desirable limits of the correspond-
ing expressions when using large coding parameters, also
compare Eqs. (20)–(22).

B. REDUNDANCE OF PPM INITIALIZATION
The binary CWC initialization maps the output of the outer
linear block code (or concatenated linear block codes) onto
a vector of 0s and 1s. An ID is encoded by the linear block
code into a length n codeword of symbol size q. If the CWC
initialization is the PPM initialization, the PPM initialization
maps this codeword to a binary vector of length nq. This is
achieved by creating one-hot encodings of every value ∈ Fq
in each of the n positions of the error correction codeword.
In other words, a position in the binary vector is set to 1 if the
position corresponds to a (symbol, position) tuple that is part
of the error correction codeword.

For example, for a linear block code of symbol size q = 5,
there exist q = 5 different values that a symbol can take on:
0, 1, 2, 3, 4. The PPM maps the block codeword symbol 0 to
its binary one-hot encoded representation by setting the first
element of the one-hot encoding vector of length q = 5 to 1,
yielding the vector (00001), cf. lower left corner of Figure 1.
The PPM initialization does not add additional distance

between the codewords. Rather, the PPM initialization is
a bijective mapping of the block codeword to a binary
representation thereof. The PPM initialization does not
change the properties of the ID code; rather, the PPM
initialization only translates the ID code into a CWC. When
using the PPM initialization for the CWC initialization,
it suffices to investigate the outer linear block code(s) to
determine the ID coding performance.

The value of the symbol in each position of the linear
block codewords has been called a tag in [36], [37], and [38].
Instead of discussing CWCs as ID codes, the studies [36],
[37], [38] only consider the linear block codes and refer to the

FIGURE 2. ID rate R̄id and error probability bound λ̄2 for single and
double extended (q, ki, ko) = (q, 2, q) PPM-RS2 codes, normalized by the
respective rate R and bound λ2 of the unextended (q, 2, q)
PPM-RS2 code. Extending the RS code decreases the error probability
bound for low symbol sizes q, which is desirable, while moderately
decreasing the ID rate, which is undesirable.

code construction as tagging code. A tagging code includes
a high-distance linear block code without concatenating the
block code with a binary CWC for the cue deduction. Thus,
for the ID procedure with the tagging code representation,
a (symbol, position) tuple [also called (tag, position) tuple]
is transmitted rather than a cue. Thus, every cue of the
CWC representation of ID coding corresponds to exactly one
(tag, position) tuple of the tagging code representation of ID
coding, and vice versa. That is, a cue and the corresponding
(tag, position) tuple are two different representations of the
same randomly chosen fractional information of a full block
codeword. In this article, we review all ID codes in their CWC
(cue) form of representation.

C. EXTENSION OF REED-SOLOMON
Some studies extend the utilized RS codes to improve the
theoretical performance of the ID codes [46], [50]. The
length n of an RS code is limited by the symbol size q of
the code. Traditionally, the highest value that n can take on is
q−1. By extending the RS code, n can take on values of q and
even q+ 1. An increased length n can increase the distance d
of an RS code and is therefore beneficial for generating
high-distance codewords: the higher the distance between
the codewords, the smaller the type-II error probability.
The study [50] uses single-extended RS codes, while [46]
proposes to use double-extended RS codes.

In practice, extending the RS code is only possible if the
full RS codeword is determined during the encoding process,
since the extension is a function of the full unextended RS
codeword. However, in ID, determining the full RS codeword
is computationally infeasible for all but very small symbol
sizes [36]. To limit computational complexity, it suffices to
compute only a part of the RS codeword [36]. Computing
the RS codeword only partially increases the feasibility of RS
codes in practical ID scenarios but disables the possibility of
extending the RS code, because the unextended RS codeword
is not determined in full anymore.

We observe from Figure 2 that the increased length of
the extended code slightly decreases the ID rate, which
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corresponds to a decrease in the ID size compared to the
cue size, cf. Equation (16). The error probability bound
is significantly smaller when using extended RS codes,
especially for lower symbol sizes, since the relative symbol
size gain is more pronounced for smaller symbols than for
larger symbols. The impact of the field extension diminishes
at larger symbol sizes q.
Due to the significantly increased computational complex-

ity for small gains at large symbol sizes q, we limit our
investigation to unextended RS codes of length n = q− 1 for
the remainder of this article, as noted in Section III-A3.
Nevertheless, in some use-cases it may be beneficial to use
very small symbol sizes and to compute the full RS codeword;
albeit at a relatively high computational cost, so as to enable
the extension of the RS code. The small symbol sizes limit
the computational complexity of determining the full RS
codewords; thus, the tradeoff may be desirable to decrease
the error probability bound by extending the RS codewords.

D. ALTERNATIVE LINEAR BLOCK CODES
Several ID code types that are optimal for ID in terms of their
asymptotic behavior in ID rate and error probability bound
use a concatenation with RS codes, such as the PPM-RS2
code that we reviewed in Section III-A. Because even the
optimized computation for PPM-RS2 codes is expensive [36],
it may be beneficial to use suboptimal block codes, instead.
Thus, in this subsection, we review the concatenation of the
CWC initialization with a singular RS code, and the ID code
construction using Reed-Muller (RM) codes. As noted in
Section I-B, we do not discuss the recent idea of random
linear codes by Sidorenko and Deppe that is also capacity-
achieving [39].

We give an overview of the linear block codes and their
characteristics in Table 1. Specifically, the characteristics are
the overall length n of the block code, the overall dimension k ,
and the overall minimum distance d . Note that we state the
characteristics of ID codes consisting of two concatenated
RS codes, i.e., the characteristics of RS2 codes, which
are the tagging code representation of PPM-RS2 CWCs.
We explained the equivalence of the CWC and tagging
code representations in Section III-B. In the tagging code
representation, the error probability bound and ID rate are
determined from the characteristics of the concatenated linear
block code. Note that in the CWC representation, the CWC
initialization is not concatenated with the concatenated RS2
code in a single step. Instead, first, the CWC initialization is
concatenated with the inner RS code, and then the resulting
CWC is concatenated with the outer RS code, as illustrated in
Figure 1. For RS2, the overall length n of the code, the overall
dimension k , and the overall minimum distance d are each the
product of the respective length n, dimension k , andminimum
distance d of the inner and outer RS code, cf. Section II-A.

1) SINGLE REED-SOLOMON (RS1)
The PPM-RS2 codes in [50] implicitly include the ID codes
that consist of the concatenation of the PPM initialization
with a single RS code, i.e., only with RS (inner). Instead

of concatenating a secondary outer RS code to the resulting
inner CWC as described in Section III-A, the inner CWC [i.e.,
CWC initialization concatenated with RS (inner)] is taken
as the final ID code. Explicitly, a CWC based on a single
RS code is the concatenation of the PPM initialization that
is a (q, q, 1, 0) CWC with the RS code as parameterized in
Eq. (23). The result is a (q, k) PPM-RS1 ID code that forms
a (q(q − 1), qk , q − 1, k − 1) CWC. This ID code has been
applied to the use-case of watermarking in [51], and is not
capacity-achieving. We do not further investigate RS1 in this
study.

2) REED-MULLER (RM)
As an alternative to using RS codes, [38] proposes using
an RM code as the linear block code for constructing an
ID code. Based on RM codes being a linear block code
similar to RS codes, a concatenation of multiple RM codes
would be possible. Unlike the concatenation of RS codes,
concatenating RM codes does not yield a better asymptotic
behavior [38]. Thus, only a single RM code is used for con-
structing the RM ID code.While in [38], the RM ID code was
proposed in the tagging code presentation form as opposed
to the CWC form, we concatenate a PPM initialization with
the RM codes, thus creating a (q,m, r) PPM-RM CWC. This
way, the RM code is comparable to the other ID CWCs based
on their respective CWC characteristics, cf. Table 2. The
overall block-code characteristics of RM codes are shown in
Table 1 along the other block codes.

3) HOW TO MAKE RS2 AND RM COMPARABLE
Since the parameters chosen for the linear block code have
a significant impact on the properties of the resulting ID
CWC, attention has to be paid to the parameter selectionwhen
comparing linear block codes. This is especially important
for comparing the error probability, since an equal length n
and overall dimension k of the used linear block code assures
equality in cue size and ID size. Since both types of linear
block codes (types of code constructions), i.e., both RS and
RM codes, use different code parameters, it is necessary to
determine relations that assert an equal length n and overall
dimension k for the resulting block code, given an identical
symbol size q. This is necessary since the two code types
do not share any common code parameters apart from the
symbol size q. Therefore, the overall length n and the overall
dimension k of the linear block code are common parameters
that allow comparing the two code types.

By equating the corresponding expressions shown in
Table 1, given identical symbol size q, the lengths n of the
RM code and the RS2 code are equal if

ki = logq

(
qm

q− 1
+ 1

)
q≫1
≈ m− 1. (31)

Additionally, by equating the corresponding expressions
shown in Table 1 and given identical symbol size q, the overall
dimensions k of the RM code and the RS2 code are equal if

ko =
1
ki

(
r + m
m

)
Eq. (31)
=

1
m− 1

(
r + m
m

)
. (32)
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TABLE 2. Characteristics of ID CWCs: block length S, dimension N , Hamming weight W , and upper bound for the codeword overlap K . The numerical
investigations in this article focus on the ID CWC types in the bold font.

Using Equation (31) and (32), we can determine the RS2
parameters to match the length n and overall dimension k of
an RM code with arbitrary parameters. Due to the binomial
relation in Equation (32), the inverse for determining r based
on ko does not necessarily result in an integer for r . Thus,
when calculating the order r of the RM code, we round r to
the nearest integer. Based on the relations in Equation (31)
and (32), we provide a parameter translation table for equal
code length n and overall dimension k in Table 5 in the
Appendix. Table 5 provides a corresponding order r of an RM
code for a givenm and an RS2 code with its parameters ki and
ko = q.

E. ALTERNATIVE CWC INITIALIZATIONS
Next to extending the RS codes as described in Section III-C,
and using different outer linear block codes as described in
Section III-D, another possibility to alter the performance
of an ID code lies in using a different CWC initialization.
We describe two CWC initializations that were proposed
in [52] and [46] in concatenation with outer RS codes.

Figure 3 provides a visual overview of the combinations
of CWC initializations with linear block codes that we
investigate in this study, whereby the dashed arrows indicate
the implications of the parameter settings of the CWC codes
on the left-hand side of Figure 3 for the parameter settings of
the linear block codes on the right-hand side. In particular,
for the CWC initialization, the symbol size q has to be
selected; and this CWC initialization symbol size q is also
the symbol size of the overall concatenated ID code. This
CWC initialization symbol size q implies the specific symbol
size qi = q of the first concatenated linear block code, i.e.,
either of the inner RS code, or of the RM code. Additionally,
the CWC initialization symbol size q and the dimension ki of
the inner RS code imply the specific symbol size qo = qki of
the outer RS code.

1) OPTICAL ORTHOGONAL CODES (OOCs)
One method of initializing the CWC differently from the
PPM initialization involves modified prime sequences based
on optical orthogonal codes (OOCs) [46]. More specifically,
the study [46] proposes two OOCs that are optimal for ID
in terms of the asymptotic behavior of ID rate and error
probability bound.We include the first proposed construction
in the comparisons in this study. We refer to CWCs resulting

FIGURE 3. Overview of concatenation options of published concatenated
constant-weight ID codes. The CWC initialization symbol size q has
specific implications for the feasible parameter settings of the linear
block codes; furthermore, the outer RS code symbol size depends on the
CWC initialization and inner RS coding parameters.

from modified prime sequences based on the first OOC
construction proposed in [46] as OOC1 for the remainder of
this article.

Similar to the PPM initialization for PPM-RS2 codes,
the OOC initialization is concatenated: first with an inner
RS code, and then with an outer RS code, yielding an
OOC1-RS2 code, cf. Figure 3. The CWC parameters of
the OOC initialization, and of the CWCs resulting from
single and double concatenation with RS codes are given
in Table 2. The OOC1 initialization does not increase the
distance between the obtained codewords. Thus, similar to
the PPM initialization, the OOC initialization is a bijective
relation that maps a (tag, position) tuple to a cue, as explained
for the PPM initialization in Section III-B.

2) ϵ–Almost STRONGLY UNIVERSAL CLASS OF HASH
FUNCTIONS (HFs)
The study [52] suggests an alternative CWC initialization
based on ϵ–almost strongly universal hash functions. For
brevity, we refer to a CWC based on ϵ–almost strongly
universal hash functions as HF.

The HF initialization forms a larger CWC than the OOC
and PPM initializations, cf. Table 2 and Figure 3. Similar
to the other CWC initializations, the HF initialization can
be concatenated with an outer RS code, yielding an HF-RS
code that is comparable in its CWC parameters to OOC1-RS2
codes and PPM-RS2 codes. Table 2 compares the parameters
of the HF CWC ID code (without and with concatenation
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of HF with an outer RS code) to the parameters of the
other CWC ID codes. Note that the dimensions N of the HF
initialization and the HF-RS code exceed the dimensions N
of comparable ID CWC types, by a factor of q. The outer
RS code of the HF-RS code has qkiko codewords. For each
codeword of the outer RS code in an HF-RS code, you can
additionally choose a y value from the field of size q (this
leads to the extra factor of q). The ID codeword itself will then
be the incidence vector for when a hash function applied to the
RS codeword equals this y. Thus for each y, there is a different
ID codeword, supporting a total of qkiko+1 ID codewords.

Therefore, the concatenation of an HF initialization with
an outer RS code follows different concatenation rules than
characterized in Eqs. (3)–(7). In particular, the concatenated
overall HF-RS CWC is characterized by the following:

SHF-RS = q2no, (33)

NHF-RS = qqkoo = qqkiko , (34)

WHF-RS = qno, (35)

KHF-RS = q(no − do)+ kino. (36)

Similar to OOCs and PPMs, HFs do not introduce
additional distance and thus also represent a bijective relation
for mapping a (tag, position) tuple to a cue, as explained for
PPMs in Section III-B.

IV. EVALUATION OF ERROR PROBABILITY
Next, we compare the ID codes based on the error probability
bound λ2, which is the first metric we investigate. The error
probability bound λ2 is a more practical metric than the CWC
characteristics (S,N ,W ,K ) investigated in Section III since
the error probability has a direct measurable impact on real
systems.

First, we define the mean error probability perr , since
perr offers a point of reference for the error probability
bound λ2. While the error probability bound λ2 characterizes
the worst-case behavior, the mean error probability perr
characterizes the average behavior of the error probability in
an ID system [53]. The mean error probability perr can be
determined by finding the average overlap between different
codewords; in contrast, the maximum overlap of different
codewords defines the error probability bound λ2.
For uniformly distributed symbols, each codeword symbol

of symbol size q has the probability of q−1 to take on any of
the q possible values [37]. The probability of two codewords
coinciding in a single symbol position is a form of the
birthday problem with q possible values and two participants.
Thus, the average probability for a randomly selected single
codeword symbol to coincide with another randomly selected
codeword symbol is the mean error probability

perr(q) = q−1. (37)

This holds for all ID codes. The error probability
bound λ2 being the maximum error probability typically
exceeds the mean error probability perr.

In the following, we determine the impact of the choice of
linear block code type, of the block codes’ parameters, and of
the CWC initialization onto the error probability bound λ2.

A. LINEAR BLOCK CODES
The linear block code is the outer code in an ID CWC
construction, and its overall distance d determines the
overlap K of the resulting ID CWC. As described in
Section III-B, we can use the PPM initialization to investigate
the block codes in a standalone fashion, since the PPM
initialization does not contribute to the properties of the
ID code next to translating the ID code into a CWC.
We investigate the impact of RS2 and RM codes on the error
probability bound λ2 in this subsection.

1) REED-SOLOMON CODES
The error probability bound of RS2 can be determined using
λ2 = K/W from Equation (17) and the CWC parameters of
PPM-RS2 codes from Table 2, yielding

λRS22 (q, ki, ko) =
ko − 1
qki − 1︸ ︷︷ ︸
:= α

+
(ki − 1)(qki − ko)
(q− 1)(qki − 1)︸ ︷︷ ︸

:= βPPM

. (38)

This result differs from the one reported in [50] since we
consider slightly different CWC parameters, as explained
in Section III-A. In particular, we differ in two regards
from [50]: we do not extend the RS code, and we use the
K -estimate in Equation (7) as proposed in [46]. Accordingly,
for given block code parameters (n, k, d)q, we obtain a
slightly different set of CWC characteristics (S,N ,W ,K ),
see Eqs. (25)–(28), than [50].

As apparent from Equation (38), the error probability
bound λRS22 is influenced by both dimensions ki and ko of the
RS2 code and by the symbol size q. Thus, we can consider
the bound to be a function λRS22 (q, ki, ko). In general, smaller
dimensions ki and ko of the RS2 code imply a lower λRS22 ,
which is desirable. Additionally, however, the symbol sizes
of the inner and the outer RS code are dependent on each
other by qo = qkii , which is a condition for the concatenation,
cf. Section II-A. This warrants further investigation of the
judicious selection of the inner and the outer dimensions ki
and ko of the RS codes to achieve a low error probability
bound λ2.

For a fixed symbol size q, Figure 4 shows the influence
of ki and ko on λRS22 for PPM-RS2 codes. Since λ2 is the
bound on an error probability, λ2 can not exceed 0.5. For
low ko, PPM-RS2 codes exhibit a saturation phase that covers
an increasing range of dimensions ko for increasing ki. This
is caused by the first term of λ2 approaching α ≈ 0 for
dimensions ko ≪ qki . In this ko ≪ qki regime, the outer
RS code can achieve a high distance do = no − ko + 1 =

qki − ko + 1, and thus provide a high distance code, which is
desirable for ID codes.

The second term βPPM is the dominant summand and
almost solely determines the bound based on the values of
ki and q. Note that in βPPM, the factor qki − ko ≈ qki for
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FIGURE 4. Error probability bound λRS22 of (q = 251, ki, ko) PPM-RS2
codes, for several dimensions ki of the inner RS code, as a function of
dimension ko of the outer RS code. For reference, we also plot the mean
error probability perr = 1/q. For a fixed dimension ki, increasing
dimension ko increases λRS22 , which is undesirable. For higher
dimensions ki, λRS22 remains in a saturation regime for increasing
dimension ko, and only significantly increases once dimension ko exceeds
a certain threshold.

dimensions ko ≪ qki ; thus, βPPM is almost independent of ko
for dimensions ko ≪ qki . In summary, with perr = q−1, the
error probability bound for small dimensions ko of the outer
RS code is

λRS22 ≈
ki − 1
q

= (ki − 1)perr for ko ≪ qki . (39)

Therefore, the smallest achievable λRS22 over all ko increases
for increasing dimensions ki of the inner RS code. The
range of the saturation regime is determined by the inner
dimension ki. Therefore, larger ki allow a wider saturation
range for ko. The asymptotic error probability bound,
however, increases for higher ki.
For higher outer dimensions ko, the α term increases and

gains relevance, with λRS22 asymptotically approaching 0.5,
which makes the code with large ko infeasible as an ID code.
PPM-RS2 codes of different inner dimensions ki share a
similar increasing characteristic when reaching the maximum
possible outer dimension of the RS code.

We investigate at which dimension ko of the outer RS code
the error probability bound λ2 of a PPM-RS2 code C(q, ki, ko)
intersects the error probability bound λ̃2 of another PPM-RS2
code C̃(q̃, k̃i, k̃o) of higher dimension k̃i = ki + 1 of the inner
RS code. Both codes share the same symbol size q̃ = q and
the same dimension k̃o = ko of the outer RS code. For a
visual reference, in Figure 4, the error probability bounds of
different PPM-RS2 codes intersect. When both codes C and
C̃ share the same symbol size q and dimension ko, the error
probability bound λ̃2 of the code C̃ is in its saturation regime,
because k̃o ≪ qk̃i = qki+1. Therefore, with Equation (39),
λ̃2 ≈ (k̃i − 1)/q = ki/q. Given identical symbol size q = q̃,
the error probability bound λ2 of the code C intersects the
error probability bound λ̃2 of code C̃ at dimension ko = k̃o =
qki−1, i.e.,

λ2(ki) = λ̃2(k̃i = ki + 1) at ko = k̃o = qki−1. (40)

FIGURE 5. Error probability bound λRM2 of (q = 251, m, r ) PPM-RM, as a
function of order r . For reference, we also plot the mean error probability
perr = 1/q. Increasing order r increases λRM2 , which is undesirable.

Proof:

λ2(ko = qki−1)
Eq. (38)
=

qki−1
− 1

qki − 1
+

(ki − 1)(qki − qki−1)
(q− 1)(qki − 1)

qki−1
≫1

≈
1
q
+
ki − 1
q− 1

q− 1
q

=
1
q
+
ki − 1
q

=
ki
q

= λ̃2(k̃i = ki + 1). □

Above the threshold, i.e., for dimensions larger than ko =

k̃o = qki−1, the error probability bound λ2 of code C exceeds
the error probability bound λ̃2 of code C̃.

In conclusion, the dimension ki of the inner RS code should
be chosen to be as small as possible to achieve a small
error probability bound λ2. The dimension ko of the outer
RS code of PPM-RS2 codes should be in the saturation phase
of ko since the error probability bound is fairly constant. The
inner dimension ki and symbol size q determine the error
probability bound λRS22 for this regime. For a given maximum
required dimension ko of the outer RS code, the dimension ki
of the inner RS code should be chosen accordingly. Figure 4
illustrates that PPM-RS2 codes with ki = 2 and ko ≪ qki are
suitable to limit the error probability bound λ2.

2) REED-MULLER CODES
The error probability bound λ2 of RM codes can be
determined using the CWC parameters of PPM-RM from
Table 2, yielding

λRM2 (q, r) =
K
W

=
r
q
= rperr. (41)

For an RM code-based construction, the error probability
bound λRM2 depends on the order r of the RM code and
the symbol size q. Thus, the order r of the RM code
yields a multiple of the mean error probability perr as the
error probability bound λRM2 . The generation m does not
influence λRM2 .

Figure 5 illustrates the dependency of the error probability
bound λRM2 and the mean error probability perr on the order r
of the RM code. For a low error probability bound, the
objective should be to achieve the desired dimension of the
linear block code with the lowest possible order r .
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FIGURE 6. Error probability bound λ2 for two (q, ki, ko = 251) PPM-RS2
codes and (q, m = 3, r = 9) and (q, m = 4, r = 15) PPM-RM ID codes as a
function of symbol size q. For comparison, the mean error probability
perr = q−1 is also plotted. For increasing symbol size q, λRS22 of the
PPM-RS2 codes approaches the mean error probability, whereas λRM2 of
the PPM-RM constructions remains significantly higher. The four specific
ID codes are chosen to be comparable according to Section III-D3.

3) SYMBOL SIZE
The common property of all ID CWCs is the symbol
size q, irrespective of the used linear block code or CWC
initialization. The symbol size q denotes the base of the
finite field Fq of the inner linear block code. Thus, for any
ID CWC, before mapping the codeword to a sequence of
binary symbols, the codeword is represented as a sequence
of symbols in the finite field Fq.
Figure 6 compares the impact of the symbol size q

on the error probability bounds λRS22 of two PPM-RS2
codes, as determined by Equation (38), and λRM2 of two
PPM-RM codes from Equation (41), respectively. Given
constant dimensions ki and ko and constant order r , both RS2
and RM constructions asymptotically approach a constant
ratio λ2/perr for increasing symbol size q. Specifically,
for the RS2 code construction with ki = 2, the ratio
λ2/perr asymptotically approaches one, i.e., the bound
λ2 asymptotically approaches the mean error probability perr,
because for a fixed ko and an increasing q, eventually the
regime where ko ≪ qki holds is reached, cf. Equation (39).
With increasing ki (specifically for ki = 3), however, λRS22
has an offset to perr, but the λRS22 for ki = 3 also saturates
earlier compared to the RS2 code with ki = 2. On the other
hand, the ID CWC constructions based on RM codes, have
a constant λ2/perr ratio, whereby a smaller order r results in
a smaller ratio of λRM2 to perr, cf. Equation (41). Therefore,
only the error probability bound λ2 of ID CWCs based on
RS2 codes with small ki and relatively small ko compared to
qki is capable of approaching the mean error probability perr.

B. CWC INITIALIZATION
The CWC initialization is the second component in an
ID CWC—besides the linear block code—and forms the
innermost CWC that maps the sequence of non-binary
symbols of the linear block code to a sequence of binary
symbols. The ID community suggested alternatives for the
PPM initializations only for ID codes using RS codes. Thus,
we investigate the performance of the PPM and OOC1

TABLE 3. Error probability bounds λ2 of CWC ID codes. The numerical
investigations in this article focus on the ID CWC types in the bold font.

initializations with double-concatenated outer RS codes, i.e.,
PPM-RS2 codes and OOC1-RS2 codes, and the performance
of the HF initialization with a single concatenated outer
RS code, i.e., HF-RS. We do not investigate alternative
CWC initializations for RM codes. Note that there are no
parameters for the CWC initializations themselves, as their
parameters are a consequence of the parameter choice of the
outer concatenated linear block codes, as shown in Table 2.
Thus, we investigate the CWC initializations based on the
linear block code parameters q, ki, and ko.

We stated the error probability bound λRS22 of PPM-RS2
codes in Equation (38). To clarify the notation for comparison
to the other CWC initializations, for this subsection we will
write λPPM2 for the error probability bound of PPM-RS2
codes instead of λRS22 . For the OOC1-RS2 and HF-RS codes,
we can determine the analytic expressions for their respective
λ2 using Equation (17) and the CWC parameters from
Table 2, yielding

λOOC2 =
K
W

=
ko − 1
qki − 1︸ ︷︷ ︸

= α

+
ki − 1
q− 1

qki − ko
qki − 1︸ ︷︷ ︸

= βPPM

, (42)

λHF2 =
K
W

=
ko − 1
qki − 1︸ ︷︷ ︸

= α

+
ki
q︸︷︷︸

:= βHF

. (43)

For clarity, we shorten the notation of the error probability
bounds from λOOC1-RS22 to λOOC2 , and from λHF-RS2 to λHF2 .
For comparison, we show the error probability bounds of all
investigated ID codes in Table 3.
We examined the performance of PPM-RS2 codes in detail

in Section IV-A1. Since the error probability bound λOOC2 of
OOC1-RS2 codes equals the error probability bound λPPM2
of PPM-RS2 codes, no additional evaluation of the error
probability bound λOOC2 of OOC1-RS2 codes is necessary.
The error probability bound λHF2 of HF-RS codes shares the
first summand α with the error probability bound λPPM2 of
PPM-RS2 codes, because that term is caused by the outermost
RS code that PPM-RS2, OOC1-RS2, and HF-RS codes have
in common. However, the second summand βHF differs. For
large symbol sizes q, the second summands β of the error
probability bounds of PPM-RS2 and HF-RS codes are

βHF
=
ki
q

=
ki − 1
q

·

(
1+

1
ki − 1

)
(44)

βPPM q≫1
≈

ki − 1
q

qki − ko
qki

=
ki − 1
q

·

(
1−

ko
qki

)
. (45)
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FIGURE 7. Absolute and normalized error probability bound λ2 of
(251, 2, ko) PPM-RS2 and (251, 2, ko) HF-RS codes, as a function of the
dimension ko of the outer RS code. An increased dimension ko increases
the error probability bound of both codes. The error probability bound of
HF-RS codes exceeds the error probability bound of PPM-RS2 codes for
all dimensions ko.

Since 1+ 1/(ki − 1) > 1− ko/qki for all positive parameters
q, ki, and ko, the error probability bound of HF-RS codes is
strictly worse than that of PPM-RS2 and OOC1-RS2 codes.
However, outside the ko ≪ qki regime, the first summand α

grows larger than the second summand β, such that

λPPM2 ≈ λHF2 for ko ≈ qki . (46)

For large ko, the error probability bound of all three
investigated CWC initializations is almost identical.

We remark that [52] claims that HF-RS codes achieve a
smaller error probability bound than PPM-RS2 codes. That
claim is based on the comparison with the estimation of the
loose K -bound of PPM-RS2 codes made in [50, Proposition
2], instead of the tighter K -bound shown in the proof of [50,
Proposition 2]. Both K -bounds Equations (6) and (7) yield a
K -bound that results in an error probability bound for HF-RS
codes that is worse than the error probability bound of PPM-
RS2 codes.

Next, we compare the error probability bound λHF2 of
HF-RS codes with the error probability bound λPPM2 of
PPM-RS2 codes for varying dimensions ko of the outer
RS code. In general, the linear block code with its high
distance codewords is the main contributor to increasing the
error probability bounds λ2 in ID CWCs, and the HF CWC
initialization results in a relatively minor performance loss
(a further increase of the error probability bound) compared
to the PPM initialization. Thus, for the comparison of the
error probability bound λHF2 of HF-RS codes with the error
probability bound λPPM2 of PPM-RS2 codes, we normalize
λHF2 with λPPM2 .
The analysis in Section IV-A1 showed that with an increas-

ing dimension ko of the outer RS code, the error probability
bound λPPM2 increases. Depending on the dimension ki of
the inner RS code, λPPM2 saturates for low ko at (ki − 1)perr.
Figure 7 illustrates the normalized error probability bound
of HF-RS, where the normalization is with respect to the
corresponding λPPM2 . The error probability bound λHF2 of
HF-RS codes exceeds the error probability bound λPPM2 of
PPM-RS2 codes over the entire range of possible values for

FIGURE 8. Absolute and normalized error probability bound λ2 of
(q, 2, q) PPM-RS2 and (q, 2, q) HF-RS codes, as a function of the symbol
size q. An increased symbol size q decreases the error probability bound
of both codes. The error probability bound of HF-RS codes exceeds the
error probability bound of PPM-RS2 codes for all symbol sizes q.

the dimension ko of the outer RS code. For very large ko,
λHF2 ≈ λPPM2 , but because the error probability bounds of both
constructions are very high in that regime, it is undesirable to
operate either code in that regime.

Finally, we compare the error probability bound λHF2
of HF-RS codes with the error probability bound λPPM2
of PPM-RS2 codes for varying dimensions ko of the
outer RS code for different symbol sizes q in Figure 8.
Figure 8 indicates that the choice of symbol size q has
only a minuscule impact on the normalized error probability
bound λHF2 of HF-RS codes.

C. SUMMARY
We find that the error probability bound λ2 is mainly
determined by the linear block code that is part of the
overall ID CWC. For all ID codes, a large symbol size q
causes a small error probability bound λ2, and simultaneously
causes a small mean error probability perr = 1/q. For
PPM-RS2 codes, the dimension ki of the inner RS code
should be chosen as small as possible to achieve a small
error probability bound λ2. Depending on the dimension ki
of the inner RS code, increasing the dimension ko of the
outer RS code does not deteriorate the error probability
bound λ2 within a certain saturation regime. Only if the
dimension ko of the outer RS code exceeds a certain threshold
(that depends on the dimension ki of the inner RS code), then
the error probability bound λ2 increases significantly. The
error probability bound λ2 of PPM-RM codes increases with
the order r of the RM code. Thus, to obtain a small error
probability bound λ2, the order r of the RM code should be
chosen as small as possible.

For the CWC initializations, we find that the OOC1
initialization achieves the same error probability bounds λ2 as
the PPM initialization. The HF initialization deteriorates
the error probability bound λ2 compared to the PPM
initialization.

V. CUE SIZE, ID SIZE, AND IDENTIFICATION RATE
The ID rate R measures the ratio of information per
transmitted data and is upper-bounded by the capacity of the
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TABLE 4. Overview of the ID size nid, and the cue size ncue for ID CWCs, based on the block length S and dimension N of the CWCs stated in Table 2; the
corresponding ID rate is R = (log nid)/ncue. The numerical investigations in this article focus on the ID CWC types in the bold font.

channel over which the data is transmitted. Specifically for ID
CWCs, as outlined in Section II-C, the amount of data that is
transmitted over a channel for each identification process is
the cue size ncue = log S in bit, cf. Equation (13).Wemeasure
the amount of information represented by each identity via
the ID size nid = logN in shannon, cf. Equation (15). Finally,
the double-exponential ID rate R is defined as (log nid)/ncue,
cf. Equation (16).

In this section, we investigate how the choice of CWC
initialization and the choice of linear block code and its
parameters influence the ID size nid, the cue size ncue, and
the resulting ID rate Rid. We focus our investigation on the
ID size nid, and the cue size ncue since they correspond to the
amount of transmitted data and the number of IDs supported
by the code, which are both practically relevant, whereas
the ID rate R is more theoretical in nature. For an overview,
we summarize the ID size nid and the cue size ncue for all ID
codes investigated in this study in Table 4. Since, according
to Equation (16), the ID rate R is the ratio between the ID
CWC characteristics S and N (see Table 2), the impact of the
linear block codes on the S and N characteristics is important
in this section.

A. LINEAR BLOCK CODE
As we explained in Section III-B, we employ the PPM
initialization to create comparable ID CWCs based on
different linear block code types. Thus, we examine IDCWCs
based on RS2 and RM codes using a PPM initialization for
both of these two block codes types.

The block length S of CWCs based on either linear block
code type is determined by the respective linear block code
length n that we stated in Table 1. Applying the log-function
to the respective block length S as given in Table 2 determines
the cue size; for large symbol sizes q≫ 1:

ncue
q≫1
≈

{
(ki + 2) log q for RS2 codes,
(m+ 1) log q for RM codes.

(47)

Thus, for RS2 codes and RM codes, the parameters ki and
m determine the cue size ncue. Equation (47) reiterates the
statement that ki = m−1 is necessary to ensure the same cue
size ncue between RS2 and RM codes, as we originally noted
in Equation (31). We state the exact cue size ncue for arbitrary
symbol sizes q in Table 4.
The dimensions N of CWCs based on either linear block

code type are determined by the respective linear block code’s

FIGURE 9. ID size nid of three (q = 251, ki, ko) PPM-RS2 codes as a
function of the dimension ko of the outer RS code, and ID size nid of
three (q = 251, m, r ) PPM-RM codes as a function of the order r of the
RM code. We choose the set of PPM-RS2 and PPM-RM codes such that
pairs of PPM-RS2 and PPM-RM codes share the same cue size ncue.
Specifically, all (251, 2, ko) PPM-RS2 and (251, 3, r ) PPM-RM codes have a
cue size ncue = 31.9 bit, all (251, 4, ko) PPM-RS2 and (251, 5, r ) PPM-RM
codes have a cue size ncue = 47.8 bit, and all (251, 6, ko) PPM-RS2 and
(251, 7, r ) PPM-RM codes have a cue size ncue = 63.8 bit. Increasing the
parameters m or ki increases the maximum achievable ID size.

overall dimension k that we stated in Table 1. Applying the
log-function to the respective dimension N of the CWC as
given in Table 2 determines the ID size:

nid =

{
kiko log q for RS2 codes,(m+r
m

)
log q for RM codes.

(48)

Therefore, for ID CWCs based on RS2 codes, the ID size nid
depends on the dimensions ki and ko of the inner and the outer
RS code. For ID CWCs based on RM codes, nid depends on
the binomial coefficient of the parameters r and m.

To illustrate the dependence of the ID size nid on the
dimension ko of the outer RS code and the order r of the
RM code, we plot Equation (48) in Figure 9 for q = 251.
The figure has two independent horizontal axes. The lower
axis denotes the range for the dimension ko of the outer RS
code, whereas the upper axis denotes the range of orders r of
the RM code at the given symbol size q = 251. The figure
illustrates the ID size nid for various common cue sizes ncue of
the ID CWC constructions using RS2 codes and RM codes.
We select the parameters ki for the RS code andm for the RM
code according to Equation (47).

Figure 9 indicates that for small dimensions ko of the outer
RS code, the PPM-RM codes have larger ID sizes than the
PPM-RS2 codes. For larger dimensions ko of the outer RS
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code, the PPM-RS2 codes can obtain larger ID sizes than the
PPM-RM codes.

The RM curves in Figure 9 are only plotted up to r = 125,
because the error probability bound λ2 = r/q = 125/251 ≈

0.5. In other words, for larger orders r the bound would
exceed 0.5. The same holds for the RS2 curves, where λ2 ≈

ko/qki , such that ko should not exceed qki/2.

B. CWC INITIALIZATION
After comparing the influence of linear block codes on the ID
size nid, we now address the effect of the CWC initialization
on the rate-related KPIs, namely the ID size nid and cue
size ncue. Similar to our analysis in Section IV, we compare
the CWC initializations in concatenation with RS codes for
the linear block codes, as the CWC initializations next to the
PPM initialization were proposed in combination with outer
RS codes [46], [52].

The choice of CWC initialization has an impact on the
block length S and the dimension N of the CWC, cf. Table 2.
The resulting differences between the ID sizes nid of the three
CWC initializations are minor, whereas the cue sizes ncue of
the three CWC initializations deviate slightly more from each
other, cf. Table 4.
We first investigate the cue sizes ncue. The difference

between nHFcue and nPPMcue is minuscule due to the minor
difference in their block lengths S and gradually vanishes for
large symbol sizes q, see Table 2. Note that even for small
symbol sizes, such as q = 13, the cue size nHFcue of RS-HF
codes is very close to the cue size nPPMcue of PPM-RS2 codes.
Specifically, for symbol size q = 13, nHFcue/n

PPM
cue = 1.008.

The OOC initialization, however, generates significantly
larger cue sizes. For large field sizes q ≫ 1, the
cue sizes for PPM-RS2, HF-RS, and OOC1-RS2 codes
are:

ncue =

{
(ki + 2) log q for PPM-RS2, HF-RS codes,
(ki + 3) log q for OOC1-RS2 codes.

(49)

We summarize the cue sizes ncue for arbitrary field sizes q in
Table 4.
To visualize these cue sizes ncue, Figure 10 depicts the

relations of Equation (49) over a range of symbol sizes q.
We plot the cue size ncue for different dimensions ki of the
inner RS code (ki = 2, 3, 4), given a fixed dimension ko =

q of the outer RS code. Figure 10 indicates that the cue
size ncue increases with increasing symbol size q; and, that
an increasing dimension ki of the inner RS code increases the
cue size ncue for all symbol sizes q. The cue size nOOC1cue of
OOC1-RS2 codes is larger than the cue sizes of PPM-RS2 and
HF-RS codes by log q, given identical parameters q, ki, ko.
Thus, given identical parameters, q, ki, ko, transmitting a cue
generated by OOC1-RS2 codes requires additional traffic
compared to transmitting a cue based on PPM-RS2 or HF-RS
codes.

Next, we investigate the ID size nid of the different
CWC initializations. The ID size nid of PPM-RS2 and

FIGURE 10. Cue size ncue of (q, ki, ko) PPM-RS2, (q, ki, ko) OOC1-RS2,
and (q, ki, ko) HF-RS codes as a function of the symbol size q, for
dimensions ki = 2, 3, 4; based on Equation (49).

OOC1-RS2 codes equals nid = kiko log q, cf. Table 4 and
Equation (48). For HF-RS codes, the ID size nid = (kiko +
1) log q is larger by a factor of log q, i.e., HF-RS codes have
more codewords than PPM-RS2 and OOC1-RS2 codes, and
can thus represent more IDs, given the same parameters
q, ki, ko. The difference diminishes for larger field sizes q and
is small even for small parameters q, ki, ko. Specifically, the
ratio of the ID size nHFid of HF-RS codes, and the ID size nPPMid
of PPM-RS2 codes given the parameters (q = 13, ki =

2, ko = 13) is nHFid /nPPMid = 1.038. For small parameter sets,
HF-RS thus allows for a moderate increase in the number of
representable IDs.

C. SUMMARY
We defined the cue size ncue and the ID size nid as KPIs. The
cue size ncue determines the amount of data that is transmitted
for each identification process. The ID size nid determines
how many IDs can be represented by the ID code.

We find that it is mainly the choice of the linear block
code that determines the cue size ncue and the ID size nid.
The cue size ncue is mainly a result of the overall length n of
the linear block code. To reduce the cue size ncue in order
to reduce the data sent over the channel, a small overall
length n of the linear block code is desirable. The ID size nid
is mainly determined by the overall dimension k of the linear
block code. To increase the number ncue of representable
IDs, a large overall dimension k of the linear block code is
desirable.

TomakeRS2 andRMcodes comparable, we compare them
for matching overall length n and dimension k . Therefore,
the cue size ncue of RS2 and RM codes is identical due
to this choice for a basis of comparison. The ID sizes nid
of RS2 and RM codes show different behavior in terms of
their growth in the block code parameters. Overall, neither
code type exhibits larger ID sizes nid over the full range of
parameters.

Choosing an alternative to the PPM initialization only has
a minor impact on the ID size nid of ID CWCs. The OOC1
initialization exhibits a larger cue size ncue than the PPM and
HF initializations and is thus to be avoided when trying to
limit the amount of transmitted data.
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FIGURE 11. ID size nid as a function of the cue size ncue for (q = 251,
ki = 2, ko) {PPM, OOC1}-RS2 codes of dimensions ko ∈ {q/2, q, 2q, 4q}
of the outer RS code, and for (q = 251, m = 3, r ) PPM-RM codes of
orders r ∈ {9, 12, 16, 21}. ID codes of the same color share the same
overall block code length n and overall block code dimension k , such that
corresponding PPM-RS2 and PPM-RM codes share the same ID size nid
and cue size ncue, except for rounding errors to the next integer
parameter value. The shaded area marks (ID size nid, cue size ncue) pairs
that are achievable by the traditional message transmission scheme,
where nid ≤ ncue. (ID size nid, cue size ncue) pairs in the unshaded area
are only achievable using ID codes [15]. Increasing the dimension ko of
the outer RS code increases the ID size nid without increasing the cue
size ncue. OOC1-RS2 codes require a larger cue size ncue than PPM-RS2
codes to achieve the same ID size nid.

VI. HOLISTIC ID CODE COMPARISON
In Sections IV and V, we analyzed how the choice of
the ID code type affects the individual KPIs, namely error
probability bound λ2, cue size ncue, and ID size nid, based on
the choice of the parameters, namely dimensions ki and ko
for codes based on RS2 codes, order r and generation m for
codes based on RM codes, and symbol size q for all codes.
In contrast to the standalone investigations of individual KPIs
in the previous sections, we investigate the tradeoffs between
different KPIs in this section. For example, to achieve a
low error-probability bound λ2 for finite parameters, a larger
cue size ncue needs to be accepted. That is because by only
sending the fragmentary representation of the full ID, i.e.,
by sending only a cue, Shannon’s limit is exceeded, thus
introducing the error probability. The further Shannon’s limit
is exceeded, the more IDs can be identified, but also the
higher the error probability bound λ2, cf. Equation (19).

We focus our investigation in this section on PPM-RS2
codes, because we found the other code types to be inferior in
Sections IV and V: Specifically, we found that compared to
PPM-RS2 codes, for identical parameters, OOC1-RS2 codes
achieve the same ID sizes nid, mean error probabilities perr,
and error probability bounds λ2, but require larger cue
sizes ncue for otherwise identical performance. OOC1-RS2
codes are, therefore, always inferior to PPM-RS2 codes in
terms of the KPIs we investigate.

For HF-RS codes, we found that, compared to PPM-RS2
codes, HF-RS codes require the same cue sizes ncue to achieve
minusculely larger ID sizes nid, but also exhibit higher error
probability bounds λ2. In scenarios that require very small
dimensions ki, ko of the inner and outer RS codes, using
HF-RS codes instead of PPM-RS2 codes could be beneficial
to increase the ID size nid, even if this incurs higher error

FIGURE 12. Error probability bound λ2 as a function of the cue size ncue
for the twelve ID codes in Figure 11 all of which have the mean error
probability perr = 1/q = 1/251. Increasing the dimension ko of the outer
RS code increases the error probability bound λ2, cf. Figure 4. OOC1-RS2
codes require a larger cue size ncue than PPM-RS2 codes to achieve the
same error probability bound λ2. Increasing the order r of the RM code
increases the error probability bound λ2, which is undesirable. The error
probability bound λ2 of ID codes that include an RM code is significantly
higher than for the ID codes that include RS codes.

probability bounds λ2. However, in general, we find HF-RS
codes inferior to PPM-RS2 codes in terms of the KPIs we
investigate.

Overall, we find that both alternative CWC initializations
(OOC1, HF) exhibit less favorable KPIs than the PPM initial-
ization. This points to investigating other linear block codes
for their performance as ID codes rather than investigating
alternative CWC initializations in future ID code research.

RM codes are an alternative to using RS2 codes as the
linear block code. In Sections IV and V, we explained that
PPM-RM codes, for similar overall lengths n and overall
dimensions k of the linear block codes, exhibit significantly
higher error probability bounds λ2 than PPM-RS2 codes.
Additionally, the respective cue sizes ncue are almost
identical, while overall, themaximally achievable ID sizes nid
are smaller for PPM-RM codes. Thus, RM codes are worse
than RS2 codes in terms of the KPIs that we investigate.
However, determining cues (or tags) from RM codes requires
significantly less computational power than the cue (or tag)
determination from RS2 codes, which is a key benefit of RM
codes [38].

In the following, we investigate the tradeoffs between cue
sizes ncue, ID sizes nid, mean error probabilities perr, and
the error probability bounds λ2, mainly for PPM-RS2 codes,
for symbol sizes q, as well as the dimensions ki and ko of
the inner and outer RS codes. We also include the results
of OOC1-RS2 codes and PPM-RM codes for comparison.
We exclude HF-RS codes for visual clarity because their
performance is closest (but still overall inferior) to PPM-RS2
codes.

A. DIMENSION OF OUTER RS CODE
In Figure 11, we plot the relationship between the achieved
ID size nid and the required cue size ncue for achieving
this desired ID size nid for several ID codes, for varying
dimensions ko of the outer RS code, symbol size q = 251, and
dimension ki = 2 of the inner RS code. Figure 11 illustrates
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FIGURE 13. ID size nid as a function of the cue size ncue for (q = 251, ki,
ko = 251) {PPM, OOC1}-RS2 codes of dimensions ki ∈ {2, 3, 4, 5} of the
outer RS code, and for (q = 251, m, r ) PPM-RM codes of parameter pairs
(m, r ) ∈ {(3, 15), (4, 9), (5, 7), (6, 6)}. ID codes of the same color share
the same overall block code length n and overall block code dimension k .
Increasing the dimension ki of the inner RS code causes a minor increase
in the ID size nid, while increasing the cue size ncue significantly.

that the cue size ncue of ID codes based on RS2 codes is
invariant to the dimension ko, and that OOC1-RS2 codes
have larger cue sizes ncue than PPM-RS2 codes. We choose
the parameters of the plotted PPM-RM codes such that
they match the ID size nid and cue size ncue of the plotted
PPM-RS2 codes, cf. Section III-D3. For reference, we also
plot the area corresponding to (ID size, cue size) tuples that
are achievable by traditional message transmission codes,
as opposed to ID codes that are the focus of this article. All
ID codes shown in Figure 11 (as well as the subsequent ID
size Figures 13 and 15) exceed the line nid = ncue, which is
called Shannon limit, at the cost of an error probability, that
is inherent to exceeding the Shannon limit.

Figure 12 depicts the relation between the cue size ncue
and the error probability bound λ2, for the same ID codes
considered in Figure 11. As the dimension ko of the outer RS
code increases, the K -bound of the PPM-RS2 code increases,
thus increasing the error probability bound λ2, as we already
visualized in Figure 4 in Section IV-A1. The increase of
the error probability bound λ2 is large because the outer
RS code’s dimension ko is not in its saturation phase, i.e.,
ko > qki−1, cf. Section IV-A1.

The PPM-RS2 codes exhibit a significantly lower error
probability bound λ2 than the PPM-RM codes. The error
probability bounds λ2 of the PPM-RM codes increase for an
increasing order r of the RM codes. The OOC1-RS2 codes
require larger cue sizes to achieve the same error probability
bound λ2 as the PPM-RM codes. All codes in Figure 12
share a common mean error probability perr = 1/q, since the
symbol size q is shared by all considered codes.

As we stated in Section V, increasing the dimension ko of
the outer RS code only affects the ID size nid, but not the
cue size ncue, cf. Table 2. From a practical perspective, the
dimension ko of the outer RS code determines how many
IDs are allocated into the limited codeword set X n

⊆ Fnq.
For an ID code based on the PPM initialization, the overall
length n of the employed linear block code determines the cue
size ncue = log S = log q+log n. Increasing the dimension ko

FIGURE 14. Error probability bound λ2 as a function of the cue size ncue
for the twelve ID codes in Figure 13 with mean error probability
perr = 1/q = 1/251. Increasing the dimension ki of the inner RS code
increases both the cue size ncue and the error probability bound λ2,
which is both undesirable. Reducing the order r of the RM code reduces
the error probability bound λ2, which is desirable. The error probability
bound λ2 of ID codes that include an RM code is significantly higher than
for the ID codes that include RS codes.

of the outer RS code creates a denser population of IDs within
a stagnant codeword set X n. Consequentially, the overlap
of codewords increases, and, therefore, the error probability
increases.

B. DIMENSION OF INNER RS CODE
Figure 13, similar to Figure 11 in the preceding Section VI-A,
depicts the relation between the ID size nid and the required
cue size ncue, for several PPM-RS2 codes of varying
dimension ki of the inner RS2 code, for symbol size q =

251 and dimension ko = q of the outer RS code. Figure 13
illustrates that increasing the dimension ki of the inner RS
code increases the cue size ncue significantly, while the ID
size nid experiences only a minor increase. The OOC1-RS2
codes require larger cue sizes to achieve the same ID size nid
as PPM-RS2 codes, cf. Equation (49).

The parameters of the PPM-RM codes are again chosen
to match their overall lengths n and their overall dimen-
sions k to the respective corresponding PPM-RS2 code, cf.
Section III-D3. The differences in ID size nid between the
corresponding (PPM-RS2 code, PPM-RM code) pairs are
only caused by the rounding to integer values of the RM code
parameters (m, r) to match the overall block code length n
and the overall dimension k of the RS2 codes.
For the same ID codes as considered in Figure 13,

Figure 14 illustrates the relation between the cue size ncue
and the error probability bound λ2 for varying dimensions ki
of the inner RS code of PPM-RS2 codes. Increasing the
dimension ki of the inner RS code generally increases the
error probability bound λ2 of PPM-RS2 codes. The error
probability bound λ2 of the (q = 251, ki = 2, ko = 251)
and the (q = 251, ki = 3, ko = 251) PPM-RS2 codes are
similar, because the chosen dimension ko = 251 of the outer
RS code puts the (q = 251, ki = 2, ko = 251) PPM-RS2
code outside of the saturation regime of its error probability
bound λ2, see Section IV-A1 and Figure 4. For the other three
PPM-RS2 codes, the chosen dimension ko = 251 of the outer
RS code is within the saturation regime.
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FIGURE 15. ID size nid as a function of the cue size ncue for (q, ki = 2,
ko = q) {PPM, OOC1}-RS2 codes of symbol size q ∈ {61, 251, 1021, 4093},
and for (q, m = 3, r ) PPM-RM codes of parameter pairs
(q, r ) ∈ {(61, 8), (251, 15), (1021, 24), (4093, 42)}. ID codes of the same
color share the same overall block code length n and overall block code
dimension k . Increasing the symbol size q increases the ID size nid
significantly while also increasing the cue size ncue.

For the PPM-RM codes, the error probability bound λ2 =

r/q increases with an increasing order r of the RM codes.
To match the overall block code length n and the overall
dimension k of the RS2 codes, both parameters (m, r) of the
RM codes differ between the four plotted PPM-RM codes.
Thus, the decrease in the error probability bound λ2 of the
PPM-RM codes as the cue size ncue increases cannot be
attributed to a single parameter of the RM codes.

Unlike our investigation for the dimension ko of the outer
RS code, increasing the dimension ki of the inner RS code
of PPM-RS2 codes increases the cue size ncue. Increasing
the dimension ki of the inner RS code increases the overall
length n and the overall dimension k of the resulting linear
block code, therefore also increasing the cue size ncue and the
ID size nid.

The dimension ki of the inner RS code restricts the values
for the dimension ko of the outer RS code, because the error
probability bound λ2 of PPM-RS2 codes as given in Table 3
is lower bounded by

λPPM−RS2
2 >

ko − 1
qki − 1

. (50)

Consequently, when increasing the dimension ko of the
outer RS code with the goal of increasing the ID size nid,
the dimension ki of the inner RS code eventually has to
be increased as well in order to mitigate the impact of a
growing dimension ko of the outer RS code on the error
probability bound λ2. Because increasing the dimension ki of
the inner RS code increases the cue size ncue, the dimension ki
of the inner RS code should be chosen as small as
possible.

For practical ID CWC deployments, this investigation
of the dimension ki of the inner RS code indicates that
increasing ki is not advantageous, neither for the cue
size ncue nor for the error probability bound λ2. However,
increasing the dimension ki of the inner RS code enables
increasing values for ko, which is beneficial to increase the
ID size nid.

FIGURE 16. Error probability bounds λ2 as a function of the cue size ncue
for ID codes in Figure 15. We plot the mean error probability perr = 1/q of
codes of different symbol sizes q in the corresponding color of the ID
codes. Increasing the symbol size q increases the cue size ncue, but
decreases the error probability bound λ2 significantly. When the increase
in the order r of the RM code is smaller than the increase in symbol
size q of the RM code, the error probability bound λ2 decreases overall,
which is desirable.

C. SYMBOL SIZE
Similar to Figure 11 and Figure 13, in Figure 15, we plot
the achieved ID size nid and the required cue size ncue for
achieving the ID size nid, for varying symbol sizes q, for
dimension ko = q of the outer RS code and dimension ki =
2 of the inner RS code. Figure 15 illustrates that increasing
the symbol size q and the dimension ko = q of the outer RS
code increases both the cue size ncue and the ID size nid of ID
codes based on RS2 codes. Again, we choose the parameters
of the PPM-RM codes such that they match in ID size nid,
and cue size ncue, cf. Section III-D3.
Figure 16 depicts the relation between the cue size ncue

and the error probability bound λ2, for the same ID codes
considered in Figure 15. As the symbol size q increases, the
error probability bound λ2 decreases, as we first observed in
Figure 6. The PPM-RS2 codes exhibit a significantly lower
error probability bound λ2 than the PPM-RM codes. The
error probability bounds λ2 = r/q of the PPM-RM codes
decrease for increasing symbol sizes q. Generally, increasing
the order r of the RM codes increases the error probability
bound λ2 = r/q of PPM-RM codes. For the PPM-RM codes
in Figure 16, the symbol size q grows faster than the order r
of the RM codes. Accordingly, we observe from Figure 16
that the fast-increasing symbol size q dominates over the
slowly-increasing order r of the RM codes, resulting overall
in decreasing error probability bounds λ2 for the successively
increasing symbol sizes q and orders r .

Finally, a major advantage of increasing the symbol
size q lies in the corresponding reduction of the mean error
probability perr = 1/q. Since the mean error probability perr
is univariately determined by the symbol size q, increasing
the symbol size q is the only method to reduce the mean error
probability perr.

In conclusion, increasing the symbol size q increases the
cue size ncue, thus increasing the traffic required for the ID
process. However, increasing the symbol size q also increases
the ID size nid, while simultaneously reducing the error
probability bound λ2, and the mean error probability perr.

14978 VOLUME 11, 2023



C. von Lengerke et al.: Identification Codes: A Topical Review With Design Guidelines for Practical Systems

Therefore, a large symbol size q is highly desirable. Overall,
ID codes in general, and PPM-RS2 codes in particular, work
best for large symbol sizes q. Because large symbol sizes q
incur large cue sizes ncue, the symbol size q cannot be chosen
arbitrarily large, but needs to be moderated according to the
use case requirements.

VII. PARAMETER SELECTION FOR ID CODES
Based on the findings of Section VI, in this section,
we provide a set of heuristics for selecting parameters of ID
codes so as to achieve good performance. First, we define
the following goal: from every ID code we aim to obtain
a prescribed number N of different ID messages (and
corresponding ID size nid = logN ), while achieving a low
error probability and requiring the transmission of cues of
small size ncue. In other words, we examine ID codes for
scenarios that require the ID code to be able to represent
a prescribed ID size nid. The goal is to identify this fixed
number of IDs (represented by the ID size nid) with as few
errors as possible (low error probability), while transmitting
as little data as possible (small cue size). Thus, we examine
which cue sizes ncue are required to achieve a certain ID
size nid at the cost of an introduced error probability for false-
positive verification. The error probability is characterized by
the mean error probability perr, as well as the error probability
bound λ2.

A. HEURISTICS FOR PPM-RS2 CODES
Through the evaluations in the preceding Section VI,
we investigated the impact of the RS2 code parameters q, ki,
and ko on the KPIs of ID codes. We proceed to formulate
heuristics for selecting practical PPM-RS2 codes that strike a
balance between small cue sizes ncue, large ID sizes nid, and
small error probability bounds λ2.

1) CHOICE OF SYMBOL SIZE
The evaluations in the preceding Section VI indicate that
large symbol sizes q contribute to low error probability
bounds λ2 and large ID sizes nid compared to the corre-
sponding cue sizes ncue. Additionally, with an increase in
symbol size q, the mean error probability perr decreases.
Therefore, the symbol size q fundamentally determines the
error probability. The dimensions ki and ko of the inner and
outer RS codes, respectively, have a relatively minor impact,
cf. Figure 12 and 14. Hence, a large symbol size q achieves
a small error probability bound λ2, while increasing the ID
size nid to the desired value with a moderate increase in the
cue size ncue.
As a limiting factor for large symbol sizes q when

choosing parameters for ID codes, the increase in com-
putational complexity for large symbol sizes should be
considered [36]. Hence, for designing practical ID CWCs,
the symbol size q should be chosen as large as possi-
ble without disregarding acceptable computational com-
plexity with optimized and hardware-accelerated encoding
algorithms.

FIGURE 17. Cue size ncue and error probability bound λ2 as function of
the ID size nid of (q = 251, ki, ko) PPM-RS2 codes with the
dimensions ki, ko based on the heuristics in Section VII. When increasing
the ID size nid, the cue size ncue is increased stepwise once the error
probability bound λ2 begins to increase significantly. By increasing the
cue size ncue, the error probability bound is returned to the saturation
regime, cf. Equation (39).

2) CHOICE OF RS CODE DIMENSIONS
After selecting an appropriate symbol size q, the required
ID size nid can be achieved with the determination of
suitable dimensions ki and ko of the inner and outer RS
codes, respectively. Both dimension parameters, ki and ko,
increase the ID size nid, while increasing the error probability
bound λ2. In the preceding Section VI, we found that
increasing the dimension ko of the outer RS code does
not increase the cue size ncue. In addition, we observed
from Figure 4 that the error probability bound λ2 of PPM-
RS2 codes saturates for ko ≪ qki at λ2 ≈ (ki −

1)/q, cf. Equation (39). However, the error probability
bound λ2 of PPM-RS2 codes increases significantly for larger
dimensions ko of the outer RS code as the summand term
(ko − 1)/(qki − 1) in the λ2 expression grows significantly,
i.e., the lower bound for the error probability bound λ2,
cf. Equation (50), grows significantly. Thus, a required ID
size nid should be achieved by increasing the dimension ko
of the outer RS code while maintaining the smallest possible
dimension ki, for which ko ≤ qki−1, cf. Equation (40). This
ensures the smallest possible error probability bound λ2, and
the smallest possible cue size ncue.

3) CUE SIZE AND ERROR PROBABILITY AS A FUNCTION OF
ID SIZE
For PPM-RS2 codes of symbol size q = 251, Figure 17 visu-
alizes the KPIs when following the heuristics we introduced
for desired ID sizes nid. We plot the required cue size ncue
and the error probability characteristics of the different
PPM-RS2 codes. For the error probability characteristics,
Figure 17 illustrates the diverging behavior of the error
probability bound λ2 from the mean error probability perr
for an increasing ID size nid. The cue size ncue follows the
stepwise increases of the dimension ki ∈ [2, 3, 4, 5, 6] of
the inner RS code. We increase the dimension ki of the
inner RS code if the dimension ko otherwise (if ki is not
increased) exceeds the threshold qki−1 that we determined in
Equation (40).
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B. DISCUSSION OF RM CODES
PPM-RM codes are parameterized by the generation m, the
order r , and the symbol size q. To achieve a small error
probability bound λ2 = r/q, large symbol sizes q and small
orders r are advisable. Increasing the symbol size q incurs
a higher computational complexity of the cue determination
and increases the cue size ncue that needs to be transmitted
over the channel. Therefore, the symbol size q should be
selected as large as possible (so as to reduce the error
probability) but as small as necessary (to be computationally
feasible). To increase the ID size nid, the generation m can
be increased. Since m ≤ r is a condition for the parameter
selection of RM codes, significant increases of the ID size nid
via the generation m also require an increase in the order r ,
which causes an undesirable increase in the error probability
bound λ2. Additionally, the generation m increases the cue
size ncue. In conclusion, the parameters m and r should be
selected as small as possible to achieve a sufficient ID size nid,
while maintaining a small cue size ncue and a small error
probability bound λ2.

VIII. CONCLUSION
This topical review article compared all existing ID codes,
except for random linear ID codes [39], in the practical
finite-parameter regime, based on three metrics: the cue
size, the ID size, and the error probability (specifically,
the mean and the upper bound of the error probability).
Based on these metrics, we found that compared to the
PPM initialization for constant-weight codes for ID, the
alternative CWC initializations based on ϵ–almost strongly
universal hash functions [52] and optical orthogonal codes
[46] have limited usefulness for constructing ID codes.
ID codes based on ϵ–almost strongly universal hash functions
exhibit higher error probability bounds λ2, and the cue
size ncue of the transmitted data is larger for ID codes
based on optical orthogonal codes, compared to ID codes
based on the PPM initialization. Conversely, we found that
it is not the CWC initialization but rather the employed
linear block code that primarily determines the performance
of an ID code in terms of the three investigated metrics.
Concatenated Reed-Solomon codes approach the ID capacity
for infinite block lengths [50] and perform well for finite
coding parameters. A computationally cheaper alternative
are ID codes based on Reed-Muller codes [38]. However,
ID codes based on Reed-Muller codes exhibit significantly
higher error probability bounds than ID codes based on
concatenated Reed-Solomon codes.

Additionally, we investigated the choice of coding param-
eters for good performance. ID codes work best for large
symbol sizes q, which decrease the error probability bound
and mean error probability, while also increasing the ID size.
For the dimensions ki, ko of concatenated Reed-Solomon
codes, we proposed a heuristic to achieve a large ID size,
while limiting the error probability bound and cue size to
low levels. We also discussed the choice of parameters for
ID codes based on Reed-Muller codes. In conclusion, con-
catenated Reed-Solomon codes achieve good performance

TABLE 5. Translation table for determining the order r of a (q, m, r ) RM
code of generation m based on a (q, ki, ko) RS2 code of dimension ki of
the inner RS code, and dimension ko = q of the outer RS code, for symbol
size q, and a common overall code dimension k and length n of the linear
block codes.

for finite parameters, but their computational complexity is
very high [36]. Reed-Muller codes provide a computationally
cheaper alternative, at the cost of worse performance.

For future research, our findings point towards prioritizing
investigations on other linear block codes to enhance ID
code performance at acceptable computational complexity,
rather than examining alternative CWC initializations. One
specific direction for investigating linear block codes could
be to explore polar codes [54], [55] for the purpose of
ID coding. Also, it should be noted for future research
that ID coding requires generally only efficient encoding,
but effectively no decoding as only cues (or tags) are
compared for the ‘‘ID decoding’’, i.e., the verification of
an identity match. Thus, future ID codes could be based
on linear block codes that are computationally feasible for
encoding, but computationally prohibitive for conventional
message decoding. Concomitantly, future research should
examine hardware acceleration [56], [57], [58] to address the
computational complexities of existing and future ID codes so
as to advance ID coding as a practical means of goal-oriented
communication over networks.

Another avenue for future research is to examine ID coding
in the context of specific application contexts, e.g., in the
smart labels [6], [7], [8], [9] context or the digital twin
context [29], [30], [31], [32], [33], [34], [35]. These future
examinations should consider typical operational scenarios
with data from real-life systems in operational practice,
e.g., smart label data exchanges from operational large-scale
warehouses, or digital twin data exchanges from operational
robots in industrial production lines. Such real-life system
data could be utilized to evaluate a broader range of
ID coding performance metrics, e.g., detailed stochastic
characterizations of the false-positive identification errors
during operational scenarios. Such detailed stochastic error
characteristics could inform further ID code developments
and evaluations as well as the development of communication
protocols for the identification via channels paradigm.

APPENDIX: TRANSLATION TABLE FROM RS CODE
DIMENSION TO RM CODE ORDER
See Table 5.
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