Spatial Correlation Robust Inference*

Ulrich K. Miiller and Mark W. Watson
Department of Economics, Princeton University

Princeton, NJ, 08544

First Draft: December 2020
This Draft: May 2022

Abstract

We propose a method for constructing confidence intervals that account for many
forms of spatial correlation. The interval has the familiar ‘estimator plus and minus a
standard error times a critical value’ form, but we propose new methods for constructing
the standard error and the critical value. The standard error is constructed using
population principal components from a given ‘worst-case’ spatial correlation model.
The critical value is chosen to ensure coverage in a benchmark parametric model for the
spatial correlations. The method is shown to control coverage in finite sample Gaussian
settings in a restricted but nonparametric class of models and in large samples whenever
the spatial correlation is weak, i.e., with average pairwise correlations that vanish as the
sample size gets large. We also provide results on the efficiency of the method.
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1 Introduction

Prompted by advances in both data availability and theory in economic geography, inter-
national trade, urban economics, development and other fields, empirical work using spatial
data has become commonplace in economics. These applications highlight the importance of
econometric methods that appropriately account for spatial correlation in real-world settings.
While important advances have been made, researchers arguably lack practical methods that
allow for reliable inference about parameters estimated from spatial data for the wide-range
spatial designs and correlation patterns encountered in applied work.! This paper takes a
step forward in this regard.

Specifically, we consider the problem of constructing a confidence interval (or test of a
hypothesized value) for the mean of a spatially-sampled random variable. We propose a
confidence interval constructed in the usual way, i.e., as the sample mean plus and minus an
estimate of its standard error multiplied by a critical value. The novelty is that the standard
error and critical value are constructed so the resulting confidence interval has the desired
coverage probability (say, 95%) for a relatively wide range of correlation patterns and spatial
designs. The analysis is described for the mean, but the required modifications for regression
coefficients or parameters in GMM settings follow from standard arguments.

To be more precise, suppose that a random variable y is associated with a location s €
S, where § C RY. Figure 1 provides two sets of examples. Panel (a) shows three one-
dimensional (d = 1) spatial designs. It begins with the familiar case of regularly spaced
locations, corresponding to the standard time series setting; the next two examples show
irregularly spaced times series with randomly selected locations drawn from a density g,
where ¢ is either uniform or triangular. Panel (b) shows two geographic examples, so d = 2,
for the U.S. state of Texas. In the left panel, locations are randomly selected from a uniform
distribution, while in the right panel locations are more likely to be sampled from areas with
high economic activity, here measured by light intensity as seen from space.? The goal of this
paper is to construct confidence intervals with desired coverage, conditional on the observed

locations, for a rich set of possible locations such as those shown in the figure.

bragimov and Miiller (2010), Sun and Kim (2012) and Bester et al. (2016), for instance, find nontrivial
size distortions of modern methods even in arguably fairly benign designs, and Kelly (2019) reports very large

distortions under spatial correlations calibrated to real-world data.
2The light data are from Henderson et al. (2018).



(a) Three One-Dimensional Spatial Designs
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(b) Two Geographic Spatial Designs
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Figure 1: Examples of Spatial Designs

Adding some notation, suppose
y=p+uforl=1,..,n (1)

where y; is associated with the observed spatial location s;, i is the mean of y;, and conditional
on the observed locations {s;}]";, u; is an unobserved mean-zero error that is covariance
stationary, that is Eluus] = o,(s; — s¢) for some covariance function o, : RY — R. Let 3

denote the sample mean, and consider the usual t-statistic

where 6% is an estimator of o2, the variance of \/n(y — p). Tests of the null hypothesis

Hy : p = pg reject when |7| > cv, where cv is the critical value, and the corresponding
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confidence interval for ;1 has endpoints § & ¢v /4/n. Inference methods in this class differ in
their choice of 6% and critical value cv.

The case of regularly-spaced time series observations (the first example in Figure 1) is the
most well-studied version of this problem. There, Var(y/n(y—u)) is the long-run variance of y,
and traditional choices for 62 are kernel-based consistent estimators such as those proposed in
Newey and West (1987) and Andrews (1991), and inference uses standard normal critical val-
ues. A more recent literature initiated by Kiefer et al. (2000) and Kiefer and Vogelsang (2005)
accounts for the sampling uncertainty of kernel-based 62 by considering “fixed-b” asymptotics
where the bandwidth is a fixed fraction of the sample size, which leads to a corresponding
upward adjustment of the critical value. Closely related are projection estimators of 52 where
the number of projections is treated as fixed in the asymptotics, as in Miiller (2004)?, Phillips
(2005), Sun (2013), and others, leading to Student-t critical values. These newer methods
are found to markedly improve size control under moderate serial correlation compared to
inference based on standard normal critical values. (For example, see the numerical results
in Lazarus et al. (2018).)

The econometrics literature on the derivation of spatial HAR inference is smaller, but has
developed along similar lines: Conley (1999), Kelejian and Prucha (2007) and Kim and Sun
(2011) derive consistent variance estimators, Bester et al. (2016) (also see Rho and Vogelsang
(2019)) study the spatial analogue of the fixed-b kernel estimators, Sun and Kim (2012) suggest
a spatial projection-based estimator, and Ibragimov and Miiller (2010, 2015)??, Bester et al.
(2011) and Cao et al. (2020) derive asymptotically justified spatial HAR inference based on
a finite number of clusters.

This paper makes progress over this literature by developing a method that (i) accounts
for sampling uncertainty in 6%; (ii) controls size under a restricted but nonparametric form
of strongly correlated w;; (iii) is asymptotically valid under generic weakly correlated ;. The
second property sets it apart from all previously mentioned methods; in a time series set-
ting, Robinson (2005) and Miiller (2014) derive inference under parametric forms of strong
dependence, and Dou (2019) derives optimal inference under a non-parametric form of strong
dependence under a simplifying Whittle-type approximation to the implied covariance matri-
ces.

The remainder of the paper is organized as follows. Section 2 defines the new method. It

uses a projection-type variance estimator, where the projection weights are spatial correlation



principal components from a given ‘worst case’ benchmark correlation matrix. We correspond-
ingly refer to the method as SCPC. Section 3 studies its small sample size control in Gaussian
models. We derive a generic result about size control of t-statistics in a nonparametric class
of covariance matrices, and apply it to study the robustness of SCPC under a large class of
persistent processes defined in spectral terms. We note that both the basic idea of SCPC,
as well as some of the results in Section 3 could potentially also be applied to settings other
than (1), such as to HAR inference for data generated from spatial autoregressive models,
or network data, but we do not pursue this further in this paper. Section 3 concludes with
some numerical evidence on size control of SCPC under heteroskedasticity and mismeasured
locations.

Section 4 studies the efficiency of the SCPC confidence interval. We compare its ex-
pected length to the length of confidence intervals derived from previously suggested spatial
t-statistics, and to a lower bound that holds for all confidence intervals that, like SCPC,
control size over a wide range of persistent spatial processes.

We turn to a large sample analysis in Section 5. We derive the asymptotic distribution
of projection and fixed-b spatial t-statistics, including the SCPC t-statistic, and find that the
density of the locations g plays a key role in their limiting distributions. This dependence is
present even under weak correlation, that is, when the average correlation across observations
shrinks to zero as n — oo. Notably, only when g is constant (that is, when the density is
uniform) does the asymptotic distribution under weak correlation coincide with the asymp-
totic distribution induced by i.i.d. data. Thus, the usual suggestions for critical values, such
as student-t critical values for projection t-statistics, are not generically valid under weak
dependence for non-constant g. We suggest an alternative, easy-to-implement choice for the
critical value that restores asymptotic validity under generic weak correlation, which is part
of the definition of the SCPC method in Section 2.

Section 6 concludes with a brief discussion on how to apply SCPC in more general regres-

sion or GMM settings. Software for conducting SCPC inference for regression coefficients is
available for STATA and Matlab.?

3The most recent implementation of the software is available at https://www.princeton.edu/ mwatson/.



2 Spatial Correlation Principal Components

This section provides details for computing the SCPC t-statistic, critical value and associated
confidence interval. The definition of the SCPC t-test and critical value involves, among other
things, various covariance matrices and probability calculations. We stress at the outset that
these are used to describe the required calculations, and they are not assumptions about
the probability distribution of the data under study. We study finite sample and asymptotic
properties of the SCPC t-test under general conditions in Sections 3 and 5 below.

Let y = (y1,¥2, -, Yn)" and similarly for s = (s1,s9,...,8,), u = (uy,us, ..., u,)" and the
vector of residuals @t = (4, 4y, ..., U,)". Let 1 denote an nx 1 vector of 1s, and M = I-1(1'1) I’
Consider a benchmark Gaussian ‘exponential’ covariance matrix for u with covariance function
Elujug] = exp(—c||si—s¢||) for ¢ > 0. (Because the t-statistic is scale invariant, the assumption
that E[u?] = 1 is without loss of generality.) Let 3(c) denote the nxn covariance matrix of u in
this model. Let ¢y denote a predetermined value of ¢ that is meant to capture an upper bound
on the spatial persistence in the data. (The choice of ¢y is discussed below). Let ry,ro, ..., 1,
denote the eigenvectors of M3 (cy)M corresponding to the eigenvalues ordered from largest
to smallest, and normalized so that n~'rir; = 1 for all j. The scalar variable n~'/?r}t has

the interpretation as the jth population principle component of ti|s ~ N (0, MX(¢y)M). The

SCPC estimator of 0% based on the first ¢ of these principal components is
q
Gorc(a) = ¢ Z(n_l/zr;‘ﬁ)2> (3)
j=1

and the corresponding SCPC t-statistic is

V(g — No)'

dscrc(q)

(4)

TSCPC(Q) =

The critical value cvscpc(q) of the level-ao SCPC test is chosen so that size is equal to «
under the Gaussian benchmark model with ¢ > ¢q. That is, cvscpc(q) satisfies
Sup POE(C)OTSCPC(Q)’ > cvserc(q)]s) = a, (5)
c>co
where P% means that the probability is computed under the null hypothesis in the Gaussian
model with covariance matrix X, y|s ~ N1y, X(c)).
The final ingredient in the method is the choice of ¢q. Let Ex_1[26scpc(q) cvscpc(q)ls]

denote the expected length of the confidence interval constructed using Tscpc(q) under the
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Gaussian i.i.d. model y|s ~ N (1u,I). SCPC chooses g to make this expected length as small

as possible, that is gscpc solves

I'((q+1)/2)
I'(q/2)

with the equality exploiting the fact that q&%cpc(qﬂs ~ Xg in the Gaussian i.i.d. model.

(6)

Ig{l Es—1[26scpc(q) cvscpa(q)|s] = I;1>1{1 Ven V2712 cvscepc(q)

Remark 2.1. The primary concern in the construction of 2 is downward bias. Recall that
the eigenvector r; maximizes h"'MX(cy)Mh among all vectors h of the same length, the second
eigenvector ry maximizes h'M¥(cy)Mh subject to h'r; = 0, and so forth, and for any ¢ > 1,
the n x ¢ matrix (rq,...,r,) maximizes tr H'MX(¢))MH among all n x ¢ matrices H with
n~'H'H =1,. Thus, the SCPC method selects the linear combinations of @ in the estimator
of o2 that have the largest variance in the benchmark model with ¢ = ¢y, under the constraint

of being unbiased in the i.i.d. model.

Remark 2.2. The choice of ¢ trades off the downward bias in 63opc(q) that occurs when ¢
is large and its large variance when ¢ is small. Both bias and variance lead to a large critical
value, and (6) leads to a choice of ¢ that optimally trades off these two effects to obtain
the shortest possible expected confidence interval length in the i.i.d. model. In Section 4 we

consider an alternative choice of ¢ that minimizes expected length under ¢ = 2¢y.

Remark 2.3. SCPC requires that the researcher chooses a value for ¢y which represents the
highest degree of spatial correlation allowed by the method. One way to calibrate ¢y is via

the average pairwise correlation of the spatial observations

n

D= n(n;_l)ZZCor(yl,yﬂsn)

=1 (£l

that is, co is chosen so that it implies a given value p, of p. For example, p, =
(0.003,0.01,0.03,0.10) implies very weak, weak, strong and very strong correlation, respec-
tively.

To put these values into perspective, recognize that the standard deviation of § relative
to its value under i.i.d. sampling, say 7,,, satisfies v2 = Var[y/ny|/ Var[y] = 1+ (n —1)p, and
therefore v, measures the increase in the length of the confidence interval with o known rela-
tive to its i.i.d. counterpart. The parameter ,, also governs the size distortion associated with

using the standard t-statistic (i.e., based on i.i.d. sampling) when y is spatially correlated; for



example, the rejection frequency for a nominal 5% level test is approximately P(|Z| > 1.96/7,,)
with Z ~ N(0,1). With n = 500, p = (0.003,0.01,0.03,0.10) yields v, = (1.6,2.4,4.0,7.1)
and approximate rejection frequencies of (0.21,0.42,0.62,0.78) using t-statistics constructed
under an erroneous i.i.d. assumption.

Alternatively, in the equally spaced time series model, note that 42 is the long-run variance
of the process in multiples of its variance. For an AR(1) process with coefficient ¢,,, v =
(1+¢,)/(1—¢,) and ¢, ~1— (2/p)n~"! for large n. Using n = 500 and the four values of p,
®500 = (0.43,0.72,0.88,0.96). In their study of HAR inference in time series, Lazarus et al.
(2018) considered models with n = 200 and ¢ = 0.7, corresponding to p =~ 0.03.

Remark 2.4. In the regular spaced time series case, the SCPC eigenvectors, r; are numeri-
cally close to the weights of the equal weighted cosine (EWC) projection estimator considered
in Miiller (2004, 2007), Lazarus et al. (2018) and Dou (2019). This is not surprising, since the
corresponding cosines are the limit of the eigenvectors of MX(co)M as ¢y — 0 (cf. Theorem 1
of Miiller and Watson (2008)). What is more, the SCPC choice of ¢ is also numerically close
to the corresponding optimal choice of ¢ in Dou (2019). So when applied to time series, SCPC
comes close to replicating Dou’s (2019) suggestion for optimal inference, with ¢q representing
the upper bound for the degree of persistence. The same is true in a spatial design in R?, with
arbitrary d, if the locations happens to fall on a line segment with approximately uniform

empirical distribution.

Remark 2.5. The SCPC method with ¢y calibrated by a choice of p, is invariant to the
scale of the locations {s;}/-; — {as;}}-; for a > 0, and (in contrast to Sun and Kim’s (2012)
and Conley’s (1999) suggestion) also to arbitrary distance preserving transformations, such

as rotations.

Remark 2.6. We suggest determining gscpc for o = 5%, and then using the same ggcpc at all
other significance levels «, and for the computation of p-values. This avoids discontinuities
that arise from the dependence of gscpc on «a, and is computationally convenient. In the

following we excusively focus on 5% level tests.

Remark 2.7. The discussion focuses on inference about the mean, but all the results extend
to regression and GMM problems using standard arguments. For example, in the simple linear
regression w; = x;0 + €;, where [ is the parameter of interest, z;&; replaces u; in the analysis,
and the test can be constructed as described above using y, = 3 + 8,/ (n~" Y21, 22), where

~

[ is the OLS estimator and &; is the residual. Details are provided in Section 6.
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Table 1: SCPC for Different Choices of p, in the U.S. States Spatial Designs

po = 0.003 po = 0.01 po = 0.03 po = 0.10

Uniform Spatial Designs ¢ = guniform
A /(o) in % (0.7,1.0,1.1) (1.3,1.8,2.1) (2.5,3.4,3.9) (5.4,7.0,8.0)
4scpPC (38,42, 46) (11,12,13) (8,8,9) (5,6,6)

Expected length (1.02,1.02,1.03) (1.10,1.12,1.13) (1.28,1.30,1.31) (1.64,1.68,1.70)
“Light” Spatial Designs g = giight

Ay /o(co) in % (0.2,0.4,0.7) (0.5,0.9,1.5) (0.9,1.9,3.0) (2.3,4.6,6.9)

4sCPC (44,47,50) (14,18, 20) (6,8,9) (4,5,6)

Expected length (1.02,1.02,1.02) (1.05,1.06,1.07) (1.12,1.16,1.24) (1.38,1.51,1.61)

Notes: Entries are 5th, 50th and 95th percentiles of the distribution of across the 240 location draws
in the U.S. states spatial design. A;/5(co) is the distance that leads to a correlation of 1/2 measured
in multiples of largest distance in sample, and expected length is computed in the i.i.d. model and
measured in multiples of the known-o interval length 2 - 1.960 //n.

U.S. states spatial designs: SCPC inference is conditioned on the value of the locations, s,
observed in the sample. To gauge how well the method is likely to perform in applications, we
use 480 different values of s. The values are generated by randomly drawing n = 500 locations
within the boundaries of each of the 48 contiguous U.S. states. The density of locations g
within each state is either uniform (guniform ), OF it is proportional to light measured from space
(Grignt) as a proxy for economic activity; the bottom panel of Figure 1 shows two values of
s that were drawn using Texas. We draw five sets of n = 500 independent locations under
each density ¢ € {Guniform, Glight } for a total of 240 (= 48 states x 5 location draws ) sets of
locations s = {s;}7% using gunitorm and 240 using giigns.

Table 1 reports the 5th, 50th and 95th percentiles of selected SCPC properties across these
240 location draws for different values of p, for each ¢ € {Guniform; Giight }- In the table and
throughout the paper, we use the notation (-, -, -) to indicate these three quantiles of some
statistic that describes each location s. The first row of the table shows the quantiles of the
‘half-life” distance Ay /9(co) satisfying exp(—col|r — s||) = 1/2 whenever ||r — s|| = Ay/a(co),
measured in multiples of the largest distance A, = max;e||s; — s¢||. For example, when
po = 0.03, the median half-life distance is 1.9% of the maximum distance across the 240 values
of s generated from the gz density. The next row of the table shows the quantiles for the
values of gscpc chosen by (6), and the final row shows the implied expected length of the SCPC
confidence interval relative to the length of the known-o interval with endpoints §+1.960 //n.

The results shown in the table indicate, for example, that a researcher using the SCPC t-



statistic chosen to accommodate spatial correlation as large as p, = 0.03 will typically use
q =~ 8 principal components and the resulting confidence interval will be, on average, roughly
20% to 30% longer than the known-o confidence interval. This is slightly larger than the
Student-t confidence interval using ¢ = 8 principal components in an i.i.d. model because

SCPC is “bias aware” and chooses the critical value to control size under p, = 0.03.

Remark 2.8. The U.S. states spatial designs will be used throughout the paper to illustrate
the properties of the SCPC t-statistic.

Remark 2.9. The supremum over ¢ > ¢y in (5) plays an important role to guarantee asymp-
totic size control under weak correlations; see Section 5.4 below. At the same time, as one
might intuit, in most designs, the condition binds at the smallest value ¢ = ¢y. In the
U.S. states spatial designs, the null rejection probabilities of SCPC under ¢y have percentiles
(5.0%, 5.0%, 5.0%) and (4.7%,5.0%,5.0%) for ¢ = Guniform and g = Quight, respectively. The
condition doesn’t always bind at ¢ = ¢y because §y and dscpc(q) are in general dependent, a
feature that is discussed more in Section 4.

3 Finite-Sample Size Control in Gaussian Models

In this section, we study the size control of spatial t-statistics in Gaussian models where
y ~ N(u,X) for some 3. Conditioning on the locations s is implicit. While our main
interest is on the SCPC t-statistic, many of our results apply more generally to t-statistics

(2) with a quadratic form estimator of &2,

y — U (y—p,l
\/ﬁ(y/\ :uo) — (?}-W/&/) 6_2 — n—lylwwly _ n—lulwwlu (7)
g y y

T(WW') =

for some n x ¢ matrix W, 1 < ¢ < n — 1 satisfying W'l = 0. Note that for any positive
semi-definite n x n matrix Q, 6> = n~ "' Q'@ can be represented in this way. For future
reference, it will be useful to define the n x (¢ + 1) matrix W° = [I, W].

By construction, SCPC controls size in exponential Gaussian models with ¢ > ¢q, that
is in exponential models with spatial persistence less than the cy-benchmark model. Our
goal in this section is to investigate SCPC size control for covariance matrices outside of this
exponential class. Thus, let V denote a set of covariance matrices. A test using the t-statistic
72(WW’) with critical value cv and level a controls size under V if sups,c), P& (T2 (WW') >

cv?) < a.



For our purposes, the interesting set of covariance matrices V' are those that exhibit less
spatial persistence than X(cg) (recall that ¢q was chosen to represent an upper bound on
persistence in the data). In time series data, long-run persistence is intimately related to the
slope of the spectrum near frequency zero. An analogous result holds for spatial persistence,
and in Section 3.2 we use this to characterize a set of covariance matrices V' with less spatial
persistence than X(¢g). While the resulting V is a nonparametric set of covariance matrices, we
show that elements in V can be represented as mixtures of covariance matrices in a parametric
class, say X7(0), 0 € ©, that is V = {X : X = [ 3?(0)dIL(0) for some probability distribution
IT}. This motivates studying size control over arbitrary mixtures of a set of parametric
covariance matrices XP(#)—see Theorem 2 below.

The next two subsections carry out this analysis, and we find that SCPC controls size
over a large class of processes that are less persistent than the 3(cy) worst-case benchmark
in the U.S. states spatial designs. Section 3.3 briefly analyzes the null rejection properties of

SCPC under heteroskedasticity and mismeasured locations.

3.1 Generic Results

The following is a useful result for computing the null rejection frequency of 72(WW’) for a

given covariance matrix 2.

Lemma 1. Assume 'y ~ N(lyy, ) and let & = WYEW. For cv > 0, define D(cv) =
diag(1, —cv?1,) and A = D(cv)$2, and let (wo, w1, ...,w,) denote the eigenvalues of A ordered
from largest to smallest. Then with (Zy, Z1, ..., Zq) ~ N(0,1,11),
(i) wo >0, and w; <0 fori=1,....q;
1
(i) B (PWW) > 7)) = BTz >0) = [ a0 - o T -
0

(wi/wo))2dz.
Remark 3.1. Result (i) and the first equality in (ii) follow from standard calculations. The fi-

nal equality in (ii) is shown in Bakirov and Székely (2005); this result makes it straightforward
to compute the null rejection frequency by evaluating the integral via numerical quadrature.

We now turn to an analytic result about size control for a set V of covariance matrices
with elements that are a mixture of covariance matrices from a parametric class. Specifically,
suppose for a given X, cv is such that P, (72(WW’) > cv®) = a. Let XP(6), 6 € © be a

10



parametric class of covariance matrices. We seek conditions under which

PL (2(WW') > ov?) < a for 5, = / 7 (6)dTI(0) (8)

for a probability distribution II. Let A;(-) denote the jth largest eigenvalue of some matrix.

Theorem 2. Let Qy = WYES WO Q(0) = WYSP(0)WO, and assume Qq and 2(0), 6 € ©
are full rank. Suppose Ay = D(cv)Qy is diagonalizable, and let P be its eigenvectors. Let
A(0) = P'D(cv)Q(0)P and A(F) = S(A(0) + A(0)'). Suppose Ay and A(6), 6 € © are
scale normalized such that A\j(Ao) = A\ (A(0)) = 1. Let

n(B) = A(=R) = MAO)A(~Ao) — (M(A6) — 1)
vi0) = Aproi(~A0) = MAO)Agri(~Ao) fori =2.....q.

IF S vi(0) >0 for all € © and 1 < j < q, then (8) holds for all TI.

Remark 3.2. The theorem is based on the following logic: First, as shown in Lemma 1, the
eigenvalues of Ay and A(#) (or, equivalently, of D(cv)€2(6)) govern the rejection probability
of 72(WW’) under 3, and ¥?(). Given the scale normalization A\ (Ag) = A\ (A(0)) = 1, if
Ai(A(0)) < Aj(Ap) for all j > 2, then, using the notation in Lemma 1, w;(A(0)) < w;(Ay)
which yields P, (T*(WW') > cv?) < P§, (T2(WW') > cv?). Second, the integral represen-
tation in part (ii) of Lemma 1 can be used to show that the null rejection probability of the
t-statistic is Schur convex in these negative eigenvalues, so that the inequality holds whenever
the negative eigenvalues of A (6) weakly majorize those of Ay. Majorization inequalities about
eigenvalues of sums of matrices and additional calculations then extend this further to the
result in Theorem 2.

Remark 3.3. In the appendix we prove a more general result: If for some probability distri-
bution IT on ©,

J
3 / Vi(0)dTI(0) > 0 for all 1 < j < g, ()
then (8) holds. The conditions stated in Theorem 2 guarantee that (9) holds for all II.

Remark 3.4. If for some 0y € ©, ¥y = ¥P(,), then v;(fy) = 0 for 1 < j < g, so the
inequalities of the theorem have no ‘minimal slack’ and potentially apply also to parametric
models with a covariance matrix 37(6) that takes on values arbitrarily close to .

11



3.2 SCPC Size Control Under Alternative Forms of Persistence

The problem of estimating the variance of y is intimately linked to the properties of the
spectral density close to zero. In the time series case, the long-run variance (that is, the
variance of \/ng) converges to the spectral density at frequency zero, multiplied by 27, as n —
oo for a large class of weakly dependent stationary processes. From this perspective, the aim of
correlation robust inference is to extract information about the variance of y by extrapolating
the observed variability of weighted averages that contain information about the spectrum
close to the origin, such as low-frequency periodogram ordinates. Such an extrapolation
can only be successful under some a priori smoothness of the spectral density close to zero
(cf. Pétscher (2002)), so in this perspective, specification of a worst case benchmark model
amounts to the specification of a bound on the smoothness of the spectral density close to
zero. This motivates an application of Theorem 2 to a class of covariance matrices that is

defined in terms of a class of underlying spectral densities.

3.2.1 Spatial Case

If the covariance function o, in (1) is isotropic, then its spectrum f : R? — [0, 00) at frequency
w € R? can be written as function of the scalar w = |[|w]|, that is f(w) = f(w) for some
f: R+ [0,00). Since the null rejection probability of spatial t-statistics does not depend on
the scale of oy, it is without loss of generality to normalize f(0) = 1. The spectrum of the

benchmark covariance function exp(—c||s — r||) is

63

F(w) = (G (10)

bnch

By construction, SCPC controls size in the benchmark model with ¢ > ¢o, and fo = f

is the spectral density with the steepest decline at the origin in the benchmark model. A
spectral density f would naturally be considered less persistent than fy if r(w) = f(w)/ fo(w)
is (weakly) monotonically increasing in |w|, since this implies that f has relatively more mass
at higher frequencies.

Note that any symmetric function r : R — R with r(0) = 1 that is increasing in |w|
with lim, .. 7(w) = M > 1 can be written in the form r(w) = 1 4+ (M — DII(Jw|) =
I(|w|) + M(1 — II(|w|)) for some CDF II on [0,00). Since II(|w]) = [1[0 < |w|]dIL(H)
and 1 — II(|w|) = [1]0 > |w|]dII(#), any such r can therefore be written as the mixture
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r(w) = [75P(w)dII(f) with ryP(w) = 1[0 < |w|] + M - 1[0 > |w|]. Moreover, if we define

75°P(w) = 1, then by letting IT have some mass on § = 0, we can further induce any value for

lim,, o0 [ 75 P (w)dIL(9) smaller or equal to M.

Rewriting these representations in terms of f(w) = r(w) fo(w) thus yields that any f such
that f(w)/fo(w) is (weakly) monotonically increasing in |w| and lim,,_,~ f(w)/fo(w) < M can
be written as a mixture f(w) = [ f,P(w)dIl(f), where 5" = f; and for 6 > 0

o (w) = 1w| < 0lfo(w) + Lw| > O]M - fo(w). (11)

Here, f;*P(w) is equal to the benchmark spectrum fy(w) for w < § and jumps to M - fo(w)
for larger values of w. Let 5P be the covariance matrices induced by f5*?, 6 > 0.

Since SCPC controls size at ¥y = ¥(¢), one can apply Theorem 2 to the SCPC t-statistic
with p = 0.03 to the parametric class X5" in the U.S. states spatial designs. Numerical
experimentation shows that for ¢ = guniform, We may choose M = 10 for all 240 locations s.
Thus, in those designs, SCPC controls size under all isotropic spectral densities f(w) = f(||w]|)
such that f(w)/fo(w) is monotonically increasing in |w| with lim, . f(w)/fo(w) < 10.

It turns out that for some location draws generated under g = gign, some of the v;(6)
defined in Theorem 2 are negative. So instead, we let fo in (11) be flatter than fg)mh, weakening
the claim about size control. In particular, we let fo = g)mh, with ¢y > ¢y, and determine
for what kind of values of ¢y the claim holds again for M = 10. Across the 240 locations
generated under g = gjgne, the percentiles of the ratios é/cy are (1.00,1.04,1.18), so SCPC
controls size for a large class of spectral densities that are nearly as steep as beO“Ch close to the

origin.

3.2.2 Regularly-Spaced Time Series Case

A particularly interesting application of these ideas is the familiar time series case with
sy =1/n €S8 =10,1]. The benchmark model then simply becomes an AR(1) process with co-
efficient ¢, = e~%/™. Due to aliasing, the spectral density, h, of a stationary regularly-spaced
time series is usefully defined on the interval [—m, 7|, h : [—7, 7| = R. We again normalize

h(0) = 1. The corresponding benchmark spectral density is proportional to

1

bnch
h ) o T 0 cos()’

A€ [—m, 7).
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As in the spatial case, a spectral density A would naturally be considered less persistent than
ho if h(\)/ho(X) is (weakly) monotonically increasing in |A|, motivating the consideration of
mixtures of A3 P(A\) = 1[|A| < 0]ho(w) + 1[|A| > O] M - ho(w).

Numerical experimentation using the expressions in Theorem 2 now shows that the SCPC
t-statistic applied to the time series case controls size for these mixtures for M = 5 and
ho = h2™" with ¢ = 1.03¢, for n € {50,100, 200, 500}

Remark 3.5. Taking limits as n — oo yields a corresponding asymptotic robustness state-
ment: The function fo(w) = lim, e ho(w/n) = é/(w? + ¢2) is the ‘local-to-zero’ spectral
density (cf. Miiller and Watson (2016, 2017))?? of a local-to-unity process with parameter
¢o. Consider any process with spectral density h = h,, whose local-to-zero spectral density
f(w) = lim, o hp(w/n) is such that f(w)/fo(w) is monotonically increasing in |w| with
lim,, o f(w)/fo(w) <5 and that satisfies the CLT in Miiller and Watson (2016, 2017). Ap-
plication of Theorem 2 then implies that the SCPC t-test controls asymptotic size for all such
processes.

3.3 SCPC Size Control Under Heteroskedasticity and Mismea-
sured Locations

We now briefly study size control of SCPC in the U.S. states spatial designs if either the
variance of wu; is a function of the location, or the locations are mismeasured.

The first experiment is a heteroskedastic model where u; = ¥(s;)t;, with @, following the
benchmark model with ¢ = ¢5. We let log 1) increase or decrease linearly from log(s) =
0 to log®(s) = log3 moving from the most westward to the most eastward location, or
from north to south. The largest of the four rejection frequencies of SCPC has percentiles
(4.6%,4.9%, 5.3%) and (5.1%,6.4%, 8.7%) under Guniform and gignt, respectively. We conclude
that heteroskedasticity does not seem to be a major driver of size distortions.

The second experiment investigates location measurement error of a form studied in Con-
ley and Molinari (2007). Specifically for each location, s; = s; + ¢; where s/ is the mea-
sured location, s; is the true location and e; is the measurement error. The error term is
e; = (e1,, e2;) with ey ; the north-south and e, the east-west coordinate and e;; 1.i.d.U(—9,0)
over ¢ and [, and 6 = 0.0375H with H the length of the smallest square that encompasses
all locations, corresponding to medium “level 4” errors in Conley and Molinari’s (2007) clas-
sification. The null rejection frequencies of SCPC have percentiles (5.3%,5.6%,6.1%) and
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(5.1%, 7.3%, 17.5%) under Guniform and gigne, respectively. Evidently, measurement error of
this sort has little effect on the size of SCPC under uniformly distributed locations, but can

lead to substantial size distortions for some highly concentrated spatial distributions.

4 Efficiency of SCPC

In this section we study the average length of SCPC intervals. We again focus exclusively on
a Gaussian finite sample framework, so we adopt the notation of the last section. We consider
two comparisons. First, we compare SCPC to previously proposed spatial t-statistics. Second,
we assess absolute efficiency by computing a lower bound on the average length of a length-
optimal confidence interval.

For the latter comparison, we consider confidence intervals CI(y) C R of the form

Cly) = [y — 6(0),g + ()] (12)

with a margin-of-error estimator ¢ : R" — [0, 00) that is a scale equivariant function of the
residuals @, 6(At) = Ad(@) for all A > 0, but is otherwise unrestricted. We want to compare
the SCPC interval with a version of CI(y) that, like SCPC, has good coverage P%(u € Cl(y))
over a range of potential spatial correlation patterns 3 € V. The metric for measuring
efficiency is the expected length Ex(.[[ 1z € Cl(y)]dz] in the SCPC benchmark model
y ~ N, X(cp)) for a given ¢; > ¢, or expected length in the i.i.d. model, ¢; — co. We
compare these expected lengths in the U.S. states spatial designs, using ¢; = 2¢g, ¢; = 5cg, or
¢ — oo (i.e., the i.i.d. model).

As in Section 3, we take a spectral perspective to guide our choice of V: Intuitively, for
a method that seeks to minimize expected length under c;, it is hardest to control size if

the spectral density is proportional to f = f; = f for high frequencies, but steeper for

C1
lower frequencies, so that the variance of y is larger than one would expect based on an
extrapolation using high frequency variation. As discussed in the last section, the choice of p,
and hence ¢y of SCPC is usefully thought of as specifying the the worst-case steepest spectral
density f = fy = f;mh. This motivates a choice of a putative “least favorable” continuous

spectral density of the form

fo(6)

) = Ll < 01fo(w) + 1wl > 013

fi(w)
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so that fy"k coincides with fy over low frequencies, has a kink at w = 6, after which it
coincides with a scaled version of f;. Let X§" denote the implied covariance matrix, and set
Y = Phink — fyilink . g > ),

This construction is not applicable to the i.i.d. case, since setting f; equal to a constant
does not yield an integrable spectral density. Instead, define fa(w) = 1{|w| < 0](fo(w)— fo()),
and let fr(w) = fo(w) — fa(w), so that fy(w) = fa(w) + fr(w). In obvious notation, the
corresponding covariance matrices satisfy 3(cy) = Xa(0)+Xg(6). Since fr(w) is a continuous
density that is flat for |w| < 6, and that follows the same decline as fy(w) for |w| > 6, it
also contributes to the overall persistence of ¥(cg). Thus, replacing Xg(6) by A\ (2r(0))I,
reduces overall persistence, motivating the construction of ™ in the i.i.d. case as XLfmk =
Ea0) + M (Zr(9))L,.

As one would expect given the results of Section 3, SCPC controls size in the U.S. states
spatial designs under VX5 or at least nearly so: With agcpc(f) = Pozlgmk (Técpc > cVicpo),
the distribution of supysq ascec (0) has 95th percentile smaller than 5.2% under ¢ = guniform
for all considered values of ¢, and smaller than 7.3% under g = giignt. To keep things on an

equal footing, we allow CI the same degree of undercoverage, that is we consider the problem
i%f Ez(cl)[/ 1[z € Cl(y)]dz] s.t. Pggnc(p ¢ Cl(y)) < max(ascpc(f), @) for all § > 0. (13)

In words, we seek the confidence interval with the shortest expected length in the ¥(c;) model
among all confidence intervals of the form (12) that are as robust as the SCPC interval under
Skink 6 > 0.

Since 6 is one-dimensional, one can apply the numerical techniques of Elliott et al.
(2015) and Miiller and Wang (2019) to obtain an informative lower bound on the objec-
tive infs Ex(.)[ [ 1[z € CI(y)]dz] that holds for any CI(y) of the form (12) that satisfies the
constraint in (13).

We compare these lower bounds on expected lengths with five confidence intervals based on
spatial t-statistics: (i) the SCPC t-statistic as defined in Section 2; (ii) an alternative version
of the SCPC t-statistic that chooses ¢ to minimize expected length in the 3(c;) model with
c1 = 2¢ (alt-SCPC); (iii) a t-statistic based on a Bartlett-type kernel variance estimator with
bandwidth equal to 0.3 of the largest distance of all observations, Ay.x = max;,||s; — s,
that is k(s;, s¢) = max(1 — 0.3||s; — $¢||/Amax, 0) (Bartlett Kernel); (iv) Sun and Kim’s (2012)
projection t-statistic with k1 = 1, ks = 2 Fourier weights for a total of ¢ = 2(k;+ke+k1k2) = 10
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Figure 2: 5th, 50th and 95th Percentiles of Average Confidence Interval Lengths in U.S. States
designs

weighted averages (Fourier Projection); (v) Ibragimov and Miiller’s (2010) cluster t-statistic
with ¢ = 9 equal-sized clusters (Cluster).* All five methods use a critical value so that size is
controlled in the benchmark model with ¢ > ¢y. (The following results are nearly unchanged
if in addition, one also imposes the coverage constraint in (13).)

Figure 2 reports the 5th, 50th and 95th percentiles of the distribution of expected lengths
under ¢; — oo (the i.i.d. case), ¢; = 2¢g and ¢; = 5¢p, in multiples of the length of the known-
o interval with endpoints § + 1.960/v/n. (In the gunitorm designs, the expected lengths are
often not very variable, so the 5th and 95th percentiles are sometimes hidden by the median
marker in Figure 2.) In the uniform spatial designs, and with ¢; — oo in the light designs,
the SCPC interval comes reasonably close to being as short as the lower bound, and performs
better than the alternative confidence intervals. The differences between SCPC and alt-SCPC
are small throughout, motivating our choice of gscpc to minimize length in the i.i.d. model.
In the light design with ¢; = 2¢y, SCPC performs somewhat worse than the other confidence
intervals, and all intervals are much longer than the lower bound. The latter effect is due to

y being far from the efficient estimator of y when ¢; is small and the location distribution is

4The assignment of locations to clusters is performed sequentially, where at each step, we minimize (across
yet unassigned locations) the maximal distance over clusters (among those that have not yet been assigned n/q
locations). Cluster distances are computed from the northwest, northeast, southeast and southwest corners
of the location circumscribing rectangle, and in the ¢ = 9 case, also from the mid-points of the four sides of
this rectangle, and its center.
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not uniform: the population R? of a regression of i on 1 has percentiles of (26%, 47%, 59%)
under g = ggnt and ¢; = 2¢p. Thus, there exist margin-of-error functions (i) in (12) that
exploit this partial information about the realization of ¥, leading to small lower bounds that

are even below the length of the known-o interval in some cases.

Remark 4.1. These efficiency results imply a limit on the possibility of using data-dependent
methods to learn about the value of the worst-case correlation ¢y: For example, consider an
approach that pre-tests whether there is any spatial correlation (that is, whether ¢y can be
chosen arbitrarily large), and that conservatively reverts to a very wide interval if it detects
any correlation. If one could devise a pre-test that reliably indicates the presence or absence
of spatial correlation, then one could easily construct a function ¢ that (i) controls size under
Vkink: and (i) is nearly as efficient as the oracle interval in the i.i.d. case. But given our lower
bound results, such a function cannot exist. The same argument applies to pre-tests that seek
to determine whether, say, ¢y can safely be chosen five times as large as a given value, while
still trying to control size if it cannot.

More generally, any attempt to estimate 3 from the data and to use this value for inference
about p must either yield confidence intervals that are not much shorter than SCPC, at least
in the uniform designs and the i.i.d. light designs; or fail to control size under V¥k  For
example, consider a plug-in estimator 61231 of 0 = I'S1/n with ¥ in the Matérn class, so
that the spectral density is proportional to (¢® + w?)™17", v, ¢ > 0. Suppose we estimate the
Matérn scale parameter, ¢ > 0 and v € {1/2,3/2,5/2} by maximizing the Gaussian likelihood
(this grid of values for v is computationally convenient, since it yields simple expression for
the covariance function). We find that in the U.S. states spatial designs with ¢ = guniform, the
confidence interval with endpoints § + 1.966p1/+/n induces non-coverage probabilities with
percentiles (21%, 22%, 23%) in the V¥Iik class with ¢; = 5¢p.

5 Large-Sample Analysis of Spatial t-Statistics

This section extends the results for finite-sample Gaussian models to large-sample non-
Gaussian settings. The discussion is facilitated using notation that emphasizes the sample
size, and we do by appending a subscript n to many of the variables defined previously. For
example, the t-statistic defined in (2) will be denoted 7, and so forth for other variables.
The large-sample distribution of 7,, depends on two characteristics of the model. The
first is the covariance function of the u; process, that is, the covariance between u; and u, at
locations s;, s, € S. The second is the distribution of locations s that are sampled. The first

sub-section provides a large-n framework for characterizing these two features of the model.
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With this framework in hand, the following subsections discuss the large sample normality of
the linear functions WSL’ u,, that determine the null distribution of 7,,, extensions for kernel-
based t-statistics, the implications of these results for size control of SCPC-based inference,

and the key role that the density g of s plays in these results even under weak correlation.

5.1 Sampling and Large-n Framework

This subsection provides assumptions on sampling of the spatial locations, the spatial corre-
lation properties of u conditional on the locations, and the set of weight functions used to
determine the weighted averages of u,, that enter the t-statistic 7,,. We discuss these in turn.

Spatial locations: The spatial locations s; are chosen from S, a compact subset of R
Sample locations are selected as i.i.d. draws from a distribution G with density ¢, which is
continuous and positive on S.

Correlation properties of u,|s,: The average pairwise correlation of u;, conditional on the
sample locations s, is p,, = n(n;—l) oy Z#l Cor (u, ug |s, ). When p,, = 0, u, |s, is white
noise. When p,, = O,(1) (and not o,(1)), we will say the process exhibits strong correlation.
When p,, = O,(1/c%) where ¢, is a sequence of constants with ¢, — oo, we follow Lahiri (2003)
and say the process exhibits weak correlation. As shown in the next section, the large-sample
distribution of 7, is different under weak and strong correlation.

Distribution of u,|s,: The following asymptotic framework, adapted from Lahiri (2003),
is useful for modelling weak and strong correlation. Let B be a zero-mean stationary random
field on R? with continuous covariance function E[B(s)B(r)] = o5 (s —r), and B and s, are
independent. To avoid pathological cases, we assume [ op(s)ds > 0 and B is nonsingular in
the sense that infj =1 [ [ f(r)f(s)op(s —r)dG(r)dG(s) > 0 with || f||* = [ f*(s)dG(s). Let
¢, denote a sequence of constants with either ¢, — oo or ¢,, = ¢ > 0. We consider a triangular-
array framework with w; = B(c,s;) for s; € S, so that o,(s) = op(c,s). A calculation shows
that p,, = O,(1/c%), so the sequence ¢, characterizes weak and strong correlation as described
above.

The sequence ¢, determines the ‘infill’ and ‘outfill’ nature of the asymptotics. To see
this, note that the volume of the relevant domain for the random field B is ¢ vol(S), where
vol(S) is the volume of S. The average number of sample points per unit of volume is then
n/(ct vol(S)). If ¢?  n, the volume of the domain is increasing, while the number of points

per unit of volume is not; this is the usual outfill asymptotic sampling scheme. On the other
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hand, when ¢, = ¢, a constant, the volume of the domain is fixed, and the number of points
per unit of volume is proportional to n; this is the usual infill sampling. Finally, when ¢,, — oo
with ¢? = o(n) the sampling scheme features both infill and outfill asymptotics.

Weight Functions: Finally, we specify a set of weighting functions. Specifically, for j =
1,...,q, let w; : S — R denote a set of continuous functions that satisfy [w;(s)dG(s) = 0.
We introduce the following notation involving these functions: w(s) is a ¢ x 1 vector-valued
continuous function with w(s) = (w1 (s), ..., wy(s))’; w¥(s) = (1,w(s)’)’; W,, is a n X ¢ matrix
with /th row given by w(s;)’, and W? is a n x (¢ + 1) matrix with /th row given by w’(s;)’
so that W2 = [1,, W,].

Remark 5.1. In our framework, locations s; are sampled within S for a fixed and given
S. But nothing changes in our derivations if instead we treated the observations y; as being
indexed by ¢,s; € ¢,S, as in Lahiri (2003), or any other one-to-one transformation of s;. The

essential characteristic is the dependence pattern over the spatial domain of the observations
which is governed by ¢, and B.

5.2 Large-Sample Behavior of Weighted Averages

As is evident from equation (7), the t-statistic is a function of weighted averages of the
elements of u,. This subsection discusses the large-sample distribution of such weighted
averages. These results involve weak convergence (i.e., convergence in distribution) where our
interest lies in these limits conditional on the locations s,,. With this in mind, for X,, and
X p-dimensional random vectors, we use the notation X,|s, =, X to denote E[h(X,)|s,] =
E[h(X)] for any bounded continuous function A : R? — R. This notion of weak convergence
in probability is weaker than almost sure weak convergence of conditional distributions, but
nevertheless ensures that the limiting distribution is not induced by the randomness in the
locations s,,.
Lemma 3. (i) (strong correlation) Suppose ¢, = ¢ > 0 and B is a Gaussian process. Then
n"WY,|s, =, X ~ N (0, Q)
with
Q.. = / / wO(r)w'(s) os(c(r — ))dC(r)dC(s).

(ii) (weak correlation) Let a, = c%/n. Suppose ¢, — 00, a, — a € [0,00), and the

assumptions of Lahiri’s (2003) Theorem 3.2 hold. Then

at?n V2PWo%, s, =, X ~ N (0, Q)
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with

Que = aop(0)V; + < / UB(s)ds) V,

where

V, = /WO(S)WO(S)'g(S)ds and Vo = /WO(S)WO(S)IQ(S)QCZS.

Remark 5.2. Note that the variance of Y ;" | w%(s;)u; conditional on s,, is

2w (s \Sn] = 3 S W)W ) s — o)
i=1 1 ¢
— Z Z WO(SI)WO(Sg)/O'B(Cn (Sl — 54)), (14)
I ¢

Var

The strong-correlation covariance matrix, 2., is recognized as the large-n analogue of this
expression after appropriate normalization and averaging over the locations. The weak-
correlation covariance matrix, €2,., differs from €2,. in two ways. First, because ¢, — o0
in the weak-correlation case, and o (r) vanishes for large |r|, the second term in €, is recog-
nized as the limit of 2. as the double integral concentrates entirely on ‘the diagonal’ where
r ~ s. Second, as outfill becomes more important (that is, a, = ¢ /n gets larger), variances
become more important relative to covariances; this explains the first term in €2,,..

Remark 5.3. In the strong-correlation case, normality is assumed. That said, CLTs have
been established also for strongly correlated models when d = 1 (i.e., the time series case),
such as Taqqu (1975), Phillips (1987) or Chan and Wei (1987), and to a lesser extent also
for d > 1, as in Wang (2014) or Lahiri and Robinson (2016). For the weak correlation case,
large-sample normality follows from Theorem 3.2 in Lahiri (2003), which imposes mixing and
moment conditions on B.

Remark 5.4. The regularly-spaced time series analogue of part (i) of Lemma 3 is the con-
vergence n~ W%, s, = X = fol w?(s)B(cs)ds. The result in part (ii) has no such analogue,
as the complications arise precisely under non-uniformly distributed locations.

Remark 5.5. The factor [op(s)ds in front of Vy is the spatial analogue of the long-run
variance of the process B. In this integral, the distances are weighted as if s was uniform on
R?. This is a consequence of the i.i.d. sampling assumption on s;: Under weak correlation,
only observations very close to each other are meaningfully correlated, and with g continuous,
the density of the locations s; is locally flat in a small enough neighborhood around any given
point s € §. This asymptotic approximation hence requires that the observed s, is such that
the empirical distribution of s; — s, is approximately uniform conditional on ||s; — s/|| being
small. If B is assumed isotropic, a sufficient condition is that A;, = ||s; — s¢|| has an empirical
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distribution that is reasonably well approximated by a density proportional to AY~! close to
the origin.

Remark 5.6. The form of V5 is recognized as the limit covariance matrix in a model where the
observations are independent, with variance proportional to g(s;). Thus, Vs is what one would
obtain for the limit covariance matrix under a specific form of non-stationarity. Intuitively,
a high density area does not only yield many observations, but under spatial correlation, the
variance contribution is further amplified by the resulting high average correlation.

5.3 Large-Sample Distribution of Spatial t-Statistics

5.3.1 Projection Variance Estimators

Lemmas 1 and 3 lead to the following representation for the limiting distribution of

Theorem 4. With Q € {Qs., Qe }, wi defined in Lemma 1, and (Zy, Zy, ..., Z;) ~ N(0,1,41),
under the assumptions of Lemma 3, P(72(W,W') > cv?[s,) & P (ZO2 > Zle(—Z—é)Zi2>
under the null hypothesis.

Remark 5.7. In the general weak correlation case with arbitrary spatial density g, 2. =
acp(0)Vy + ( f op(s ds) V5. Because 7' is a scale-invariant functlon of u,,, it is without loss
of generality to normalize the scale of op(-) so that aop(0) + [op(s)ds = 1. Under this
normalization

ch = I€V1 + (]_ - H)Vg (15)

where £ is scalar with 0 < x < 1. Thus, the limit distribution of 72 is seen to depend on
op only through the scalar x; the matrices V| and V, are functions of the weights w" and
the spatial density g. The scalar x thus completely summarizes the large sample effect of
alternative underlying random fields B and weak correlation sequences ¢, — oco.

Remark 5 8. When g is constant, so the spatial distribution is uniform, V; o V2 and €, x
[ w s)'ds. In a leading case with orthogonal w; of length 1/,/q, [ w;(s)w;(s)dG(s) =
q 11[2 = ]], ch o diag(1,¢'I,). Thus the asymptotic rejection probability becomes the
corresponding quantile of the F} , distribution, a result familiar from the limiting distribution
of projection based squared t-statistics in the regularly spaced time series case. Importantly,
while this result holds under constant g, it does not hold for other spatial distributions, so
that the typical HAR results about inconsistent variance estimators for regularly spaced time
series under weak dependence do not carry over to the spatial case.

For example, consider Sun and Kim (2012) inference in the U.S. states spatial design with
g = Qiight and n — oo. Suppose we use k; = 1 and ky = 2 Fourier weights, so that the total

22



number of weighted averages is ¢ = 2(k; + ks + k1k3) = 10, and Sun and Kim (2012) suggest
using the critical value from a student-t distribution with 10 degrees of freedom (corresponding
to computing the critical value under k — 1, or equivalently, under i.i.d. sampling). Under
a weak-correlation sequence with k = 0, so that €,. = V,, a direct calculation shows that
these nominal 5% level tests have asymptotic null rejection probabilities with percentiles
(6.2%,10.3%, 30.0%) across the 48 U.S. states.

In contrast, for the Ibragimov and Miiller (2010) cluster t-statistic with clusters defined
by a partition of § into ¢ subregions, the special structure of the corresponding weighting
functions w implies that the lower right ¢ x ¢ block of €2,. is diagonal irrespective of g,
which guarantees asymptotic validity of the student-t ¢ critical value by virtue of Bakirov and
Székely’s (2005) result about the small sample validity of the usual t-test with heteroskedastic
observations at conventional significance levels (cf. Remark 5.6).

Remark 5.9. For SCPC and other estimators, the weights w(s) are estimated using the
sample locations s,. Lemma 12 in the appendix provides conditions under which the result
in Theorem 4 continues to hold for estimated weights W(s).

5.3.2 Kernel Variance Estimators

This subsection discusses how these results can be generalized so they apply to kernel-based
variance estimators, 62 (M, K,,M,,) and associated t-statistics 72 (M, K, M,,), where the n x n
matrix K,, has ([, /) element equal to k(s;, sy) for a positive semidefinite continuous kernel
kE:S xS +— R. Since in our framework, s; € S for a fixed sampling region S, and k does
not depend on n, these kernel estimators are spatial analogues of fixed-b time series long-run
variance estimators considered by Kiefer and Vogelsang (2005), as also investigated by Bester
et al. (2016).
Let K,, = M,K,M,,, and note that the (I,¢) element of K, is ky (s, s¢) with

kn(r,s) = k(r,s) —n~ stl, —n- Zkrsz +n" ZZkSZ,Sg (16)

I=1 (=1
To begin, consider a simpler problem using a kernel that replaces the sample means in (16)

with populations means
k(r,s) = k(r,s) — /k(u, $)dG(u) — /k r,u)dG(u // u, t)dG(u)dG(t). (17)

By Mercer’s Theorem, k(r, s) has the representation
r) =Y digi(s)eq(r) (18)
i=1
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where (\;, ;) are the eigenvalues and eigenfunctions of k, with eigenvalues ordered from
largest to smallest, normalized so that [¢;(s)¢;(s)dG(s) = 1[i = j]. By definition of an eigen-
function, for A; > 0, ¢;(-) = A7 [k(-, s)g,(s)dG(s), so ¢, is continuous, and [;(s)dG(s) = 0.

Consider the problem with a truncated version of k,
_ q
kg(s,T) = Z Aipi(8)p; ().
i=1

We can directly apply Theorem 4 using w;(s) = )\;/ 2g0j(3). Specifically, let K,,, be an
n X n matrix with (I,¢) element equal to k,(s;,s¢). Then u,K, ,u, = u,W, W’ u, so that
72(Kny) = 72(W,W/), and P (72(K,.4) > cv?s,) = P <Z§ > 23:1(_5_3)21‘2) by Theorem
4.

To extend this result to the original problem, it is useful to reformulate it in terms of
eigenvalues of linear operators. Specifically, denote by L% the Hilbert space of functions
S — R with inner product (fi, f2) = [ fi(s)f2(s)dG(s). Normalize Q. = Vi + (1 — k) Vy,
as in (15). A tedious but straightforward calculation (see (29) in the appendix) shows that
the eigenvalues w; of A = D(cv)Q with Q = {Q

self-adjoint linear operators EZG —> EQG, namely R, T,Rs. and R,.T,R,. in the strong and

oor Qe } are also the eigenvalues of finite rank

weak correlation case, respectively, where

RAD() = [ onlels =) )60
R2()(s) = (k+ (1= k)g(s))f(5)
TN = [ (1= e kys,) F0)G(),
This suggests that the limiting rejection probability for the original non-truncated & might

be characterized by the (potentially infinite) number of eigenvalues of the operators RTR :
L2+ L2, with R € {Ry., Rs.}, where

T(f)(s) = / (1— v F(s, ) F(r)dG(r).

The following theorem shows this to be the case, and it also includes the generalization to

sample demeaned kernels (16) instead of (17).

Theorem 5. Let wqy denote the largest eigenvalue, and w;, 1 > 1 the remaining eigenvalues of
RTR for R € {Ryc, Rsc.}. Then under the assumptions of Lemma 3, wg > 0 and w; < 0 for
i >1, and P(12(K,) > ev?s,) B P(Z2 > 3.0 (—wi/wo) Z2).
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Remark 5.10. Under weak correlation the limit distribution of kernel-based spatial t-
statistics depends on the spatial density g, since the eigenvalues of R,,.T' R, are a function of
g. This is analogous to the results for projection estimators discussed above. Thus, in both
cases, using a critical value that is appropriate for i.i.d. data does not, in general, lead to
valid inference under weak correlation.

Remark 5.11. The framework of Theorem 5 also sheds light on the asymptotic bias of
kernel-based and orthogonal projection estimators under weak correlation. The estimand
o2 is the limiting variance of ay/*n~/2 3" w,, which under the normalization (15) is equal
to the (single) eigenvalue of the operator Ry.1,2R,. with T,2(f)(s) = [ f(r)dG(r), that is
[(k+ (1 —K)g(s))dG(s). The expectation of a,5?(K,) converges to the trace of the operator
RucTi Rue with Ti(f)(s) = [ k(s,7) f(r)dG(r), that is [(k+ (1 — k)g(s))k(s, s)dG(s). Thus,
the estimator is asymptotically unbiased for all g if and only if k(s,s) = 1. For standard
choices of k, k(s,s) = 1, so the only source of asymptotic bias is the demeaning (and if the
estimator 6721 uses the null valuey, — pl, instead of the residuals 1@, the asymptotic bias is
zero under the null hypothesis). Moreover, if k(r, s) concentrates around the ‘diagonal’” where
r & s, corresponding to a fixed-b kernel estimator with small b, the demeaning effect is small,
as is the asymptotic variability of an&i(f{n). Thus, fixed-b kernel estimators with standard
kernel choices and small b yield nearly valid and efficient inference under weak correlation.

In contrast, orthogonal projection estimators where k(r,s) = ¢~ 3% | ¢,(r)¢;(s) do not
share this approximate unbiasedness property, even for ¢ large, since [ ¢;(s)*dG(s) =1 does
not, in general, imply that k(s,s) = ¢~ 3.7, ¢,(s)? ~ 1.

i=1

The proof of Theorem 5 involves showing that in large samples, the difference between the
eigenfunctions of the sample demeaned kernel (16) and the population demeaned kernel (17)
becomes small. The following lemma extends and adapts previous results by Rosasco et al.

(2010) to the case of sample demeaned kernels.

~

Lemma 6. Let (V;, \;) with ¥; = (0;1,...,0;,)" be the eigenvector-eigenvalue pairs of n 1K,
with Ay > Xy > ... > N\, and n~ /¥, = 1. For all i with \; > 0, define the S — R functions

P A
Pi()=n7A D bidka(, 1), (19)
=1

Let N\jy, j = 1,... be the unique positive values of \; in descending order, and suppose A
has multiplicity m; > 1. Then for any p such that Ay > 0,

(a) there exist rotation matrices Oy of dimension mj; x m;, j = 1,...,p such that with
q= izlmh ¢:(¢17"'7¢q)/ andsb:(@lv"'?@q)/;

A

sup|[i(s) — ding(Oqy. ... O)@(s)l| = Opln™"");
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(8) 31 (M = A)* = Opln ™).

Part (a) shows convergence of the eigenspace corresponding to unique eigenvalues, and

part (b) shows convergence of the eigenvalues.

5.3.3 SCPC t-Statistic

Beyond its use in the proof of Theorem 5, Lemma 6 can be used to establish the large sample
distribution of the SCPC t-statistic for nonrandom ¢ and critical value cv. Note that in this
application of Lemma 6, we are interested in the eigenfunctions of the demeaned covariance
kernel k°(r, s) = exp(—cp||r — s||) of the benchmark model, rather than the eigenfunctions of
a kernel that defines a kernel-based variance estimator.

Recall from Section 2 that r; is the eigenvector of M,, 3, (co)M,, corresponding to the ith
largest eigenvalue, normalized to satisfy n='rir; = 1. Let ¢? be the eigenfunction of the kernel
k(r, s) corresponding to the ith largest eigenvalue A, where k° is the demeaned version of
k° in analogy to (17). Combining Lemma 6 with a result (Lemma 13 of the appendix) that

suitably accounts for estimated weights yields the following corollary.

Corollary 7. Suppose )\2 > /\2Jrl and the assumptions of Lemma 3 hold. Then the convergence
in. Theorem 4 holds for T3cpc(q) = 72(q7" 321 vir}) with w(s) = (£1(s),...,©0(s)) /\/q-

5.4 Asymptotic Size Control under Weak Correlation

As discussed above (see equation (15)), under weak correlation, the asymptotic rejection
probability of 7, for finite ¢ can be studied via Q,.(k) = KV1+(1—k) Vs, where the covariance
function of B and the sequence ¢, affects the large-sample distribution of 7, only through
the scalar x € [0,1). Thus, if ©v is such that supg<,.., P (3 1 ,wi(k, V)27 > 0) = «, where
{wi(k,cv)}, are the eigenvalues of A(k,cv) = D(cv).(k), then setting cv,, > ¢v for all n
yields inference that is asymptotically robust under all forms of weak correlation covered by
Theorem 3 (ii). In the case of a kernel-based variance estimator, the same holds as long as v
satisfies supg< 1 P (3o wi(k, V) Z7 > 0) = a where {w;(k, TV)}32 are the eigenvalues of the
linear operator L(f)(s) = [ \/k+ (1 — k)g(s) (1 —ev?k(s,7)) /& + (1 — k)g(r) f(r)dG(r).
The value ¢v depends on the spatial density g, which can be seen directly by inspecting

the form of €2,,. and the operator L. In principle, one could use these expressions to estimate
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cv directly. But this would involve estimates of the spatial density g, which leads to difficult
bandwidth and other choices. We now discuss a simpler approach.

Consider a benchmark model BY that satisfies the assumptions of Lemma 3 (ii), such as
the Gaussian exponential model introduced in Section 2. Let 0% denote the covariance kernel
of BY, and suppose ¢, g, is chosen so that a, o = cfho/n — ag = 0. For instance, ¢, o = cy > 0
satisfies this condition, as does ¢, o = n'/?/log(n). Note that for this model x = 0. Suppose
cvy, = vy (s, ) satisfies

sup ]P’%(C) (72 > v s,) < (20)

c>Cn 0
where P§, ) is computed under the benchmark model, that is under u,[s, ~ N (0, (c)) with

3(c) the covariance matrix of (B%(csy), ..., B%(cs,))'.

Theorem 8. Let cv? satisfy (20). Under arbitrary weak correlation in the sense of Lemma
8 (i), for the SCPC t-statistic and t-statistics covered by Theorems J and 5, max(cv? —
cv2,0) % 0. Consequently, for any € > 0, limsup, P(P(12 > cv2s,) > a +¢) — 0, so that
limsup,, P(72 > cv?) < a.

The intuition for Theorem 8 is as follows. The critical value cv,, in (20) is valid in the
benchmark model for all ¢ > ¢, and n. Thus, it is also valid along arbitrary sequences
Cn > Cpo. Since the ¢, model has k = 0, there exists sequences ¢, > ¢, that induce any
k € [0,1) in the benchmark model; different sequences ¢, in the benchmark model therefore
trace out all possible limit distributions under generic weak correlation, so that size control
in the benchmark model for all ¢ > ¢, translates into size control under generic weak
correlation.

For SCPC, the benchmark covariance kernel for BY is exponential 6%(r, s) = exp(—c||r —
s||) and (from equation (5)) the critical value is chosen to satisfy (20) with equality. Thus,
with a fixed value of ¢y (or a fixed value of p), the SCPC t-test Tscpa(q) controls size in large

samples under generic weak correlation.’

STechnically, the SCPC choice of q in (6) is also a function of the locations of s,, so gscpc is random.
However, the argument that establishes Theorem 8 can be extended under this complication as long as
gscpC < Qmax almost surely for some finite and fixed ¢uax. See Theorem 14 in the appendix for a formal
statement.
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6 Extensions to Regression and GMM

The extension of these results to regression and GMM problems follows from standard argu-

ments. For example, consider the linear regression problem
w=xf+z0+¢eforl=1,...,n (21)

where (3 is the (scalar) parameter of interest, z; are additional controls in the regression, and
(wy, z;,2;) are associated with location s;. Let #; = x; — S,.S;'z; denote the residual from
regressing x; on z;, where we use the notation S, = n~! E?:l a;bj for any vectors a; and b;.

Suppose Siz = 02, > 0 and n~ V23" | Fg|s =, N(0,02.). Then

V(3 = B)ls =, N(0,0%)

2 = o2 _/oi.. Spatial correlation affects inference in this model through oZ%_ which

where o
incorporates potential correlation between z;e; and z,e, at spatial locations s; and s,.
Thus, suppose that Z;e; satisfies the assumptions previously made for u;. Then a straight-
forward calculation shows that setting
; Li€]
y=>p5+ ST
in the analysis of the previous sections leads to analogous results with [ replacing p as
the parameter of interest. The extension to GMM inference, potentially with clustering, is
analogous; see, for instance, Section 4.4 of Miiller (2020).

As usual, these extensions require that Z;&; (or its GMM analogue) is stationary. This may
be implausible is some applications. Miiller and Watson (2022) investigate the performance
of SCPC inference in regression models with a range of non-stationary processes for x; and or
e;. That paper also takes up the problem of computing the SCPC test statistic in applications

with very large n.

A Appendix

Proof of Lemma 1: with X = W%u = (Xo,X},,) and Z = (%o, Zy, ..., Z,)' we have

X2
P(rA(WW') > v?) = P (ﬁ > cv2) =P (X§ — ov* X}, Xoy > 0)
1:g%>1:q

28



= P(X'D(cv)X > 0) = P(Z'QY°D(cv)QY?Z > 0)
q

=P (Z w; Z2 > o)
1=0

where the last equality follows by similarity of the matrices Q'/2D(cv)Q'/? and D(cv)Q. The
claim about the sign of the eigenvalues follows from Lemma 10 below. B
The proof of Theorem 2 relies on some preliminary results.

Lemma 9. For any two q X q positive semi-definite matrices By and By and vectors vy, vy €
R4, and all p € [0, 1],

<(p) = (pvi+ (1 = p)va) (I, + pB1 + (1 — p)Ba) ' (pvy + (1 — p)v2)
—pvi(IL,+By) tvy — (1 = p)vi(I, + By) 'vy < 0.

Proof. We first show that ¢(p) is convex. Write G(p) = I, + pB; + (1 — p)B,. The first
derivative of the nonlinear part of %g(p) is given by

(vi—=v2)'G(p) " (pvi+(1=p)v2) — 2 (pvi+(1—p)va) G(p) ' (B1—B2)G(p) ' (pvi+(1—p)va)

so that the second derivative of $¢(p) equals

(vi = v2)G(p) " (vi — va) = 2(vi — v2)'G(p) " (B1 — B2)G(p) ' (pvi + (1 — p)va)
+ (pvi+ (1 = p)va)'G(p) ' (B1 — B2)G(p) ' (B — B2)G(p) ' (pvi + (1 — p)va).

With A(p) = G(p)"*(vi = v2) and r(p) = —G(p)"*(B1 — B2)G(p) ' (pvi + (1 — p)va),
the second derivative may be rewritten as

(T ),GZ C) (e )z
and convexity follows. Thus max,co. <(p) < max(s(1),¢(0)) = 0. O

Lemma 10. Let A; = [P7'D(cv)Q(0)PdAF(0). The ¢+ 1 eigenvalues of Ay are real, and
only one is positive, and the same holds for A(0), 6 € ©. Furthermore, A\;(A;) > 1.

Proof. By similarity, the eigenvalues of A; are equal to those of PA;P~!, which in turn is
similar to the symmetric matrix

~ 1/2 ~ 1/2
'Sl I'S,W 1 0 'Sl I'S,W
W'l W, W 0 —I, W'l W, W
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with W = (1, W/ cv), and the first claim follows for A;. The claim for A(6) follows from the
same argument.
For the last claim, let A : R — R

h(t) =1 — IS+ 212, W(I, + tW'E,W)'TW'S, 1.

= tW(I, + tWZ,W)'W's 1

(i)

Note that h(t) is weakly decreasing in t > 0, since with

vo--(4) (3 2)

The characteristic polynomial of A is given by

dot s—1'21 'S, W
~W'Sl s, + WS W

= (s = I'S|1+ IS, W(sI, + W, W)"'W'S11) det(sI, + WS, W)
= sh(s™) det(sI, + W', W)

so that \; (A1) satisfies h(1/X\(A;)) = 0. Similarly, 1/A;(A(6)) = 1 is a root of
ho(t) = 1 — tI'S(O] + IS ()W (I, + tW'S(A) W) TW'E(9)1.
By Lemma 9, for any ¢ > 0,

I's W(I + WS, W) 'W'S, 1

/ -1
_ < ldF(H)) (Iq +t / W’E(G)WdF(9)> ( / W’E(G)ldF(@))
< / . W' S(O)W) "W/ (0)1dF(6).
Thus, h(t) < [ hy(t)dF (), and from hy(1) = 0 for all 6, h(1) < 0. Since h is decreasing, its
root 1/A;(A;) must thus be smaller than unity, and the conclusion follows. O

Proof of Theorem 2: Proceeding as in the proof of Lemma 1, Py, (T2(WW') > cv?) =
P(Z2> 1 n;Z%) with ; = N (—A1) /A1(A1). By Lemma 10, 75; > 0 for i = 1,...,q. For
future reference, note that Px,(7*(WW') > cv?) = « yields P(Z3 > Y7 n,Z?) < « for

n; = Ai (—Ao).
In the following, we write a < b for two vectors a,b € R* to indicate that b majorizes a,

that is, with the elements of a; and b; sorted in descending order, ZLI a; < Zgzl b; for all
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j=1,...,k, and Zle a; = Ele b;. Let Ay = %(Al + A’). From Theorems 9.F.1 and 9.G.1
in Marshall et al. (2011)
M(=AL), - A(=AY) < (M(=Ay), . A (=Ay) (22)
< (/ M(—A(0)dF(©),....

NEAOMFE). [ Ayr(-AO)FE)).

Since [ Ag11(—A(0))dF(0) = — [ A (A(0))dF(0) and Agi1(—Aq) = =M1 (Ay), we have

q

(A + SN (A = - / MAO)IFO) + 3 / A(—A(0))dF(9).

J=1 J=1

The majorization result (22) further implies

M(AL) < M (A) < / M (A(0))dF(9) (23)

so that also

with the elements still sorted in descending order. Thus, with 7; = [ Ai(—=A(6))dF(0)/ (A1)
fori=1,...,g—1 and

- J A(=A0))dF(6) — (J M(A(0))dF(6)) — Mi(Ay))
! Ai(Aq)

we have (7y,...,1,) < (7,...,7,). From the integral representation of Lemma 1 (ii),
the application of the Schur-Ostrowski criterion (Theorem 3.A.4 in Marshall et al. (2011))
shows that P (Z5 > Y7 | ;Z?) is Schur convex in (ay, ..., a,), so that P(Z5 > Y1 7,Z%) <
P(Z§ = 320, :27).

Now applying (23), 7} = [Xi(=A(0))dF(0)/ [ \(A(0))dF(0) < 7; for i =1,...,q — L,

and since from Lemma 10, A\;(A;) > 1, also

o _ JAa(=AO))dF(6) — (J M(A0)dF(0) = 1) _
nq A — nq
J M (A(0))dF ()
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provided
/ N (—A(0)dF(0) — ( / M (A0))dF(0) — 1) > 0. (24)

Since P(Z§ > > 1 ,0,Z?) is a decreasing function in 7;,, P(Z5>>1 1n,2?) <
P(Z3 > > 1 niZ?) . By Theorem 3.A.8 of Marshall et al. (2011), the Schur-convexity of
(Z2 >3  aZ ) in (a1,...,a,) and P (22 > "% n,Z?) < a, it now suffices to show that
T Mei1oi = Dy Mgs1 for all 1 < j < ¢, and since 7, > 0, this also ensures that (24)
holds. This latter condition may be rewritten as » 7_, [v;(0)dII(§) > 0, and the result
follows. W

Proof of Lemma 3: (i) Since B is Gaussian, n='W2%u,|s, ~ N(0,Q,) with Q, =
n=? Zze wO(s))w0(sp)op(c(s; — s¢)). Tt thus suffices to show that €2, 2 Q...
We have Q, = op(0)n=2 37, w(s)w’(s) +n2 32, wO(s))w'(s,) op(c(si — s¢)), and
[In=23", wO(s)wo(s)'|| < ntsup,es [[WP(s)]|* — 0. Furthermore,

n(n—1) ———— Y wOs)WO(sp) op(c (s — s0) | = E[W (s1)w'(s2)o(c (51 — 52))] = Qe

and with w)(s) the ith element of w°(s),

( e DILUCILACHERIC (sl—so))

z#
- b ;(i)(_ 1; B)E[w?(ﬁ)w?(Sz)’aB(c (s1 — Sg))}E[wg(sze,)w?(s@’aB(c (53— 54))]
4(n —2)

n(n—1)

+ E[w; (s1)w](s2)'ap(c(s1 = 52))w] (s1)w](s3) o p(c (51 — 53))]

2

+ n(n — 1)E[w?(81)w§'}(52),03(0(51 — 32))11]?(81)21}2(82),0'3(6(81 — 59))]

so that Var[ﬁ Do wy (s)w)(se) op(c(si— s0))] = O(n~), and therefore Q, 4 Q...
(ii) By the Cramér-Wold device, it suffices to obtain the desired convergence for fixed linear
combinations. Thus, for v € R?"! define w, : S — R via w,(s) = v'w(s), a continuous

function on a compact set S. We apply Lahiri’s (2003) Theorem 3.2, in the notation \, £ ¢,,

X; & 5, wa(M\'x) £ wy(s) and s2, & fwv s)ds. For any h € R?
Jw,(s+ cflh)wv( s)%ds fwv 2d$ 20
[ w,(s) ds fwv s)ds '
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since the density ¢ is also continuous, so Lahiri’s Condition (S.1) holds. If a, — a > 0,
then n/c? — a=! £ (), and the result follows from Lahiri’s equation (3.4). If a, — 0, then

n/ct — oo and ar*n1/? = (¢ /n*)1/2 so the result follows from Lahiri’s equation (3.5). W

Proof of Theorem 4: In the notation of Lemma 3, with X = (X, X} )" and Z =
(Zo, ..., Z,) we have P(72(W, W) > cv?|s,) & P (X3/(X},,X1,) > cv?) from Lemma 3

and the continuous mapping theorem, so the result follows as in the proof of Lemma 1. Il

The proof of Theorem 5 requires a number of technical preliminaries.
Lemma 11. If X,|s, =, X and Y, 20, then (X, + Y,)|s, =, X.

Proof. Let BL be the space of Lipschitz continuous functions R? — R bounded by one
with unit Lipschitz constant. By Berti et al. (2006), page 93, X,|s, =, X is equivalent
to supyepr, [E[A(X,) — h(X)[s,]| = 0, so it suffices to show that sup,cp; [E[R(X, + Y,) —
h(X)|sn]| 2 0. Let Y =Y, 1[||Y,|| < 1], so that

sup [E[h(X;, +Y5) — h(X)[s,]| < sup [E[A(X, +Y}) = h(X)lsn]| + 2P(][Y7[| > 1]sn).

heBL heBL

Note that with A, (h) = A(X,, + Y}) — h(X,), |An(h)| < |[Y]|] a.s. for all h € BL, so that

sup [E[A(Xn +Y5) = MX)[sa]] = sup [E[An(R) + h(Xy) = h(X)]sn]|
< :él};@L(\E[An(h)!SnH +[E[A(X0) = h(X)[sn]])
< E[[[Y;]llsn] +I§;1BPL\E[h(Xn) — h(X)[sn]]-

We are left to show that Y,, 2 0 implies P(|[YZ|| > 1|s,) = 0 and E[|[Y?][|s,] 2 0.
Consider the latter claim. Suppose otherwise. Then for some £ > 0, and some subsequence
n' of n, im0 P(E[|[Y7|||sw] > €) > ¢, so that liminf,/ ., E[|[Y?/]|] > % But since Y} is
bounded, Y,, % 0 implies lim,_. E[||Y%]|] = 0, a contradiction. A similar argument yields
E[||YZ||sn] = 0, concluding the proof. O

Lemma 12. Suppose the mapping W° : S — RI™! is a function of s,, (but not of B), and

su}s) [[W9(s) — wO(s)]| 20. (25)
se

Then Lemma 3 and Theorem 4 continue to hold with Wg in place of W?, where the ith row
of W0 is equal to (1,W(s;)).
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Proof. We show that Lemma 3 (i) and (ii) continue to hold with w° replaced by w°. We have

E (Z(w?(s,)—w?(sl))u(sl)> [sn | < supiy(s s)[* Z|UB Cn (81— 0))]

=1 seS
almost surely. Proceeding as in the proof of Lemma 3 (i) now shows that
En=2% los(c(si—s)l] = [ [lop(c(r — s))lg(r)g(s)drds, so n=237, ,|lop(c(si — s0))| =

O,(1).  Similarly, under the assumptions of part (ii) of Lemma 3, proceeding as in
the proof of Lemma 5.2 of Lahiri (2003) yields Ela,n~" 3", lop(c. (51— 50))|] — ao +
JgaloB(s)|ds [ g(s)*ds. The result thus follows from (25) and Lemma 11. O

Lemma 13. In the notation of Lemma 6, suppose W = L&, where the ith column of the nx q
matriz ® is V; = (Pi(s1), ..., Pi(sn)) and L = diag(\y,...,N\,). Under the assumptions of
Lemma 3, c¢in 2(u’VA\/'VAV/u —uWWW')s, 5 0, where W = L®, L = diag(M Ly, - . ., Al )
and the ith column of ® is equal to (p;(s1),...,0;(sn)) -

Proof. With 0= diag(()u), cee O(p))a

~AlA

ct nWSL du = W' P00 12008 w = cn 2u’<I>O L20'®"u + 0,(1)

n

= dn20'®0 L20'®'u + 0,(1) = cn 20/ ®L*®"u + 0,(1)

where the first equality follows from O’O = I, the second from Lemma 6 (a) and (b) and
the reasoning in the proof of Lemma 12, the third from Lemma 6 (b) and ||cg/2n*10’<11’u|| <
10| - ||/ *n—1®"|| = 0,(1) using Lemma 3, and the fourth from O'L?Q’ = L? a.s. The
result now follows from Lemma 11. ]

Proof of Theorem 5: For the first claim, by Theorem 4.4.6 of Harkrishan (2017),
wo = supy s =1(f, RTRf), so it suffices to show that for some f € L%, (f,RTRf) > 0. In
the weak correlation case, this holds for f(s) = (k + (1 — r)g(s)) Y2, since (f, RyecT Rucf) =

(1,T1) = [ [(1— 5))dG(r)dG(s) = 1. In the strong correlation case, the same conclusion
holds by setting f Such that R,.f = 1. Such an f exists, because the kernel of R?, is equal to
{0} by assumption about o, so the range of Ry is £Z\{0} by Theorem 3.5.8 of Harkrishan
(2017).

Under the null hypothesis, P(72(K,) > cv2|s,) = P(§, > 0|s,), where £, =
cin=? > e wue(l — ev2kn(s1,50)). By construction of ; and ¢,(+) in Lemma 6, for all 1 <
L0 < n, k(s s0) = S0 Mii(51)@;(s¢). For a given ¢ satisfying the assumption of Lemma 6,
and all n > q, let ky (7, s) = 320, M@ (1) @;(s) and ¢ = ¢in2 > wue(l — cv? Fn.q (51, 50)).-
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We now show the last claim, that is P(€, > 0[s,) = P(> "2 wiZ? > 0), which is implied by

the following three claims

(i) for any >0 lim limsupP(|¢, — & >e) =0 (26)
=X n—oo
R q
(ii) for any fixed ¢, P(&. > 0[s,) > P (Z Weili > O) (27)
=0
q 00
(iii) lim P (; wgiZ? > 0) =P (Z_; wi Z2 > 0) (28)

for some double array of real numbers w,; by invoking Lemma 11.

For claim (i), note that for all n > ¢, &, < éi a.s., and

BE —Els.) — i ol — 1) ( S x@-@xslwm)

1=q+1

< Sgrctn S oplen(si — 1)
1l

where the inequality follows from tr(AB) < A;(A) tr B for positive semidefinite matrices A, B
and A\ (A) the largest eigenvalue of A. By the same reasoning as employed in Theorem 12,
can=? 37 soplcn(si—s1)) = Op(1). Furthermore, by Lemma 6 (b), Agi1 — Agi1| = Og(n=1/2),
and lim, ,., A, = 0. Thus (26) follows.

For claim (ii), let ¢y(s) = 1 and A\g = 1. By Lemma 6 (a), Lemma 13 and Theorem
1, claim (27) holds, where w,; are the eigenvalues of D(cv)€2 for 2 € {2, .}, and the
(i 4+ 1), (j + 1) element of € is equal to \/NA; [ [ i(s)op(c(r — )¢, (r)dG(s)dG(r) and
VAN [ @i(s)e;(s)(k+ (1 — K)g(s))ds under strong and weak correlation, respectively.

For claim (iii), we first show that these w,; are also the eigenvalues of the finite rank
self-adjoint linear operators RT,R, R € {Rq, Ruc}. To this end, let ¢i(s) = v NiRp;(s).
With dy = 1 and d; = — cv?, we have

RT,A()) = [ (Z dmsmm) F(r)dG(r)

and the (i + 1),(j + 1) element of Q stated above is equal to /A);j(g;, R%p;) =
VAN (Re;, Roj) = [ ¢i(s)@}(s)dG(s). Let v = (vo,...,v,) be an eigenvector of D(cv)Q
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corresponding to eigenvalue w, D(cv)Qv = wv. Then D(cv)Q2v = wv implies

cores(r) e enes(r)
/ —cv 908:(7“)90?(7“) o @Z:(T)SO’{(T) dG(r)v = wv.
— o gi(r)ey(r) - —evy(r)ey(r)

Premultiplying both sides of this equation by (¢j(s), ..., ¥;(s)) yields

ZZUJ-SD:(S)/digoj(r)gof(r)dG(r) = wzvj@;f(s)

/ (Zdwi‘(S)s@f(r)> <Zvjs0§(7’)) aG(r) = @3 vy(s) (29)

SO Zg 0 Vi3 (r) is an eigenvector of RT, R with eigenvalue w, and since the kernel of RT, R
contains all functions that are orthogonal to {p}{_,, these are the only nonzero eigenvalues.

Now let w ; be the eigenvalues of the self-adjoint linear operator R(17"— 7,)R. By Kato
(1987) (also see the development on page 911 of Rosasco et al. (2010)), there is an enumeration

of the eigenvalues w,; such that

o0

D (wei —wi)? < (W) = [|R(T = Ty R||us (30)

i=0 i=0

where ||R(T — T,)R||gs is the Hilbert-Schmidt norm on the operator R(T —T,)R : L2 — LZ

induced by the norm /(f, f). Now ||R(T—T,)R||us < ||R||*||T—T,||us (cf. (34) below), and
2

since T — Ty, is an integral operator, ||T — T,||us = [ [ ( et )\@-goi(s)goj(s)) dG(s)dG(r).

By Mercer’s Theorem, this converges to zero as ¢ — 0o, so that

li i —w;i)?=0. 31
qggo ;(wq’ w) ( )

Thus using the same order of eigenvalues as in (30), we also have Var[d ! jw,;Z? —
SoowiZ?] < 23 (wgi — wi)?, with the right-hand side converging to zero as ¢ — oo
by (31). But mean-square convergence implies convergence in distribution, and (28) follows.

For the second claim of the theorem, by Lemma 3, w,; < 0 for ¢ > 1, which in conjunction

with (31) implies w; <0 fori>1. W
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Proof of Lemma 6: We initially show a weaker claim than part (a), namely that there

exists a sequence of ¢ X ¢ rotation matrices On = On(sn) with elements Onw such that

max sup |, (s ZO" i1 Pils 0,(n~1/?). (32)

i<q se8

The proof follows closely the development in Rosasco et al. (2010), denoted RBV
in the following. Let ko(r,s) = k(r,s) + 1. Conditional on s,, define the linear op-

erators £2 — £2 (f)(s) = f(s) — ff(T)dG(T), Mn(f)(s) = f(s) — [ f(r)dGn(r)

= [ko(r,s)f(r)dG(r) and L,(f)(s) = [ko(r,s)f(r)dG,(r) and the derived oper-
atorsL—MLM E — ML,M and L, —ML 2M,, so that L(f)(s) = [ f(r)k(r, s)dG(r),
= [k(r,s)f(r)dGn(r) and L,(f)(s) = [ kn(r,s)f(r)dGn(r), where G,, is the empir-

1cal dlstrlbutlon of {Sl}l:1~

Let H C LZ be the (separable) Reproducing Kernel Hilbert Space (RKHS) of functions
f S — R with kernel ky and inner product (-,-)y satisfying (f, ko(-,7))% = f(r) and
associated norm || f]|3. Let K = sup,.g ko(s, s). Define H as the RKHS of functions f : S — R
with kernel k, and H; as the RKHS of functions f : S — R with kernel equal to 1, which
only consists of the constant function. Since kg = k 4 1, H contains all functions that can be
written as linear combinations of H and H; (see, for instance, Theorem 2.16 in Saitoh and

Sawano (2016)). Thus H contains the constant function, and ||1||y < co. Furthermore, since

for any f € M, |f(r)] = [(£() kol )zl < || £l - 1Ko ()l < VK| fll, we have
Slelglf(r)l <VE - || flln (33)

As in RBV, view the operators above as operators on H +— H. The operator norm ||A|| of
the operator A : H — H is defined as sup4,,—1 || Af[|#, and A is called bounded if |[A]| < oc.
A bounded operator A is Hilbert-Schmidt if 3 77, |[Ae;|| < oo for some (any) orthonormal
basis e;. The space of Hilbert-Schmidt operators is a Hilbert space endowed with the norm
|A||lgs = \/ > ;=1 (Aej, Aej)y, and for any Hilbert-Schmidt operator A and bounded operator
B,

1ABlus < [|Allus||Bl], [|BA[lus < [|BI| - ||Allus- (34)

By Theorem 7 of RBV, L and L,, are Hilbert-Schmidt.
Furthermore, for any f € H,

104l =5 = [ £0AGO e < 11+ b [ F00GE) < 1l + s £(0)
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so that (33) implies that |[M]|| is a bounded operator. By the same argument, so is M,
(almost surely). Thus, from (34), also L, L,, and L, are Hilbert-Schmidt for almost all s,,.
Conditioning on s, throughout, we have the almost sure inequalities ||L, — L||gg <

Hf/n — Lullgs + || Ln — L|| s and, using (34),

H[:n _EnHHS < ||(Mn - M)LnMn||HS+ HMLn(Mn - M)HHS
[ My, — M| - [| M| - || Lol |5 + || M — M| - [|M]] - || Ly 15

N

as well as

(M = M) [y = H/f en /f )dG(r

/f )dG( /f )dG(r
<f,n‘1ZCl> Y ¢
=1 H =1

with ¢, = ko(-,s1) — [ ko(-,7)dG(r) € H. Since s is i.i.d. with distribution G, E[(;] = 0
and ||(;]|x < 2\/_ a.s. By Hoeffdmg’s inequality for random elements that take values
in separable Hilbert spaces (cf. equation (3) in RBV), |[n™' 31, ¢/ll,, < 2VEKdn™? with
probability of at least 1 —2e7°. We conclude that [|M, — M|| = sup sy,,—1 ||(My — M) fl]3
= Oy(n~""?).

Furthermore, applying the same reasoning as in the proof of Theorem 7 of RBV, [|L, —
L||us = O,(n=Y?). Thus, ||L, — L||gs = O,(n~/?).

The conclusion now follows from similar arguments as employed in Proposition 10 and
12 of RBV In particular, note that ¢, € H for all i. Furthermore, [ ¢,;(s)dG(s) =
A i) k(r, s)dG( )dG( ) = 0. Thus, with ¢, = VN, € H, Me; = e
and <6i,€i>7_,5 = ("), \ 1f7 dG( )) = NYeyLedy = N e Ley =

el >Hel( )dG () f = 1, so that e; are normalized eigen-

= |1l

= | < [l £l

H

vectors of L: H — H. Since H C EG, these are the only eigenfunctions of L : H ~ H with
positive eigenvalue, so that the spectrum of L is equal to {);}52, (cf. Proposition 8 of RBV).
Also, p, € H, and since V; is the eigenvector of n‘lfin with eigenvalue 5\1-, n‘lKn{fi = 5\1-\71-,

we obtain for 5\2 > 0 that
L)) = [Tl )00)dGulr) =n”? Zk 5)25)
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and

/ [(r)2dG( _n—3)\—2zzzv” (s;,50) )k, (s, 5¢)010 = 1.

j=1 (=1 t=1
Furthermore, from » ', 0;; = 0, also fgbz $)dGp(s ) = 0, so that M,é; = ¢é;. Thus,
with & = VN € M <ez,ez)H = (&), A fk: r)dG(r )>H = X (e Ltu =
;\;1<éi,Lnei>H =\ f éi(+), ko(r,))uéil(r )dG = /\ feZ )2dG,,(r) = 1. Therefore é;
are normalized eigenfunctions of L, : H—H, and since all f € H that are orthogonal to
é;,1=1,...,n are in the kernel of f}n, these are the only eigenfunctions of L : H — H with
positive eigenvalue, so the spectrum of L, : H — H is equal to {\;}", (cf. Proposition 9 of
RBV).

Part (b) of the lemma now follows from || L, — L||%¢ = O,(n~!) and the development on
page 911 of RBV.

To establish (32), note that with the projection operators P?: H +— H and P1: M H
defined via PY(f)(-) = S0 (f, e)nei(-) and PU(f)(-) = 5L, (f, é)néi(-), by Proposition 6
of RBV, [|P?— P||gs < 2(Ag — Ags1) || Ln — L||rs 4+ 0,(n /) = O, (n~1/2). Define the ¢ x ¢
matrix O,, with 4, jth element On,ij = (é;,e;)n. Then the j, tth element of (~);L(~)n is given by

L1 OnijOnie = 2001 (8ss ej)mléi e)m = (e, PU(er))p, and 1[j = t] = (e;, PU(e;)), so that
by the Cauchy-Schwarz inequality

q
Z O1,ijOni — 1 =1t]| = ‘<€j> (P71 — P)es)n
i=1

< [P = PY|gs = Op(n~'?).

Thus [|0,0, —T,|| = O,(n"1/2), and with O,, = (0,,0,)7/20,, also [|0,—0,[| = Op(n~12).
Furthermore, with #2 = \;/\; 2 1 using part (b) of the lemma,

q q
vAi||ZOn,ij@j —@illn = ||fiZOn,ijéj —eilln
j=1 j=1
< ||ZOMJ€J eZHH“’HZfO - nu)eJHH
< |!(Pq—Pq)€i!|H+ZViOn,ij — Ol

J=1
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q
< 1P = PUYas + Y [7iOni5 — Onijl = Op(n7?)
j=1
so (32) follows from (33).
The claim in part (a) of the lemma now follows by induction from (32): For p = 1, this
follows directly. Suppose the result holds for p — 1, and let Op = diag(()(l), e O(p,l)), SO
that

sup 105¢5(5) — @p(s)ll = Op(n~"/2), (35)

with ¢ and @z the vector of the first Z?;i m; eigenfunctions. Now let

O, — ( (:)11 (:)12 )
O21 Og

be the (320_,m;) x (3°7_; m;) matrix O, of (32) applied with ¢ = >0y mj, with
O1; of the same dimensions as Op. Let ¢; 5 and @;_p be the m, x 1 vectors of
eigenfunctions with indices Z?;i m; +1,...,2 77, my, so that by the conclusion of (32),
suP,es [011@5(5)+ 0129, 5(s) = ()| = Op(n~"/2) and sup,c ||021@ 5 (5)+ 020 p(s)—
@ p(5)|] = Oy(n~Y/?). In conjunction with (35), the former yields sup, s ||(O11—O5)@5(s)+
01:¢; 5(s)|| = O,(n~/?), which implies in light of (32) and the linear independence of eigen-
vectors that both [|O; — Opl| = O,(n~'/?) and ||O1,|| = O,(n~'/?). Since O; and Op are ro-
tation matrices, 0%0p = 0},01; + 0,041 = I, so that ||O1; — O|| = O,(n/?) further im-
plies [|Og1]] = O,(n~/?). We conclude that also sup,.g ||02®;_5(s)—w;_g(s)|]| = O,(n~1/?),
so that the result for p holds with f)(p) = Oy, which concludes the proof. B

Proof of Theorem 8: Suppose max(cv? — c¢v2,0) % 0 does not hold. Then
there exists 4 > 0 such that limsup,,_,. P(c¥® — cvZ > ) > 4. Define x(k,cv?) =
P (32 owi(k,€v)Z7 > 0), so that supgc,., #(k,cv°) = a by definition of &v. By continuity
of , there exists 0 < kg < 1 and cv? — §/2 < cva < ©v? such that s(kg,cva) = a. If ko = 0,
set ¢p1 = Cpo. Otherwise, let ¢, ; — oo be such that the corresponding a,; = cflyl/n — ay
satisfies a10%(0)/(a10%(0) + [ o (s)ds) = ro. Now let cvi ; solve Py, (75 > cvii i [sn) = @
a.s., so that clearly, CVZ’1 < cv? as. for all large enough n. Thus, with A, the event that s,

takes on a value such that cv? — cvi,’1 > §, we also have limsup,,_,. . P(A,) > 4, and there

exists a subsequence n’ — oo of n such that P(A,/) > ¢ for all n'.
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For all such n/,

o = P%(Cn’ 1)(7-121/ Z CV%/J |An/) Z P%( )(7-727,’ Z W2 — (S‘An') a.sS. (36)

Cnl 1

and by Theorem 5, P, (72, > &% — 6| Ay) — »(ko, oV — &) > . This contradicts (36),
and the result follows. l

Theorem 14. Let G, be an arbitrary function of s, taking values in @ = {1,2, ..., Gmax} for
some sample size independent finite and nonrandom Gumax. Then for a t-statistic 7,(q) that
satisfies the conditions of Theorem 8 for all ¢ € Q with critical value cv,(q) as in (20), for
any € > 0, limsup,,_, o P(P(72(Gn) > cv,(Gn)?|sn) > a+¢€) = 0.

Proof. Suppose otherwise. Then there exists € > 0 and a subsequence n’ — oo such that with
B, = {sn : P(72(§) > cvu(§)?[sn) > o+ €} C 8, limy oo P(syy € Byy) > €. Let A,; = {s,, :
¢n = 1}, so that lim, o > " P(s,y € B,y NA, ;) > €. There hence exists some 1 < ¢ < gmax
and a further subsequence n” of n’ such that lim,» P(s,» € B,» N A y) > €/¢max. But along
this subsequence, ¢ is fixed, so Theorem 8 applies and yields lim,»_,o P(s,» € B,vNAu» 4) — 0,
yielding the desired contradiction. ]
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