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climate system

Olga Sergienko1 and Marianne Haseloff2

1Atmospheric and Oceanic Sciences Program, Princeton University, 300 Forrestal Rd., Princeton, NJ 08540, USA
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Investigations of the time-dependent behavior of marine ice sheets and their sensitivity to basal
conditions require numerical models because existing theoretical analyses focus only on steady-
state configurations primarily with a power-law basal shear stress. Numerical results indicate that
the choice of the sliding law strongly affects ice-sheet dynamic behavior. Although observed or
simulated grounding-line retreat is typically interpreted as an indication of marine ice sheet
instability introduced by Weertman (1974), this (in)stability is a characteristic of the ice sheet’s
steady states – not time-variant behavior. To bridge the gap between theoretical and numerical
results, we develop a framework to investigate grounding line dynamics with generalized basal
and lateral stresses (i.e. the functional dependencies are not specified). Motivated by observations
of internal variability of the Southern Ocean conditions we explore the grounding-line response
to stochastic variability. We find that adding stochastic variability to submarine melt rates that
produced stable steady-state configurations leads to intermittently advancing and retreating
grounding lines. They can also retreat in an unstoppable manner on time-scales significantly
longer than the stochastic correlation time-scales. These results suggest that at any given time
of their evolution, the transient behavior of marine ice sheets cannot be described in terms of
‘stable’ or ‘unstable’.

1. Introduction

A heuristic study by Mercer (1968) suggesting that the West Antarctic Ice Sheet (WAIS) col-
lapsed at least once in its history raised the question whether WAIS is currently experiencing
another collapse (e.g., Hughes, 1975; Joughin and others, 2014) or whether it could collapse in
the (near) future under a warming climate (e.g., Mercer, 1978; DeConto and Pollard, 2016).
Resting on a bed below sea level, the fate of the WAIS is determined by the evolution of
the grounding line, ‘the junction between ice sheet and ice shelf’ (Weertman, 1974). Since
the first analytical analysis of marine ice sheets by Weertman (1974), grounding-line retreat
either observed on the present-day Antarctic and Greenland ice sheets (e.g., Shepherd and
others, 2018; Khan and others, 2020) or simulated with ice-sheet models (e.g., Cornford
and others, 2015; Seroussi and others, 2020), has frequently been interpreted as an indication
of ice-sheet ‘instability’.

Realistic ice sheets are subject to the atmospheric and oceanic forcing that constantly varies
in time on a wide range of temporal scales. As a result, the ice sheets do not attain steady states,
stable or not. To add to the confusion, the terms ‘stable’ and ‘unstable’ are frequently used to
describe the migration of grounding lines, i.e. they are used to describe unsteady, time-variable
behavior (e.g., Shepherd and others, 2018a). This mischaracterization might stem from the
results of Weertman’s(1974) original analysis, which related the existence of a steady-state ice-
sheet configuration and its stability to the bed slope at the location of the grounding line. He
concluded that ‘[a] stable ice sheet can occur if the bed slopes away from the center of the ice
sheet.’ (Weertman, 1974). Because the beds in many locations under the WAIS, parts of the
East Antarctic Ice Sheet, and parts of the Greenland Ice Sheet slope towards the interior of
these ice sheets, the grounding line positions are described as ‘unstable’ as a corollary of
Weertman’s result, regardless of the temporal variability of either the ice sheets or their envir-
onmental conditions.

Existing theoretical analyzes of grounding line behavior are focused on steady states of idea-
lized configurations (e.g., Schoof, 2007a; Wilchinsky, 2009; Tsai and others, 2015; Pegler and
Worster, 2013; Pegler, 2018; Haseloff and Sergienko, 2018) and questions of their stability (e.g.
Schoof, 2012; Sergienko and Wingham, 2019; Haseloff and Sergienko, 2022; Sergienko and
Wingham, 2022; Sergienko, 2022b). These studies assume specific functional forms of basal
and lateral shear parameterizations, most often a power-law sliding law (e.g., Schoof, 2007a,
2007b; Schoof, 2012; Sergienko and Wingham, 2019, 2022) and, in the case of laterally con-
fined (‘buttressed’) marine ice sheets, a power-law lateral shear stress (e.g., Schoof and others,
2017; Pegler, 2018; Haseloff and Sergienko, 2018, 2022; Sergienko, 2022a). Consequently,
results of these studies apply only to the steady-state behavior of these particular forms of
basal and lateral shear stress formulations.
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To date, investigations of the temporal evolution of ice sheets,
especially under changing climatic forcing and for realistic
regional or continental configurations, require the use of numer-
ical simulations (e.g., Cornford and others, 2015; Seroussi and
others, 2017, 2020). The results of these numerical studies are
complex and are typically interpreted in terms of the conceptual
results of the theoretical analyzes, even though those are applic-
able to steady-state conditions only. In particular, rapid ground-
ing line retreat is often identified as a manifestation of the
instability of grounding lines on retrograde beds. Key conclusions
drawn from numerical studies include: (i) rapid grounding-line
retreat is triggered by loss of buttressing ice shelves (e.g., Favier
and others, 2016; Gudmundsson and others, 2019), (ii) the rate
of grounding-line migration strongly depends on the choice of
the sliding law (e.g., Brondex and others, 2017; Sun and others,
2020; Åkesson and others, 2021), (iii) stochastic variability to cli-
mate forcing can trigger rapid grounding line retreat
(e.g., Christian and others, 2022).

Reconciliation of these modeling results with our conceptual
understanding of grounding line dynamics requires an extension
of the existing analytical framework to the time-evolving behavior
of marine ice sheets with variable basal and lateral shear stress
parameterizations. To develop this framework, we derive expres-
sions for the ice flux at the grounding line, the rate of the
grounding-line migration, and stability conditions for steady-state
configurations. As an illustration, we apply it to compare a lat-
erally confined marine ice sheet subject to two different sliding
laws: i) a composite viscous and Coulomb-style sliding law pro-
posed by Zoet and Iverson (2020) on the basis of the results of
laboratory experiments (hereafter referred to as Zoet-Iverson slid-
ing law) and ii) a power-law sliding law (Weertman, 1957; Fowler,
1981). The lateral shear is described by a power law (e.g.,
Raymond, 1996).

In this framework, all terms of the steady-state expressions can
be written in closed form. For given bed topography, basal and
lateral shear stresses and environmental characteristics (i.e. sur-
face accumulation and submarine melting), steady-state config-
urations can be determined (if they exist) and their stability can
be established. Capturing the temporal evolution of ice sheets
analytically is not possible because there is no closed form expres-
sion for a time-variant buttressing parameter (Haseloff and
Sergienko, 2018). Thus, investigations of the response of but-
tressed marine ice sheets to temporal variations in forcing need
to rely on numerical simulations to produce quantitative results,
but the expressions derived here provide insights into the controls
on grounding line behavior and can guide our conceptual
understanding.

In this study we choose to focus on the effects of stochastic
variability in submarine melting. The Earth’s climate has a wide
range of modes of internal variability on a variety of temporal
scales. For instance, the recent retreat of the grounding line of
Pine Island Glacier has been attributed to decadal oceanic vari-
ability (Jenkins and others, 2018); retreats and advances of the
grounding lines in the Pacific sector of West Antarctica exhibit
strong variability on this timescale as well (Christie and others,
2023). Global circulation models indicate that conditions in the
Southern Ocean exhibit variability on centennial timescales
(e.g., Latif and others, 2013). Numerical studies investigating the
response of grounding lines to variability in climate forcing
using realistic (e.g., Hoffman and others, 2019; Robel and others,
2019) and idealized configurations (e.g., Christian and others,
2022; Felikson and others, 2022) indicate a substantially different
grounding-line behavior compared to that without any variability
in the climate forcing.

Our results show that a classification of the grounding-line
behavior into ‘stable’ or ‘unstable’ loses its meaning when

considering its time-dependent behavior. We find that starting
from a stable steady-state configuration, the grounding line of a
buttressed marine ice sheet can exhibit irregular oscillations as
well as an unstoppable retreat depending on the specifics of the
stochastic variability. The results of our linear stability analysis
indicate that stability conditions of steady-state marine ice sheets
depend on a large number of parameters combined in a complex
way, and in contrast to the results of Weertman (1974) and
Schoof (2012), stability or instability of a steady state cannot be
easily inferred from a simple external characteristic, such as the
bed slope at the grounding line. Consequently, terms ‘stable’
and ‘unstable’ are not useful for description of the grounding
line behavior of realistic ice sheets.

The manuscript is organized as follows: After a model descrip-
tion in section 2, we introduce the analytical framework for deri-
vations of the expressions of the ice flux at the grounding line, the
rate of the grounding line migration and the steady-state stability
conditions for arbitrary forms of the basal and lateral shears
(section 3). In section 4 we apply the developed framework to a
marine ice sheet with Zoet-Iverson sliding law and compare its
steady-states with a marine ice sheet with Weertman sliding
law. These configurations are exposed to stochastic variability in
submarine melting in section 5. Readers less interested in the
mathematical aspects of the analysis can proceed to sections
6–7 where we summarize the results and provide their physical
interpretation.

2. Model description

Following many previous studies (e.g., Schoof and others, 2017;
Pegler, 2018; Haseloff and Sergienko, 2018, 2022), we consider a
laterally confined ice stream flowing into a laterally confined ice
shelf (Fig. 1).

It is described by a vertically integrated and laterally averaged
momentum balance under assumptions of a negligible vertical
shear appropriate for ice-stream and ice-shelf flow (MacAyeal,
1989)

2 A−1/nh ux| |1/n−1ux
( )

x−tw − tb − rgh h+ b( )x= 0,

xd ≤ x ≤ xg
(1a)

2 A−1/nh ux| |1/n−1ux
( )

x−tw − rg ′hhx = 0, xg ≤ x ≤ xc. (1b)

Subscripts indicate partial derivatives, e.g., ux = ∂u/∂x. u(x, t) is
the depth- and width-averaged ice velocity; h(x, t) is ice thick-
ness; b(x, t) is bed elevation (negative below sea level and positive
above sea level); A is the ice stiffness parameter (assumed to be
constant); n is the exponent of Glen’s flow law, g is the acceler-
ation due to gravity. τb and τw are the laterally averaged basal
and the lateral shear, respectively, which can have different func-
tional forms and dependencies on the ice stream and ice shelf. g

′

is the reduced gravity defined as

g ′ = dg (2)

where

d = rw − r

rw
(3)

is the buoyancy parameter, ρ and ρw are the densities of ice and
water, respectively. xd = 0 is the location of the ice divide, xc(t)
is the location of the calving front, and xg(t) is the location of
the grounding line – the location where the grounded ice starts
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to float and form the ice shelf. The first term on the left hand side
of (1a) and (1b) is the divergence of the longitudinal stress τx =
(2A−1/nh|ux|

1/n−1ux)x. The basal shear τb, and lateral shear τw of
the ice stream and ice shelf are treated as arbitrary functions, i.e.

tb = tb(jb), (4a)

tw = tw(jw), (4b)

where ξb and ξw represent a set of all variables that τb and τw may
depend on – ice velocity, effective pressure (in the case of τb) ice
thickness, the ice-stream or ice-shelf width (in the case of τw), etc.
For brevity, we combine all these variables into one set and denote
it ξ = {ξb, ξw}, with understanding that the respective function
(either τb or τw) depends on its respective set of variables (either
ξb or ξw).

The mass balance is

ht + uh( )x = ȧ 0 ≤ x , xg (5a)

ht + uh( )x = ȧ− ṁ xg ≤ x ≤ xc, (5b)

where ȧ(x, t) is the net accumulation/ablation at the ice top sur-
face and ṁ(x, t) is the net melting/refreezing rate at the ice-shelf
base (we assume that melting/refreezing at the ice-stream base is
negligible).

Boundary conditions at the divide xd and the calving front xc
are

(h+ b)x = 0, u = 0, x = xd (6a)

2A−1/nh ux| |1/n−1ux =
1
2
rg ′h2, x = xc. (6b)

The conditions (6a) state that the driving stress at the divide is
zero and there is no flow that enters or leaves from the left.
The condition (6b) requires the longitudinal stress in the ice to
balance the pressure deficit at the calving front.

At the grounding line xg the continuity conditions

ustream(xg) = ushelf (xg) (7a)

hstream(xg) = hshelf (xg) (7b)

tstream(xg) = tshelf (xg), (7c)

(the last condition is on the longitudinal stress τ = 2A−1/nh|ux|
1/n−1ux),

and the flotation condition

h(xg) = hf = − rw
r
b(xg) (8)

are satisfied.The fact that the ice is groundedupstreamof the grounding
line and is floating downstream of it is reflected by two inequalities

h(x) ≥ − rw
r
b(x), xd , x ≤ xg , (9a)

h(x) , − rw
r
b(x), xg , x , xc. (9b)

Haseloff and Sergienko (2018) have demonstrated that themomentum
balance of the ice shelf (1b) can be integrated with the boundary con-
dition at the calving front, xc, (6b) and the continuity conditions (7).
As a result, the problem can be split into two – one for the ice stream
and one for the ice shelf. The boundary conditions at the grounding
line are the flotation condition (8), velocity and thickness continuity
conditions (7a)–(7b), and the stress continuity condition (7c) written
in a form

2A−1/nh ux| |1/n−1ux =
1
2
rg ′h2u, x = xg , (10)

where θ≤ 1 is the buttressing parameter – the ratio between the
backstress at the grounding line and the backstress in the absence
of the ice-shelf lateral confinement, which is 1/2rg ′h2. This param-
eter represents the effects of the laterally confined ice shelf on the
stress-regime of the grounding line. It encapsulates the integrated
effects of the ice-shelf dynamics, the ice-shelfmass balance, other ice-
shelf parameters and calving conditions on the grounding line.
Hence, θ depends on the length of the ice shelf, lateral shear τw and
its parameters ξ, the functional forms of the net accumulation/
ablation and melting/refreezing rates, ȧ and ṁ, respectively, calving
conditions (e.g., a prescribed calving-front position, a prescribed
value of ice thickness at the calving front) and their parameters
(Haseloff and Sergienko, 2018). It also depends on the ice flux

q = uh (11)

in the ice shelf as well as at the grounding line, q(xg). In some cases
(e.g., for particular forms of sub-ice-shelf melting ṁ and calving

Figure 1. Model geometry: b - bed elevation (b < 0), h -
ice thickness, xd - the ice divide location, xg - the ground-
ing line location; xc - the calving front location.
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conditions), it is possible to write a closed-form expressions of the
buttressing parameter (Haseloff and Sergienko, 2018, 2022).
However, there is no general expression for θ. Consequently, we
treat it as an arbitrary function of a set of parameters4 that includes
all parameters mentioned above and write u(4).

The grounded parts of marine ice sheets can experience dis-
tinct dynamic regimes. In the first one, the divergence of the lon-
gitudinal stress (the first term on the left-hand side of (1a)) has
much lower magnitude than all other terms. The driving stress
(the last term on the left-hand side of (1a)) is typically large, on
the order of hundreds of kPa. This dynamic regime is character-
istic of very wide glaciers like Thwaites Glacier in the Amundsen
Sea Embayment (West Antarctica) (e.g., Holt and others, 2006),
and laterally confined glaciers like Greenland marine outlet gla-
ciers, Pine Island Glacier in the Amundsen Sea Embayment
(e.g., Wingham and others, 2009), ice streams flowing into the
Filchner-Ronne and Amery ice shelves (e.g., King and others,
2007), and many others. Such a stress regime has been considered
by Weertman (1974); Wilchinsky (2009); Schoof (2007a, 2007b);
Schoof (2012); Tsai and others (2015); Pegler (2016, 2018);
Schoof and others (2017); Haseloff and Sergienko (2018, 2022);
Sergienko and Wingham (2022); Sergienko (2022b). In the second
regime, the divergence of the longitudinal stress is of the same
order of magnitude as the other components of the momentum
balance (1a). The driving stress in this regime is typically low,
on the order of several kPa. This dynamic regime is characteristic
of Siple Coast ice streams flowing into the Ross Ice Shelf (West
Antarctica) (e.g., Rose, 1979; Bindschadler and Vornberger,
1998); it has been considered by Sergienko and Wingham
(2019). Here, we focus on the first dynamic regime and provide
a brief description of the treatment of the second dynamic regime
in section 3.4.

3. Framework for arbitrary forms of sliding and lateral
shear

As Haseloff and Sergienko (2018) showed, the behavior of a but-
tressed marine ice sheet is described by the momentum and mass
balances of the grounded part (1a) and (5a), respectively, and the
boundary conditions at the ice divide (6a) and at the grounding
line: the flotation condition (8) and the stress condition (10).

A scaling analysis of Schoof (2007a, 2007b); and Sergienko and
Wingham (2022) can be directly applied here, resulting in the
leading order problem of the grounded part (1a), (5)–(10)

− tw − tb − rgh(h+ b)x = 0, xd ≤ x , xg , (12a)

ht + (uh)x = ȧ, xd ≤ x , xg , (12b)

(h+ b)x = 0, u = 0, x = xd (12c)

2A−1/nh ux| |1/n−1ux =
1
2
rg ′h2u, x = xg (12d)

h = − b
1− d

x = xg . (12e)

This is an approximate model that describes the behavior of the
grounded ice stream, which is buttressed by a laterally confined
ice shelf. Below we derive a relationship between the ice flux at
the grounding line and dynamic (stress), geometric (bed elevation
and slope) and environmental conditions at the grounding line;

an expression for the grounding line migration and stability con-
ditions for steady-state configurations in terms of the general
forms of the basal and lateral shears. The only condition imposed
on these general forms is that they are continuously differentiable
with respect to variables they depend on. We follow derivations of
Haseloff and Sergienko (2022) and Sergienko and Wingham
(2022), and in contrast to studies based on the boundary-layer
theory (Schoof, 2007a, 2012; Tsai and others, 2015) that consider
configurations with shallow beds, negligible bed slopes and small
accumulation rates at the grounding line, we do not make any
additional assumptions apart from those under which the verti-
cally integrated momentum balance (1) is derived.

3.1 Ice flux at the grounding line

Observing that

ux =
qx
h
− q

h2
hx , (13)

where q is the ice flux (11), rearranging terms in (12a), the prob-
lem (12) can be written as

hx = − tw

rgh
− tb

rgh
− bx , xd ≤ x , xg , (14a)

ht + qx = ȧ, xd ≤ x , xg , (14b)

(h+ b)x = 0, q = 0, x = xd , (14c)

qxrgh2 + q(tw + tb + rghbx) = rghn+3 1
4
rg ′A1/nu

( )n

,

x = xg ,

(14d)

h = − b
1− d

x = xg , (14e)

where the stress-condition (12d) written in terms of q was
obtained by using (13) and (14a). We assume that θ > 0.
Although it is possible to write (12d) in a form permitting a nega-
tive buttressing parameter, it is unclear how realistic such a situ-
ation could be. Physically, θ < 0 implies that the ice at the
grounding line is under compression and ux < 0. It is unclear
which processes can determine the limit of compression, i.e.
how negative ux can be. Consequently, we consider only the
case of θ > 0.

For a dynamic ice sheet that evolves with time, (14d) is

ȧ− ht( )rgh2 + q(tw + tb + rghbx)

= rghn+3 1
4
rg ′A1/nu

( )n

,

x = xg .

(15)

As apparent from these expressions, if specific forms of the lateral
shear τw and the sliding law τb depend on the ice velocity
u = q/h, the ice flux at the grounding line will be an implicit
function of ice thickness h and thinning rate ht. Only if these
forms are independent of the ice velocity, and the ice shelf is
unbuttressed, θ=1, then the ice flux is can be written as an explicit
function of the ice thickness

4 Olga Sergienko and Marianne Haseloff
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q =
rghn+3 (1/4)rg ′A1/n( )n− ȧ− ht( )rgh2

tw + tb + rghbx
, x = xg . (16)

If on the other hand tw + tb + rghbx = 0, then Eqn. (15) deter-
mines the grounding line position xg(t), and the flux through the

grounding line is given by qg(t) = q(xg(t), t) =
∫ xg (t)

0
(ȧ− ht)dx.

3.2 The rate of grounding line migration

The rate of grounding line migration ẋg is determined by taking
the total time derivative of the flotation condition (14e).

ẋg = − ht + (bt/(1− d))
hx + (bx/(1− d))

, (17)

where the term bt is the bed elevation changes due to, for instance,
erosion/deposition processes, glaciostatic adjustment, changes in
the local or global sea level. Combining this expression with
(15) and rearranging terms leads to

ẋg =

rghn+3 1
4rg

′A1/nu
( )n−q(tw+tb+rghbx)−rgh2 ȧ+ (bt/(1−d))

( )

h tw+tb− (d/(1−d))rghbx
( ) .

(18)

With δ≈ 0.1 (3), the last term in the denominator will typically be
small compared to the other terms and can be neglected. This
expression can also be written in terms of the ice velocity u

ẋg ≈
rghn+2 1/4rg ′A1/nu

( )n−u(tw + tb + rghbx)− rgh ȧ+ bt( )
tw + tb

,

(19)

where τw, τb and θ are expressed in terms of u.
Expressions (15) and (18) reduce to previously derived expres-

sions by Haseloff and Sergienko (2018, 2022) for Weertman slid-
ing law in the case of buttressed marine ice sheets, by Sergienko
and Wingham (2022) in the case of unconfined marine ice sheets,
and in case of negligible bed slopes and accumulation rate by
Schoof (2007a, 2007b).

3.3 Steady states and their stability

In a steady state, ht = 0, and the ice-flux expression (15) is

rgh2ȧ+ q(tw + tb + rghbx) = rghn+3 1
4
rg ′A1/nu

( )n

,

x = xg .

(20)

The dependence of the sliding and lateral shear laws on ice vel-
ocity has consequences for the stability of steady-state configura-
tions, and particularly whether only the sign or both the sign and
the magnitude of a stability parameter (denoted here λ) can be
determined. As derivations of Appendix A show, if the sliding
law depends on the ice velocity, it is only possible to make infer-
ences about the sign of λ, based on properties of a steady-state
configuration at the grounding line. If λ is negative, the
steady-state configuration is stable, and if λ is positive, it is
unstable. These conditions imply that provided that

hx , − bx
1− d

(21a)

G1(j)+ G2(j)q− F1(4)uq(4)
( )

. 0 (21b)

the grounding line is stable, if

bx
1− d

[

F2(4)− F1(4)uh(4)− 2ȧrgh− qrgbx

]

+ ȧG1(j)+ qG3(j)+ ȧxrgh2 − F1(4)u4(4=h)4x , 0,

(22)

where

G1(j) = tw + tb + rghbx (23a)

G2(j) = tw + tb
( )

q (23b)

G3(j) = twj jx + tbjjx + rghbxx (23c)

F1(4) = nrghn+3 1
4
rg ′A1/nu(4)

( )n−1

(23d)

F2(4) = (n+ 3)rghn+2 1
4
rg ′A1/nu(4)

( )n

, (23e)

and where all partial derivatives with respect to ξ or 4 indicate a
sum of partial derivatives with respect to all variables that τb, τw or
θ depend on, and ξx and 4x are the spatial derivatives of these
variables; a subscript 4(4 = h) indicates partial derivatives
with respect to all variables except h. If the conditions (21) are
not satisfied, it is not possible to determine whether the ground-
ing line is stable or unstable without solving a corresponding
eigenvalue problem described in Appendix A. Condition (21a)
requires that the ice stream remains grounded upstream of the
grounding line, and, consequently is satisfied for any steady-state
solution of interest. The second condition (21b) relates specifics of
the sliding law dependence of the ice velocity and the gradient of
the ice thickness. If the inequality in (22) is reversed, the ground-
ing line is unstable.

It is possible to write these stability conditions in the same
form as Schoof (2012), i.e.

dqg
dxg

. ȧ, (24)

provided

hx , − bx
1− d

,
∂F
∂q

. 0,
∂F
∂qx

. 0, (25)

where (20) is written in terms of an implicit function F

F(q, ȧ, h, x, · ) : = ȧrgh2 + q(tw + tb + rghbx)

−rghn+3 1
4
rg ′A1/nu

( )n

= 0
(26)

with ( ⋅ ) being a placeholder indicates dependencies on other
variables than (q, qx, h, x). A derivation of this form is described
in Appendix A.
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In some special cases, it is possible to obtain an analytic
expression for the stability parameter λ (see Appendix A). The
marine ice sheet is stable if λ < 0 and unstable if λ > 0, and the
magnitude of λ allows to compute the e-folding time te = |λ|−1

(Sergienko and Wingham, 2019). We provide a closed-form
expression for λ in (A.15) for the case where both τb and τw are
independent of u simultaneously. While there are formulations
of the basal shear τb independent of u that are based on the argu-
ments that subglacial till can behave plasticaly, (e.g., Bassis and
Ultee, 2019), the existing formulations for τw depend on ice vel-
ocity (e.g., Raymond, 1996). Potentially, an argument that the lat-
eral shear could be described by the yield stress in a similar way as
the basal shear could be made (e.g., Thomas, 1977), however, such
formulations have not being tested in numerical models.

The stability conditions (22) are derived under the assumption
that there are no feedbacks between the marine ice sheet and its
environmental conditions, for example, the surface net accumula-
tion ȧ and submarine melting ṁ do not depend on characteristics
of the ice sheet (e.g., its surface elevation or thickness), but can be
functions of the ice-sheet horizontal extent and other parameters.
If the feedbacks between the marine ice sheets and their environ-
mental conditions are taken into account (e.g., Fyke and others,
2018) then it is not possible to derive stability conditions that
are based on the characteristics of the steady-state configurations
and the environmental conditions (Sergienko, 2022b).

3.4 Scope of the framework

The derived expressions and conditions can be applied to uncon-
fined and buttressed marine ice sheets as long as the momentum
balance of the grounded part can be approximated by (12a) with suf-
ficient accuracy. For an unconfined or very wide ice shelf, θ→ 1 and
the behavior of the marine ice sheet is determined by the properties
of the grounded part only. In the case of a laterally unconfined mar-
ine ice sheet, in addition to θ = 1, lateral shear stresses are negligible,
i.e. τw = 0 in all above expressions.

The approximate expression of the momentum balance (12a)
is valid if the driving stress is balanced by the basal and lateral
shears and the divergence of the longitudinal stress is smaller
than these components. If, for instance, the ice-stream bed is
very weak, and τb is significantly smaller than the lateral shear
and driving stress, then τb can be neglected. However, conditions
where both the basal and lateral shear stresses are of the same
order of magnitude as the divergence of the longitudinal stress
cannot be treated with this developed framework. For ice streams
flowing into unconfined ice shelves in such a stress regime, the ice
flux at the grounding line and stability conditions can be obtained
from those derived by Sergienko and Wingham (2019), their eqn
(29) and eqn (36), respectively, where in the first-order solution
h1(x) eqn (30), the last term C(q/|b|)m is replaced with τw + τb

in which the dependence on the ice velocity is expressed in
terms of the ice flux, i.e. as u = q/h0, where h0 =−b.

The only case that is not covered either by the framework pre-
sented here or the analysis of Sergienko and Wingham (2019), is
the case in which the leading order balance is between the diver-
gence of the longitudinal stress and the driving stress, and the lat-
eral and basal shear stresses are negligible (either through the
length of the ice stream or in the vicinity of the grounding
line). This case corresponds to a laterally unconfined marine ice
sheet with no basal or lateral resistance in the vicinity of the
grounding line; it requires a separate treatment. A potential
approach to develop such a treatment could be based on using
the approximate form of the momentum balance (12a) far away
from the grounding line, the approximate form of the momentum
balance considered by Sergienko and Wingham (2019)(Eqn. (19))
with Γ→ 0 (where Γ is a non-dimensional parameter related to

the basal shear), and matching these formulations by means of
the matched asymptotic analysis.

4. Application to Zoet-Iverson and Weertman sliding laws

As an example of the use of the framework described above, we
apply it to specific forms of the lateral and basal shear stresses.
We choose the same lateral-shear form as used in previous studies
of laterally confined marine ice sheets and outlet glaciers (e.g.,
Raymond, 1996; Schoof and others, 2017; Haseloff and
Sergienko, 2018, 2022; Sergienko, 2022a)

tw = CwA−1/n

W1/n+1 h|u|1/n−1u, (27)

where Cw = 2(n + 1)1/n is a lateral shear stress parameter and W is
the width of the marine ice sheet and ice shelf. (The derivation of
this form can be found in Raymond (1996).) Here, we use the
same formulation of the lateral shear for the grounded part and
the ice shelf. All parameters are listed in Table 1.

Based on laboratory experiments, Zoet and Iverson (2020)
have proposed a sliding law of the form

tb = N tanf
1

u+ ut

( )1/p

|u|1/p−1u, (28)

where N is the effective pressure, ϕ is the till friction angle, ut is a
transition speed at which basal shear transitions from the viscous-
like deformation of underlying till to Coulomb style, and p∼ 5 is a
slip exponent. The transition speed ut is

ut = aN (29)

with a = Nf /(2+ Nf k)(1/(h(Ra)
2k30)+ 4C1/((Ra)

2k0)) deter-
mined by the geological and rheological conditions of the
underlying till (Nf is the till-bearing capacity factor; k is a
pressure-shadow factor; η is the effective dynamic viscosity of

Table 1. Model parameters

Description Parameter Value Units

Gravity constant g 9.8 m s−2

Density of ice ρ 917 kg m−3

Density of water ρw 1028 kg m−3

Rate factor A 6.34⋅10−25 Pa−3 s−1

Flow law exponent n 3
Calving front position Lc 600 km
Ice shelf width W 100 km
Accumulation rate ȧ 5 m yr−1

Effective pressure N0 136 × 103 Pa
Zoet-Iverson sliding-law parameter α 1.1 × 10−11 Pa−1 m s−1

Zoet-Iverson sliding-law exponent p 5
Reduction length scale LN0 10, 50 km
Till friction angle ϕ 32 deg
Weertman sliding-law parameter C 5 ⋅ 105 Pa m−1/3 s1/3

Weertman sliding-law exponent m 1/3
Lateral shear stress parameter Cw 2 (n + 1)1/n

Submarine melt-rate parameter ṁ0 25 m yr−1

Submarine melt-rate parameter ṁs 2.5 m yr−1

Submarine melt-rate parameter ṁl 10 m yr−1

Fast correlation time-scale Ts 10 yr
Slow correlation time-scale Tl 200,500 yr
Bed shape parameter b0 −650 m
Bed shape parameter b2 −728.8 m
Bed shape parameter b4 343.91 m
Bed shape parameter b6 −50.57 m
Bed shape parameter x̃ x/Ls m
Bed shape parameter Ls 300 km

.
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ice; R is the clast radius, a is the fraction of the clast radius that
extends above the ice-till interface; C1 = CpK/L is the regelation
parameter, where Cp is the depression of the melting tempera-
ture of ice with pressure, K in the mean thermal conductivity
of ice and rock, and L is the volumetric latent heat of ice, and
k0 = 2π/(4R), with 4R chosen to approximate the wavelength of
bumps in Nye’s model). Using the values listed for these para-
meters in the Supplemental Materials of Zoet and Iverson
(2020), we obtain α≈ 1.1 × 10−11 Pa−1 m s−1.

As Haseloff and Sergienko (2022) point out, in limited cases it
is possible to construct analytic expressions for the buttressing
parameter θ. For instance, for submarine melting that depends
on the horizontal position x

where

q(x) = qg +
∫ x

xg

ȧ− ṁ( )dx′. (31)

The effective pressure N is approximately the difference
between the ice overburden and the subglacial water pressure

N ≈ rgh− pw. (32)

At the grounding line x = xg, the subglacial bed is in contact with
the ocean, and we assume

N(xg) ≈ 0. (33)

Zoet and Iverson (2020) performed their experiments for constant
values of N = 136 kPa and N = 158 kPa. To investigate the effects
of reducing N to zero at the grounding line, we use an approach
similar to that used by Joughin and others (2019), and linearly
reduce N from a constant value (136 kPa) to zero in a zone
(10 km and 50 km) upstream from the grounding line:

N(x) =
N0 if x , xg − LN0

N0 1−
xg − x
LN0

( )
if xg − LN0 ≤ x , xg .




 (34)

We refer to LN0 as the reduction length scale.
We compare the steady-state and dynamic behavior of a mar-

ine ice sheet with the above described forms of lateral and
Zoet-Iverson basal shear stress to the behavior of a marine ice
sheet with the same lateral shear and Weertman sliding law

tb = C u| |m−1u (35)

that has been investigated in earlier studies (Haseloff and
Sergienko, 2018, 2022). We do so by using the constructed ana-
lytic expressions and numerical simulations of the steady-state
formulation of the full model (1)–(8), i.e. we set ht = 0. To be con-
sistent with the analysis of the marine ice-sheet behavior with
Zoet-Iverson sliding law, we consider a linear reduction of the
Weertman sliding parameter C from its constant value to zero

in the 10 km and 50 km zones upstream of the grounding line
(as in Eqn. (34) but with N replaced by C). We use the bed shape

b(x) = b0 + b2x̃2 + b4x̃4 + b6x̃6, (36)

where x̃ = x/Ls, which is based on the shape used in MISMIP+
experiments (Asay-Davis and others, 2016), with minor differ-
ences in the coefficients b0 and L. For the submarine melt rate
we use

ṁ(x) = ṁ0 1−
x − xg
Lc − xg

( )1/3
[ ]

+ ȧ, xg , x ≤ Lc. (37)

Melting is largest at the grounding line, and at the calving front Lc
the net ablation/accumulation ȧ− ṁ is always zero; this form is
chosen purely for its simplicity.

Numerical simulations that solve the full model (1)–(8) are
performed with the finite-element solver ComsolTM(COMSOL,
2023). The steady-state solutions are obtained by solving an opti-
mization problem using a minimization procedure based on the
Bound Optimization by Quadratic Approximation optimization
algorithm (Powell, 2009). In all simulations, the grid resolution
is spatially variable: it is 200 m through 95% of the length of
the domain, and 1 m in the 5% closest to the grounding line pos-
ition xg. The high resolution in the vicinity of the grounding line
is used to ensure its accurate position where both the flotation and
the stress conditions are satisfied simultaneously.

4.1 Steady-state configurations

For τw and τb given by (27) and (28), the expression for the ice
flux at the grounding line (20) is

ȧrgh2

+ q
CwA−1/n

W1/n+1

q1/n

h1/n−1 + N tanf
q

q+ hut

( )1/p

+ rghbx

[ ]

= rghn+3 1
4
rg ′A1/nu

( )n

. (38a)

If N(xg) = 0 then this expression simplifies and becomes

ȧrgh2 + q
CwA−1/n

W1/n+1

q1/n

h1/n−1 + rghbx

[ ]

= rghn+3 1
4
rg ′A1/nu

( )n

. (38b)

These expressions are the steady-state stress conditions that are
satisfied together with the flotation condition (8) at the junction
between the grounded and floating parts of the marine ice
sheet. They are implicit relationships between the steady-state
ice flux and ice thickness. According to the mass balance (5a),
in a steady state

u = 1−
(4nCw)

1/(1+n)[q(xc)]1/n + ((n+ 1)/n)Cw/W
∫ xc

xg

[q(x′)]1/ndx′

rg ′A1/nW1/nh1/n+1









2n/(n+1)

(30)
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q(xg) =
∫ xg

xd

ȧ dx. (39)

With this condition (39), (38a) and (38b) are transcendental
equations whose roots determine the grounding line positions,
of which there can be none, one or several.

The results of the analysis by Haseloff and Sergienko (2022)
show that the choice of the conditions at the calving front has a
strong effect on the steady-state configurations of marine ice
sheets. For the chosen bed shape (36) and the values of para-
meters described in Table 1, there are unique steady-state posi-
tions on the up-sloping part of the bed with a fixed position
of the calving front (Figs. 2(a,b)). Out of three calving-front
conditions considered by Haseloff and Sergienko (2018, 2022)
this is the only one that yields steady-state configurations for
this bed shape and the parameter set. With both sliding laws
the ice sheets attain similar steady-state configurations. The
grounding-line position for the case with zero basal shear is
upstream of the grounding-line position with non-zero basal
shear. The upstream displacement of the grounding line position
for the 10 and 50 km reduction zones are fairly similar – 5.7 km
for the 10 km and 6.7 km for the 50 km reduction zones for

both sliding laws (6.5 km for Weertman’s). The differences
between the ice thicknesses of the grounded ice streams computed
with the approximate and the full model do not exceed 3 m in all
simulations. The differences between the ice-shelf thicknesses are
larger: within 20 m directly downstream of the grounding line,
and they progressively reduce to under 2 m towards the calving
front.

One of the advantages of the analytic expressions (38) is the
possibility to examine the steady-state ice flux for a range of pos-
sible grounding line positions, see Figures 2c,d. The solid lines are
obtained by solving (38) with the flotation condition (8) for xg
between 350 km and 550 km. Due to the appearance of bx and
θ in (38), these curves depend on the ice shelf and bed geometry.
For xg & 350 km all ice on the ice shelf is removed by melting and
the ice shelf front is located where the ice thickness goes to zero.
We exclude this case from our analysis.

In the presence of a sufficiently long ice shelf (≈100 − 250 km,
xg & 475 km) the form and value of the sliding law do not greatly
affect the steady-state ice flux at the grounding line. However, the
differences are significantly more pronounced as the ice shelf
becomes shorter and buttressing is smaller (Fig. 2(d)).

In steady state, the ice flux at the grounding line matches the
integrated surface accumulation (39), and the steady-state

a b

c d

Figure 2. Steady-state configurations of ice sheets. (a) profiles with the Zoet-Iverson sliding law with N reducing to 0 in the 50 km upstream of the grounding line
(green line), 10 km (red line) and constant through the length of the ice stream; (b) profiles with the Weertman sliding law with C reducing to 0 in the 50 km
upstream of the grounding line (green line), 10 km (red line) and constant through the length of the ice stream. Solid lines are numerical simulations of the
full model, dashed lines are results of the approximate model (14). (c) The ice flux at the grounding line as a function of the ice thickness. Lines are solutions
of the approximate analytic expression (38a) with the corresponding sliding laws; τb(xg) = 0 is a solution of (38b); symbols indicate steady-state values from the
numerical simulations: filled symbols indicate Zoet-Iverson sliding law open symbols indicate Weertman sliding law, colors indicate the reduction of τb in the
zone upstream of the grounding line similar to those shown in panels (a) and b. (d) The ice flux at the grounding line as a function of the position xg. The
light magenta, light green and turquoise lines are solutions of (38a) and (38b), the black line is the integrated accumulation rate through the grounding line
(39); symbols are the same as in panel (c).
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grounding line position is determined by the intersection of the
flux determined from (38) and the mass balance flux given by
(39) (black line in Fig. 2(d)); these intersections are marked by
the symbols in Fig. 2(d). The values obtained with the approximate
model (14) are in a good agreement with the values obtained in
numerical solutions of the full model: the differences between posi-
tions obtained with the numerically solved full model (1)–(9) and
the roots of (38) are between 650m a 1200m for both sliding laws,
with smaller values for the configurations with the non-vanishing
basal shear and larger values for the configurations for the 50 km
reduction zone. The reduction of τb to zero at the grounding line
results in a small reduction (less then 2%) of the steady-state ice
flux through the grounding line Figure 2(c)). This reduction is
due to the fact the grounding line position is slightly upstream,
and in a steady state the flux at the grounding line is the integral
of the surface accumulation rate ȧ from the divide to the grounding
line; with the constant values of ȧ, this integral is smaller for the
grounding line position located upstream than for the grounding
line position located downstream.

As the basal and lateral shear stress depend on the ice velocity,
the stability of the steady-state configurations can be determined
from (21)–(23). The expressions for the stability coefficients for
the Zoet-Iverson sliding law are listed in Appendix B; the expres-
sions for the Weertman sliding law can be found in Haseloff and
Sergienko (2022)(Eqn. (C20)). According to (22), all configura-
tions shown in Figs. 2(a,b) are stable. This is confirmed with
numerical simulations in the same way as in similar studies by

Sergienko and Wingham (2019, 2022) and Sergienko (2022b)
by displacing the grounding line positions 1 km upstream from
their steady-state positions and solving the full time-dependent
problem (1)–(8). In all simulations, the displaced grounding
lines return to their steady-state positions, confirming that the
steady-state configurations are stable.

Expressions (15)–(20) were derived under assumptions that on
the grounded part the divergence of the longitudinal stress is
smaller than other components of the momentum balance. It is
instructive to analyze the components of the ice stream (1a)
and ice shelf (1b) momentum balances in order to verify our
assumption that for the ice stream the divergence of the longitu-
dinal stress is smaller than other components of the momentum
balance is valid. We use the terms from the numerical simulations
with the full model (Fig. 3).

The driving stress τd (last terms on the left-hand side of Eqns.
(1a)–(1b)) is discontinuous at the grounding line. This discontinuity
results in a discontinuity of the divergence of the longitudinal stress
τx at the grounding line, even though the longitudinal stress itself is
continuous in accordance with the continuity condition (7c). The
lateral shear stress is continuous at the grounding line because of
the continuity conditions (7a)–(7b). As Haseloff and Sergienko
(2018) surmised, there is a boundary layer downstream of the
grounding line, in which the longitudinal stress divergence rapidly
reduces to zero, and outside this boundary layer the momentum
balance of the ice shelf is between the driving stress and the lateral
shear stress.

a b

c d

Figure 3. Terms of the steady-state momentum balance. (a) Zoet-Iverson sliding law; solid lines correspond to a constant value of N, dashed lines correspond to
reduction of τb to zero in the 10 km upstream of the grounding line, dotted-dashed lines correspond to reduction of τb to zero in the 50 km upstream of the ground-
ing line; (b) Weertman sliding law, the lines are the same as in panel (a); (c) zoom-in of τx terms in the vicinity of the grounding line for Zoet-Iverson sliding law; (d)
the same as panel (c) for Weertman sliding law.
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Upstream of the grounding line, the dominant balance is between
the basal shear, lateral shear and driving stress. The imposed reduc-
tion of the basal shear is accompanied by the reduction of similar
magnitude in the driving stress, rather than significant increase of
the magnitude of the longitudinal-stress divergence. It is only in
the immediate vicinity of the grounding line that τx reaches a mag-
nitude of 1–2 kPa, with the value slightly larger for the 10 km reduc-
tion zone than for the 50 km reduction zone. This relative smallness
of the longitudinal-stress divergence provides justification for the
approximated momentum balance (14a). Both sliding laws result
in a similar behavior of the stress terms. This behavior of the
momentum-balance terms is qualitatively similar to that obtained
by Tsai and others (2015) in their analysis of an unconfined marine
ice sheet with Coulomb sliding law. The linear stability analysis, and
hence a derivation of stability conditions of their specific formula-
tion of the sliding law is problematic because it is written in terms
of a min function, and its derivatives may not exist.

5. Response to the stochastic variability in submarine
melting

While most previous theoretical studies investigate steady-state
configurations that assume that all internal and external para-
meters remain constant in time, realistic ice sheets experience
environmental conditions that change in time. This temporal
variability happens on a wide range of timescales, because in add-
ition to the long-term changes in the orbital forcing (Milanković,
1941), the Earth’s climate has numerous modes of internal vari-
ability. Steig and others (2012) linked the variability in the trop-
ical Pacific to variability in submarine melting of the ice shelves in
the Pacific region of West Antarctica, and Jenkins and others
(2018); Christie and others (2023) have attributed the grounding
line migration of these ice shelves to decadal variability. The
results of numerous observational (e.g., Shepherd and others,
2004) and modeling (e.g., Cornford and others, 2015; Seroussi
and others, 2017) studies indicate that the grounding-line dynam-
ics is sensitive to submarine melting. Consequently, we chose to
explore how the marine ice sheets respond to stochastic variability
in submarine melting. Previous modeling studies with idealized
(Christian and others, 2022; Felikson and others, 2022) and real-
istic (Hoffman and others, 2019; Robel and others, 2019) geom-
etries show that stochastic variability in the climate forcing have
strong effects on the long-term behavior of the grounding lines.

We use the steady-state configurations obtained in the previ-
ous section as initial conditions; as discussed above they are all
stable configurations. We modify the expression for the submar-
ine melt rate (37) in the following way

ṁ(x, t) =
(

ṁ0 + Dṁ(t)

)

1−
x − xg
Lc − xg

( )1/3
[ ]

+ ȧ,

xg , x ≤ Lc,

(40)

where Dṁ(t) varies stochastically

Dṁ(t) = ṁsN (t/Ts)+ ṁlN (t/Tl). (41)

Subscripts s and l refer to ‘short’ and ‘long’ time-scales, ṁs,l are
the amplitudes of the melt-rate variability; Ts,l are the correlation
time-scales, and N (t) is a noise function with a uniform distribu-
tion and zero mean value. For the ‘short’ time-scale we choose the
decadal and for the ‘long’ time scale we choose centennial time
scales as suggested by in situ and remote sensing observations
(Jenkins and others, 2018; Christie and others, 2023) and model-
ing (Latif and others, 2013).

For each sliding law we perform four sets of simulations
(see table 2): with constant values of N or C or with a reduction
in the 10 km zone upstream of the grounding line; and with
Tl = 200 yrs or Tl = 500 yrs. The values of ms,l are the same in
all simulations. Each set consists of five simulations with the
noise function N (t) initialized with a random seed to ensure
independence of the simulation results.

The problem (1)–(8) is solved numerically on domains with a
moving boundary (the grounding line) using an arbitrary
Lagrangian-Eulerian (ALE) method (Donea and others, 2017).
The time-step is adaptive and does not exceed two years in
order to resolve variability on Ts = 10 yrs. The grounding line
moves with velocity (17), where all terms are computed by the
model and bt = 0. The analysis relies on numerical simulations
because it is not possible to write a closed-form expression for
θ ((30) is only valid for steady-states). Instead, θ is determined
numerically from (10).

Simulations with the Zoet-Iverson sliding law, the 10 km
reduction zone and Tl=200 yr indicate that stochastic variations
in the submarine melting can cause migration of the grounding
line on the order of ∼40 km with excursions to almost 70 km
(Fig. 4(a)). Although the time-averaged values of the rate of the
grounding-line migration ẋg over the 100 kyr simulation period
are low (∼−4.5 m yr−1, Fig. 4(b)), there are infrequent instances
when the rate of the grounding-line retreat exceeds 1 km yr−1.
Together in all five simulations that happened 27 times. The aver-
age periodicity of such events is ∼18.5 kyr – significantly longer
then the long correlation time-scale Tl = 200yrs.

In steady state, melting reduces the ice-flux divergence
(ȧ− ṁ = qx), which can lead to both thinner and slower ice
downstream of a melt perturbation. As the steady-state buttres-
sing parameter depends on the integrated ice flux (see (30)), in
either case melting leads to a reduction in buttressing if every-
thing else is fixed. In time-dependent calculations as those per-
formed here, melting can either reduce the ice-flux divergence
or lead to thinning (ȧ− ṁ = qx + ht) and it is not obvious
how the partition between these two processes affects the buttres-
sing parameter and consequently the grounding line evolution.
Moreover, as the location of the calving front is fixed in our simu-
lations, a retreating grounding line lengthens the ice shelf, which
could in turn increase the amount of buttressing experienced at
the grounding line, with the counter-intuitive result that ground-
ing line retreat and an increase in buttressing go hand-in-hand.
This is indeed what we observe: the temporal evolution of the but-
tressing parameter θ is shown in Figure 4(c) and θ decreases (but-
tressing increases) as the grounding-line retreats, and conversely.
Simulations with the same parameters and no reduction of τb, as
well as simulations with a Weertman sliding law with and without
reduction of τb produce quantitatively similar results.

Increase of the long correlation time-scale Tl to 500 yr produces
markedly different results in simulations with and without reduc-
tion of τb near the grounding line. If the basal shear stress is reduced
at the grounding line (LN0 = 10 km) then the marine ice sheet col-
lapses in all simulations, i.e. the grounding line retreats to the ice

Table 2. Performed time-dependent simulations

Zoet-Iverson Weertman

LN0 0 km 10 km 0 km 10 km

Tl = 200 yrs 0 0 0 0
Tl = 500 yrs 0 X 0 X
Tl = 1000 yrs X X

X indicates the occurrence of an irreversible ice sheet collapse, 0 indicates no ice sheet
collapse within the 100 kyrs simulation period. For Tl = 200 yrs and Tl = 500 yrs, 5 simulations
were performed for each configuration. Ice sheet collapses occur at different times during
these simulations, depending on the seed in the random noise function N
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divide at xd = 0, see Figure 4(d). The timing of this collapse is sig-
nificantly longer (∼5 kyr to ∼75 kyr) than the correlation time-scale
Tl of stochastic variability of submarine melting (500 yr). The rates
of grounding line migration prior to the ice-sheet collapse are lower
than in simulations with Tl =200 yrs. During the collapse they
exceed 1 km yr−1 (Fig. 4(e)). Similar to the simulations with the
shorter correlation time-scale Tl =200 yrs, prior to collapse, the but-
tressing parameter θ increases when the grounding line retreats, and
decreases when the grounding line advances. It is only during the
collapse that θ significantly increases indicating strong loss of but-
tressing (Fig. 4(f)). Simulations with the Weertman sliding law
and LN0 = 10 km exhibit quantitatively similar behavior – the ice
sheet collapses in ∼8 kyr – 120 kyr depending on the simulation.

If τb does not vanish at the grounding line and Tl = 500 yrs, the
marine ice sheet does not undergo collapse; instead, it experiences

an intermittent advance and retreat of the grounding line. In these
simulations, the rate of the grounding line migration is overall
lower than in simulations with Tl = 200 yr. Only in one simulation
(for each sliding law) does the rate of the grounding line migra-
tion exceeds 1 km yr−1. However, if the correlation time scale Tl

is increased to 1000 yrs, then a collapse-like behavior is observed
in simulations with both Zoet-Iverson and Weertman sliding laws
and constant values of N and C as well. The ice-sheet behaviors in
these simulations are similar to those in simulations with τb van-
ishing at the grounding line and Tl = 500 yrs, described above.
Table 2 summarizes these results.

To get a better understanding how the values of the correlation
time-scales affect the dynamics of the grounding line, we analyze
the co-evolution of the melt rate, the grounding line displacement
and the buttressing parameter in single simulations with different

a d

b e

c f

Figure 4. Response of the grounding line to stochastic perturbation in the melt rate with Tl = 200 yrs (left column) and Tl = 500 yrs for Zoet-Iverson sliding law and
with LN0 = 10 km. (a) the grounding line position (km); (b) the rate of the grounding line migration (m yr−1); (c) the buttressing parameter θ. Different colors cor-
respond to simulations with different seeds in the noise functions. Dashed lines indicate steady-state values.

Journal of Glaciology 11

0::7�
  ��1���/ ������	 2�/������������31�0.����31�.�� ���4��1�/.�
�1�.��1: ���.��

https://doi.org/10.1017/jog.2023.40


values of Tl. As Figs. 5(a,b) and 5(d,e) show, in general, the
grounding line retreat coincides with a rapid increase of the
melt rate and vice versa. Changes in θ overall mimic changes in
the grounding-line position: when the grounding line retreats, θ
decreases (buttressing increases), and when the grounding line
advances, θ increases (buttressing decreases). As pointed out
above, this behavior of θ is a consequence of the chosen condi-
tions at the calving front and the fixed values of the surface abla-
tion/accumulation rate ȧ. The difference between simulations with
different values of Tl is that in simulations with Tl = 500 yrs the ice
shelf can experience melt rates substantially larger than their
mean values for longer time periods compared to simulations
with Tl = 200 yrs. The longer periods of sustained high melt
rates imply longer periods during which the grounding line is
upstream of its time-averaged position, and consequently shorter
horizontal extent of the grounded part of the ice sheet, through
which it accumulates mass.

Ultimately, the unstoppable retreat of the grounding line is
caused by the loss of the ice flux through the floating ice shelf
exceeding the mass gain upstream of the grounding line for pro-
longed periods of time (Fig. 6). This leads to continuous thinning

and further grounding line retreat, until the ice sheet has com-
pletely disappeared.

6. Discussion

The existing theoretical analyzes have focused thus far only on
steady states of marine ice sheets and their stability. In order to
improve our conceptual understanding of the dynamic behavior
of marine ice sheets and extend the theoretical analyzes to time-
variant behavior that is characteristic of realistic ice sheets experi-
encing environmental conditions that vary in time, we have devel-
oped a framework to analyze the effects of different forms of basal
and lateral shear stresses on marine ice sheet dynamics. This
framework can be applied to analyze the role of lateral and
basal shear stress parameterizations in steady state configurations.
Written with general forms of τw and τb, the derived expressions
also provide insights into how basal and lateral shear (or their
absence) affect the temporal evolution of grounding lines. The
stability conditions presented here are derived assuming no feed-
backs between ice sheet and surface accumulation or submarine
melting. Even in the absence of these additional feedbacks, the
stability conditions depend on a large number of parameters in
a non-trivial fashion. This, and the presence of feedbacks between
realistic ice sheets and their environmental conditions, questions
generalized statements about their (in)stability and the usefulness
of such statements.

The rate of grounding line migration (18) (or (19)) is deter-
mined by the imbalance between the stresses on the grounded
side of the ice stream (the basal, lateral and form drag associated
with the shape of the bed), the ice-shelf buttressing, whose effect
is encapsulated in the buttressing parameter θ, the ice velocity at
the grounding line, which reflects the effects of lateral and basal
shear through the length of the grounded part (19) and the net
accumulation/ablation at the grounding line. In steady state
these terms balance each other, ẋg = 0, and the grounding line
does not move. The fact that ẋg is determined by the imbalance
of several terms reflects that it is controlled by the competing
effects of several processes – both local, at the grounding line,
as well as integral, through the lengths of the grounded part
and the ice shelf. This indicates that the observed migration of
present-day grounding lines cannot be attributed to a single
cause (e.g., submarine melting), and all other processes and inter-
actions between them have to be taken into account.

To illustrate the developed framework, we have applied it to a
marine ice sheet whose lateral shear increases with velocity and

a d

e

f

b

c

Figure 5. Response of the grounding line to stochastic perturbations in the melt rate in a single simulation for Zoet-Iverson sliding law with the 10 km reduction
zone (a)–(c) for Tl = 200 yrs and (d)–(f) for Tl = 500 yrs. (a), (d) melt rate at the grounding line (m yr−1); (b), (e) displacement of the grounding line from the time-
mean position (km); (c), (f) the buttressing parameter θ. Note different horizontal scales in panels (a)–(c) and (d)–(f).

Figure 6. Evolution of the ice flux q(x) through the length of the ice sheet during
unstoppable retreat for Zoet-Iverson sliding law with the 10 km reduction zone for
Tl = 500 yrs. Dashed lines indicate the mass flux gained upstream of the grounded
part.
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ice thickness and whose basal shear is described by either a
Zoet-Iversion sliding law or a Weertman sliding law. The only
calving law that yields a steady-state configuration for the chosen
bed topography is a fixed calving front position – a widely used
condition in idealized and realistic studies. For both sliding
laws, we find a good agreement between the steady-state config-
urations obtained with the full and the approximate models.
Analysis of the momentum balances of these ice sheets shows
that the divergence of the longitudinal stress at the grounding
line is discontinuous (Fig. 3) because the driving stress at the
grounding line is discontinuous (Eqn. (1)). Although the discon-
tinuity of the driving stress is obvious from the momentum bal-
ance (1), the discontinuity of the divergence of the longitudinal
stress is less so. Its existence should be kept in mind in analyzes
of the large-scale ice-sheet simulations that are typically based
on the vertically integrated momentum balances. Most likely,
the requirements of high spatial resolution in the vicinity of the
grounding line (Seroussi and others, 2014; Gladstone and others,
2017) are associated with the need to resolve this discontinuity of
the divergence of the longitudinal stress with sufficient accuracy.

The steady-state configurations with the two sliding laws we
compare do not differ qualitatively. There are also no substantial
differences in the steady-state configurations of ice sheets whose
basal shear reduces to zero or remains large at the grounding
line, regardless of the sliding law.

However, if the grounding line is dynamic and driven by sto-
chastic variability in submarine melting, then the ice sheet
response depends on the basal shear stress at the grounding line
and the magnitude of the correlation time-scales. Our results
show that on the given bed topography, the marine ice sheet
can exhibit intermittent advance and retreat of their grounding
lines in response to up to 40% variations compared to steady-state
melt rates if such variations are sustained on the order of 200 yrs.
If such melt-rate variations are sustained for longer periods
(∼500yrs) simulated ice sheets with vanishing basal shear experi-
ence unstoppable retreat of their grounding lines, while simulated
ice sheets with large basal shear at the grounding lines continue to
exhibit intermittent advance and retreat of their grounding lines.
They experience such an unstoppable retreat if melt-rate varia-
tions are sustained for longer periods (∼1 kyr). We point out
that the exact values of periods are specific to the chosen para-
meters - the bed shape, the magnitudes of the basal and lateral
shears and the amplitudes of the melt-rate variations. For
instance, for the amplitudes of variations much larger than the
steady-state values, the correlation timescales may be shorter,
e.g., of the order of several decades. However, our finding that
for the same amplitudes of the melt-rate variability, the longer
correlation timescales can eventually lead to unstoppable retreat
of the grounding line is a robust result.

The unstoppable retreat observed in our simulations is a con-
sequence of an excess mass loss at the grounding line which
exceeds the integrated mass gain upstream of the grounding
line for prolonged periods of time, leading to sustained thinning
and retreat of the ice sheet. The retreat occurs at times signifi-
cantly longer than the stochastic correlation time-scale, on the
order of thousands to hundreds of thousands of years, after
many periods of melt-rates higher than their time-averaged
values. During intermittent grounding-line retreats, the ice-shelf
buttressing increases and vice versa. This behavior is a result of
holding the calving front position fixed.

Even though our assumption that all parameters except submar-
ine melt rates remain constant in time is unrealistic, it simplifies the
analysis and allows us to focus on the effects of time-varying melt-
ing. A drastically different response to temporal variability in sub-
marine melting observed in our simulations with vanishing and
non-vanishing basal shear stress at the grounding line suggests

that the basal traction in the vicinity of the grounding line exhibits
a strong control on the transient behavior of marine ice sheets. It
also suggests that the temporal variability of basal conditions can
have a critical role in its dynamics. Although inferences about
the basal shear spatial distribution from surface observations by
means of inverse modeling have been done routinely (e.g.,
Sergienko and others, 2008; Morlighem and others, 2013), there
is very little understanding of its temporal variability. The presence
of high basal shear structures in the vicinity of the grounding lines
of many Antarctic ice streams and Greenland outlet glaciers has
been attributed to the interactions between subglacial hydraulic sys-
tems, sediments and the ice flow (Sergienko and Hindmarsh, 2013;
Sergienko and others, 2014). The highly dynamic nature of the sub-
glacial hydraulic system means that assuming sliding law para-
meters do not change in time is very limiting. Establishing
characteristics of their variability is equally important as establish-
ing a functional form of the sliding law, and is necessary for
improvements in understanding of grounding line dynamics.

The concepts of marine ice-sheet stability and instability intro-
duced by Weertman (1974) and further developed by Schoof
(2007a, 2007b, 2012) apply to steady-state configurations of ice
sheets that require that all environmental conditions (in this
study expressed via the net surface accumulation/ablation and
submarine melting) do not change with time. Neither the present-
day ice sheets nor paleo ice sheets have ever attained steady states,
because the Earth’s climate changes in time on a variety of tem-
poral scales. Hence, the concepts of marine ice-sheet (in)stability
cannot be used to describe their behavior. This does not imply,
however, that analyzes of steady states are useless. The purpose
of such analyzes are different from those focused on the ice-
sheets’ response to time-variant environmental conditions (past
or future). By ignoring the variability of external conditions, the
steady-state analyzes focus on the internal dynamics of the ice
sheets and provide insights into their dynamics and conceptual
understanding of complex behavior controlled by poorly known
subglacial processes, which effects are encapsulated in sliding
laws. Additionally, these steady-state analyzes have been a driving
force for the development of ice-sheet numerical models, provid-
ing benchmarks and establishing the requirements for numerical
algorithms and the model resolutions.

Understanding of the behavior of the realistic ice sheets
requires analyzes that take into account changing environmental
conditions. This requires shifting the focus from steady-state con-
siderations to the temporal evolution of the ice sheets and their
characteristics such as the grounding line migration. If its rate is
small or close to zero that means that the ice sheets are close or
at equilibrium with their environmental conditions; nevertheless,
they are not in steady states, because if these conditions change
the rate of the grounding line migration changes in response to
them (Eqn. (19)). Currently, there is neither quantitative nor con-
ceptual understanding of such dynamic equilibria, their character-
istic timescales, controls, etc. Developments of such approaches
need to become the focus of future studies.

7. Conclusions

We have developed a generalized framework for the analysis of
the steady-state behavior and dynamic evolution of marine ice
sheets, and applied it to a configuration with a power-law lateral
shear and Zoet-Iversion and Weertman sliding laws. When driven
with stochastic variability in submarine melt rates, the grounding
line evolution strongly depends on the specific modeling choices
(e.g., the size of the modeled domain, the shape of the bed, the
conditions at the calving front). Our results illustrate that classifi-
cations in stable or unstable grounding lines are not useful con-
cepts in understanding the transient behavior of ice sheets.

Journal of Glaciology 13

0::7�
  ��1���/ ������	 2�/������������31�0.����31�.�� ���4��1�/.�
�1�.��1: ���.��

https://doi.org/10.1017/jog.2023.40


Although all our simulations started from stable steady-state con-
figurations, their response to temporal variability, even of a sto-
chastic nature with no trends, cannot be described in terms of
‘stable’ or ‘unstable’ at any given time. Understanding the
dynamic behavior of marine ice sheets requires a new conceptual
approach that takes into account the ice-sheet environmental con-
ditions and their variability on a wide range of temporal scales.

Code availability. Numerical models used in this study are available on
Zenodo https://zenodo.org/record/7637662 (Sergienko and Haseloff, 2023).
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Appendix A. Stability analysis of steady-state
configurations

Here, we describe details of a linear stability analysis of an approximate prob-
lem (14). As usual, we consider small perturbations around the steady state

h = ĥ(x)+ sh̃(x, t), q = q̂(x)+ sq̃(x, t), xg = x̂g + sx̃g (t), (A.1)

where steady-state solutions are denoted by ,̂ perturbation solutions are denote
by ,̃ and σ is a small parameter. Substituting these expressions to (14) and col-
lecting terms in the lowest order of σ lead to the perturbation problem

− h̃ tw + tb
( )

h−q̃ tw + tb
( )

q−rgh̃ ĥ+ b
( )

x
−rgĥh̃x = 0 (A.2a)

h̃t + q̃x = 0 (A.2b)

h̃x = q̃ = 0, x = xd (A.2c)

q̃xrgĥ
2 + q̃ G1(ĵ)+ q̂G1q(ĵ)

{ }
+ h̃ 2rgĥq̂x + q̂G1h(ĵ)

{ }
+ x̃gG0x(ĵ) =

q̃F1(4̂)uq(4̂)+ h̃ F1(4̂)uh(4̂)+ F2(4̂){ } + x̃gF0x(4̂), x = x̂g
(A.2d)

h̃+ ĥxx̃g = − bx
1− d

x̃g , x = x̂g , (A.2e)

where

G0(j) = q̂xrgĥ2 + q(tw + tb + rgĥbx) (A.3a)

G1(j) = tw + tb + rgĥbx (A.3b)

F0(4) = rgĥn+3 1
4
rg ′A1/nu(4)

( )n

(A.3c)

F1(4) = nrgĥn+3 1
4
rg ′A1/nu(4)

( )n−1

(A.3d)

F2(4) = (n+ 3)rgĥn+2 1
4
rg ′A1/nu(4)

( )n

, (A.3e)

ξ ={ξb, ξw} represents all variables that τb and τw on the grounded, ice-stream
side described by (4) depend on; 4 = j, ṁ, xc . . .{ } represents all variables
that τw on the floating, ice-shelf side and θ depend on; and variable subscripts
(x, t, h, q,4) indicate a partial derivative with respect to the respective variable.

Taking into account the steady-state momentum balance (12a), the per-
turbation momentum balance (A.2a) can be written as

q̃ = − 1
tw + tb
( )

q

h̃ tw + tb
( )

h−
tw + tb

ĥ
+ rgĥ

h̃x
h̃

[ ]{ }

. (A.4)
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Substitution of this expression to the perturbation mass balance (A.2b) gives

h̃t −
1

tw + tb
( )

q

h̃ tw + tb
( )

h−
tw + tb

ĥ

[ ]
+ rgĥh̃x

{ }[ ]

x

= 0. (A.5)

This is a second-order PDE for h̃. Its solution can be written in a form

h̃(x; t) = elt h̃(x). (A.6)

Substitution this form to (A.5) transforms the perturbation problem (A.2) into
an eigenvalue problem with λ being an eigenvalue

1

G2(ĵ )
h̃ tw + tb

( )
h−

tw + tb

ĥ

[ ]
+ rgĥh̃x

{ }[ ]

x

= −lh̃ (A.7a)

h̃ = 0, x = 0

− l

[

rgĥ2 + G1(ĵ )+ G2(ĵ )q̂− F1(4)uq(4̂)
( )

? x̂g
xd
h̃dx

h̃

][

ĥx +
bx

1− d

]

= bx
1− d

[

F2(4̂)− F1(4̂)uh(4̂)− 2ȧrgĥ− q̂rgbx

]

(A.7b)

+ ȧG1(ĵ )+ q̂G3(ĵ )+ ȧxrgĥ2 − F1(4̂)u4(4=h)4x , x = x̂g , (A.7c)

where

G2(j) = tw + tb
( )

q (A.8a)

G3(j) = twj jx + tbzzx + rghbxx , (A.8b)

and

q̃x = −lh̃ ⇔ q̃(x) = −l

∫ x

xd

h̃dx′ (A.9)

x̃g =
−h̃

hx + bx
1−d

(A.10)

were taken into account.
The eigenvalue problem (A.7) is of the same kind as those considered by

Sergienko and Wingham (2022); Haseloff and Sergienko (2022). Similar to
these and Schoof’s(2012) analysis, it is possible to put (A.7) into
Sturm-Liouville form. As in these previous studies, it is not possible to write
a closed form expression for λ. It is possible, however, to establish conditions
under which all eigenvalues are negative, implying that a steady-state config-
uration is stable. According to theorem 1 of Linden (1991), the eigenfunction
corresponding to the largest eigenvalue does not have zeros if the term in par-
enthesis of the first square brackets on the left-hand side of (A.7c),
(G1(ĵ )+ G2(ĵ )q̂− F1(4)uq(4̂)), is positive. If this condition is satisfied,

the term
∫ x̂g

0
h̃dx/h̃(x̂g ) is positive. Consequently, the first square bracket on

the left-hand side of (A.7c) is positive. The second square bracket has to be
negative in order for the ice stream remain grounded (Schoof, 2012). Thus,
the sign of λ and stability of a steady state is determined by the sign of the
right-hand side of (A.7c). It is stable if

bx
1− d

[

F2(4̂)− F1(4̂)uh(4̂)− 2ȧrgĥ− q̂rgbx

]

+ ȧG1(ĵ )+ q̂G3(ĵ )+ ȧxrgĥ2 − F1(4̂)u4(4=h)4x , 0.

(A.11)

If the inequality sign is reversed, the steady state is unstable.

If τb and τw do not depend on u, it is possible to compute the term
∫ x̂g

0
h̃dx/h̃(x̂g ) in the square brackets of the left-hand side of (A.7c). With all

other terms known, this expression (A.7c) allows to determine the eigenvalue
λ. This can be achieved by observing that the term (τw + τb)q in (A.2a) is zero.
Taking into account the steady-state momentum balance (12a) and rearran-
ging terms, (A.2a) gives

h̃x
h̃
= 1

rg
tw + tb

ĥ2
−

tw + tb
( )

h

ĥ

[ ]

. (A.12)

Integrating both sides of this expression leads to the following expression for
h̃(x)

h̃(x) = C0 exp
∫ x

xd

dx
rg

tw + tb

ĥ2
−

tw + tb
( )

h

ĥ

[ ]( )

, (A.13)

where C0 is a constant of integration. Using this expression leads to

? x̂g
xd
h̃dx

h̃(x̂g )
=

? x̂g
xd
dx exp

∫ x

xd

dx′

rg
tw + tb

ĥ2
−

tw + tb
( )

h

ĥ

[ ]( )

exp
∫ x̂g

xd

dx
rg

tw + tb

ĥ2
−

tw + tb
( )

h

ĥ

[ ]( ) . (A.14)

Rearranging terms in (A.7c), one obtains

l = −
[

rgĥ2 + G1(ĵ )+ G2(ĵ )q̂− F1(4)uq(4̂)
( )

? x̂g
xd
h̃dx

h̃

]−1[

ĥx +
bx

1− d

]−1

× bx
1− d

[

F2(4̂)− F1(4̂)uh(4̂)− 2ȧrgĥ− q̂rgbx

]

+ ȧG1(ĵ )+ q̂G3(ĵ )+ ȧxrgĥ2 − F1(4̂)u4(4=h)4x ,

(A.15)

where the term
∫ x̂g

0
h̃dx/h̃(x̂g ) is defined by (A.14).

Stability conditions in terms of the flux gradient

The above stability conditions can be written in terms of the gradient of the ice
flux at the grounding line dqg/dxg , a form used by Schoof (2012). To do so we
write the ice-flux expression (15) as an implicit function F

F(q, ȧ, h, x, · ) : = ȧrgh2 + q(tw + tb + rghbx)

−rghn+3 1
4
rg ′A1/nu

( )n

= 0
(A.16)

where the ( ⋅ ) placeholder indicates dependencies on other variables than
(q, qx, h, x). The perturbation stress condition (A.2c) becomes

Fq q̃+ q̂xx̃g
( )

+ Fqx q̃x + q̂xxx̃g
( )

+ Fh h̃+ ĥxx̃g
( )

+ Fxx̃g = 0,

x = x̂g
(A.17)

Variable subscripts (x, t, h, q, qx) indicate a partial derivative with respect to
the respective variable. Note that we expect τw, τb and θ to depend on different
combinations of h, q, x, (Eqn. (A.3)).

In this form, the eigenvalue problem similar to that described by Eqn.
(A.7c) becomes

1
tw + tb
( )

q

h̃ tw + tb
( )

h−
tw + tb

ĥ

[ ]{ }
+ rgĥh̃x

[ ]

x

= lh̃ (A.18a)
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h̃x = 0,

x = xd − l Fqx + Fq

?x
xd
h̃dx′

h̃

[ ]

ĥx +
bx

1− d

[ ]

= Fqq̂x + Fqx q̂xx − Fh
bx

1− d
+ Fx ,

x = x̂g ,

(A.18b)

and the stability conditions are

Fqq̂x + Fqx q̂xx − Fh
bx

1− d
+ Fx , 0, x = x̂g . (A.19)

We can identify q̂x = ȧ, bx/(1− δ) =−dhg/dxg, and q̂xx = dȧ/dxg at the
grounding line x = x̂g , i.e.

Fqȧ+ Fqx
dȧ
dxg

+ Fh
dhg
dxg

+ Fx , 0, x = x̂g . (A.20)

If the inequality sign is reversed, the steady state is unstable. To understand
this expression, we take the derivative of F(qg , ȧ, hg , xg , · ) with respect
with xg:

Fxg + Fhg
dhg
dxg

+ Fqg
dqg
dxg

+ Fȧ
dȧ
dxg

= 0 (A.21)

which leads to

Fq ȧ−
dqg
dxg

( )
, 0. (A.22)

We have already required Fq > 0 above, so the stability condition is

xg is stable if Fq . 0, Fqx . 0,
dqg
dxg

. a. (A.23)

In the case of τb and τw being independent of u, the corresponding expres-
sion for λ is

l = −
Fqq̂x + Fqx q̂xx − Fh bx

1−d + Fx
ĥx + bx

1−d

Fqx + Fq

? x
xd
h̃dx′

h̃

[ ]−1

= −
Fq ȧ− dqg

xg

( )

ĥx −
dhg
dx

Fqx + Fq

?x
xd
h̃dx′

h̃

[ ]−1

.

(A.24)

Appendix B. Linear stability analysis for a power-law lateral
shear and zoet-iverson sliding law

Here we provide specific forms of the coefficients in the stability conditions
(21)–(22).

G1(j) =
CwA−1/n

W1/n+1h1/n−1 q
1/n + N tanf

q
q+ hut

( )1/p

+rghbx (B.1a)

G2(j) =
CwA−1/n

nW1/n+1h1/n−1 q
1/n−1 + N tanf

p(q+ hut)1/p+1 q
1/p−1hut (B.1b)

G3(j) = twj jx + tbzzx + rghbxx (B.1c)

F1(4) = nrghn+3 1
4
rg ′A1/nu(4)

( )n−1

(B.1d)

F2(4) = (n+ 3)rghn+2 1
4
rg ′A1/nu(4)

( )n

. (B.1e)

The terms in Eqn. (B.1c) are

twj jx =
CwA−1/n

nW1/n+1h1/n−1 q
1/n−1ȧ− 1

n
− 1

( )
CwA−1/n

W1/n+1h1/n−2 q
1/nhx

tbzzx =
N tanf

p(q+ hut)1/p+1 q
1/p−1hut ȧ

(B.2a)

+ Nh tanf
q

q+ hut

( )1/p

−N tanf
p

q
q+ hut

( )1/p ut + ahNh

q+ hut

[ ]

hx (B.2b)

where a = Nf /2+ Nf k(1/h(Ra)
2k30 + 4C1/(Ra)

2k0); Nh = ρg− ∂hpw and ∂hpw
is a derivative of pw with respect to the ice thickness h.

The terms θh,θq and u4(4=h)4x = uqqx + uxc∂xxc in (22) are the following

uh =
b[q(xc)]1/n +

n+ 1
n

Cw

W

∫ xg

xc

[q(x′)]1/ndx′

g
h (B.3a)

uq = − 2
n
5n−1/n+1 (4nCw)

1/(1+n)[q(xc)]1/n−1

nrg ′A1/nW1/nh1/n+1 + Cw

W

∫ xc

xg

[q(x′)]1/n−1

[ ]

(B.3b)

qx =
∫ xc

xg

(ȧ− ṁ)dx′

uxc = − 2
n+ 1

5n−1/n+1 b

n
q1/n−1
c (ȧ(xc)− ṁ(xc))+ Cwq(x)

1/n
[

+ 1
n
Cw(ȧ(xc)− ṁ(xc))

∫xc

xg

[q(x′)]1/n−1dx

]
(B.3c)

∂xxc = ∂hxchx + ∂qxc(ȧ− ṁ) (B.3d)

where

b = (4nCw)
1/(1+n) (B.4a)

g = rg ′A1/nW1/nh1/n+1 (B.4b)

5 =
(4nCw)

1/(1+n)[q(xc)]1/n +
n+ 1
n

Cw

W

∫ xg

xc

[q(x′)]1/ndx′

rg ′A1/nW1/nh1/n+1 (B.4c)

In the example considered here, xc is prescribed, and uxc = 0, ∂xxc = 0.
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