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Abstract 

Most variants associated with complex traits and diseases identified by genome-wide association 

studies (GWAS) map to noncoding regions of the genome with unknown effects. Using ancestrally 

diverse biobank-scale GWAS data, massively parallel CRISPR screens, and single cell 

transcriptomic and proteomic sequencing, we discovered 124 cis-target genes of 91 noncoding 25 
blood trait GWAS loci. Using precise variant insertion via base editing, we connected specific 

variants with gene expression changes. We also identified trans-effect networks of noncoding loci 

when cis target genes encoded transcription factors or microRNAs. Networks were themselves 

enriched for GWAS variants and demonstrated polygenic contributions to complex traits. This 

platform enables massively-parallel characterization of the target genes and mechanisms of human 30 

noncoding variants in both cis and trans. 

 

One-Sentence Summary 

High-throughput single cell CRISPR screens to understand noncoding human genetic variants for 

blood cell traits. 35 
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Main text 

A major goal for the study of common diseases is to identify causal genes, which can clarify 

biological mechanisms and inform drug targets for these diseases. To this end, genome-wide 40 
association studies (GWAS) have identified thousands of genetic variants associated with disease 

outcomes and disease-relevant phenotypes. However, since these associations are nearly always 

found in noncoding regions, their target genes and functions often remain elusive. This is 

commonly referred to as the variant-to-function (V2F) problem (1, 2).  

Recent studies have used statistical fine-mapping to identify plausibly causal GWAS variants and 45 

functional genomics to find candidate cis-regulatory elements (cCREs) and their putative target 

genes (3–6). Other studies have performed CRISPR-based silencing or mutagenesis screens of 

noncoding regulatory elements to identify target genes (7–9). Here, we combine these approaches 

in a modular workflow, Systematic Targeted Inhibition of Noncoding GWAS loci coupled with 

single-cell sequencing (STING-seq), to identify target genes at noncoding GWAS loci using 50 
single-cell pooled CRISPR screens. We first prioritize cCREs by functional annotation and overlap 

with fine-mapped GWAS variants. We then test for gene regulatory function using pooled CRISPR 

inhibition (CRISPRi) and single-cell RNA-sequencing and cell surface protein measurements 

(Fig. 1A). For a subset of validated CREs, we also inserted specific GWAS variants using base 

editing STING-seq (BeeSTING-seq), which couples base editing with single-cell multiomics. We 55 

demonstrate the utility of these approaches in blood cell traits by targeted perturbation of ~500 

cCREs at noncoding GWAS loci, identifying target genes in cis and trans for 134 of these CREs, 

and further explore the effects of 46 fine-mapped noncoding C-to-T variants using precise variant 

insertion.  

 60 

Results 

Fine-mapping multi-ancestry blood trait GWAS to identify candidate CREs 

We elected to study blood cell traits due to their high polygenicity, links to multiple common 

diseases, and the large number of genotyped individuals available in ancestrally diverse biobank-

scale data repositories with measured blood traits (10–12). We examined 29 blood trait GWASs 65 

in the UK Biobank (UKBB) and 15 traits from the Blood Cell Consortium (BCX) (11), including 

traits from platelets, red blood cells (RBCs), and white blood cells (WBCs) (Table S1A). The 

UKBB GWASs include 361,194 participants with European ancestries. The BCX multi-ancestry 

GWASs include 746,667 participants (76% European, 20% Asian, 2% African, 1% 

Hispanic/Latino and 1% South Asian ancestries) with both multi-ancestry and individual 70 
population analyses. We performed statistical fine-mapping for the 29 UKBB blood trait GWASs, 

identifying a median of 469 conditionally independent signals and 3,328 fine-mapped variants per 

trait (13, 14). Multi-ancestry BCX meta-analyses identified a median of 384 conditionally 

independent signals and 3,586 fine-mapped variants per trait. Across all BCX population-specific 

GWASs, excluding European ancestries, there were 42 conditionally independent signals and 418 75 

fine-mapped variants per trait (Table S1A-B). In all cases, we found that greater than 90% of fine-

mapped variants were in noncoding regions of the genome.  

For our study, we targeted candidate cis-regulatory elements (cCREs) from different GWASs — 

543 variants in 254 loci — by intersecting fine-mapped noncoding variants with biochemical 

hallmarks of enhancer activity, such as chromatin accessibility (ATAC-seq and DNase I 80 
hypersensitivity) and canonical histone modifications (H3K27ac ChIP-seq) from a human 
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erythroid progenitor cell line (K562). K562 cells are an established and well-characterized model 

for blood traits: In these cells, reporter assays have identified genetic variants with erythroid-

specific effects (15), transcription factor (TF) occupancy is strongly conserved with human 

proerythroblasts (16), gene expression and open chromatin profiles are similar to human 85 

erythrocyte progenitors (17), and promoter-interacting regions defined from Hi-C data are 

enriched for blood trait GWAS variants (18). The integration of functional genomic data yielded 

a large set of targetable variants from UKBB and BCX GWASs (Table S1C-D). The variants we 

selected were often the highest probability variant in a fine-mapped GWAS locus (294 variants) 

or among the 10 most probable variants (249 variants). We also prioritized variants from non-90 
European ancestries: In total, we selected variants from BCX multi-ancestry analyses (339 

variants), BCX non-European ancestries (118 variants), and UKBB European ancestries (86 

variants) (Fig. 1B, Table S1C-E). 

 

Optimized dual-repressor CRISPRi system 95 

To perturb the selected cCREs, we designed (Table S1F) a dual-repressor KRAB-dCas9-MeCP2 

system (19) that yielded 50 – 60% greater gene repression when targeting transcription start sites 

(TSSs) or previously described enhancer loci (7) than a single-repressor (KRAB-dCas9) system 

(Fig. 1C-D, Fig. S1, Table S2). We further characterized the dual-repressor CRISPRi using a 

pooled library of ~2,000 CRISPR guide RNAs (gRNAs) that target sites at different distances from 100 
the TSSs of ~250 essential genes. We found that dual-repressor CRISPRi had a focused activity 

window with minimal repression beyond 1 kb and that a majority of active gRNAs were located 

between -400 to +850 nt from the TSS (Fig. S2) (20).  
 

A massively parallel assay to perturb CREs and find their target genes 105 

We designed STING-seq gRNA libraries to target each blood trait cCRE with up to three gRNAs 

using the dual-repressor CRISPRi (KRAB-dCas9-MeCP2). These gRNAs were optimized for 

minimal off-target activity (21, 22). We also embedded in the STING-seq library several control 

gRNAs: negative (non-targeting) controls (23), positive controls (targeting highly-expressed genes 

at TSSs), and, to estimate the average number of perturbations per cell via flow cytometry, multiple 110 
gRNAs targeting a gene encoding a ubiquitously-expressed cell surface protein (CD55) (Table 

S3A).  

We transduced K562 cells with pooled library virus at a high multiplicity of infection (MOI), 

which we verified via flow cytometry for CD55 (Fig. S3). We then simultaneously captured four 

different modalities from single cells: CRISPR gRNAs, transcriptomes, cell-surface proteomes via 115 

oligo-tagged antibodies, and cell hashing (Table S3B) (24, 25). We recovered 46,583 single cells 

with a median of 13 gRNAs per cell and with each cCRE targeted in a median of 978 cells (Fig. 

S4A-B, Table S3C). To perform differential expression testing, we recently developed a 

conditional resampling approach (SCEPTRE) that yields state-of-the-art calibration on CRISPR 

single-cell datasets to connect perturbations with changes in gene and protein expression (26). 120 

Using SCEPTRE, we grouped together gRNAs targeting each cCRE, performing 4,627 pairwise 

tests with a median of 7 genes tested per cCRE within 500 kb for cis-effects (27). We observed 

good calibration for positive and negative controls: Non-targeting gRNAs had no effect, and 

control genes had decreased expression or protein levels at a 5% false discovery rate (FDR) (Fig. 
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2A, Fig. S5, Table S3C-E). In most cases, target genes in cis for GWAS variants were more likely 125 

to be identified when both H3K27ac and open chromatin peaks were present (Fig. 2B). 

Out of 539 targeted cCREs (from 254 loci), we found 134 CREs (from 91 loci) had a target gene 

within 500 kb (Fig. 2C, Table S3F). When examining gRNAs that target the same CRE, the 

number of cells was most directly responsible for statistical power, and not distance between 

gRNAs or predicted off-target effects (Fig. S6). We found minimal differences in target gene 130 

identification when looking at potential cis-effects within a smaller (100 kb) or larger (1 Mb) 

window surrounding the targeted cCRE (Table S3F) (28–30). 

Most cis-target genes were also the closest gene to the variant; however, there were 10 cis-target 

genes that were the second closest, and eight that were further away (Fig. 2D). We identified a 

single cis-target gene for 116 CREs and identified 18 CREs with two or more cis-target genes (Fig. 135 
2E). We also targeted 41 variants that were the most plausibly causal variants at their respective 

loci but did not overlap biochemical hallmarks of enhancers. From the 41 variants we targeted that 

did not overlap called peaks for biochemical hallmarks of enhancers, there was one variant 

(rs106585 for WBC counts) with a significant target gene, LTBR (log2 fold-change [FC] = -0.38, 

SCEPTRE p = 3.1x10-7) (Fig. 2A, Fig. S7, Table S3G). Upon further inspection, we found a weak 140 

enhancer-associated histone modification (H3K27ac) at this locus despite the lack of a called peak, 

suggesting that biochemical hallmarks of enhancer activity are required and that spurious signals 

from inactive chromatin are rare (Fig. S8). 

We next sought to characterize concordance between cis-target genes identified via STING-seq 

and other methods, such as physical contact mapping and allele-specific expression. To identify 145 
gene promoters anchored in 3-dimensional space to H3K27ac-bound chromatin, we generated 

H3K27ac HiChIP libraries in K562 cells. Of the 134 STING-seq CREs and their 124 target genes, 

we observed 32 CREs where the same gene was identified with H3K27ac HiChIP contacts, 27 

CREs where the same gene was identified through expression quantitative trait loci (eQTL) 

mapping of the same fine-mapped variant (31), and 73 CREs where the same gene was identified 150 

through a transcriptome-wide association study (TWAS) of a blood trait (32). Although the 

sensitivity of TWAS for target gene identification is reasonably high (54%), we and others have 

found that specificity can be low using this approach (33). Additionally, 54 CREs with fine-

mapped GWAS variants had allele-specific effects on enhancer activity or transcription factor 

binding (34, 35), suggesting these variants are causal at their respective CREs (Table S3F). 155 

 

Identification of causal variants and their impact on gene and protein expression  

In the STING-seq dataset, we identified examples where multiple lines of orthogonal evidence 

converged to explain how a CRE regulates a cis-target gene. For example, the lead variant 

(rs4845124) at a locus associated with mean corpuscular volume in multi-ancestry meta-analyses 160 

(GWAS p = 6.9x10-17) was fine-mapped as plausibly causal (in the 95% credible set with posterior 

probability ≥ 1%); however, upon CRISPR inhibition of the cCRE, there was no target gene (Fig. 

2F-G). Fine-mapping of this locus nominated a second plausibly causal variant mapping to a cCRE 

(rs12140898) whereupon inhibition identified MAPKAPK2 as the target gene (log2 FC = -0.64, 

SCEPTRE p = 2.2x10-16). Notably, both variants were fine-mapped eQTLs for MAPKAPK2 in 165 
neutrophils. However, only rs12140898 had predicted allele-specific effects, on SPI1 binding, and 

mapped to a HiChIP contact domain for the MAPKAPK2 promoter. Therefore, while eQTL studies 

nominated the correct target gene for this locus, it was through experimental CRE-gene mapping 

that we pinpointed the most likely causal GWAS variant. Importantly, the majority of targeted 
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GWAS variants did not have supporting evidence from eQTL data but were within proximity (500 170 
kb) of a TWAS gene, demonstrating that we can uncover genes that may be underpowered by 

eQTL mapping and refine TWAS results that may have high false-positive rates (Table S3F) (33). 

To disentangle loci with multiple target genes in cis, we can combine targeted CRE inhibition and 

gene inhibition. For example, the lead variant (rs7416513) at a locus associated with monocyte 

count in multi-ancestry meta-analyses (GWAS p = 3.8x10-32) was fine-mapped as plausibly causal 175 

(Fig. 2H). This variant maps to an intergenic region, between the gene bodies of CRYBG2 and 

CD52, and the gene with the closest TSS is UBXN11. Given this, it is unclear which of these genes 

— if any — might be the target gene. The variant is also a fine-mapped blood cell eQTL for 

multiple genes in the locus (CD52, CRYBG2, SH3BGRL3, and ZNF593), further obscuring the 

target gene. Upon inhibiting the rs7416513-CRE, we detected CD52 as the most significantly 180 
altered gene (log2 FC = -1.6, SCEPTRE p = 2.2x10-16) (Fig. 2I), and ZNF593 also had a weak 

change in expression (log2 FC = -0.04, SCEPTRE p = 1.3x10-3) with no effect on SH3BGRL3 or 

CRYBG2. Directly targeting CD52 does not influence ZNF593 (SCEPTRE p = 0.65) expression, 

suggesting the rs7416513-CRE has a pleiotropic regulatory effect on multiple genes.  

Using single-cell proteomics, we also detected a significant decrease in cell surface CD52 protein 185 

expression upon rs7416513-CRE inhibition (log2 FC = -0.1, SCEPTRE p = 1.2x10-15) (Fig. 2J), 

demonstrating that CREs with GWAS variants modulate not only cis-target gene expression but 

also protein expression. CD52 protein can be targeted with alemtuzumab to improve clinical 

outcomes in patients with myelodysplastic syndrome, suggesting that this may be the causal gene 

for the monocyte count GWAS association (36). The rs7416513 derived C allele is associated with 190 
increased monocyte count in multi-ancestry meta-analyses (GWAS effect = 0.025, p = 3.8x10-32) 

(11) and also with increased CD52 expression in monocytes (eQTL estimate = 0.71, p = 4.5x10-

31) (37), highlighting the power of STING-seq to connect variants to druggable genes and identify 

those variants that may impact response to drugs like alemtuzumab. 

 195 

Target gene discovery in STING-seq using non-European and multi-ancestry GWAS 

Historically, the majority of GWAS loci have been identified using individuals of European 

ancestry (38). Recent efforts to use non-European ancestries and to combine multiple ancestries 

for GWAS have yielded numerous new associations (11, 39, 40). By leveraging ancestry-specific 

and multi-ancestry GWAS, we increased the discovery space of CREs and target genes for STING-200 
seq: We identified 16 CREs with cis-target genes from GWAS variants in non-European 

ancestries. For example, we identified ATP1A1 as the target gene for a locus associated with 

neutrophil counts exclusively in African ancestries (Fig. S9A-B). The lead variant (rs6674304) 

was fine-mapped as plausibly causal in individuals with African ancestries (GWAS p = 3.4x10-44) 

but not in individuals with European ancestries (GWAS p = 0.58). Although rs6674304 did not 205 

map to any cCREs, statistical fine-mapping nominated three additional variants that did map to 

cCREs (rs6660743, rs12087680, and rs7544679) (Fig. S9A). We targeted all three variants using 

STING-seq and found that targeting the rs12087680-CRE revealed the cis-target gene ATP1A1 

(log2 FC = -0.35, SCEPTRE p = 2.0x10-10) (Fig. S9B). ATP1A1 maintains electrochemical 

gradients of sodium and potassium ions, and prior work has linked both ATP1A1 and neutrophil 210 
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counts with hypertension (41–43). As the ATP1A1 CRE demonstrates, STING-seq using non-

European and multi-ancestry GWAS can identify new trait genes. 

 

A pleiotropic CRE in the APOE and APOC1 locus 

In a minority of STING-seq CREs, we identified multiple cis-target genes, which may occur 215 
through direct regulation of multiple genes or indirect effects on other nearby genes driven by a 

single cis-target gene. These outcomes can be difficult to distinguish without additional 

perturbations or a known gene regulatory network.  

 

For example, we found that rs1065853 was the lead variant and fine-mapped as plausibly causal 220 

for an immature red blood cell trait (high light scatter reticulocyte percentage) at its locus (GWAS 

p = 5.8x10-48) (Fig. S9C). This variant mapped to an intergenic region, between the gene bodies 

of APOE and APOC1, with APOE being the closest gene and also associated with high and low 

density lipoprotein levels (44). Upon inhibiting the rs1065853-CRE, we observed significant 

decreases in expression for both APOE (log2 FC = -0.63, SCEPTRE p = 2.8x10-6) and APOC1 225 
(log2 FC = -0.27, SCEPTRE p = 3.5x10-6) (Fig. S9D). Previous studies have shown that APOE 

and APOC1, which encode apolipoproteins E and C1, influence blood lipids and diverse ailments 

including cardiovascular disease and Alzheimer’s disease (45, 46). To help distinguish direct and 

indirect regulation, we used a prior genome-wide Perturb-seq (GWPS) study in the same cell line 

(K562) to infer whether APOE or APOC1 regulate one another (47): APOC1 expression was 230 

unchanged upon APOE inhibition (GWPS z = 0.02) but APOE expression was decreased upon 

APOC1 inhibition (GWPS z = -1.4). APOE and APOC1 direct inhibition suggests that rs1065853-

CRE may target either APOC1 alone — even though APOE is the closest gene — or both APOC1 

and APOE. Since these genes work in a coordinated fashion to regulate lipid metabolism (48), the 

co-regulation of these genes is a notable observation of regulatory pleiotropy that may contribute 235 
to trait associations. 

 

Targeting multiple CREs in the PTPRC locus reveals non-functional LD proxies 

We also examined loci with several fine-mapped variants near a single gene. At the PTPRC locus, 

we targeted nine variants that were fine-mapped variants for 10 traits (Fig. S10A, Table S1E) and 240 

mostly not in strong linkage disequilibrium (LD) as quantified by pairwise R2 from 1000 Genomes 

(49) (Fig. S10B). The nine variants mapped to distinct cCREs: One was 5 kb before the PTPRC 

TSS and the remaining eight were in the first intron, from 2 kb to 42 kb after the TSS (Fig. S10C). 

We observed modulation in PTPRC when targeting six of the cCREs (Fig. S10D). For the cCREs 

with no effect, we found that two variants were in high LD (R2 ≥ 0.95) with variants mapping to 245 
PTPRC CREs, suggesting that these may be non-functional variants in LD with functional variants 

(i.e., non-functional LD proxies). For all CREs, PTPRC was the only significant target gene and 

thus very likely the causal GWAS gene (Table S1E).  

The high allelic heterogeneity — driven by multiple independent regulatory variants in distinct 

CREs modulating PTPRC expression — and the 10 blood trait associations suggest that the CREs 250 

may have cell-type specific activity. That is, different CREs may regulate PTPRC in different 

contexts, given that the 10 trait associations include RBCs, WBCs, and platelet traits (Fig. S10A). 

We found that experimental evidence (e.g., STING-seq) is required to link these CREs to PTPRC 

expression: None of the targeted variants are fine-mapped blood eQTLs and only a single targeted 
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variant, rs1326279, showed evidence of allele-specific effects on transcription factor binding (31, 255 
35). Thus, in silico methods that use eQTL data are insufficient to measure the impact of the CREs 

on PTPRC expression.  

 

Direct GWAS variant insertion with beeSTING-seq 

Next, we sought to expand the STING-seq approach to precise insertion of fine-mapped GWAS 260 

variants with base editing. We fused a cytosine base editor (FNLS-BE3) to a PAM-flexible Cas9 

variant (SpRY) (Table S1F) and validated activity using gRNAs designed to disrupt splice 

junctions in CD46, which encodes a ubiquitously-expressed cell surface protein, in an arrayed 

fashion (Fig. 3A-B, Table S3H) (50, 51). We observed up to ~70% knockdown of CD46 when 

targeting splice sites with diverse PAM sequences, and an average knockdown of 27% (n = 12 265 
target sites), similar to prior pooled screens using base editing (52, 53), (Fig. S11, Table S3H). 

We then performed a single-cell pooled base editing screen (beeSTING-seq) targeting 46 C>T 

fine-mapped GWAS variants mapping to 42 STING-seq-identified CREs with three gRNAs each 

(Table S3I). We tested for direct effects on known target genes and found that 32 out of 46 had at 

least two gRNAs with concordant effects, and that all three gRNAs had concordant effects for 17 270 

variants (Fig. 3C, Table S3K). We identified three sets of beeSTING-seq gRNAs with cis-

regulatory effects on the same target genes identified using STING-seq (5% FDR) with no 

enrichment of non-targeting (negative control) gRNAs (Fig. 3D, Table S3L-M).  

In one case, beeSTING-seq gRNAs target the lead variant (rs142122062) at a locus associated 

with RBC volume in multi-ancestry meta-analyses (GWAS p = 8.2x10-11) (Fig. 3E, Table S3M). 275 
Targeted inhibition of the rs142122062-CRE decreased APPBP2 expression (log2 FC = -0.46, 

SCEPTRE p = 2.5x10-4) and identified it as the target gene for this locus (Fig. 3F). For beeSTING-

seq, we were able to design multiple gRNAs capable of inserting the same single-nucleotide edit 

by capitalizing on the targeting flexibility of SpRY Cas9 (51). With direct insertion of the 

rs142122062-T allele with two independent gRNAs, we observed a significant increase in 280 

APPBP2 expression (combined log2 FC = 0.74, SCEPTRE p = 7.6x10-5) (Fig. 3G), demonstrating 

the ability of beeSTING-seq to identify GWAS variants that act to increase expression. Both 

gRNAs exclusively edit the GWAS variant, as it is the only C nucleotide within the editing window 

(50). Using TWAS, we found that amyloid precursor protein, which APPBP2 binds, has the 

strongest association with RBC counts (54), suggesting a possible mechanism of how altered 285 
APPBP2 expression impacts RBC traits. In this manner, beeSTING-seq can more precisely 

interrogate the impact of GWAS variants, moving beyond CRE inhibition to reveal the impact of 

specific alleles on target gene expression. 

 

CRE-driven, dosage-dependent transcriptome-wide changes in gene expression 290 

To understand the impact of GWAS-CREs on gene expression across the genome, we performed 

transcriptome-wide differential expression tests. We applied a strict (1%) FDR to identify target 

genes in trans and again found good calibration with non-targeting gRNAs (Fig. 4A, Table S3C). 

We observed trans-effects for CREs that targeted in cis the transcription factors (TFs) GFI1B, 

NFE2, IKZF1, HHEX, and RUNX1 and the host genes of microRNAs (miRNAs) miR-142 and 295 
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miR-144/451 (Fig. 4A, Table S3F, Table S4A). These TFs and miRNAs are known to play key 

roles in hematopoietic stem cell differentiation (55–61). 

For GFI1B, we identified two independent CREs with trans-effects. One variant (rs524137), 

associated with monocyte percentage and basophil counts, maps to an intergenic CRE 11.5 kb 

downstream of GFI1B (Fig. 4B). The other variant (rs73660574), associated with several RBC 300 
traits (mean sphered corpuscular volume, immature reticulocyte fraction, mean reticulocyte 

volume, and mean corpuscular hemoglobin), maps to a CRE in an intron of GFI1B (Fig. 4B). 

These CREs exhibited independent dosage effects on GFI1B expression, with the rs524137-CRE 

having a ~70% stronger effect than the rs73660574-CRE. Thus, perturbing either rs73660574- or 

rs524137-CREs led to changes in the expression of GFI1B (Fig. 4C) and its target genes. To better 305 

understand the trans-effects of these two GFI1B CREs, we examined gene-expression changes in 

all 1,161 differentially expressed genes identified from the rs524137-CRE (Fig. 4D). For these 

genes, we observed a high correlation between perturbations targeting each CRE (r = 0.84), even 

though many of the gene expression changes were more modest when perturbing the rs73660574-

CRE. We found a linear dosage relationship between the trans regulatory effects for the CREs that 310 
agreed with the difference in their effect on cis (GFI1B) expression (~1.3-fold) (Fig. 4C-D). Using 

single-cell proteomics in the same cells, we observed changes in protein levels for nine of the 

genes in the GFI1B network; for these, changes in transcript expression and protein levels were 

highly correlated (r = 0.9) (Fig. S12). This example demonstrates how GWAS variants mapping 

to CREs perturb regulatory networks and that these changes at the RNA level also alter protein 315 

expression. 

In addition to GFI1B, we also observed CRE dosage effects on target gene expression and 

regulatory networks for NFE2 (rs79755767, associated with hematocrit and red cell distribution 

width, and rs35979828, associated with eosinophil count, mean corpuscular hemoglobin, and 

monocyte count) (Fig. 4E). When targeting these variants, we observed dosage effects on NFE2 320 
expression (rs79755767-CRE log2 FC = -1.1, SCEPTRE p = 2.2x10-16; rs35979828-CRE log2 FC 

= -0.6, SCEPTRE p = 2.2x10-16) (Fig. 4F) and on a 343 gene regulatory network (r = 0.78) (Fig. 

4G). These results reinforce our findings that fine-mapped GWAS variants at independent CREs 

have independent effects not only on target gene expression, but on entire regulatory networks in 

trans.  325 

A limitation of many GWAS functional interpretation approaches is that they focus on nearby 

protein-coding genes and overlook relevant noncoding RNAs. With STING-seq, we also identified 

regulatory networks for microRNAs, which can have a broad impact on gene regulation. For 

example, STING-seq at the CRE for rs2526377, the most plausibly causal variant for a locus 

associated with platelet count locus, revealed no protein coding cis-target genes (Fig. S13A). 330 
However, when examining noncoding transcripts, we found a differentially expressed noncoding 

transcript AC004687.1, which is also known as the miR-142 host gene (log2 FC = -1.8, SCEPTRE 

p = 2.2x10-16) (Fig. S13B). This finding is further supported by prior work in the context of 

Alzheimer’s disease showing that the risk allele decreases miR-142 host gene promoter activity 

(62, 63). 335 

For STING-seq perturbation of rs2526377, we detected a 119 gene trans-regulatory network  (Fig. 

S13C). The top upregulated genes within the rs2526377 trans-regulatory network (WASL and 

CFL2) were also the top upregulated genes in miR-142 knockout mice (60). This lends further 

support that the trans-regulatory effects of rs2526377 perturbation are due to cis effects on miR-



Submitted Manuscript: Confidential 

9 
 

142, as found in STING-seq. This cis-target microRNA and its regulatory network can be easily 340 

missed when considering only protein-coding genes for target gene annotation.  

We also analyzed trans effects with direct variant insertion using beeSTING-seq. We could detect 

changes in regulatory network expression in the expected direction upon inserting the rs12784232-

A allele (associated with lymphocyte percentage) and rs6592965-A allele (corpuscular 

hemoglobin), which mapped to the HHEX and IKZF1 GWAS-CREs, respectively. In contrast to 345 

GWAS-CRE inhibition which decreased expression of HHEX and IKZF1 (Fig. 4A), direct variant 

insertion resulted in increased expression of the cis-target genes and, accordingly, trans-effects for 

genes tended to switch directions in differential expression, as compared to STING-seq. 

Specifically, we observed that 60 - 70% of HHEX and IKZF1 network genes had reversed 

directions of effect, demonstrating that GWAS variants which act to increase expression can 350 

impact networks in discordant directions from CRE silencing. 

 

Enrichment of cis-target binding sites and GWAS genes in trans-regulatory networks 

To better characterize how CREs with target genes in trans alter blood cell phenotypes, we 

examined genome-wide binding for GFI1B, NFE2, IKZF1, and RUNX1 (ChIP-seq)  (64, 65) and 355 

sequence-based predicted targets of miR-142 and miR-144/451 (TargetScan) (66, 67). We asked 

whether the closest genes to each ChIP-seq peak or predicted microRNA target genes were 

enriched in STING-seq trans-regulatory networks (Fig. 4H, Table S4B). We observed 

enrichments of predicted target genes for GFI1B, NFE2, IKZF1, RUNX1, and miR-142 (OR = 2.4 

± 1.9, mean ± sem) (Fig. 4I, Table S4C). Thus, perturbing CREs can reveal second-order 360 

interactions for regulatory networks driven by TFs or microRNAs. 

A related and pertinent question is whether the genes in the trans-regulatory networks identified 

by STING-seq may also play a role in blood traits and whether they also harbor cis-regulatory 

genetic variants. To answer this question, we constructed a set of putatively causal genes for each 

of the 29 UKBB and 15 BCX GWASs by selecting the closest protein-coding genes to fine-mapped 365 

variants of GWAS loci. We then grouped them by cell type, generating gene sets for platelets, 

RBCs, and WBCs that were mostly distinct (Fig. S14, Table S4B). For nearly all trans-regulatory 

networks, we found enrichments for blood cell GWAS genes (Fig. 4J, Table S4C). These blood 

cell trait GWAS loci enrichments indicate that the known roles of these genes in hematopoiesis 

and cell differentiation are mediated by their effects on regulatory networks. Furthermore, 370 
identification of the trans genes with STING-seq pinpointed regulatory networks whose polygenic 

perturbation by distinct variants across the genome appears to contribute to the GWAS signal. This 

suggests a mechanistic importance for networks themselves, where we do not need to functionally 

dissect V2F per locus if we know the pathway through which they are likely to act, similar to 

recent work that focuses on perturbation of target genes (68). 375 

 

Trans-regulated genes reveal biological mechanisms and cell types of trait associations 

Given these relationships between trans-regulated genes and GWAS loci, we analyzed the 

structure of these regulatory networks to better understand the mechanistic roles of specific genes 

in blood traits. Using single-cell gene co-expression and clustering, we identified co-expressed 380 
gene clusters for each of the loci (Fig. 5A, Fig. S15). For the trans-acting gene GFI1B, we 

identified two clusters (A and B) of genes with increased expression upon GFI1B CRE repression 

with STING-seq. These clusters were the most strongly enriched for GFI1B binding sites (Fig. 5B, 
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Table S4B-C). A third cluster (C) consisted primarily of genes with decreased expression, which 

were not enriched for GFI1B binding sites. Interestingly, clusters A and B were enriched for genes 385 

from platelet and WBC GWASs whereas cluster C was only enriched for genes from RBC 

GWASs.  

To further refine and validate the individual cell types involved with different clusters of co-

regulated genes, we integrated the GFI1B co-expression network with primary cells from the 

Human Cell Atlas, which includes progenitors and/or differentiated cell types for platelets, WBCs, 390 
and RBCs. Specifically, we used single-cell RNA-sequencing from 35 bone marrow donors (69, 

70), as bone marrow includes a rich sample of multipotent progenitor cells crucial for 

hematopoiesis. We first confirmed that GFI1B was expressed in hematopoietic stem cells and 

progenitor cells for RBCs and megakaryocytes — in line with GFI1B’s well-established role as a 

transcriptional repressor in early and lineage-specific progenitors (Fig. 5C) (55, 71–73). As 395 

expected, GFI1B is not expressed in granulocytes and lymphocytes (73, 74). Genes from Cluster 

A were highly enriched for GFI1B binding sites and had increased expression upon inhibiting 

GFI1B, suggesting that these genes are actively being repressed in cells where GFI1B is expressed 

(Fig. 5B). We next observed that genes from Cluster A were highly expressed in granulocyte-

monocyte progenitors (GMP) and differentiated WBC types, including monocytes and dendritic 400 
cells (Fig. 5D, Table S4D). For example, CD33 is a well-known marker for myeloid cells that is 

commonly used to diagnose acute myeloid leukemia, and its expression increases upon inhibiting 

the GFI1B CRE (Fig. S12) (75, 76). GFI1B directly binds the promoter of CD33 (Fig. S16A) and, 

upon inhibiting GFI1B, we found that CD33 transcript and protein expression were both increased 

(Fig. S16B-C). CD33 is expressed in myeloid progenitors and differentiated cells such as dendritic 405 

cells or monocytes (Fig. S16D). Overall, Cluster A is comprised of genes that GFI1B directly 

represses, and their downstream targets, to prevent differentiation of hematopoietic stem cells into 

WBCs. 

Like Cluster A, genes in Cluster B were also enriched for GFI1B binding sites and had increased 

expression upon inhibiting GFI1B (Fig. 5A-B). However, genes in Cluster B were not expressed 410 
in differentiated WBCs, but rather in a broad set of progenitor cell types (Fig. 5D), suggesting that 

these may be genes that are repressed in hematopoietic stem cells to maintain a multipotent cell 

state. Cluster C differed from Clusters A and B in that it was not enriched for GFI1B binding sites 

and had decreased expression upon inhibiting GFI1B. Genes in Cluster C were expressed most 

highly in RBC progenitors, suggesting that these genes are secondary targets of GFI1B that act in 415 

a lineage-specific manner to differentiate hematopoietic stem cells into erythrocytes. These 

findings are supported by this cluster being enriched for RBC GWAS genes (Fig. 5B), and pathway 

analysis identifying these genes as part of the heme biosynthesis pathway (Table S4E). The 

identification of these trans-regulatory networks in a homogeneous blood progenitor-like cell type 

(K562) demonstrates the utility of STING-seq in studying diverse effects of CREs on target genes. 420 

 

Trade-offs between CRE effect sizes, number of cells and sequencing depth in STING-seq 

Given the large number of GWASs performed over the past 15 years, with numbers of trait-

associated loci per GWAS ranging from tens to thousands (44), we wanted to understand the scale 

of cells needed to perform STING-seq under various settings. By performing statistical down-425 

sampling experiments on the cis-regulatory effects identified with STING-seq, we computed the 

number of cells required for nominal significance (SCEPTRE p < 10-3) for target genes with 

different expression levels, different CRE perturbation effect sizes, and different per-cell 
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sequencing depths (Fig. S17). For CREs with large effects, STING-seq requires as few as 100 cells 

and 5,000 reads per cell, comparable to methods like Perturb-seq and ECCITE-seq which target 430 

genes directly (47, 68, 77, 78). For CREs with moderate effects, STING-seq requires about 400 

cells per gRNA or, if cell number is fixed at 100 cells, 15,000 reads per cell. This downsampling 

analysis provides a useful set of guidelines for estimating the resources required for applying 

STING-seq to other GWASs beyond blood traits. 

 435 

Discussion 

In summary, we have developed an approach for characterization of functional effects of GWAS 

loci that takes noncoding human genetic variants and integrates fine-mapping, pooled CRISPR 

screens, and single-cell RNA- and protein-sequencing to identify target genes in cis and trans. We 

demonstrated the utility of STING-seq to identify target genes of CREs overlapping GWAS 440 

variants and described complex regulatory architectures of CREs. We found that 77% of blood 

trait GWAS loci have at least one fine-mapped variant overlapping an enhancer region and can be 

targeted with STING-seq. Notably, we identified target genes for 25% of tested cCREs, and 36% 

of tested loci, a high yield over previous studies that studied regulatory effects of noncoding 

genomic loci (7, 8). We also found that CRE activity is needed for CRISPRi-based target detection 445 
and that spurious signals from inactive chromatin are rare. Additionally, we identified CREs with 

GWAS variants for TFs and miRNAs, and, through their perturbation, identified trans-regulatory 

network clusters with distinct biological functions. The enrichment of genes in independent blood 

cell trait GWAS loci in these networks implies a polygenic contribution to the cellular functions 

that underlie diverse blood cell traits. We also identified target genes for non-European 450 

associations where functional genomics data are typically sparse. For example, we nominated 

ATP1A1 as a causal gene for neutrophil counts through targeting a locus identified exclusively in 

African ancestries. Importantly, targeting loci identified from ancestry-specific GWAS in cell 

models is ancestry-agnostic, provided the GWAS variant maps to a candidate regulatory element, 

and can lead to target gene identification.  455 

We also performed direct variant insertion with beeSTING-seq, identifying noncoding GWAS 

variants with causal effects on target gene expression. Given incomplete editing efficiencies (many 

studies reporting ~30% (79)), that the biological effect of individual GWAS variants are expected 

to be small, and that single-cell transcriptome data are sparse, it was not unexpected that we were 

only able to identify few loci and future work is needed to further optimize base editors for 460 

studying the effects of GWAS variants. Targeted enrichment panels will have utility in improving 

the sparsity of single-cell sequencing, however further innovation will be necessary to improve 

base editing efficiency, through directed evolution of existing base editors and the discovery of 

additional ones. However, the trade-off between higher yield from blunt perturbations, such as 

CRISPRi, versus highly precise base editing with smaller functional effects is likely to persist, and 465 

the ideal approach depends on the goals and design of each study.  

A key feature of recent CRISPRi screens of cCREs (7, 8), including STING-seq, is the introduction 

of multiple perturbations per cell. This substantially increases the number of loci that can be 

feasibly analyzed. While this is feasible for immortalized cell lines, expanding multiple 

perturbations (via either high MOI transduction or innovative vector designs) to other cell lines 470 

and primary cells will be instrumental for the next stage of target gene identification and 

characterization for diverse GWAS traits. However, caution is warranted in study designs where a 

large proportion of gRNAs are likely to have trans effects, as their potential interactions may 
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complicate interpretation of the data. In these cases, reducing the number of perturbations per cell 

may be necessary. 475 

Our results demonstrate the power of single-cell sequencing for sensitive and scalable readout of 

regulatory effects of GWAS loci in cis and trans. While we have a high yield in cis target gene 

discovery, we note that identification of a cis gene alone with STING-seq does not prove its 

mechanistic causal role driving the GWAS association, nor exclude other potential causal variants, 

CREs, and genes, including in other cell types. Indeed, our observation of multiple CREs with 480 
highly correlated cis and trans effects but GWAS associations for different blood traits suggests 

that they might have distinct additional effects in other cellular contexts. In loci where cis-effects 

are coupled with trans-network effects, STING-seq can be highly informative of potential cellular 

mechanisms, which also provides strong support for the causal role of the cis-target gene. Given 

these network enrichments, we suggest that GWAS loci that putatively target TFs or miRNAs 485 

should be high priority targets for STING-seq given the wealth of information we can gain. 

Furthermore, integration of STING-seq with cellular phenotype screens (80–82) will be an 

invaluable next step to connect genetic variants with cellular mechanisms driving GWAS 

associations.  

Altogether, the STING-seq workflow provides a roadmap to address V2F challenges and identify 490 
target genes for GWAS loci in a high-throughput fashion, enabling deeper understanding of human 

noncoding genome function and translation of these insights into new therapies.  
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Materials and Methods  

 495 

UK Biobank genome-wide association studies of blood cell traits 

UK Biobank data were used upon ethical approval from the Northwest Multi-Centre Research 

Ethics Committee and informed consent was obtained from all participants prior to participation. 

We used genome-wide association study (GWAS) summary statistics for 29 blood cell traits from 

361,194 white British UK Biobank participants: WBC (leukocyte) count, RBC (erythrocyte) 500 
count, hemoglobin concentration, hematocrit percentage, mean corpuscular volume, mean 

corpuscular hemoglobin, mean corpuscular hemoglobin concentration, RBC (erythrocyte) 

distribution width, platelet count, platelet crit, mean platelet (thrombocyte) volume, platelet 

distribution width, lymphocyte count, monocyte count, neutrophil count, eosinophil count, 

basophil count, lymphocyte percentage, monocyte percentage, neutrophil percentage, eosinophil 505 

percentage, basophil percentage, reticulocyte percentage, reticulocyte count, mean reticulocyte 

volume, mean sphered cell volume, immature reticulocyte fraction, high light scatter reticulocyte 

percentage, and high light scatter reticulocyte count (Table S1A). Each GWAS was performed by 

fitting the following covariates to inverse normal transformed traits with linear regression models: 

Principal components 1 through 20, sex, age, age2, sex and age interaction, and sex and age2 510 
interaction. The summary statistics were generated by the Neale Lab (www.nealelab.is/uk-

biobank).  

Statistical fine-mapping of UK Biobank blood cell traits 

The 29 UK Biobank GWASs of blood cell traits were uniformly processed with a statistical fine-

mapping pipeline. First, each GWAS was analyzed with GCTA-COJO v.1.93.1 (13, 14) to identify 515 

conditionally independent lead variants (pj < 6.6x10-9) and define 1 Mb regions for statistical fine-

mapping. All variants within 500 kb of a lead variant were analyzed with FINEMAP v.1.3.1 (83), 

a Bayesian fine-mapping method that assigns each variant a Bayes factor for being plausibly 

causal. Both GCTA-COJO and FINEMAP require population-matched covariance matrices, 

therefore we generated these with PLINK v.2.0 (84), QCTOOL v.2.0.2, BGENIX v.1.1.5 (85), and 520 
LDstore v.1.1 (86), using a subset of 50,000 UK Biobank white British participants (UK Biobank 

accession code 47976). FINEMAP allows for a maximum number of causal configurations to test 

for each input set of variants, therefore we set the maximum to 10 causal configuration variants 

per fine-mapped region and excluded cases where FINEMAP failed to converge. We then retained 

noncoding variants with a high Bayes factor (log10 BF ≥ 2) and that were at least 1% likely to be 525 

causal for a set of causal variants. Fine-mapped variants that had more than one Bayes factor, due 

to being within 500 kb of multiple lead variants, had their highest value retained. Across all 29 

GWASs, we identified 827 loci, separated by at least 500 kb, and 57,531 fine-mapped variants. 

The Variant Effect Predictor (VEP) tool (87) was used to identify 53,874 noncoding variants.  

Fine-mapped Blood Cell Consortium blood cell trait GWAS 530 
The Blood Cell Consortium (BCX) generated GWAS summary statistics and fine-mapped 95% 

credible sets for 15 blood traits from 746,667 participants from five global populations (European 

ancestries, South Asian ancestries, Hispanic ancestries, East Asian ancestries, and African 

ancestries): RBC count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular 

hemoglobin, MCH concentration, RBC distribution width, WBC count, neutrophils, monocytes, 535 

lymphocytes, basophils, eosinophils, platelet count, and mean platelet volume (11). Each GWAS 

was performed within each global population by fitting linear mixed models, adjusting for cohort-

specific covariates, to generate population-specific GWAS summary statistics. Population-specific 

GWAS were fine-mapped using an approximate Bayesian approach (88) to construct 95% credible 
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sets from all variants within 250 kb of a lead variant. 95% credible sets are generated by ordering 540 
marginal variant posterior probabilities from highest to lowest and retaining variants until the 

probabilities sum 95%. Population-specific GWAS for each trait were then meta-analyzed using a 

multi-ancestry meta-analysis method (89) that also generates marginal variant posterior 

probabilities, from which multi-ancestry 95% credible sets were generated. We additionally 

required that variants were at least 1% likely to be causal. Across all 15 multi-ancestry meta-545 

analyzed GWASs, we identified 1,91 loci, separated by at least 500 kb, and 62,494 fine-mapped 

variants. VEP (87) was used to identify 58,573 noncoding variants.  

Functional annotation of causal noncoding SNPs 

We integrated multiple functional genomics datasets for K562 cells. Specifically, we used DNase 

I hypersensitive sites (DHS) from ENCODE (65), H3K27ac ChIP-seq peak calls from ENCODE, 550 
and ATAC-seq peak calls that we generated previously (81) to identify candidate cis-regulatory 

elements (cCREs). We used bedtools v.2.25.0 (90) and bedops v.2.4.3 (91) to identify variants 

mapping directly to cCREs. We also required variants to be further than 1 kb from any gene TSS. 

We analyzed the UK Biobank and BCX GWAS variants separately. For UK Biobank GWASs, we 

identified 10,628 distinct variants mapping cCREs in 629 loci. We then selected 88 variants from 555 

56 loci for targeting based on whether a variant was targetable and more plausibly causal than 

others for a given GWAS and locus by ranking FINEMAP log10 Bayes factors and manual 

inspection of loci. For the 88 selected variants, 32 were the most probable variant for at least one 

GWAS locus, and 52 were in the top-10 most probable variants. For the 56 loci, there was a median 

of 10.5 (± 8.6) targetable SNPs. Elements of manual inspection included selecting variants that 560 
mapped to intergenic regions between gene TSSs or selecting multiple variants that map proximal 

to the same gene. For BCX GWASs, we identified 10,446 variants mapping to 886 loci. We 

selected 507 variants mapping to 265 loci for targeting, including 41 variants mapping to closed 

chromatin. Of the cCRE-mapping variants, we targeted 137 that were the sole variant within the 

95% credible set and 239 variants that comprised all targetable 95% credible set variants for 112 565 

loci. The remaining 131 variants were selected because they were identified by GWASs from non-

European ancestries and either fine-mapped in a population-specific GWAS or in the multi-

ancestry meta-analysis. K562 DHS peaks and H3K27ac, RUNX1, IKZF1, and NFE2 ChIP-seq 

peaks are available from the ENCODE Project (www.encodeproject.org). K562 ATAC-seq peaks 

are available from GEO accession number GSE161002. K562 GFI1B ChIP-seq peaks are available 570 

from GEO accession number GSE117944.  

Plasmid cloning for lentiviral CRISPRi, cytosine base editor, and modified gRNA scaffold vectors 

To generate the KRAB-dCas9 (lentiCRISPRi(v1)-Blast) and KRAB-dCas9-MeCP2 

(lentiCRISPRi(v2)-Blast) plasmids, KRAB and dCas9 were PCR amplified from pCC_09 

(Addgene 139094) (92) and the MeCP2 effector domain was synthesized as a gBlock (IDT). 575 

KRAB and MeCP2 were linked to dCas9 with flexible glycine-serine linkers and cloned into 

lentiCas9-Blast (Addgene 52962) (23). To generate the FNLS-BE3-SpRY (lentiBE3-SpRY-Blast) 

plasmid, we used Gibson cloning to replace the puromycin resistance gene in pLenti-FNLS-P2A-

Puro (Addgene 110841) with blasticidin resistance from lentiCRISPRi(v2)-Blast. We then used 

Gibson cloning to replaced SpCas9(D10A) with the SpRY nickase from pCAG-CBE4max-SpRY-580 
P2A-EGFP (Addgene 139999) (51). To generate the gRNA vector (lentiGuideFE-Puro), we 

digested pCC_09 with NheI and KpnI to isolate the U6 promoter and Cas9 guide RNA scaffold 

with the F+E scaffold modification (93). After gel extraction (Qiagen 28706), we ligated this piece 
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into NheI and KpnI-digested pLentiRNAGuide_001 (Addgene 138150) vector using T4 ligase 

(NEB M0202M) (94). Primer sequences for Gibson cloning reactions are available in Table S1F. 585 

Cell culture and monoclonal cell line generation 

HEK293FT cells were acquired from Thermo Fisher (R70007). HEK293FT (human) cells were 

maintained at 37°C with 5% CO2 in D10 medium: DMEM with high glucose and stabilized L-

glutamine (Caisson DML23) supplemented with 10% fetal bovine serum (Thermo Fisher 

16000044). K562 cells were acquired from ATCC (CCL-243) and were maintained at 37°C with 590 
5% CO2 in R10 medium: RPMI with stabilized L-glutamine (Thermo Fisher 11875119) 

supplemented with 10% fetal bovine serum (Thermo Fisher 16000044). Cells were regularly 

passaged and tested for presence of mycoplasma contamination with MycoAlert Plus Mycoplasma 

Detection Kit (Lonza). 

Lentivirus was produced by polyethylenimine linear MW 25000 (Polysciences 23966) transfection 595 
of HEK293FT cells with the transfer plasmid containing a Cas9 effector, or gRNA library, 

packaging plasmid psPAX2 (Addgene 12260) and envelope plasmid pMD2.G (Addgene 12259). 

After 72 hours post-transfection, cell medium containing lentiviral particles was harvested and 

filtered through 0.45 mm filter Steriflip-HV (Millipore SE1M003M00). K562 cells were 

transduced with lentiCRISPRi(v1)-Blast, lentiCRISPRi(v2)-Blast, or lentiBE3-SpRY-Blast at a 600 

low multiplicity-of-infection (MOI < 1). Transduced K562 cells were selected with 10 μg/μL 

blasticidin (Thermo A1113903) for 10 days to enrich for expression of the Cas9 effector proteins. 

To isolate individual clones, K562 polyclonal lines were serially diluted to 50 cells per 10 mL 

medium. We then plated 100 μL of this cell-media mix in 96-well round bottom plates (~0.5 

cells/well). 605 

Digital PCR for CRISPRi gene repression 

We compared the single-repressor CRISPRi (KRAB-dCas9) and dual-repressor CRISPRi (KRAB-

dCas9-MeCP2) systems by targeting the transcription start sites and known enhancers of three 

genes (MRPS23, SLC25A37 and FSCN1) with two gRNAs per targeted region. We synthesized 

gRNAs as top and bottom strand oligos (IDT) and cloned them into BsmBI-digested lentiGuideFE-610 

Puro. We transduced the cells in biological triplicate with gRNA lentiviruses at a low MOI and 

after 24 hours selected for cells with gRNAs using puromycin (1 μg/μL, Thermo Fisher 

A1113803). We harvested the cells 10 days after transduction and extracted RNA using TRIzol 

(ThermoFisher 15596026). We quantified RNA concentration by spectrophotometry (NanoDrop). 

To measure gene expression, we performed digital PCR (Formulatrix Consellation) with Cy5/Iowa 615 
Black RQ target gene probes (IDT), FAM/ZEN/Iowa Black FQ for the actin normalizer (IDT), 

and Luna Universal One-Step RT qPCR Master Mix kit (NEB E3005L) and Tween-20 (Sigma-

Aldrich P1379). We first normalized the target gene expression by actin expression per sample 

and then normalized this ratio to the ratio from cells transduced with non-targeting control gRNAs.  

KRAB-dCas9-MeCP2 CRISPRi pooled screen for essential gene gRNA depletion 620 

We performed CRISPRi pooled screens to quantify the KRAB-dCas9-MeCP2 inhibitory effect 

window in HCT116 and MCF7 cell lines. Both lines were acquired from ATCC (CCL-247 and 

and HTB-22, respectively) maintained in the appropriate media (McCoy’s 5A Medium and 

Dulbecco′s Modified Eagle′s Medium, respectively) supplemented with 10% serum and 1% 

penicillin/streptomycin. These cell lines were cultured at 37 °C, 5% CO2, and ambient oxygen 625 
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levels. Monoclonal HCT116 KRAB-dCas9-MeCP2 and MCF7 KRAB-dCas9-MeCP2 cell lines 

were generated as previously described for K562 cells. Expression was confirmed via western blot.  

For screening, HEK293 cells were plated in Dulbecco’s Modified Eagle Medium (DMEM) + 10% 

FBS (D10) in a 15 cm dish so that the following day, cells were 90% confluent. Half of the media 

was removed from the flask, and cells in each flask were transfected with 13.8 μg of a cCRE/TSS-630 
targeting library specific to HCT116 and MCF7, 6.6 μg pMD2.G (envelope plasmid), and 9.6 μg 

psPAX2 (packaging plasmid) using 1.2 mL Opti-MEM and 112.5 μL polyethylenimine linear 25K 

(Polysciences 23966). The following morning, the media was removed and fresh D10 + 1%BSA 

was added. Then, 48 hours later, we collected the viral supernatant and put it immediately on ice. 

We concentrated the supernatant by centrifugation at 100,000 g (Thermo Sorvall LYNX) for 2 635 

hours at 4 °C. The resulting pellet was resuspended in cold DMEM and stored at -80 °C until use. 

We determined the appropriate titer of virus before the experimental transduction. We transduced 

3M cells with a standard spinfection protocol with different dilutions of virus in a 12-well plate as 

well as a no virus control well. After adding virus, we spun the cells at 2000 rpm for 1 hour at 37 

°C (Beckman Coulter Allegra X-14R) and incubated overnight. The next day, we plated half of 640 
the cells in each well into two new wells of a 6-well plate. In one set of wells, we added the 

appropriate puromycin concentration (1.5 μg/mL for HCT116 and 3 μg/mL for MCF7). After all 

the cells in the no virus well had died, cells in the corresponding wells (with puromycin) were 

counted to determine the viral volume that results in 20 to 40% cell survival, corresponding to a 

MOI of 0.2 to 0.5. 645 

We cultured each cell line in the appropriate media and transduced 2x108 of them with the CRISPR 

lentiviral library via spinfection with the viral volume determined from the previous spinfection. 

As before, after adding virus, we spun cells at 2000 rpm for 1 hour at 37 °C and incubated them 

overnight. The following day, cells were plated at 30% confluence and selected in the appropriate 

puromycin concentration for 3 days. After selection, we passaged cells in 15 cm dishes for 21 days 650 
and split at ~80% confluence. We isolated genomic DNA from cells using a modified salting-out 

precipitation. The gRNA readout was performed using two rounds of PCR. For PCR1, we used 10 

μg of gDNA in each 100ul reaction. We pooled the PCR1 products and used the mixture for a 

second PCR reaction. This second PCR adds on Illumina sequencing adaptors and barcodes. We 

performed PCR1 reactions using TaqB polymerase (Enzymatics P7250L) and PCR2 reactions with 655 

Q5 (NEB M0491). We pooled and purified PCR2 reactions with Illumina Purification Beads. We 

quantified the concentration of the gel-extracted PCR products using Qubit dsDNA HS Assay Kit 

(Thermo Fisher Q32851), then diluted and sequenced it on NextSeq 500 high-output (Illumina). 

We demultiplexed the samples using bcl2fastq v2.20.0.422 (Illumina), trimmed off adapters and 

aligned to our guides with bowtie v.1.1.2 (95). We library normalized the resulting reads (each 660 
read divided by the total number of reads). We then used the Robust Rank Aggregation algorithm 

(96) and estimataed log2 fold changes as log2(Day 21 / Day 1). We targeted +/- 5 kb of the 

transcription start site (TSS) essential genes (DepMap Chronos scores < -1) (97–100). In total we 

screened 1,992 gRNAs targeting 263 essential human genes. As negative controls, we embedded 

1,000 non-targeting gRNAs into this library. 665 

Flow sorting for near PAM-less base editing 

We verified cytosine base editing by designing 12 gRNAs targeting CD46 splice sites using 

SpliceR v1.2.0 (101). SpliceR designed gRNAs that were predicted to disrupt CD46 splice sites 

through C>T nucleotide changes. These included gRNAs that would recognize a diverse set of 

non-canonical PAMs, such as NGN, NAN, NCN, and NTN (Table S3H). We also used four non-670 
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targeting gRNAs from the GeCKOv2 library (23) as negative controls. We synthesized gRNAs as 

top and bottom strand oligos (IDT) and cloned them into BsmBI-digested lentiGuideFE-Puro. We 

transduced the cells with gRNA lentiviruses at a low MOI in an arrayed fashion and after 24 hours 

selected for cells with gRNAs using puromycin (1 μg/μL, Thermo Fisher A1113803). After six 

days of selection, we proceeded to flow cytometry to measure CD46 protein. For flow cytometry, 675 
1x106 cells per condition were harvested and washed with PBS after selection. The cells were 

stained for 5 minutes at room temperature with LIVE/DEAD Fixable Violet Dead Stain Kit 

(ThermoFisher L34864). Subsequently, the cells were stained with antibodies for 20 minutes on 

ice with 1 μL CD46-APC (clone TRA-2-10) (BioLegend 352405). Cells were washed with PBS 

to remove unbound antibodies prior to sorting. Cell acquisition and sorting was performed using a 680 

Sony SH800S cell sorter. Sequential gating was performed as follows: 1) exclusion of debris based 

on forward and side scatter cell parameters, 2) dead cell exclusion. The sorting gates were set such 

that 90% of live K562 cells would be considered CD46 positive. 

CRISPR inhibition and base editing library design and cloning 

Two individual CRISPR inhibition libraries were designed and cloned, termed STING-seq v1 and 685 
STING-seq v2, and one base editing library was designed and cloned, termed beeSTING-seq. For 

STING-seq v1, we designed 20 nt gRNAs to target within 200 bp of the 88 selected plausibly 

causal noncoding variants from UK Biobank GWASs of blood traits. We used FlashFry v1.10.0 

(22) to retain gRNAs with the lowest predicted off-target activity, as estimated by the Hsu-Scott 

score (21). Each variant was targeted by two different gRNAs. In addition, we also included in our 690 

library 12 non-targeting gRNAs from the GeCKOv2 library (23) as negative controls and 12 

gRNAs targeting the TSSs of six non-essential genes as positive controls. The six non-essential 

genes (CD46, CD52, HSPA8, NMU, PPIA and RPL22) were identified by a CRISPR knock-out 

screen in K562 cells using the PICKLES database (102). We additionally included 10 gRNAs 

targeting the CD55 TSS for our FACS-based MOI estimator, bringing the total number of gRNAs 695 
to 210. For STING-seq v2, we designed 20 nt gRNAs to target within 200 bp of the 507 selected 

plausibly causal variants from the Blood Cell Consortium multi-ancestry and ancestry-specific 

blood trait GWASs. We again retained gRNAs with the lowest predicted off-target activity and 

each variant was targeted by three different gRNAs. In addition, we included 30 non-targeting 

gRNAs from the GeCKOv2 library and 32 groups of three TSS-targeting gRNAs for positive 700 

controls. We additionally included 45 CD55 TSS-targeting gRNAs for FACS-based MOI 

estimation. For beeSTING-seq, we designed three sets of gRNAs for each of 46 C>T select GWAS 

variants mapping to CREs with cis-target genes. We followed recommended gRNA design 

instructions, and positioned the target nucleotide within a 5 nt window (103). We also included 28 

non-targeting gRNAs from the GeCKOv2 library.  705 

To clone the STING-seq v1 gRNA library, top and bottom strand oligos (IDT) were resuspended 

in water at 100 μM and then mixed at 1:1 ratio for each gRNA. Then, 1 μL of the oligo mix was 

added to a master mix containing 1x T4 ligase buffer (NEB M0202M), 0.5 μL T4 PNK (NEB 

M0201L) and water to a final concentration of 10 μL per reaction. For oligo annealing, we 

incubated the oligo mix at 37ºC for 30 minutes, then 95ºC for 5 minutes with a temperature change 710 

of 1 ºC every 5 seconds until reaching 4 ºC. To create the oligo pool, we pooled together 3 μL of 

each annealed oligo. The oligo pool was diluted 1:10 with water and then cloned in the 

lentiGuideFE-Puro, which was linearized with BsmBI (Thermo ER0451) and dephosphorylated. 

The ligation was performed in 11 reactions with each reaction consisting of 5 μL Rapid Ligation 

Buffer (Enzymatics B101), 0.5 μL T7 ligase (Enzymatics L602L), digested plasmid at 25 ng per 715 
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reaction, 1 μL diluted oligo mix and ddH2O to final volume of 10 μL. The ligation was performed 

at room temperature for 15 minutes.  

Next, 100 μL of the combined ligation reactions were mixed with 100 μL isopropanol, 1 μL 

GlycoBlue (Thermo Fisher AM9515) and 2 μL of 5 M NaCl (50 mM final concentration), 

incubated for 15 minutes at room temperature, and spun at 12,000 g for 15 minutes. The pellet was 720 
washed twice with prechilled 70% ethanol, air dried for 15 minutes or until dried completely, 

resuspended in 5 μL 1x TE buffer (Sigma). Next, 2 μL of library ligation was added to 50 μL 

Endura cells (Lucigen) then electroporated, recovered and plated. The following day bacterial 

colonies were scraped, plasmids were isolated using a maxi prep (Qiagen 12965) and library 

representation was determined by MiSeq (Illumina). 725 

The STING-seq v2 and beeSTING-seq pooled gRNA libraries were synthesized as single-stranded 

oligonucleotide pools (Twist Biosciences) and diluted to 0.5 ng/μL in molecular-grade water. 

Then, 2 μL of the diluted pooled oligos were added to a master mix containing forward and reverse 

primer mixes (10 μM) and NEBNext High-Fidelity 2X PCR Master Mix (M0541S). We then PCR 

purified the product and Gibson cloned in pLentiGuideFE-Puro, which was linearized as described 730 
above. We used 500 ng of the digested vector, maintained a 1:10 molar ratio of library and 

incubated at 50 ºC for 1 hour.  We concentrated DNA using isopropanol precipitation, washed and 

resuspended the DNA, then transformed 1 μL of library in 25 μL of Endura cells (Endura #60242-

2) according to protocol specifications. We then plated the transformed cells on LB-Ampicillin 

plates to get at least 100 to 500 colonies per gRNA. 735 

The quality of all pooled libraries was verified by sequencing with a MiSeq (Illumina) to estimate 

the 90:10 quantile ratio. To generate and concentrate all pooled libraries, lentivirus was generated 

as described above. Briefly, we seeded 10 x 225 cm2 flasks with HEK293FT cells and, at 70% 

confluency, we co-transfected the pooled gRNA library, psPAX2 and pMD2.G. Lentivirus was 

collected 72 hours post-transfection and filtered using a 0.45 μm filter. The supernatant was then 740 
ultracentrifuged for 2 hours at 100,000 g (Sorvall Lynx 6000), and the pellet was resuspended 

overnight at 4 °C in phosphate-buffered saline with 1% bovine serum albumin. 

Multiplicity-of-infection estimation via flow cytometry 

When transducing cells at a high MOI, it is not possible to estimate the MOI by traditional methods 

(e.g., survival after drug selection) or without the time and cost of single-cell sequencing. By 745 

including multiple gRNAs that target the CD55 TSS (10 gRNAs for STING-seq v1, 45 gRNAs 

for STING-seq v2), we were able to estimate the number of gRNAs per cell (MOI) using flow 

cytometry for CD55 cell surface protein knockdown over a range of viral transduction volumes. 

We performed two transductions for STING-seq v1 with concentrated lentivirus (4 μL and 6 μL) 

and, after 48 hours, we selected with puromycin for 10 days. We performed five transductions for 750 
STING-seq v2 with concentrated lentivirus (1, 5, 10, 20, 30 μL) and, after 48 hours, we selected 

with puromycin for 10 days. We included three positive control transductions with different CD55 

TSS-targeting gRNAs and three negative control transductions with three different non-targeting 

gRNAs for both experiments. For beeSTING-seq, we performed five transductions with 

concentrated lentivirus (1, 5, 10, 25, 50 μL), and, after 48 hours, we selected with puromycin for 755 

10 days. We used the most viable cell culture for beeSTING-seq for sequencing (10 μL) with 

MACS dead cell removal kit (Miltenyi Biotec #130-090-101), as we observed high cell death at 

higher lentivirus concentrations. 

For flow cytometry, 1x106 cells per condition were harvested and washed with PBS after selection. 

The cells were stained for 5 minutes at room temperature with LIVE/DEAD Fixable Violet Dead 760 
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Stain Kit (ThermoFisher L34864). Subsequently, the cells were stained with antibodies for 20 

minutes on ice with 1 μL CD55-FITC (clone JS11) (BioLegend 311306). Cells were washed with 

PBS to remove unbound antibodies prior to sorting. Cell acquisition and sorting was performed 

using a Sony SH800S cell sorter. Sequential gating was performed as follows: 1) exclusion of 

debris based on forward and side scatter cell parameters, 2) dead cell exclusion. The sorting gates 765 
were set such that 90% of live K562 cells would be considered CD55 positive. From this 

estimation, we can estimate MOI using X = 1 - NY, where X is the proportion of cells with CD55 

targeting gRNAs, N is the inverse of the number of CD55 targeting gRNAs divided by the total 

library size, leaving X as the predicted MOI. For the STING-seq v1 library, N = 1 - (10/210), and 

for the STING-seq v2 library, N = 1 - (45/1695). We estimated that 6 μL STING-seq v1 viral 770 

volume yielded an MOI of ~13.5 and 30 μL STING-seq v2 viral volume yielded MOI of ~30 and 

elected to use these conditions for our STING-seq assay (Fig. S2). 

Expanded CRISPR-compatible Cellular Indexing of Transcriptomes and Epitopes (ECCITE-seq) 

For ECCITE-seq and the STING-seq v1 experiment, we ran one lane of a 10x Genomics 5’ kit 

(Chromium Single Cell Immune Profiling Solution v1.0, 1000014, 1000020, 1000151) with 775 
superloading and recovered 15,285 total cells (including multiple cells per droplet counts, or 

“multiplets”). Cell hashing was performed as described in a previously published protocol using 

four hashtag-derived oligonucleotides (HTOs) using hyperconjugation (24). Gene expression 

(cDNA), hashtags (HTOs) and guide RNA (Guide-derived oligos, GDOs) libraries were 

constructed by following 10x Genomics and ECCITE-seq protocols. We sequenced the cDNA, 780 

HTO and GDO libraries with two NextSeq 500 high-output runs (Illumina). For ECCITE-seq and 

the STING-seq v2 experiment, we ran four lanes of a 10x Genomics 5’ v2 kit (Chromium Next 

GEM Single Cell 5' Kit v2 1000265) with superloading. We recovered 82,339 total cells (including 

multiplets). Cell hashing was performed using eight HTOs followed by staining with a 188 

antibody-tagged oligonucleotides (ADTs) panel (Biolegend) (Table S3B). cDNA, HTO, ADT, 785 
and GDO libraries were constructed by following 10x Genomics and ECCITE-seq protocols. We 

sequenced the cDNA, HTO, ADT and GDO libraries with one NovaSeq 6000 S1 run and two 

NovaSeq 6000 S2 runs (Illumina). For ECCITE-seq and the beeSTING-seq experiment, we ran 

three lanes of a 10x Genomics 5’ v2 kit with superloading and recovered 39,049 total cells, 

including multiplets. Cell hashing was performed using nine HTOs. cDNA, HTO, and GDO 790 

libraries were constructed by following 10x Genomics and ECCITE-seq protocols. We sequenced 

the cDNA, HTO, and GDO libraries with one NextSeq 500 mid-output run, one NovaSeq 6000 SP 

run, and one NovaSeq 6000 S1 run (Illumina). 

Single cell data processing 

UMI count matrices were generated for all single-cell sequencing libraries with 10x Cell Ranger 795 
v.6.0.0 (104). We generated outputs using the Gene Expression Output, Antibody Capture Output, 

and CRISPR Guide Capture Output functions. We then analyzed the UMI count matrices in R 

v.4.0.2 with Seurat v.4.0.0 (105) and tested for differential gene expression and protein levels 

within the SCEPTRE framework (26). The distributions of cDNA, GDO, HTO, and ADT UMIs 

were inspected manually for each lane of 10x sequenced. Custom thresholds were set to remove 800 

outliers for total cDNA count, unique genes detected, mitochondrial percentage, total gRNA count, 

unique gRNAs detected, total HTO count, unique HTOs detected, total ADT count, and unique 

ADTs detected. Lanes were merged for STING-seq v2 and beeSTING-seq only after quality 

control was completed. For STING-seq v1, we processed cDNA UMI count matrices and retained 

cells between the 15th to 99th percentiles for unique gene count, between the 20th and 99th 805 
percentiles for total cDNA UMI count, and between the 5th and 90th percentile for mitochondrial 
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percentage. Next, we center-log-ratio (CLR) transformed the HTO UMI counts and demultiplexed 

cells by their transformed HTO counts to identify singlets. We used the HTODemux function 

implemented in Seurat v.4.0.0 to maximize the number of singlets detected. We used then 

processed the GDO UMI count matrix, keeping cells between the 1st and 99th percentiles for total 810 

GDO count and used 10x Cell Ranger predicted GDO thresholds per cell, but required at least 3 

UMIs per GDO to assign a GDO to a given cell. This resulted a high confidence set of 7,667 single 

cells for the STING-seq v1 experiment. For STING-seq v2, we uniformly processed all four cDNA 

UMI count matrices and retained cells between the 1st and 99th percentile for unique gene count, 

between the 10th and 99th percentile for total cDNA UMI count, and between the 1st and 90th 815 
percentile for mitochondrial percentage. Next, we CLR transformed the HTO UMI counts and 

maximized singlet count using the HTODemux function. We then processed the GDO UMI count 

matrices, keeping cells between the 1st and 99th percentiles for total GDO count and again used the 

10x Cell Ranger predicted GDO thresholds per cell, but required at least 3 UMIs per GDO. This 

resulted in a high confidence set of 38,916 cells for differential expression testing. We further 820 

applied quality control filters for ADTs, retaining cells with between the 1st and 99th percentiles 

for total ADT count. This resulted in 38,133 cells for differential protein testing. For beeSTING-

seq, we uniformly processed all three cDNA UMI count matrices and retained cells between the 

10th and 90th percentiles for unique gene count, between the 10th and 90th percentiles for total cDNA 

count, and between the 10th and 90th percentiles for mitochondrial percentage. We then CLR 825 
transformed the HTO counts and used the HTODemux function to maximize singlets and retained 

cells between the 1st and 99th percentiles for total GDO counts. 10x Cell Ranger set the majority 

of UMI thresholds to 1, therefore we generated a series of GDO UMI count matrices with 

thresholds from 1 to 5 to iteratively test optimal GDO thresholds for each gRNA. This resulted in 

a series of UMI count matrices for each GDO threshold. We had sets of 12,068 cells (GDO 830 

threshold = 1), 11,235 cells (GDO threshold = 2), 9,739 (GDO threshold = 3), 7,869 (GDO 

threshold = 4), and 5,896 (GDO threshold = 5) for differential expression testing. 

Differential gene expression and protein level testing with SCEPTRE 

We utilized the processed UMI count matrices for gene expression or protein levels and gRNA 

expression, along with accompanying single cell meta-data to use as covariates in model fitting 835 
(Table S3B). For STING-seq analyses, we defined for each cCRE targeted by 2 to 3 gRNAs a list 

of genes within 500 kb to be tested for differential expression in cis. For each gene per set of 

gRNAs, we extracted that gene’s UMI counts and labeled the cells with the given gRNAs. We 

then tested for differential outcomes within the SCEPTRE framework (26), adjusting for the 

following single cell covariates for expression tests: total gene expression UMIs, unique genes, 840 

total gRNA expression UMIs, unique gRNAs, percentage of mitochondrial genes, and 10x lane 

(for STING-seq v2 and beeSTING-seq). For protein tests, we adjusted for: total ADT count, total 

HTO count, total gRNA expression UMIs, unique gRNAs, and ADTs for four mouse-specific 

antibody controls to represent non-specific binding. We developed SCEPTRE as a statistical 

framework to analyze high MOI CRISPR screens in single cells with state-of-the-art calibration. 845 
First, SCEPTRE fits a negative binomial distribution to measure the effect of a single gRNA on a 

given gene via Z-score. Then, the distribution of gRNAs to cells is randomly sampled to build a 

gRNA-specific null distribution, recomputing a negative binomial Z-score. A skew-t distribution 

is fit to compare the test Z-score and the null distribution, and a two-sided p-value is derived, 

allowing for significance tests of increased or decreased gene expression or protein levels (26). To 850 

test for differential expression in trans, we defined for each set of gRNAs a list of all genes detected 

in at least 5% of cells and repeated the test above. Non-targeting gRNAs were tested against all 

genes used in the cis and trans settings discussed previously and randomly sampled to match the 
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number of cis and trans tests displayed on QQ-plots. For each set of gRNAs with a cis-effect target 

gene we then performed marginal gRNA-gene pair testing, observing that the number of cells 855 

bearing gRNAs is the main driver behind statistical power (Fig. S6). To determine significance for 

multiple hypotheses (genes) tested in cis, SCEPTRE p-values were adjusted with the Benjamini-

Hochberg procedure. For beeSTING-seq differential expression tests, we tested each gRNA 

against its known target gene from STING-seq analyses. We used for each gRNA the lowest GDO 

UMI threshold that resulted in at least 100 cells per gRNA and repeated this strategy for all non-860 
targeting gRNAs against the same set of known cis-effect target genes. We then repeated 

differential expression testing grouping together GWAS-CRE targeting gRNAs if they shared 

concordant effects and UMI thresholds, evaluating their combined effects on target gene 

expression.  

To report significant results for STING-seq analyses, we identified cis-target genes if they were 865 

significant at a 5% FDR (Benjamini-Hochberg adjusted SCEPTRE p < 0.05). We defined trans-

target genes of each GWAS-CRE as those significant at a stricter 1% FDR. For beeSTING-seq 

analyses, we identified cis-target genes if they were significant at a 5% FDR. We examined all 

STING-seq genes significant at a 10% FDR and beeSTING-seq genes with SCEPTRE p < 0.05 to 

compare the trans-regulatory network effects from perturbing HHEX and IKZF1 GWAS-CREs 870 

with direct variant insertion. 

Fine-mapped eQTL credible set integration 

We examined 31 fine-mapped eQTL studies from the eQTL Catalogue (31) specific to blood traits. 

Specifically, we used eQTLs identified from human macrophages (106, 107), monocytes (37, 108, 

109), neutrophils (37), lymphoblastoid cell lines (110–113), whole blood (110, 114, 115), induced 875 

pluripotent stem cells (116–118) , T-cells (37, 109, 112), B-cells (109), and natural killer cells 

(109). We then retained eQTL variants that were at least 1% plausibly causal and asked if our fine-

mapped GWAS variants were in these data. eQTL summary statistics are available from the eQTL 

Catalog (www.ebi.ac.uk/eqtl). 

K562 HiChIP for H3K27ac-interacting promoters 880 
AQuA-HiChIP cell libraries were prepared as described previously (119). Briefly, NIH3T3 cells 

(mouse) and K562 cells were grown in the appropriate media. Cells were fixed in 1% 

formaldehyde for 10 minutes and quenched to a final concentration of 125 nM glycine. 2 million 

fixed mouse cells were mixed with 10 millions of fixed K562 cells. The cells were lysed in 0.5% 

SDS, quenched with 10% Triton X-100, and digested with MboI (NEB R0147M). The DNA 885 

overhangs were blunted, biotinylated (ThermoFisher 19524016), and ligated. Nuclei were spun 

down, resuspended in nuclear lysis buffer, and sonicated using a Covaris LE220 with the following 

conditions: Fill level 10, PIP 450, Duty factor 30, CPB 200. The sheared DNA was incubated with 

Dynabeads Protein A (ThermoFisher 10001D) for 2 hours at 4 °C. The tubes were placed on a 

magnet and the supernatant was kept. Immunoprecipitation was performed with a cross-species 890 
reactive H3K27ac antibody (Active Motif 39133). The samples were incubated with the antibody 

overnight at 4 °C. The samples were then washed, eluted, and treated with Proteinase K. The 

samples were purified using Zymo DNA Clean & Concentrator. Biotin capture was performed 

with Dynabeads M-280 Streptavidin (ThermoFisher 11205D), followed by library preparation. 

The amplified libraries were purified with Illumina Sample Purification Beads. The libraries were 895 
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sequenced using paired-end reads with a NovaSeq 6000 S2 (Illumina) to generate 100 to 200 

million read pairs per sample. 

HiChIP paired end reads were mapped to the hg19 genome using HiC-Pro v.2.10.1 (120). Default 

settings were using to remove duplicate reads, identify valid interactions, and generate contact 

maps. Statistically significant contacts were identified using FitHiChIP v.9.1 (121) at a 5% FDR. 900 

H3K27ac ChIP-seq data (65) were used as a reference set of peaks in the FitHiChIP pipeline. 

Trans-regulated network gene set enrichments 

We used chromatin immunoprecipitation sequencing (ChIP-seq) datasets in K562 cells to identify 

GFI1B (64), NFE2, IKZF1, and RUNX1 (65) transcription factor binding sites. There we no 

publicly available HHEX K562 ChIP-seq datasets. We assigned the closest protein-coding gene to 905 

each ChIP-seq peak with bedtools v2.25.0 (90). For predicted miRNA targets we used the 

TargetScan database (66, 67). To test for enrichment of ChIP-seq peak or TargetScan genes in 

trans-regulatory gene sets, we fit logistic regression models adjusting for K562 expression (gene 

expression counts from scRNA-seq data) and computed odds ratios with 95% confidence intervals. 

To construct GWAS-identified sets of genes, we used all fine-mapped SNPs from the 29 UKBB 910 
GWASs and 15 BCX GWASs previously described (categorized by cell type) with a high Bayes 

factor for being plausibly causal (log10 BF ≥ 2) and that were at least 1% plausibly causal. GWAS 

gene enrichment was performed in a similar fashion as for ChIP-seq peaks. 

Gene co-expression analyses and bone marrow single cell gene expression  

To compute co-expression matrices for each trans-regulatory network, we used cDNA UMI count 915 

matrices with missing genes per cell imputed with the MAGIC algorithm (122). As a measure of 

co-expression, the biweight midcorrelation, a weighted correlation analysis, was calculated for 

each pair of genes (123). Genes were then clustered based on their co-expression patterns by 

hierarchical clustering. Transcription factor binding site, direct miRNA target, and GWAS gene 

enrichment was performed as described above. We used Human Cell Atlas single cell RNA-920 
sequencing from 35 bone marrow donors (69) and identified 27 cell types as described previously 

(70). Single cell data were processed with Seurat v.4.0.0 to generate UMAP plots and heatmaps. 

To visualize entire trans-regulatory network clusters on a UMAP plot, we plotted the mean 

expression of all cluster genes within each cell. 

STING-seq power estimations 925 

We down-sampled 136 cis-effects of gRNAs targeting CREs on their target genes across two key 

conditions for experimental design: sequencing read depth per cell and the number of cells per 

gRNA. We sequenced all STING-seq libraries to a depth of approximately 55,000 to 65,000 reads 

per cell, therefore we repeated the entire STING-seq quality control and differential expression 

testing pipeline with 5,000, 15,000, 25,000, 35,000, 45,000 and 55,000. Sequencing reads were 930 
down-sampled to generate cDNA UMI count matrices with DropletUtils v.1.18.0 (124, 125) and 

repeated 10-times with different seed numbers. For each set of 10 randomly down-sampled UMI 

count matrices at each read depth, we repeated differential expression testing with SCEPTRE. We 

required at least 500 cells bearing each set of gRNAs, then at each set of 10 randomly down-

sampled UMI count matrices at each read depth, we randomly down-sampled the number of cells 935 

bearing each set of gRNA from at least 500 cells to 50, and repeated this process 10-times at each 

stage. We averaged the SCEPTRE skew fit t-test p-values within replicates at each to compute 

precise measurements for each stage in the down-sampling procedures. We then divided all genes 
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by their expression level and cis-effects by their log2 fold-changes into tertiles to examine at what 

number of cells and read depth could nominal significance (skew fit t-test p < 0.0001) be attained.  940 
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Main figure legends 

Figure 1. Overview of Systematic Targeting and Inhibition of Noncoding GWAS loci with 

single-cell sequencing (STING-seq). 1620 
(A) STING-seq pipeline for perturbation and single-cell analysis of human genetic variants from 

genome-wide association studies (GWAS). First, plausibly causal variants are identified via 

statistical fine-mapping of GWAS. After further refinement of candidate cis-regulatory elements 

(cCREs) using key molecular hallmarks of regulatory elements, CRISPR guide RNAs (gRNAs) 

are designed to target cCREs and lentivirally transduced at a high multiplicity-of-infection into 1625 

human cells. Using multimodal single-cell sequencing, target genes for GWAS variants are 

identified using differential transcript or protein expression. (B) The number of targeted GWAS 

variants mapping to cCREs across 29 blood traits in UK Biobank (n = 361,194 participants) and 

15 blood traits in the Blood Cell Consortium (n = 746,667 participants). (C) Lentiviral CRISPR 

inhibition (CRISPRi) vector with a single effector domain (KRAB-dCas9) or dual effector 1630 
domains (KRAB-dCas9-MeCP2). (D) Mean digital PCR gene expression in human erythrocyte 

cells (K562) by targeting the transcription start sites (TSS) and known enhancers of three genes 

(MRPS23, SLC25A27 and FSCN1) with either single-effector KRAB-dCas9 or dual-effector 

KRAB-dCas9-MeCP2 CRISPRi. Error bars indicate s.e.m. 
 1635 

 
Figure 2. Mapping cis-regulatory target genes for blood trait GWAS variants. 

(A) Quantile-quantile plot of cis-effects (within 500 kb) of 531 candidate CREs (cCREs, defined 

as regions with regulatory hallmarks: ATAC/DHS or H3K27ac) overlapping 535 GWAS variants 

(GWAS-cCREs), 41 GWAS variants without CRE hallmarks, and 32 non-targeting (NT) gRNAs. 1640 
Genes for NT tests were randomly sampled from the set of genes in cis for targeting gRNAs. We 

identified 154 pairs of target genes and CREs for GWAS variants with CRE hallmarks, 1 target 

gene-CRE pair for GWAS variants without CRE hallmarks and no target genes with NT gRNAs 

significant at a 5% FDR (Benjamini-Hochberg adjusted SCEPTRE p-value). (B) Targeted GWAS-

cCREs with and without target genes detected, and their functional hallmarks of enhancer activity 1645 

(ATAC/DHS or H3K27ac) in K562 cells. (C) Volcano plot of cis-regulatory effects. Significant 

pairs of genes and GWAS-CREs are indicated in red. (D) Distance to gene rank for GWAS-CREs 

and target genes, where genes were ranked according to closest TSS to a given GWAS-CRE. (E) 

Number of target genes in cis per GWAS-CRE. (F) (top) For a multi-ancestry corpuscular volume 

locus, two fine-mapped variants were targeted, the lead variant, rs4845124 (blue), and rs12140898 1650 
(red). MAPKAPK2 (green) was nominated as the target gene by fine-mapped blood cell eQTLs 

for both variants. (bottom) rs12140898 mapped to a K562 HiChIP loop, connecting its GWAS-

CRE to the MAPKAPK2 promoter. (G) Single-cell gene expression for cells with gRNAs targeting 

GWAS-cCREs (rs4845124 or rs12140898) or NT. Only rs12140898 had a target gene within 500 

kb, MAPKAPK2. (H) For a multi-ancestry monocyte count locus, one fine-mapped variant was 1655 

targeted, the lead variant, rs741613 (red). ZNF593, SH3BGRL3, CD52, and CRYBG2 (green) were 

nominated as target genes by fine-mapped blood cell eQTLs. (I) Single-cell gene expression for 

cells with gRNAs targeting the GWAS-cCRE rs741613 or NT. CD52 and ZNF593 were both 

identified as target genes. (J)  Single-cell protein expression for cells with gRNAs targeting the 

GWAS-cCRE rs741613, the CD52 transcription start site (TSS) or NT. Asterisks denote 1660 
significant q-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* q < 0.05, ** q < 0.01, 

*** q < 0.001). 
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 1665 

Figure 3. Precise GWAS variant editing with base editing STING-seq (BeeSTING-seq). 

(A) Lentiviral CRISPR base editor (FNLS-BE3) with a relaxed protospacer-adjacent motif (PAM) 

SpCas9 variant, SpRY, for base editing STING-seq (beeSTING-seq). (B) Flow cytometry of CD46 

cell surface protein after base editing at CD46 splice donor sites. CD46 knockdown was compared 

to untransduced and non-targeting (NT) controls. (C) Target gene fold-change for the two gRNAs 1670 

with the most concordant effects for each variant. (D) Quantile-quantile plot of NT gRNAs and 

gRNAs targeting 46 fine-mapped GWAS variants mapping to STING-seq GWAS-CREs with cis-

effect genes. Genes for NT tests were randomly sampled from the set of genes in cis for targeting 

gRNAs. (E) (top) For a multi-ancestry corpuscular volume locus, one fine-mapped variant was 

targeted, the lead variant, rs142122062 (blue). (bottom) Base editing by gRNA-1 and gRNA-2 1675 
changes the rs142122062 allele from reference to alternative; for both gRNAs, this is the only 

cytosine in the base editing window. (F) Single-cell gene expression for cells with gRNAs 

targeting the GWAS-cCRE rs142122062 or NT. APPBP2 was identified as a cis-target gene. (G) 

BeeSTING-seq of rs142122062 increases APPBP2 expression with two independent gRNAs 

whose positions are shown in panel E. Asterisks denote significant q-values, Benjamini-Hochberg 1680 

adjusted SCEPTRE p-values (* q < 0.05, ** q < 0.01, *** q < 0.001). 

 

Figure 4. Trans-regulatory network discovery of genes that impact diverse blood cell traits. 

(A) Quantile-quantile plots of trans-effects (whole transcriptome) of GWAS-CREs and non-

targeting (NT) gRNAs. We identified significant genes at a 1% FDR (Benjamini-Hochberg 1685 
adjusted SCEPTRE p-value) for GWAS-CREs with transcription factors (GFI1B, NFE2, IKZF1, 

HHEX, and RUNX1) and microRNAs (miR-142 and miR-144/451) as cis-regulatory target genes. 

No trans-effects were found for NT gRNAs. (B) Two GWAS-CREs targeted at the GFI1B locus, 

rs524137 and rs79755767. (C) Single-cell gene expression for cells with gRNAs targeting GWAS-

cCREs at the GFI1B locus (rs524137 or rs79755767) or NT. (D) Expression of rs524137-CRE 1690 

significant trans-target genes in cells with perturbation of either GWAS-CRE at the GFI1B locus 

(rs524137 or rs79755767) (n = 1,161 genes at a 1% FDR). (E) Two GWAS-CREs targeted at the 

NFE2 locus, rs79755767 and rs35979828. (F) Single-cell gene expression for cells with gRNAs 

targeting GWAS-cCREs at the NFE2 locus (rs79755767 or rs35979828) or NT. (G) Expression 

of rs79755767-CRE significant trans-target genes in cells with perturbation of either GWAS-CRE 1695 
at the GFI1B locus (rs79755767 or rs35979828) (n = 343 genes at a 1% FDR). (H) Protein-coding 

genes with changes in expression for trans-regulatory networks. (I) Gene set enrichment odds 

ratios (diamonds) and 95% confidence intervals (lines) for transcription factor and microRNA 

targets within each trans-regulatory network. Targets for transcription factors (TFs) were given as 

the closest gene to each TF-specific ENCODE K562 ChIP-seq peak and for microRNAs as 1700 
TargetScan-predicted targets based on sequence. (J) For each trans-regulatory network, gene set 

enrichment odds ratios (diamonds) and 95% confidence intervals (lines) of closest genes to fine-

mapped variants from WBC, platelet, and RBC GWASs from 29 UK Biobank blood traits and 15 

Blood Cell Consortium blood traits. Asterisks in panels C and F denote significant Benjamini-

Hochberg adjusted SCEPTRE p-values and in panels I and J denote logistic regression p-values (* 1705 

p < 0.05, ** p < 0.01, *** p < 0.001). 
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Figure 5. Subnetworks of GFI1B target genes are expressed in specific hematopoietic 

progenitors and differentiated cells. 1710 
(A) Co-expression matrix of rs524137-CRE GFI1B network genes in K562 with hierarchical 

clustering. Three clusters (A, B, and C) are indicated. The vertical bars below the dendrogram 

indicate if genes had increased (blue) or decreased (red) expression upon inhibiting the GFI1B 

CRE. (B) For each trans-regulatory GFI1B subnetwork (cluster), gene set enrichment odds ratios 

(diamonds) and 95% confidence intervals (lines) of closest genes to (top) GFI1B K562 ChIP-seq 1715 

peaks and (bottom) fine-mapped variants from WBC, platelet, and RBC GWASs from 29 UK 

Biobank blood traits and 15 Blood Cell Consortium blood traits. Asterisks denote logistic 

regression p-values (* p < 0.05, ** p < 0.01, *** p < 0.001). (C) Uniform Manifold Approximation 

and Projection (UMAP) of human bone marrow cell gene expression from 35 Human Cell Atlas 

donors. Labels and colors indicate cell types (B 2prog: progenitor B-2 cells; RBCprog: red blood cell 1720 
progenitors; DCprog: dendritic cell progenitors; full list in Table S4D). The black dots denote cells 

expressing GFI1B. GFI1B is most highly expressed in RBC progenitors, megakaryocyte 

progenitors, and hematopoietic stem cells. (D) Expression of genes from Clusters A, B, and C in 

each human bone marrow cell type (left) and in each cell in the UMAP space from panel C (right).  
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Fig. S1.  Digital PCR for CRISPR inhibition (CRISPRi) of genes and guide RNAs. 

Digital PCR gene expression in K562 cells by targeting the transcription start sites (TSS) and 

known enhancers of FSCN1 (A), MRPS23 (B), and SLC25A37 (C) with either CRISPRi with 

KRAB-dCas9 or KRAB-dCas9-MeCP2. Each bar represents one guide RNA (gRNA) (n = 3 

biological replicates per gRNA). 
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Fig. S2. Genome-scale screen for dual-effector CRISPRi (KRAB-dCas9-MeCP2).  

A pooled screen of 1,992 guide RNAs targeting within 5 kb of 263 essential genes (DepMap 

essentiality score less than -1). We used 100 nt sliding windows to quantify regions where at least 

50% of the gRNAs were depleted greater than the median of 1,000 non-targeting gRNA controls. 

We found that the dual-effector CRISPRi (KRAB-dCas9-MeCP2) is active at a distance of -400 

to +850 nt (where +850 indicates 850 nt into the gene body). 
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Fig. S3. Flow cytometry for estimation of multiplicity of infection. 

(A) Flow cytometry gating strategy to quantify cell surface CD55 protein. Live cells were gated 

by the forward and side scatter area (left) then viable cells were selected by gating on side scatter 

area and LIVE/DEAD Violet (middle). Sorting gates were set so that 90% of wild-type K562 cells 

without any guide RNA (gRNA) are classified as CD55 positive (right). (B) CD55 positive cells 

with no transduction (veh.), non-targeting gRNAs, transcription start site (TSS)-targeting gRNAs, 

and five separate volumes of the STING-seq pooled library. (C) Estimation of the multiplicity of 

infection based on the starting distribution of CD55 TSS-targeting gRNAs and proportion of cells 

bearing a gRNA. 
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Fig. S4. Guide RNAs per cell and cells per targeted candidate cis-regulatory element (cCRE). 

(A) Median number of gRNAs per cell detected with at least three UMIs per gRNA. This number 

represents the multiplicity of infection. (B) Median number of cells per targeted cCRE after gRNA 

UMI thresholding. 
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Fig. S5. Gene and protein expression for TSS-targeting positive controls guide RNAs. 

Quantile-quantile plots for positive control gRNAs and their effects on gene expression (A) and 

protein levels (B). Comparison of cells with positive control gRNAs and their effects on target 

gene expression with non-targeting gRNA controls (C for gene expression, D for protein). 

Asterisks denote q-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* q < 0.05, ** q < 

0.01, *** q < 0.001). 
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Fig. S6. Individual CRE-targeting gRNA effects on target gene expression. 

We explored three facets for possible gRNA discrepancy between gRNAs targeting the same CRE 

and found that the number of cells bearing each gRNA is the main driver of statistical power (A). 

We observed a weak effect of gRNA position (less significant gRNAs tend to be further from 

significant gRNAs) (B), and no effect of off-target scores (C). 
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Fig. S7. A multi-ancestry white blood cell count locus with weak enhancer activity. 

(A) The lead, and only, fine-mapped variant, rs2286599 was targeted as it was highly plausibly 

causal but did not map to a called peak of biochemical hallmarks of enhancers. However, open 

chromatin data revealed weak enhancer activity, and we detected in single-cell expression data a 

cis-target gene, LTBR, for rs2286599-CRE targeting gRNAs and not for NT gRNAs (B). Asterisks 

denote q-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* q < 0.05, ** q < 0.01, *** 

q < 0.001). 
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Fig. S8. Plausibly causal variants without biochemical hallmarks of enhancers. 

We targeted four independent loci where the lead variant was the sole fine-mapped variant but did 

not map to called peaks for biochemical hallmarks of enhancers. We did not identify any cis-target 

genes, including the genes with the closest transcription start sites for: (A) rs72836346 and 

BCL2L11, (B) rs61823972 and TMCC2, (C) rs60237566 and ITM2C, and (D) rs333947 and CSF1. 

Each panel shows the locus with biochemical hallmarks of enhancers and closest gene (left) and 

the expression of the closest gene for cells receiving the GWAS-CRE perturbation or a non-

targeting (NT) gRNA (right).  
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Fig. S9. Additional GWAS loci where STING-seq identifies target genes. 

(A) An ancestry-specific neutrophil count locus, only detected in individuals with African 

ancestries (gray) and not in individuals with European ancestries (purple). The lead variant, 

rs6674304, did not map to hallmarks of enhancers, therefore we targeted the remaining three 

variants in the credible set that did: rs6660743 (blue), rs12087680 (red), and rs7544679 (orange). 

(B) Single-cell gene expression for cells bearing NT and targeting gRNAs. Only rs12087680 had 

a cis-target gene, ATP1A1. (C) A European ancestries reticulocyte count locus. One fine-mapped 

variant was targeted, the lead variant, rs1065853 (red). (D) Single-cell gene expression for cells 

bearing NT and targeting gRNAs. APOE and APOC1 were both identified as cis-target genes. 

Asterisks denote q-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* q < 0.05, ** q < 

0.01, *** q < 0.001). 
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Fig. S10. STING-seq of nine GWAS variants at the PTPRC locus. 

(A) Heatmap of p-values from 10 blood trait GWASs for nine variants mapping to cCREs proximal 

to PTPRC. The maximal color value indicates genome-wide significance (6.6x10-9).  (B) Pairwise 

linkage disequilibrium matrix (R2 and D’) for the nine targeted variants using the 1000 Genomes 

CEU and GBR populations. (C) Targeted GWAS-cCRE locations located at least 1 kb distal to the 

PTPRC TSS. (D) Normalized single cell PTPRC expression for the top targeting gRNAs. PTPRC 

was differentially expressed upon perturbation of six out of nine variants, identifying six 
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significant CREs (5% FDR). Two variants (rs1926231 and rs75567729) were located closest to 

the TSS of the PTPRC gene and had the strongest impact on gene expression. However, they were 

not in LD and had different GWAS significance patterns. Two other variants (rs78900449 and 

rs4915152) were not significant but were in strong LD (R2 ≥ 0.95) with variant-identified CREs 

for PTPRC (rs1326270 and rs1998843, respectively), suggesting they may be non-functional LD 

proxy variants. Asterisks denote q-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* q 

< 0.05, ** q < 0.01, *** q < 0.001). 
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Fig. S11. Cytosine base editing of CD46 splice donor sites. 

We designed 12 CD46 targeting gRNAs to engineer C>T mutations predicted to disrupt splice 

donor sites and used flow cytometry to measure CD46 protein depletion, compared to non-

targeting gRNAs and untransduced cells (negative controls). gRNAs were designed for assorted 

non-canonical PAMs.   
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Fig. S12. Trans-effects of the rs524137-CRE for GFI1B on transcript and protein expression. 

(A) Volcano plot of the transcriptome-wide effects on differential expression upon inhibiting the 

rs524137-CRE for GFI1B. We labeled nine additional genes that had significant changes in gene 

expression (1% FDR) and found that their changes in expression were highly correlated with 

changes in protein measured with oligo-tagged antibodies (B). 
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Fig. S13. A trans-regulatory network uncovered by perturbing a short RNA gene. 

(A) A multi-ancestry platelet count locus, where we targeted a fine-mapped variant that was also 

the lead variant, rs2526377 (red). Rs2526377 does not map to any protein coding regions, however 

it does map to a promoter for a short, noncoding microRNA host gene for miR-142. (B) Single-

cell gene expression for cells bearing NT and targeting gRNAs. The miR-142 host gene, a 

noncoding RNA gene, was identified as a cis-target gene. (C) Volcano plot of the transcriptome-

wide effects of perturbing the miR-142 host gene, where the top two up-regulated genes, WASL 

and CFL2, were known targets of miR-142. Asterisks denote q-values, Benjamini-Hochberg 

adjusted SCEPTRE p-values (* q < 0.05, ** q < 0.01, *** q < 0.001). 
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Fig. S14. Counts for the number of trans-regulatory network genes identified within each 

GWAS gene set for red blood cells (RBCs), platelets, and white blood cells (WBCs). 

(A) All protein-coding genes and whether they were unique or shared across RBC, platelet, and 

WBC GWAS gene sets. We then inspected the GFI1B (B), NFE2 (C), IKZF1 (D), HHEX (E), 

RUNX1 (F), miR-142 (G), and miR-144-451 (H) networks and whether they were found in our 

GWAS gene sets. 
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Fig. S15. Subnetworks have distinct gene set enrichment profiles. 

Co-expression matrices of network genes with hierarchical clustering in K562 and their 

subnetwork cluster enrichments as odds ratios (diamonds) and 95% confidence intervals (lines) 

for direct targets and GWAS gene sets for the: (A) NFE2 rs79755767-CRE, (B) IKZF1 rs6592965-

CRE, (C) HHEX rs12784232-CRE, (D) RUNX1 rs2834670-CRE, (E) miR-142 rs2526377-CRE, 
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and (F) miR-144-451 rs35531439-CRE. There were no HHEX ChIP-seq data in K562 for testing 

predicted direct target enrichments. Asterisks denote logistic regression p-values (* p < 0.05, ** p 

< 0.01, *** p < 0.001). 
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Fig. S16. A GFI1B target gene, CD33, is up-regulated upon GFI1B CRE inhibition. 

(A) A GFI1B ChIP-seq peak was found directly upstream of CD33 in K562. GFI1B is known to 

act as a transcription repressor, and we observed upon inhibiting the GFI1B CRE that CD33 had 

increased expression (B) and protein (C). (D) These findings were consistent with GFI1B and 

CD33 expression patterns in human bone marrow cells, where GFI1B was expressed in 

hematopoietic stem cells, RBC progenitors, and megakaryocyte progenitors, but not in WBC 

progenitors and differentiated myeloid cells. CD33 is a marker of myeloid cells and was not 

expressed in cells where GFI1B was active. Asterisks denote q-values, Benjamini-Hochberg 

adjusted SCEPTRE p-values (* q < 0.05, ** q < 0.01, *** q < 0.001). 
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Fig. S17. Detection limits of cis-regulatory effects in STING-seq.  

(A) CREs for target genes grouped by effect size and gene expression, and down-sampled from 

1,000 cells bearing perturbations to 50 and from 55,000 to 5,000 sequencing reads per cell. (B) 

Distribution of genes with detected cis-regulatory effects and their expression rank relative to the 

full K562 transcriptome. (C) Number of genes for each corresponding down-sampling group. 

 

 


