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Abstract

Most variants associated with complex traits and diseases identified by genome-wide association
studies (GWAS) map to noncoding regions of the genome with unknown effects. Using ancestrally
diverse biobank-scale GWAS data, massively parallel CRISPR screens, and single cell
transcriptomic and proteomic sequencing, we discovered 124 cis-target genes of 91 noncoding
blood trait GWAS loci. Using precise variant insertion via base editing, we connected specific
variants with gene expression changes. We also identified trans-effect networks of noncoding loci
when cis target genes encoded transcription factors or microRNAs. Networks were themselves
enriched for GWAS variants and demonstrated polygenic contributions to complex traits. This
platform enables massively-parallel characterization of the target genes and mechanisms of human
noncoding variants in both cis and trans.

One-Sentence Summary

High-throughput single cell CRISPR screens to understand noncoding human genetic variants for
blood cell traits.
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Main text

A major goal for the study of common diseases is to identify causal genes, which can clarify
biological mechanisms and inform drug targets for these diseases. To this end, genome-wide
association studies (GWAS) have identified thousands of genetic variants associated with disease
outcomes and disease-relevant phenotypes. However, since these associations are nearly always
found in noncoding regions, their target genes and functions often remain elusive. This is
commonly referred to as the variant-to-function (V2F) problem (7, 2).

Recent studies have used statistical fine-mapping to identify plausibly causal GWAS variants and
functional genomics to find candidate cis-regulatory elements (cCREs) and their putative target
genes (3—6). Other studies have performed CRISPR-based silencing or mutagenesis screens of
noncoding regulatory elements to identify target genes (7—9). Here, we combine these approaches
in a modular workflow, Systematic Targeted Inhibition of Noncoding GWAS loci coupled with
single-cell sequencing (STING-seq), to identify target genes at noncoding GWAS loci using
single-cell pooled CRISPR screens. We first prioritize cCREs by functional annotation and overlap
with fine-mapped GWAS variants. We then test for gene regulatory function using pooled CRISPR
inhibition (CRISPRi) and single-cell RNA-sequencing and cell surface protein measurements
(Fig. 1A). For a subset of validated CREs, we also inserted specific GWAS variants using base
editing STING-seq (BeeSTING-seq), which couples base editing with single-cell multiomics. We
demonstrate the utility of these approaches in blood cell traits by targeted perturbation of ~500
cCREs at noncoding GWAS loci, identifying target genes in cis and trans for 134 of these CREs,
and further explore the effects of 46 fine-mapped noncoding C-to-T variants using precise variant
msertion.

Results
Fine-mapping multi-ancestry blood trait GWAS to identify candidate CREs

We elected to study blood cell traits due to their high polygenicity, links to multiple common
diseases, and the large number of genotyped individuals available in ancestrally diverse biobank-
scale data repositories with measured blood traits (/0—12). We examined 29 blood trait GWASs
in the UK Biobank (UKBB) and 15 traits from the Blood Cell Consortium (BCX) (/7), including
traits from platelets, red blood cells (RBCs), and white blood cells (WBCs) (Table S1A). The
UKBB GWASs include 361,194 participants with European ancestries. The BCX multi-ancestry
GWASs include 746,667 participants (76% European, 20% Asian, 2% African, 1%
Hispanic/Latino and 1% South Asian ancestries) with both multi-ancestry and individual
population analyses. We performed statistical fine-mapping for the 29 UKBB blood trait GWASs,
identifying a median of 469 conditionally independent signals and 3,328 fine-mapped variants per
trait (/3, 14). Multi-ancestry BCX meta-analyses identified a median of 384 conditionally
independent signals and 3,586 fine-mapped variants per trait. Across all BCX population-specific
GWASs, excluding European ancestries, there were 42 conditionally independent signals and 418
fine-mapped variants per trait (Table S1A-B). In all cases, we found that greater than 90% of fine-
mapped variants were in noncoding regions of the genome.

For our study, we targeted candidate cis-regulatory elements (cCREs) from different GWASs —
543 variants in 254 loci — by intersecting fine-mapped noncoding variants with biochemical
hallmarks of enhancer activity, such as chromatin accessibility (ATAC-seq and DNase I
hypersensitivity) and canonical histone modifications (H3K27ac ChIP-seq) from a human
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erythroid progenitor cell line (K562). K562 cells are an established and well-characterized model
for blood traits: In these cells, reporter assays have identified genetic variants with erythroid-
specific effects (/5), transcription factor (TF) occupancy is strongly conserved with human
proerythroblasts (/6), gene expression and open chromatin profiles are similar to human
erythrocyte progenitors (/7), and promoter-interacting regions defined from Hi-C data are
enriched for blood trait GWAS variants (/8). The integration of functional genomic data yielded
a large set of targetable variants from UKBB and BCX GWASs (Table S1C-D). The variants we
selected were often the highest probability variant in a fine-mapped GWAS locus (294 variants)
or among the 10 most probable variants (249 variants). We also prioritized variants from non-
European ancestries: In total, we selected variants from BCX multi-ancestry analyses (339
variants), BCX non-European ancestries (118 variants), and UKBB European ancestries (86
variants) (Fig. 1B, Table S1C-E).

Optimized dual-repressor CRISPRi system

To perturb the selected cCREs, we designed (Table S1F) a dual-repressor KRAB-dCas9-MeCP2
system (/9) that yielded 50 — 60% greater gene repression when targeting transcription start sites
(TSSs) or previously described enhancer loci (7) than a single-repressor (KRAB-dCas9) system
(Fig. 1C-D, Fig. S1, Table S2). We further characterized the dual-repressor CRISPRi using a
pooled library of ~2,000 CRISPR guide RNAs (gRNAs) that target sites at different distances from
the TSSs of ~250 essential genes. We found that dual-repressor CRISPRi had a focused activity
window with minimal repression beyond 1 kb and that a majority of active gRNAs were located
between -400 to +850 nt from the TSS (Fig. S2) (20).

A massively parallel assay to perturb CREs and find their target genes

We designed STING-seq gRNA libraries to target each blood trait cCRE with up to three gRNAs
using the dual-repressor CRISPRi (KRAB-dCas9-MeCP2). These gRNAs were optimized for
minimal off-target activity (27, 22). We also embedded in the STING-seq library several control
gRNAs: negative (non-targeting) controls (23), positive controls (targeting highly-expressed genes
at TSSs), and, to estimate the average number of perturbations per cell via flow cytometry, multiple
gRNAs targeting a gene encoding a ubiquitously-expressed cell surface protein (CDJ55) (Table
S3A).

We transduced K562 cells with pooled library virus at a high multiplicity of infection (MOI),
which we verified via flow cytometry for CD55 (Fig. S3). We then simultaneously captured four
different modalities from single cells: CRISPR gRNAs, transcriptomes, cell-surface proteomes via
oligo-tagged antibodies, and cell hashing (Table S3B) (24, 25). We recovered 46,583 single cells
with a median of 13 gRNAs per cell and with each cCRE targeted in a median of 978 cells (Fig.
S4A-B, Table S3C). To perform differential expression testing, we recently developed a
conditional resampling approach (SCEPTRE) that yields state-of-the-art calibration on CRISPR
single-cell datasets to connect perturbations with changes in gene and protein expression (26).
Using SCEPTRE, we grouped together gRNAs targeting each cCRE, performing 4,627 pairwise
tests with a median of 7 genes tested per cCRE within 500 kb for cis-effects (27). We observed
good calibration for positive and negative controls: Non-targeting gRNAs had no effect, and
control genes had decreased expression or protein levels at a 5% false discovery rate (FDR) (Fig.
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2A, Fig. S5, Table S3C-E). In most cases, target genes in cis for GWAS variants were more likely
to be identified when both H3K27ac and open chromatin peaks were present (Fig. 2B).

Out of 539 targeted cCREs (from 254 loci), we found 134 CREs (from 91 loci) had a target gene
within 500 kb (Fig. 2C, Table S3F). When examining gRNAs that target the same CRE, the
number of cells was most directly responsible for statistical power, and not distance between
gRNAs or predicted off-target effects (Fig. S6). We found minimal differences in target gene
identification when looking at potential cis-effects within a smaller (100 kb) or larger (1 Mb)
window surrounding the targeted cCRE (Table S3F) (28-30).

Most cis-target genes were also the closest gene to the variant; however, there were 10 cis-target
genes that were the second closest, and eight that were further away (Fig. 2D). We identified a
single cis-target gene for 116 CREs and identified 18 CREs with two or more cis-target genes (Fig.
2E). We also targeted 41 variants that were the most plausibly causal variants at their respective
loci but did not overlap biochemical hallmarks of enhancers. From the 41 variants we targeted that
did not overlap called peaks for biochemical hallmarks of enhancers, there was one variant
(rs106585 for WBC counts) with a significant target gene, LTBR (log> fold-change [FC] = -0.38,
SCEPTRE p =3.1x107) (Fig. 2A, Fig. S7, Table S3G). Upon further inspection, we found a weak
enhancer-associated histone modification (H3K27ac) at this locus despite the lack of a called peak,
suggesting that biochemical hallmarks of enhancer activity are required and that spurious signals
from inactive chromatin are rare (Fig. S8).

We next sought to characterize concordance between cis-target genes identified via STING-seq
and other methods, such as physical contact mapping and allele-specific expression. To identify
gene promoters anchored in 3-dimensional space to H3K27ac-bound chromatin, we generated
H3K27ac HiChlIP libraries in K562 cells. Of the 134 STING-seq CREs and their 124 target genes,
we observed 32 CREs where the same gene was identified with H3K27ac HiChIP contacts, 27
CREs where the same gene was identified through expression quantitative trait loci (eQTL)
mapping of the same fine-mapped variant (3/), and 73 CREs where the same gene was identified
through a transcriptome-wide association study (TWAS) of a blood trait (32). Although the
sensitivity of TWAS for target gene identification is reasonably high (54%), we and others have
found that specificity can be low using this approach (33). Additionally, 54 CREs with fine-
mapped GWAS variants had allele-specific effects on enhancer activity or transcription factor
binding (34, 35), suggesting these variants are causal at their respective CREs (Table S3F).

Identification of causal variants and their impact on gene and protein expression

In the STING-seq dataset, we identified examples where multiple lines of orthogonal evidence
converged to explain how a CRE regulates a cis-target gene. For example, the lead variant
(rs4845124) at a locus associated with mean corpuscular volume in multi-ancestry meta-analyses
(GWAS p =6.9x10"'7) was fine-mapped as plausibly causal (in the 95% credible set with posterior
probability > 1%); however, upon CRISPR inhibition of the cCRE, there was no target gene (Fig.
2F-G). Fine-mapping of this locus nominated a second plausibly causal variant mapping to a cCRE
(rs12140898) whereupon inhibition identified MAPKAPK?2 as the target gene (logx FC = -0.64,
SCEPTRE p = 2.2x10'%). Notably, both variants were fine-mapped eQTLs for MAPKAPK? in
neutrophils. However, only rs12140898 had predicted allele-specific effects, on SPI1 binding, and
mapped to a HiIChIP contact domain for the MAPKAPK2 promoter. Therefore, while eQTL studies
nominated the correct target gene for this locus, it was through experimental CRE-gene mapping
that we pinpointed the most likely causal GWAS variant. Importantly, the majority of targeted
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GWAS variants did not have supporting evidence from eQTL data but were within proximity (500
kb) of a TWAS gene, demonstrating that we can uncover genes that may be underpowered by
eQTL mapping and refine TWAS results that may have high false-positive rates (Table S3F) (33).

To disentangle loci with multiple target genes in cis, we can combine targeted CRE inhibition and
gene inhibition. For example, the lead variant (rs7416513) at a locus associated with monocyte
count in multi-ancestry meta-analyses (GWAS p = 3.8x1073?) was fine-mapped as plausibly causal
(Fig. 2H). This variant maps to an intergenic region, between the gene bodies of CRYBG2 and
CD52, and the gene with the closest TSS is UBXNI 1. Given this, it is unclear which of these genes
— if any — might be the target gene. The variant is also a fine-mapped blood cell eQTL for
multiple genes in the locus (CD52, CRYBG2, SH3BGRL3, and ZNF593), further obscuring the
target gene. Upon inhibiting the rs7416513-CRE, we detected CD52 as the most significantly
altered gene (log, FC = -1.6, SCEPTRE p = 2.2x107'%) (Fig. 2I), and ZNF593 also had a weak
change in expression (log> FC = -0.04, SCEPTRE p = 1.3x107®) with no effect on SH3BGRL3 or
CRYBG2. Directly targeting CD52 does not influence ZNF593 (SCEPTRE p = 0.65) expression,
suggesting the rs7416513-CRE has a pleiotropic regulatory effect on multiple genes.

Using single-cell proteomics, we also detected a significant decrease in cell surface CD52 protein
expression upon rs7416513-CRE inhibition (log> FC = -0.1, SCEPTRE p = 1.2x10°) (Fig. 2J),
demonstrating that CREs with GWAS variants modulate not only cis-target gene expression but
also protein expression. CD52 protein can be targeted with alemtuzumab to improve clinical
outcomes in patients with myelodysplastic syndrome, suggesting that this may be the causal gene
for the monocyte count GWAS association (36). The rs7416513 derived C allele is associated with
increased monocyte count in multi-ancestry meta-analyses (GWAS effect = 0.025, p = 3.8x10?)
(11) and also with increased CD52 expression in monocytes (eQTL estimate = 0.71, p = 4.5x10"
31y (37), highlighting the power of STING-seq to connect variants to druggable genes and identify
those variants that may impact response to drugs like alemtuzumab.

Target gene discovery in STING-seq using non-European and multi-ancestry GWAS

Historically, the majority of GWAS loci have been identified using individuals of European
ancestry (38). Recent efforts to use non-European ancestries and to combine multiple ancestries
for GWAS have yielded numerous new associations (17, 39, 40). By leveraging ancestry-specific
and multi-ancestry GWAS, we increased the discovery space of CREs and target genes for STING-
seq: We identified 16 CREs with cis-target genes from GWAS variants in non-European
ancestries. For example, we identified ATP1A1 as the target gene for a locus associated with
neutrophil counts exclusively in African ancestries (Fig. S9A-B). The lead variant (rs6674304)
was fine-mapped as plausibly causal in individuals with African ancestries (GWAS p = 3.4x10)
but not in individuals with European ancestries (GWAS p = 0.58). Although rs6674304 did not
map to any cCREs, statistical fine-mapping nominated three additional variants that did map to
cCREs (rs6660743, rs12087680, and rs7544679) (Fig. S9A). We targeted all three variants using
STING-seq and found that targeting the rs12087680-CRE revealed the cis-target gene ATPIAl
(log> FC = -0.35, SCEPTRE p = 2.0x10'%) (Fig. S9B). ATP1A1 maintains electrochemical
gradients of sodium and potassium ions, and prior work has linked both 47P1A1 and neutrophil
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counts with hypertension (4/—43). As the ATPIA1 CRE demonstrates, STING-seq using non-
European and multi-ancestry GWAS can identify new trait genes.

A pleiotropic CRE in the APOE and APOCI locus

In a minority of STING-seq CREs, we identified multiple cis-target genes, which may occur
through direct regulation of multiple genes or indirect effects on other nearby genes driven by a
single cis-target gene. These outcomes can be difficult to distinguish without additional
perturbations or a known gene regulatory network.

For example, we found that rs1065853 was the lead variant and fine-mapped as plausibly causal
for an immature red blood cell trait (high light scatter reticulocyte percentage) at its locus (GWAS
p = 5.8x10®) (Fig. S9C). This variant mapped to an intergenic region, between the gene bodies
of APOE and APOCI, with APOE being the closest gene and also associated with high and low
density lipoprotein levels (44). Upon inhibiting the rs1065853-CRE, we observed significant
decreases in expression for both APOE (log, FC = -0.63, SCEPTRE p = 2.8x10°%) and APOCI
(logz FC = -0.27, SCEPTRE p = 3.5x10) (Fig. S9D). Previous studies have shown that APOE
and APOC1, which encode apolipoproteins E and C1, influence blood lipids and diverse ailments
including cardiovascular disease and Alzheimer’s disease (45, 46). To help distinguish direct and
indirect regulation, we used a prior genome-wide Perturb-seq (GWPS) study in the same cell line
(K562) to infer whether APOE or APOCI regulate one another (47): APOCI expression was
unchanged upon 4POE inhibition (GWPS z = 0.02) but APOE expression was decreased upon
APOC] inhibition (GWPS z = -1.4). APOE and APOCI direct inhibition suggests that rs1065853-
CRE may target either APOC! alone — even though APOE is the closest gene — or both APOC1
and APOE. Since these genes work in a coordinated fashion to regulate lipid metabolism (48), the
co-regulation of these genes is a notable observation of regulatory pleiotropy that may contribute
to trait associations.

Targeting multiple CREs in the PTPRC locus reveals non-functional LD proxies

We also examined loci with several fine-mapped variants near a single gene. At the PTPRC locus,
we targeted nine variants that were fine-mapped variants for 10 traits (Fig. S10A, Table S1E) and
mostly not in strong linkage disequilibrium (LD) as quantified by pairwise R? from 1000 Genomes
(49) (Fig. S10B). The nine variants mapped to distinct cCREs: One was 5 kb before the PTPRC
TSS and the remaining eight were in the first intron, from 2 kb to 42 kb after the TSS (Fig. S10C).
We observed modulation in PTPRC when targeting six of the cCREs (Fig. S10D). For the cCREs
with no effect, we found that two variants were in high LD (R? > 0.95) with variants mapping to
PTPRC CREs, suggesting that these may be non-functional variants in LD with functional variants
(i.e., non-functional LD proxies). For all CREs, PTPRC was the only significant target gene and
thus very likely the causal GWAS gene (Table S1E).

The high allelic heterogeneity — driven by multiple independent regulatory variants in distinct
CREs modulating PTPRC expression — and the 10 blood trait associations suggest that the CREs
may have cell-type specific activity. That is, different CREs may regulate PTPRC in different
contexts, given that the 10 trait associations include RBCs, WBCs, and platelet traits (Fig. S10A).

We found that experimental evidence (e.g., STING-seq) is required to link these CREs to PTPRC
expression: None of the targeted variants are fine-mapped blood eQTLs and only a single targeted
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variant, 1s1326279, showed evidence of allele-specific effects on transcription factor binding (37,
35). Thus, in silico methods that use eQTL data are insufficient to measure the impact of the CREs
on PTPRC expression.

Direct GWAS variant insertion with beeSTING-seq

Next, we sought to expand the STING-seq approach to precise insertion of fine-mapped GWAS
variants with base editing. We fused a cytosine base editor (FNLS-BE3) to a PAM-flexible Cas9
variant (SpRY) (Table S1F) and validated activity using gRNAs designed to disrupt splice
junctions in CD46, which encodes a ubiquitously-expressed cell surface protein, in an arrayed
fashion (Fig. 3A-B, Table S3H) (50, 51). We observed up to ~70% knockdown of CD46 when
targeting splice sites with diverse PAM sequences, and an average knockdown of 27% (n = 12
target sites), similar to prior pooled screens using base editing (52, 53), (Fig. S11, Table S3H).
We then performed a single-cell pooled base editing screen (beeSTING-seq) targeting 46 C>T
fine-mapped GWAS variants mapping to 42 STING-seq-identified CREs with three gRNAs each
(Table S3I). We tested for direct effects on known target genes and found that 32 out of 46 had at
least two gRNAs with concordant effects, and that all three gRNAs had concordant effects for 17
variants (Fig. 3C, Table S3K). We identified three sets of beeSTING-seq gRNAs with cis-
regulatory effects on the same target genes identified using STING-seq (5% FDR) with no
enrichment of non-targeting (negative control) gRNAs (Fig. 3D, Table S3L-M).

In one case, beeSTING-seq gRNAs target the lead variant (rs142122062) at a locus associated
with RBC volume in multi-ancestry meta-analyses (GWAS p = 8.2x10°!") (Fig. 3E, Table S3M).
Targeted inhibition of the rs142122062-CRE decreased APPBP2 expression (logx FC = -0.46,
SCEPTRE p = 2.5x10*) and identified it as the target gene for this locus (Fig. 3F). For beeSTING-
seq, we were able to design multiple gRNAs capable of inserting the same single-nucleotide edit
by capitalizing on the targeting flexibility of SpRY Cas9 (57). With direct insertion of the
rs142122062-T allele with two independent gRNAs, we observed a significant increase in
APPBP?2 expression (combined log, FC = 0.74, SCEPTRE p = 7.6x10°°) (Fig. 3G), demonstrating
the ability of beeSTING-seq to identify GWAS variants that act to increase expression. Both
gRNAs exclusively edit the GWAS variant, as it is the only C nucleotide within the editing window
(50). Using TWAS, we found that amyloid precursor protein, which APPBP2 binds, has the
strongest association with RBC counts (54), suggesting a possible mechanism of how altered
APPBP?2 expression impacts RBC traits. In this manner, beeSTING-seq can more precisely
interrogate the impact of GWAS variants, moving beyond CRE inhibition to reveal the impact of
specific alleles on target gene expression.

CRE-driven, dosage-dependent transcriptome-wide changes in gene expression

To understand the impact of GWAS-CRESs on gene expression across the genome, we performed
transcriptome-wide differential expression tests. We applied a strict (1%) FDR to identify target
genes in trans and again found good calibration with non-targeting gRNAs (Fig. 4A, Table S3C).
We observed trans-effects for CREs that targeted in cis the transcription factors (TFs) GFIIB,
NFE2, IKZF1, HHEX, and RUNXI and the host genes of microRNAs (miRNAs) miR-142 and
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miR-144/451 (Fig. 4A, Table S3F, Table S4A). These TFs and miRNAs are known to play key
roles in hematopoietic stem cell differentiation (55—-67).

For GFIIB, we identified two independent CREs with trans-effects. One variant (rs524137),
associated with monocyte percentage and basophil counts, maps to an intergenic CRE 11.5 kb
downstream of GFIIB (Fig. 4B). The other variant (rs73660574), associated with several RBC
traits (mean sphered corpuscular volume, immature reticulocyte fraction, mean reticulocyte
volume, and mean corpuscular hemoglobin), maps to a CRE in an intron of GFI/IB (Fig. 4B).
These CREs exhibited independent dosage effects on GFI1B expression, with the rs524137-CRE
having a ~70% stronger effect than the rs73660574-CRE. Thus, perturbing either rs73660574- or
r$524137-CREs led to changes in the expression of GF11B (Fig. 4C) and its target genes. To better
understand the trans-effects of these two GFIIB CREs, we examined gene-expression changes in
all 1,161 differentially expressed genes identified from the rs524137-CRE (Fig. 4D). For these
genes, we observed a high correlation between perturbations targeting each CRE (r = 0.84), even
though many of the gene expression changes were more modest when perturbing the rs73660574-
CRE. We found a linear dosage relationship between the trans regulatory effects for the CREs that
agreed with the difference in their effect on cis (GFI1B) expression (~1.3-fold) (Fig. 4C-D). Using
single-cell proteomics in the same cells, we observed changes in protein levels for nine of the
genes in the GFIIB network; for these, changes in transcript expression and protein levels were
highly correlated (» = 0.9) (Fig. S12). This example demonstrates how GWAS variants mapping
to CREs perturb regulatory networks and that these changes at the RNA level also alter protein
expression.

In addition to GFIIB, we also observed CRE dosage effects on target gene expression and
regulatory networks for NFE2 (rs79755767, associated with hematocrit and red cell distribution
width, and rs35979828, associated with eosinophil count, mean corpuscular hemoglobin, and
monocyte count) (Fig. 4E). When targeting these variants, we observed dosage effects on NFE?2
expression (rs79755767-CRE log, FC = -1.1, SCEPTRE p = 2.2x107'6; rs35979828-CRE log, FC
=-0.6, SCEPTRE p = 2.2x107!%) (Fig. 4F) and on a 343 gene regulatory network (r= 0.78) (Fig.
4G). These results reinforce our findings that fine-mapped GWAS variants at independent CREs
have independent effects not only on target gene expression, but on entire regulatory networks in
trans.

A limitation of many GWAS functional interpretation approaches is that they focus on nearby
protein-coding genes and overlook relevant noncoding RNAs. With STING-seq, we also identified
regulatory networks for microRNAs, which can have a broad impact on gene regulation. For
example, STING-seq at the CRE for rs2526377, the most plausibly causal variant for a locus
associated with platelet count locus, revealed no protein coding cis-target genes (Fig. S13A).
However, when examining noncoding transcripts, we found a differentially expressed noncoding
transcript AC004687.1, which is also known as the miR-142 host gene (logz FC =-1.8, SCEPTRE
p = 2.2x107'%) (Fig. S13B). This finding is further supported by prior work in the context of
Alzheimer’s disease showing that the risk allele decreases miR-142 host gene promoter activity
(62, 63).

For STING-seq perturbation of rs2526377, we detected a 119 gene trans-regulatory network (Fig.
S13C). The top upregulated genes within the rs2526377 trans-regulatory network (WASL and
CFL2) were also the top upregulated genes in miR-142 knockout mice (60). This lends further
support that the trans-regulatory effects of 1s2526377 perturbation are due to cis effects on miR-
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142, as found in STING-seq. This cis-target microRNA and its regulatory network can be easily
missed when considering only protein-coding genes for target gene annotation.

We also analyzed frans effects with direct variant insertion using beeSTING-seq. We could detect
changes in regulatory network expression in the expected direction upon inserting the rs12784232-
A allele (associated with lymphocyte percentage) and 1s6592965-A allele (corpuscular
hemoglobin), which mapped to the HHEX and IKZF1 GWAS-CREs, respectively. In contrast to
GWAS-CRE inhibition which decreased expression of HHEX and IKZFI (Fig. 4A), direct variant
insertion resulted in increased expression of the cis-target genes and, accordingly, trans-effects for
genes tended to switch directions in differential expression, as compared to STING-seq.
Specifically, we observed that 60 - 70% of HHEX and IKZFI network genes had reversed
directions of effect, demonstrating that GWAS variants which act to increase expression can
impact networks in discordant directions from CRE silencing.

Enrichment of cis-target binding sites and GWAS genes in frans-regulatory networks

To better characterize how CREs with target genes in frans alter blood cell phenotypes, we
examined genome-wide binding for GFI1B, NFE2, IKZF1, and RUNX1 (ChIP-seq) (64, 65) and
sequence-based predicted targets of miR-142 and miR-144/451 (TargetScan) (66, 67). We asked
whether the closest genes to each ChIP-seq peak or predicted microRNA target genes were
enriched in STING-seq trans-regulatory networks (Fig. 4H, Table S4B). We observed
enrichments of predicted target genes for GFI11B, NFE2, IKZF1, RUNXI, and miR-142 (OR =2.4
+ 1.9, mean + sem) (Fig. 41, Table S4C). Thus, perturbing CREs can reveal second-order
interactions for regulatory networks driven by TFs or microRNAs.

A related and pertinent question is whether the genes in the trans-regulatory networks identified
by STING-seq may also play a role in blood traits and whether they also harbor cis-regulatory
genetic variants. To answer this question, we constructed a set of putatively causal genes for each
of'the 29 UKBB and 15 BCX GWASs by selecting the closest protein-coding genes to fine-mapped
variants of GWAS loci. We then grouped them by cell type, generating gene sets for platelets,
RBCs, and WBCs that were mostly distinct (Fig. S14, Table S4B). For nearly all trans-regulatory
networks, we found enrichments for blood cell GWAS genes (Fig. 4J, Table S4C). These blood
cell trait GWAS loci enrichments indicate that the known roles of these genes in hematopoiesis
and cell differentiation are mediated by their effects on regulatory networks. Furthermore,
identification of the trans genes with STING-seq pinpointed regulatory networks whose polygenic
perturbation by distinct variants across the genome appears to contribute to the GWAS signal. This
suggests a mechanistic importance for networks themselves, where we do not need to functionally
dissect V2F per locus if we know the pathway through which they are likely to act, similar to
recent work that focuses on perturbation of target genes (68).

Trans-regulated genes reveal biological mechanisms and cell types of trait associations

Given these relationships between trans-regulated genes and GWAS loci, we analyzed the
structure of these regulatory networks to better understand the mechanistic roles of specific genes
in blood traits. Using single-cell gene co-expression and clustering, we identified co-expressed
gene clusters for each of the loci (Fig. SA, Fig. S15). For the trans-acting gene GFIIB, we
identified two clusters (A and B) of genes with increased expression upon GF/1B CRE repression
with STING-seq. These clusters were the most strongly enriched for GF11B binding sites (Fig. 5B,
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Table S4B-C). A third cluster (C) consisted primarily of genes with decreased expression, which
were not enriched for GFI1B binding sites. Interestingly, clusters A and B were enriched for genes
from platelet and WBC GWASs whereas cluster C was only enriched for genes from RBC
GWAS:s.

To further refine and validate the individual cell types involved with different clusters of co-
regulated genes, we integrated the GFIIB co-expression network with primary cells from the
Human Cell Atlas, which includes progenitors and/or differentiated cell types for platelets, WBCs,
and RBCs. Specifically, we used single-cell RNA-sequencing from 35 bone marrow donors (69,
70), as bone marrow includes a rich sample of multipotent progenitor cells crucial for
hematopoiesis. We first confirmed that GFI/B was expressed in hematopoietic stem cells and
progenitor cells for RBCs and megakaryocytes — in line with GFI1B’s well-established role as a
transcriptional repressor in early and lineage-specific progenitors (Fig. 5C) (55, 71-73). As
expected, GFIIB is not expressed in granulocytes and lymphocytes (73, 74). Genes from Cluster
A were highly enriched for GFI1B binding sites and had increased expression upon inhibiting
GF11B, suggesting that these genes are actively being repressed in cells where GF11B is expressed
(Fig. 5B). We next observed that genes from Cluster A were highly expressed in granulocyte-
monocyte progenitors (GMP) and differentiated WBC types, including monocytes and dendritic
cells (Fig. 5D, Table S4D). For example, CD33 is a well-known marker for myeloid cells that is
commonly used to diagnose acute myeloid leukemia, and its expression increases upon inhibiting
the GFI11B CRE (Fig. S12) (75, 76). GFI1B directly binds the promoter of CD33 (Fig. S16A) and,
upon inhibiting GFI1B, we found that CD33 transcript and protein expression were both increased
(Fig. S16B-C). CD33 is expressed in myeloid progenitors and differentiated cells such as dendritic
cells or monocytes (Fig. S16D). Overall, Cluster A is comprised of genes that GF/IB directly
represses, and their downstream targets, to prevent differentiation of hematopoietic stem cells into
WBCs.

Like Cluster A, genes in Cluster B were also enriched for GFI1B binding sites and had increased
expression upon inhibiting GFI/1B (Fig. SA-B). However, genes in Cluster B were not expressed
in differentiated WBCs, but rather in a broad set of progenitor cell types (Fig. 5D), suggesting that
these may be genes that are repressed in hematopoietic stem cells to maintain a multipotent cell
state. Cluster C differed from Clusters A and B in that it was not enriched for GFI1B binding sites
and had decreased expression upon inhibiting GF/IB. Genes in Cluster C were expressed most
highly in RBC progenitors, suggesting that these genes are secondary targets of GFI1B that act in
a lineage-specific manner to differentiate hematopoietic stem cells into erythrocytes. These
findings are supported by this cluster being enriched for RBC GWAS genes (Fig. 5B), and pathway
analysis identifying these genes as part of the heme biosynthesis pathway (Table S4E). The
identification of these trans-regulatory networks in a homogeneous blood progenitor-like cell type
(K562) demonstrates the utility of STING-seq in studying diverse effects of CREs on target genes.

Trade-offs between CRE effect sizes, number of cells and sequencing depth in STING-seq

Given the large number of GWASs performed over the past 15 years, with numbers of trait-
associated loci per GWAS ranging from tens to thousands (44), we wanted to understand the scale
of cells needed to perform STING-seq under various settings. By performing statistical down-
sampling experiments on the cis-regulatory effects identified with STING-seq, we computed the
number of cells required for nominal significance (SCEPTRE p < 107) for target genes with
different expression levels, different CRE perturbation effect sizes, and different per-cell
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sequencing depths (Fig. S17). For CREs with large effects, STING-seq requires as few as 100 cells
and 5,000 reads per cell, comparable to methods like Perturb-seq and ECCITE-seq which target
genes directly (47, 68, 77, 78). For CREs with moderate effects, STING-seq requires about 400
cells per gRNA or, if cell number is fixed at 100 cells, 15,000 reads per cell. This downsampling
analysis provides a useful set of guidelines for estimating the resources required for applying
STING-seq to other GWASs beyond blood traits.

Discussion

In summary, we have developed an approach for characterization of functional effects of GWAS
loci that takes noncoding human genetic variants and integrates fine-mapping, pooled CRISPR
screens, and single-cell RNA- and protein-sequencing to identify target genes in cis and trans. We
demonstrated the utility of STING-seq to identify target genes of CREs overlapping GWAS
variants and described complex regulatory architectures of CREs. We found that 77% of blood
trait GWAS loci have at least one fine-mapped variant overlapping an enhancer region and can be
targeted with STING-seq. Notably, we identified target genes for 25% of tested cCREs, and 36%
of tested loci, a high yield over previous studies that studied regulatory effects of noncoding
genomic loci (7, 8). We also found that CRE activity is needed for CRISPRi-based target detection
and that spurious signals from inactive chromatin are rare. Additionally, we identified CREs with
GWAS variants for TFs and miRNAs, and, through their perturbation, identified trans-regulatory
network clusters with distinct biological functions. The enrichment of genes in independent blood
cell trait GWAS loci in these networks implies a polygenic contribution to the cellular functions
that underlie diverse blood cell traits. We also identified target genes for non-European
associations where functional genomics data are typically sparse. For example, we nominated
ATPIAI as a causal gene for neutrophil counts through targeting a locus identified exclusively in
African ancestries. Importantly, targeting loci identified from ancestry-specific GWAS in cell
models is ancestry-agnostic, provided the GWAS variant maps to a candidate regulatory element,
and can lead to target gene identification.

We also performed direct variant insertion with beeSTING-seq, identifying noncoding GWAS
variants with causal effects on target gene expression. Given incomplete editing efficiencies (many
studies reporting ~30% (79)), that the biological effect of individual GWAS variants are expected
to be small, and that single-cell transcriptome data are sparse, it was not unexpected that we were
only able to identify few loci and future work is needed to further optimize base editors for
studying the effects of GWAS variants. Targeted enrichment panels will have utility in improving
the sparsity of single-cell sequencing, however further innovation will be necessary to improve
base editing efficiency, through directed evolution of existing base editors and the discovery of
additional ones. However, the trade-off between higher yield from blunt perturbations, such as
CRISPRI, versus highly precise base editing with smaller functional effects is likely to persist, and
the ideal approach depends on the goals and design of each study.

A key feature of recent CRISPRi screens of cCREs (7, §), including STING-seq, is the introduction
of multiple perturbations per cell. This substantially increases the number of loci that can be
feasibly analyzed. While this is feasible for immortalized cell lines, expanding multiple
perturbations (via either high MOI transduction or innovative vector designs) to other cell lines
and primary cells will be instrumental for the next stage of target gene identification and
characterization for diverse GWAS traits. However, caution is warranted in study designs where a
large proportion of gRNAs are likely to have trans effects, as their potential interactions may
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complicate interpretation of the data. In these cases, reducing the number of perturbations per cell
may be necessary.

Our results demonstrate the power of single-cell sequencing for sensitive and scalable readout of
regulatory effects of GWAS loci in cis and trans. While we have a high yield in cis target gene
discovery, we note that identification of a cis gene alone with STING-seq does not prove its
mechanistic causal role driving the GWAS association, nor exclude other potential causal variants,
CREs, and genes, including in other cell types. Indeed, our observation of multiple CREs with
highly correlated cis and trans effects but GWAS associations for different blood traits suggests
that they might have distinct additional effects in other cellular contexts. In loci where cis-effects
are coupled with trans-network effects, STING-seq can be highly informative of potential cellular
mechanisms, which also provides strong support for the causal role of the cis-target gene. Given
these network enrichments, we suggest that GWAS loci that putatively target TFs or miRNAs
should be high priority targets for STING-seq given the wealth of information we can gain.
Furthermore, integration of STING-seq with cellular phenotype screens (80-82) will be an
invaluable next step to connect genetic variants with cellular mechanisms driving GWAS
associations.

Altogether, the STING-seq workflow provides a roadmap to address V2F challenges and identify
target genes for GWAS loci in a high-throughput fashion, enabling deeper understanding of human
noncoding genome function and translation of these insights into new therapies.
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Materials and Methods

UK Biobank genome-wide association studies of blood cell traits

UK Biobank data were used upon ethical approval from the Northwest Multi-Centre Research
Ethics Committee and informed consent was obtained from all participants prior to participation.
We used genome-wide association study (GWAS) summary statistics for 29 blood cell traits from
361,194 white British UK Biobank participants: WBC (leukocyte) count, RBC (erythrocyte)
count, hemoglobin concentration, hematocrit percentage, mean corpuscular volume, mean
corpuscular hemoglobin, mean corpuscular hemoglobin concentration, RBC (erythrocyte)
distribution width, platelet count, platelet crit, mean platelet (thrombocyte) volume, platelet
distribution width, lymphocyte count, monocyte count, neutrophil count, eosinophil count,
basophil count, lymphocyte percentage, monocyte percentage, neutrophil percentage, eosinophil
percentage, basophil percentage, reticulocyte percentage, reticulocyte count, mean reticulocyte
volume, mean sphered cell volume, immature reticulocyte fraction, high light scatter reticulocyte
percentage, and high light scatter reticulocyte count (Table S1A). Each GWAS was performed by
fitting the following covariates to inverse normal transformed traits with linear regression models:
Principal components 1 through 20, sex, age, age?, sex and age interaction, and sex and age?
interaction. The summary statistics were generated by the Neale Lab (www.nealelab.is/uk-
biobank).

Statistical fine-mapping of UK Biobank blood cell traits

The 29 UK Biobank GWASs of blood cell traits were uniformly processed with a statistical fine-
mapping pipeline. First, each GWAS was analyzed with GCTA-COJO v.1.93.1 (13, 14) to identify
conditionally independent lead variants (p; < 6.6x10”) and define 1 Mb regions for statistical fine-
mapping. All variants within 500 kb of a lead variant were analyzed with FINEMAP v.1.3.1 (83),
a Bayesian fine-mapping method that assigns each variant a Bayes factor for being plausibly
causal. Both GCTA-COJO and FINEMAP require population-matched covariance matrices,
therefore we generated these with PLINK v.2.0 (84), QCTOOL v.2.0.2, BGENIX v.1.1.5 (85), and
LDstore v.1.1 (86), using a subset of 50,000 UK Biobank white British participants (UK Biobank
accession code 47976). FINEMAP allows for a maximum number of causal configurations to test
for each input set of variants, therefore we set the maximum to 10 causal configuration variants
per fine-mapped region and excluded cases where FINEMAP failed to converge. We then retained
noncoding variants with a high Bayes factor (logio BF > 2) and that were at least 1% likely to be
causal for a set of causal variants. Fine-mapped variants that had more than one Bayes factor, due
to being within 500 kb of multiple lead variants, had their highest value retained. Across all 29
GWAS:Ss, we identified 827 loci, separated by at least 500 kb, and 57,531 fine-mapped variants.
The Variant Effect Predictor (VEP) tool (87) was used to identify 53,874 noncoding variants.

Fine-mapped Blood Cell Consortium blood cell trait GWAS

The Blood Cell Consortium (BCX) generated GWAS summary statistics and fine-mapped 95%
credible sets for 15 blood traits from 746,667 participants from five global populations (European
ancestries, South Asian ancestries, Hispanic ancestries, East Asian ancestries, and African
ancestries): RBC count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular
hemoglobin, MCH concentration, RBC distribution width, WBC count, neutrophils, monocytes,
lymphocytes, basophils, eosinophils, platelet count, and mean platelet volume (/7). Each GWAS
was performed within each global population by fitting linear mixed models, adjusting for cohort-
specific covariates, to generate population-specific GWAS summary statistics. Population-specific
GWAS were fine-mapped using an approximate Bayesian approach (88) to construct 95% credible
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sets from all variants within 250 kb of a lead variant. 95% credible sets are generated by ordering
marginal variant posterior probabilities from highest to lowest and retaining variants until the
probabilities sum 95%. Population-specific GWAS for each trait were then meta-analyzed using a
multi-ancestry meta-analysis method (89) that also generates marginal variant posterior
probabilities, from which multi-ancestry 95% credible sets were generated. We additionally
required that variants were at least 1% likely to be causal. Across all 15 multi-ancestry meta-
analyzed GWASSs, we identified 1,91 loci, separated by at least 500 kb, and 62,494 fine-mapped
variants. VEP (87) was used to identify 58,573 noncoding variants.

Functional annotation of causal noncoding SNPs

We integrated multiple functional genomics datasets for K562 cells. Specifically, we used DNase
I hypersensitive sites (DHS) from ENCODE (65), H3K27ac ChIP-seq peak calls from ENCODE,
and ATAC-seq peak calls that we generated previously (87) to identify candidate cis-regulatory
elements (cCREs). We used bedtools v.2.25.0 (90) and bedops v.2.4.3 (91) to identify variants
mapping directly to cCREs. We also required variants to be further than 1 kb from any gene TSS.
We analyzed the UK Biobank and BCX GWAS variants separately. For UK Biobank GWASs, we
identified 10,628 distinct variants mapping cCREs in 629 loci. We then selected 88 variants from
56 loci for targeting based on whether a variant was targetable and more plausibly causal than
others for a given GWAS and locus by ranking FINEMAP logio Bayes factors and manual
inspection of loci. For the 88 selected variants, 32 were the most probable variant for at least one
GWAS locus, and 52 were in the top-10 most probable variants. For the 56 loci, there was a median
of 10.5 (+ 8.6) targetable SNPs. Elements of manual inspection included selecting variants that
mapped to intergenic regions between gene TSSs or selecting multiple variants that map proximal
to the same gene. For BCX GWASs, we identified 10,446 variants mapping to 886 loci. We
selected 507 variants mapping to 265 loci for targeting, including 41 variants mapping to closed
chromatin. Of the cCRE-mapping variants, we targeted 137 that were the sole variant within the
95% credible set and 239 variants that comprised all targetable 95% credible set variants for 112
loci. The remaining 131 variants were selected because they were identified by GWASs from non-
European ancestries and either fine-mapped in a population-specific GWAS or in the multi-
ancestry meta-analysis. K562 DHS peaks and H3K27ac, RUNXI1, IKZF1, and NFE2 ChIP-seq
peaks are available from the ENCODE Project (www.encodeproject.org). K562 ATAC-seq peaks
are available from GEO accession number GSE161002. K562 GFI1B ChIP-seq peaks are available
from GEO accession number GSE117944.

Plasmid cloning for lentiviral CRISPRI, cytosine base editor, and modified gRNA scaffold vectors
To generate the KRAB-dCas9 (lentiCRISPRi(vl)-Blast) and KRAB-dCas9-MeCP2
(lentiCRISPRi(v2)-Blast) plasmids, KRAB and dCas9 were PCR amplified from pCC 09
(Addgene 139094) (92) and the MeCP2 effector domain was synthesized as a gBlock (IDT).
KRAB and MeCP2 were linked to dCas9 with flexible glycine-serine linkers and cloned into
lentiCas9-Blast (Addgene 52962) (23). To generate the FNLS-BE3-SpRY (lentiBE3-SpRY-Blast)
plasmid, we used Gibson cloning to replace the puromycin resistance gene in pLenti-FNLS-P2A-
Puro (Addgene 110841) with blasticidin resistance from lentiCRISPRi(v2)-Blast. We then used
Gibson cloning to replaced SpCas9(D10A) with the SpRY nickase from pCAG-CBE4max-SpRY -
P2A-EGFP (Addgene 139999) (51). To generate the gRNA vector (lentiGuideFE-Puro), we
digested pCC_09 with Nhel and Kpnl to isolate the U6 promoter and Cas9 guide RNA scaffold
with the F+E scaffold modification (93). After gel extraction (Qiagen 28706), we ligated this piece
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into Nhel and Kpnl-digested pLentiRNAGuide 001 (Addgene 138150) vector using T4 ligase
(NEB M0202M) (94). Primer sequences for Gibson cloning reactions are available in Table S1F.

Cell culture and monoclonal cell line generation

HEK293FT cells were acquired from Thermo Fisher (R70007). HEK293FT (human) cells were
maintained at 37°C with 5% CO; in D10 medium: DMEM with high glucose and stabilized L-
glutamine (Caisson DML23) supplemented with 10% fetal bovine serum (Thermo Fisher
16000044). K562 cells were acquired from ATCC (CCL-243) and were maintained at 37°C with
5% CO; in R10 medium: RPMI with stabilized L-glutamine (Thermo Fisher 11875119)
supplemented with 10% fetal bovine serum (Thermo Fisher 16000044). Cells were regularly
passaged and tested for presence of mycoplasma contamination with MycoAlert Plus Mycoplasma
Detection Kit (Lonza).

Lentivirus was produced by polyethylenimine linear MW 25000 (Polysciences 23966) transfection
of HEK293FT cells with the transfer plasmid containing a Cas9 effector, or gRNA library,
packaging plasmid psPAX2 (Addgene 12260) and envelope plasmid pMD2.G (Addgene 12259).
After 72 hours post-transfection, cell medium containing lentiviral particles was harvested and
filtered through 0.45 mm filter Steriflip-HV (Millipore SE1MO003MO00). K562 cells were
transduced with lentiCRISPRi(v1)-Blast, lentiCRISPRi(v2)-Blast, or lentiBE3-SpRY-Blast at a
low multiplicity-of-infection (MOI < 1). Transduced K562 cells were selected with 10 ug/ulL
blasticidin (Thermo A1113903) for 10 days to enrich for expression of the Cas9 effector proteins.
To isolate individual clones, K562 polyclonal lines were serially diluted to 50 cells per 10 mL
medium. We then plated 100 pL of this cell-media mix in 96-well round bottom plates (~0.5
cells/well).

Digital PCR for CRISPRi gene repression

We compared the single-repressor CRISPRi (KRAB-dCas9) and dual-repressor CRISPRi (KRAB-
dCas9-MeCP2) systems by targeting the transcription start sites and known enhancers of three
genes (MRPS23, SLC25437 and FSCNI1) with two gRNAs per targeted region. We synthesized
gRNAs as top and bottom strand oligos (IDT) and cloned them into BsmBI-digested lentiGuideFE-
Puro. We transduced the cells in biological triplicate with gRNA lentiviruses at a low MOI and
after 24 hours selected for cells with gRNAs using puromycin (1 pg/uL, Thermo Fisher
A1113803). We harvested the cells 10 days after transduction and extracted RNA using TRIzol
(ThermoFisher 15596026). We quantified RNA concentration by spectrophotometry (NanoDrop).
To measure gene expression, we performed digital PCR (Formulatrix Consellation) with Cy5/Iowa
Black RQ target gene probes (IDT), FAM/ZEN/Iowa Black FQ for the actin normalizer (IDT),
and Luna Universal One-Step RT qPCR Master Mix kit (NEB E3005L) and Tween-20 (Sigma-
Aldrich P1379). We first normalized the target gene expression by actin expression per sample
and then normalized this ratio to the ratio from cells transduced with non-targeting control gRNAs.

KRAB-dCas9-MeCP2 CRISPRi pooled screen for essential gene gRNA depletion

We performed CRISPRi pooled screens to quantify the KRAB-dCas9-MeCP2 inhibitory effect
window in HCT116 and MCF7 cell lines. Both lines were acquired from ATCC (CCL-247 and
and HTB-22, respectively) maintained in the appropriate media (McCoy’s SA Medium and
Dulbecco’s Modified Eagle’s Medium, respectively) supplemented with 10% serum and 1%
penicillin/streptomycin. These cell lines were cultured at 37 °C, 5% CO., and ambient oxygen
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levels. Monoclonal HCT116 KRAB-dCas9-MeCP2 and MCF7 KRAB-dCas9-MeCP2 cell lines
were generated as previously described for K562 cells. Expression was confirmed via western blot.

For screening, HEK293 cells were plated in Dulbecco’s Modified Eagle Medium (DMEM) + 10%
FBS (D10) in a 15 cm dish so that the following day, cells were 90% confluent. Half of the media
was removed from the flask, and cells in each flask were transfected with 13.8 pug of a cCRE/TSS-
targeting library specific to HCT116 and MCF7, 6.6 pg pMD2.G (envelope plasmid), and 9.6 ug
psPAX2 (packaging plasmid) using 1.2 mL Opti-MEM and 112.5 pL polyethylenimine linear 25K
(Polysciences 23966). The following morning, the media was removed and fresh D10 + 1%BSA
was added. Then, 48 hours later, we collected the viral supernatant and put it immediately on ice.
We concentrated the supernatant by centrifugation at 100,000 g (Thermo Sorvall LYNX) for 2
hours at 4 °C. The resulting pellet was resuspended in cold DMEM and stored at -80 °C until use.

We determined the appropriate titer of virus before the experimental transduction. We transduced
3M cells with a standard spinfection protocol with different dilutions of virus in a 12-well plate as
well as a no virus control well. After adding virus, we spun the cells at 2000 rpm for 1 hour at 37
°C (Beckman Coulter Allegra X-14R) and incubated overnight. The next day, we plated half of
the cells in each well into two new wells of a 6-well plate. In one set of wells, we added the
appropriate puromycin concentration (1.5 pg/mL for HCT116 and 3 ug/mL for MCF7). After all
the cells in the no virus well had died, cells in the corresponding wells (with puromycin) were
counted to determine the viral volume that results in 20 to 40% cell survival, corresponding to a
MOI of 0.2 to 0.5.

We cultured each cell line in the appropriate media and transduced 2x10® of them with the CRISPR
lentiviral library via spinfection with the viral volume determined from the previous spinfection.
As before, after adding virus, we spun cells at 2000 rpm for 1 hour at 37 °C and incubated them
overnight. The following day, cells were plated at 30% confluence and selected in the appropriate
puromycin concentration for 3 days. After selection, we passaged cells in 15 cm dishes for 21 days
and split at ~80% confluence. We isolated genomic DNA from cells using a modified salting-out
precipitation. The gRNA readout was performed using two rounds of PCR. For PCR1, we used 10
pg of gDNA in each 100ul reaction. We pooled the PCR1 products and used the mixture for a
second PCR reaction. This second PCR adds on Illumina sequencing adaptors and barcodes. We
performed PCR1 reactions using TagB polymerase (Enzymatics P7250L) and PCR2 reactions with
Q5 (NEB M0491). We pooled and purified PCR2 reactions with Illumina Purification Beads. We
quantified the concentration of the gel-extracted PCR products using Qubit dsSDNA HS Assay Kit
(Thermo Fisher Q32851), then diluted and sequenced it on NextSeq 500 high-output (Illumina).
We demultiplexed the samples using bel2fastq v2.20.0.422 (Illumina), trimmed off adapters and
aligned to our guides with bowtie v.1.1.2 (95). We library normalized the resulting reads (each
read divided by the total number of reads). We then used the Robust Rank Aggregation algorithm
(96) and estimataed log> fold changes as logz(Day 21 / Day 1). We targeted +/- 5 kb of the
transcription start site (TSS) essential genes (DepMap Chronos scores < -1) (97—100). In total we
screened 1,992 gRNAs targeting 263 essential human genes. As negative controls, we embedded
1,000 non-targeting gRNAs into this library.

Flow sorting for near PAM-less base editing

We verified cytosine base editing by designing 12 gRNAs targeting CD46 splice sites using
SpliceR v1.2.0 (101). SpliceR designed gRNAs that were predicted to disrupt CD46 splice sites
through C>T nucleotide changes. These included gRNAs that would recognize a diverse set of
non-canonical PAMs, such as NGN, NAN, NCN, and NTN (Table S3H). We also used four non-
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targeting gRNAs from the GeCKOv?2 library (23) as negative controls. We synthesized gRNAs as
top and bottom strand oligos (IDT) and cloned them into BsmBI-digested lentiGuideFE-Puro. We
transduced the cells with gRNA lentiviruses at a low MOI in an arrayed fashion and after 24 hours
selected for cells with gRNAs using puromycin (1 pg/puL, Thermo Fisher A1113803). After six
days of selection, we proceeded to flow cytometry to measure CD46 protein. For flow cytometry,
1x10° cells per condition were harvested and washed with PBS after selection. The cells were
stained for 5 minutes at room temperature with LIVE/DEAD Fixable Violet Dead Stain Kit
(ThermoFisher L.34864). Subsequently, the cells were stained with antibodies for 20 minutes on
ice with 1 pL. CD46-APC (clone TRA-2-10) (BioLegend 352405). Cells were washed with PBS
to remove unbound antibodies prior to sorting. Cell acquisition and sorting was performed using a
Sony SH800S cell sorter. Sequential gating was performed as follows: 1) exclusion of debris based
on forward and side scatter cell parameters, 2) dead cell exclusion. The sorting gates were set such
that 90% of live K562 cells would be considered CD46 positive.

CRISPR inhibition and base editing library design and cloning

Two individual CRISPR inhibition libraries were designed and cloned, termed STING-seq v1 and
STING-seq v2, and one base editing library was designed and cloned, termed beeSTING-seq. For
STING-seq v1, we designed 20 nt gRNAs to target within 200 bp of the 88 selected plausibly
causal noncoding variants from UK Biobank GWASs of blood traits. We used FlashFry v1.10.0
(22) to retain gRNAs with the lowest predicted off-target activity, as estimated by the Hsu-Scott
score (21). Each variant was targeted by two different gRNAs. In addition, we also included in our
library 12 non-targeting gRNAs from the GeCKOvV2 library (23) as negative controls and 12
gRNAs targeting the TSSs of six non-essential genes as positive controls. The six non-essential
genes (CD46, CD52, HSPAS8, NMU, PPIA and RPL22) were identified by a CRISPR knock-out
screen in K562 cells using the PICKLES database (/02). We additionally included 10 gRNAs
targeting the CD55 TSS for our FACS-based MOI estimator, bringing the total number of gRNAs
to 210. For STING-seq v2, we designed 20 nt gRNAs to target within 200 bp of the 507 selected
plausibly causal variants from the Blood Cell Consortium multi-ancestry and ancestry-specific
blood trait GWASs. We again retained gRNAs with the lowest predicted off-target activity and
each variant was targeted by three different gRNAs. In addition, we included 30 non-targeting
gRNAs from the GeCKOv?2 library and 32 groups of three TSS-targeting gRNAs for positive
controls. We additionally included 45 CDS55 TSS-targeting gRNAs for FACS-based MOI
estimation. For beeSTING-seq, we designed three sets of gRNAs for each of 46 C>T select GWAS
variants mapping to CREs with cis-target genes. We followed recommended gRNA design
instructions, and positioned the target nucleotide within a 5 nt window (/03). We also included 28
non-targeting gRNAs from the GeCKOv?2 library.

To clone the STING-seq vl gRNA library, top and bottom strand oligos (IDT) were resuspended
in water at 100 pM and then mixed at 1:1 ratio for each gRNA. Then, 1 pL of the oligo mix was
added to a master mix containing 1x T4 ligase buffer (NEB M0202M), 0.5 uL. T4 PNK (NEB
MO0201L) and water to a final concentration of 10 puL per reaction. For oligo annealing, we
incubated the oligo mix at 37°C for 30 minutes, then 95°C for 5 minutes with a temperature change
of 1 °C every 5 seconds until reaching 4 °C. To create the oligo pool, we pooled together 3 pL of
each annealed oligo. The oligo pool was diluted 1:10 with water and then cloned in the
lentiGuideFE-Puro, which was linearized with BsmBI (Thermo ER0451) and dephosphorylated.
The ligation was performed in 11 reactions with each reaction consisting of 5 pLL Rapid Ligation
Buffer (Enzymatics B101), 0.5 uL. T7 ligase (Enzymatics L602L), digested plasmid at 25 ng per
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reaction, 1 pL diluted oligo mix and ddH2O to final volume of 10 pL. The ligation was performed
at room temperature for 15 minutes.

Next, 100 pL of the combined ligation reactions were mixed with 100 pL isopropanol, 1 pL
GlycoBlue (Thermo Fisher AM9515) and 2 uL of 5 M NaCl (50 mM final concentration),
incubated for 15 minutes at room temperature, and spun at 12,000 g for 15 minutes. The pellet was
washed twice with prechilled 70% ethanol, air dried for 15 minutes or until dried completely,
resuspended in 5 uL. 1x TE buffer (Sigma). Next, 2 uL. of library ligation was added to 50 pL
Endura cells (Lucigen) then electroporated, recovered and plated. The following day bacterial
colonies were scraped, plasmids were isolated using a maxi prep (Qiagen 12965) and library
representation was determined by MiSeq (Illumina).

The STING-seq v2 and beeSTING-seq pooled gRNA libraries were synthesized as single-stranded
oligonucleotide pools (Twist Biosciences) and diluted to 0.5 ng/uL in molecular-grade water.
Then, 2 pL of the diluted pooled oligos were added to a master mix containing forward and reverse
primer mixes (10 pM) and NEBNext High-Fidelity 2X PCR Master Mix (M0541S). We then PCR
purified the product and Gibson cloned in pLentiGuideFE-Puro, which was linearized as described
above. We used 500 ng of the digested vector, maintained a 1:10 molar ratio of library and
incubated at 50 °C for 1 hour. We concentrated DNA using isopropanol precipitation, washed and
resuspended the DNA, then transformed 1 pL of library in 25 pL of Endura cells (Endura #60242-
2) according to protocol specifications. We then plated the transformed cells on LB-Ampicillin
plates to get at least 100 to 500 colonies per gRNA.

The quality of all pooled libraries was verified by sequencing with a MiSeq (Illumina) to estimate
the 90:10 quantile ratio. To generate and concentrate all pooled libraries, lentivirus was generated
as described above. Briefly, we seeded 10 x 225 c¢cm? flasks with HEK293FT cells and, at 70%
confluency, we co-transfected the pooled gRNA library, psPAX2 and pMD2.G. Lentivirus was
collected 72 hours post-transfection and filtered using a 0.45 pm filter. The supernatant was then
ultracentrifuged for 2 hours at 100,000 g (Sorvall Lynx 6000), and the pellet was resuspended
overnight at 4 °C in phosphate-buffered saline with 1% bovine serum albumin.

Multiplicity-of-infection estimation via flow cytometry

When transducing cells at a high MO, it is not possible to estimate the MOI by traditional methods
(e.g., survival after drug selection) or without the time and cost of single-cell sequencing. By
including multiple gRNAs that target the CD55 TSS (10 gRNAs for STING-seq v1, 45 gRNAs
for STING-seq v2), we were able to estimate the number of gRNAs per cell (MOI) using flow
cytometry for CD55 cell surface protein knockdown over a range of viral transduction volumes.
We performed two transductions for STING-seq v1 with concentrated lentivirus (4 uL and 6 uL)
and, after 48 hours, we selected with puromycin for 10 days. We performed five transductions for
STING-seq v2 with concentrated lentivirus (1, 5, 10, 20, 30 uL) and, after 48 hours, we selected
with puromycin for 10 days. We included three positive control transductions with different CD55
TSS-targeting gRNAs and three negative control transductions with three different non-targeting
gRNAs for both experiments. For beeSTING-seq, we performed five transductions with
concentrated lentivirus (1, 5, 10, 25, 50 pL), and, after 48 hours, we selected with puromycin for
10 days. We used the most viable cell culture for beeSTING-seq for sequencing (10 pL) with
MACS dead cell removal kit (Miltenyi Biotec #130-090-101), as we observed high cell death at
higher lentivirus concentrations.

For flow cytometry, 1x10° cells per condition were harvested and washed with PBS after selection.
The cells were stained for 5 minutes at room temperature with LIVE/DEAD Fixable Violet Dead
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Stain Kit (ThermoFisher 1.34864). Subsequently, the cells were stained with antibodies for 20
minutes on ice with 1 pLL CD55-FITC (clone JS11) (BioLegend 311306). Cells were washed with
PBS to remove unbound antibodies prior to sorting. Cell acquisition and sorting was performed
using a Sony SH800S cell sorter. Sequential gating was performed as follows: 1) exclusion of
debris based on forward and side scatter cell parameters, 2) dead cell exclusion. The sorting gates
were set such that 90% of live K562 cells would be considered CDS55 positive. From this
estimation, we can estimate MOI using X = 1 - N?, where X is the proportion of cells with CD55
targeting gRNAs, N is the inverse of the number of CD55 targeting gRNAs divided by the total
library size, leaving X as the predicted MOI. For the STING-seq vl library, N=1 - (10/210), and
for the STING-seq v2 library, N = 1 - (45/1695). We estimated that 6 uL. STING-seq v1 viral
volume yielded an MOI of ~13.5 and 30 puL. STING-seq v2 viral volume yielded MOI of ~30 and
elected to use these conditions for our STING-seq assay (Fig. S2).

Expanded CRISPR-compatible Cellular Indexing of Transcriptomes and Epitopes (ECCITE-seq)
For ECCITE-seq and the STING-seq vl experiment, we ran one lane of a 10x Genomics 5’ kit
(Chromium Single Cell Immune Profiling Solution v1.0, 1000014, 1000020, 1000151) with
superloading and recovered 15,285 total cells (including multiple cells per droplet counts, or
“multiplets”). Cell hashing was performed as described in a previously published protocol using
four hashtag-derived oligonucleotides (HTOs) using hyperconjugation (24). Gene expression
(cDNA), hashtags (HTOs) and guide RNA (Guide-derived oligos, GDOs) libraries were
constructed by following 10x Genomics and ECCITE-seq protocols. We sequenced the cDNA,
HTO and GDO libraries with two NextSeq 500 high-output runs (Illumina). For ECCITE-seq and
the STING-seq v2 experiment, we ran four lanes of a 10x Genomics 5’ v2 kit (Chromium Next
GEM Single Cell 5' Kit v2 1000265) with superloading. We recovered 82,339 total cells (including
multiplets). Cell hashing was performed using eight HTOs followed by staining with a 188
antibody-tagged oligonucleotides (ADTs) panel (Biolegend) (Table S3B). cDNA, HTO, ADT,
and GDO libraries were constructed by following 10x Genomics and ECCITE-seq protocols. We
sequenced the cDNA, HTO, ADT and GDO libraries with one NovaSeq 6000 S1 run and two
NovaSeq 6000 S2 runs (Illumina). For ECCITE-seq and the beeSTING-seq experiment, we ran
three lanes of a 10x Genomics 5° v2 kit with superloading and recovered 39,049 total cells,
including multiplets. Cell hashing was performed using nine HTOs. cDNA, HTO, and GDO
libraries were constructed by following 10x Genomics and ECCITE-seq protocols. We sequenced
the cDNA, HTO, and GDO libraries with one NextSeq 500 mid-output run, one NovaSeq 6000 SP
run, and one NovaSeq 6000 S1 run (Illumina).

Single cell data processing

UMI count matrices were generated for all single-cell sequencing libraries with 10x Cell Ranger
v.6.0.0 (104). We generated outputs using the Gene Expression Output, Antibody Capture Output,
and CRISPR Guide Capture Output functions. We then analyzed the UMI count matrices in R
v.4.0.2 with Seurat v.4.0.0 (/05) and tested for differential gene expression and protein levels
within the SCEPTRE framework (26). The distributions of cDNA, GDO, HTO, and ADT UMIs
were inspected manually for each lane of 10x sequenced. Custom thresholds were set to remove
outliers for total cDNA count, unique genes detected, mitochondrial percentage, total gRNA count,
unique gRNAs detected, total HTO count, unique HTOs detected, total ADT count, and unique
ADTs detected. Lanes were merged for STING-seq v2 and beeSTING-seq only after quality
control was completed. For STING-seq v1, we processed cDNA UMI count matrices and retained
cells between the 15" to 99" percentiles for unique gene count, between the 20" and 99
percentiles for total cDNA UMI count, and between the 5" and 90 percentile for mitochondrial
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percentage. Next, we center-log-ratio (CLR) transformed the HTO UMI counts and demultiplexed
cells by their transformed HTO counts to identify singlets. We used the HTODemux function
implemented in Seurat v.4.0.0 to maximize the number of singlets detected. We used then
processed the GDO UMI count matrix, keeping cells between the 1%t and 99" percentiles for total
GDO count and used 10x Cell Ranger predicted GDO thresholds per cell, but required at least 3
UMISs per GDO to assign a GDO to a given cell. This resulted a high confidence set of 7,667 single
cells for the STING-seq v1 experiment. For STING-seq v2, we uniformly processed all four cDNA
UMI count matrices and retained cells between the 1% and 99™ percentile for unique gene count,
between the 10" and 99" percentile for total cDNA UMI count, and between the 1% and 90"
percentile for mitochondrial percentage. Next, we CLR transformed the HTO UMI counts and
maximized singlet count using the HTODemux function. We then processed the GDO UMI count
matrices, keeping cells between the 15t and 99'" percentiles for total GDO count and again used the
10x Cell Ranger predicted GDO thresholds per cell, but required at least 3 UMIs per GDO. This
resulted in a high confidence set of 38,916 cells for differential expression testing. We further
applied quality control filters for ADTs, retaining cells with between the 1% and 99" percentiles
for total ADT count. This resulted in 38,133 cells for differential protein testing. For beeSTING-
seq, we uniformly processed all three cDNA UMI count matrices and retained cells between the
10" and 90" percentiles for unique gene count, between the 10" and 90™ percentiles for total cDNA
count, and between the 10" and 90" percentiles for mitochondrial percentage. We then CLR
transformed the HTO counts and used the HTODemux function to maximize singlets and retained
cells between the 1% and 99" percentiles for total GDO counts. 10x Cell Ranger set the majority
of UMI thresholds to 1, therefore we generated a series of GDO UMI count matrices with
thresholds from 1 to 5 to iteratively test optimal GDO thresholds for each gRNA. This resulted in
a series of UMI count matrices for each GDO threshold. We had sets of 12,068 cells (GDO
threshold = 1), 11,235 cells (GDO threshold = 2), 9,739 (GDO threshold = 3), 7,869 (GDO
threshold = 4), and 5,896 (GDO threshold = 5) for differential expression testing.

Differential gene expression and protein level testing with SCEPTRE

We utilized the processed UMI count matrices for gene expression or protein levels and gRNA
expression, along with accompanying single cell meta-data to use as covariates in model fitting
(Table S3B). For STING-seq analyses, we defined for each cCRE targeted by 2 to 3 gRNAs a list
of genes within 500 kb to be tested for differential expression in cis. For each gene per set of
gRNAs, we extracted that gene’s UMI counts and labeled the cells with the given gRNAs. We
then tested for differential outcomes within the SCEPTRE framework (26), adjusting for the
following single cell covariates for expression tests: total gene expression UMIs, unique genes,
total gRNA expression UMIs, unique gRNAs, percentage of mitochondrial genes, and 10x lane
(for STING-seq v2 and beeSTING-seq). For protein tests, we adjusted for: total ADT count, total
HTO count, total gRNA expression UMIs, unique gRNAs, and ADTs for four mouse-specific
antibody controls to represent non-specific binding. We developed SCEPTRE as a statistical
framework to analyze high MOI CRISPR screens in single cells with state-of-the-art calibration.
First, SCEPTRE fits a negative binomial distribution to measure the effect of a single gRNA on a
given gene via Z-score. Then, the distribution of gRNAs to cells is randomly sampled to build a
gRNA-specific null distribution, recomputing a negative binomial Z-score. A skew-¢ distribution
is fit to compare the test Z-score and the null distribution, and a two-sided p-value is derived,
allowing for significance tests of increased or decreased gene expression or protein levels (26). To
test for differential expression in trans, we defined for each set of gRNAs a list of all genes detected
in at least 5% of cells and repeated the test above. Non-targeting gRNAs were tested against all
genes used in the cis and trans settings discussed previously and randomly sampled to match the
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number of cis and trans tests displayed on QQ-plots. For each set of gRNAs with a cis-effect target
gene we then performed marginal gRNA-gene pair testing, observing that the number of cells
bearing gRNAs is the main driver behind statistical power (Fig. S6). To determine significance for
multiple hypotheses (genes) tested in cis, SCEPTRE p-values were adjusted with the Benjamini-
Hochberg procedure. For beeSTING-seq differential expression tests, we tested each gRNA
against its known target gene from STING-seq analyses. We used for each gRNA the lowest GDO
UMI threshold that resulted in at least 100 cells per gRNA and repeated this strategy for all non-
targeting gRNAs against the same set of known cis-effect target genes. We then repeated
differential expression testing grouping together GWAS-CRE targeting gRNAs if they shared
concordant effects and UMI thresholds, evaluating their combined effects on target gene
expression.

To report significant results for STING-seq analyses, we identified cis-target genes if they were
significant at a 5% FDR (Benjamini-Hochberg adjusted SCEPTRE p < 0.05). We defined trans-
target genes of each GWAS-CRE as those significant at a stricter 1% FDR. For beeSTING-seq
analyses, we identified cis-target genes if they were significant at a 5% FDR. We examined all
STING-seq genes significant at a 10% FDR and beeSTING-seq genes with SCEPTRE p < 0.05 to
compare the trans-regulatory network effects from perturbing HHEX and IKZF1 GWAS-CREs
with direct variant insertion.

Fine-mapped eQTL credible set integration

We examined 31 fine-mapped eQTL studies from the eQTL Catalogue (37) specific to blood traits.
Specifically, we used eQTLs identified from human macrophages (106, 107), monocytes (37, 108,
109), neutrophils (37), lymphoblastoid cell lines (//0-113), whole blood (110, 114, 115), induced
pluripotent stem cells (/1/6—118) , T-cells (37, 109, 112), B-cells (109), and natural killer cells
(109). We then retained eQTL variants that were at least 1% plausibly causal and asked if our fine-
mapped GWAS variants were in these data. eQTL summary statistics are available from the eQTL
Catalog (www.ebi.ac.uk/eqtl).

K562 HiChIP for H3K27ac-interacting promoters

AQuA-HiChIP cell libraries were prepared as described previously (/79). Briefly, NIH3T3 cells
(mouse) and K562 cells were grown in the appropriate media. Cells were fixed in 1%
formaldehyde for 10 minutes and quenched to a final concentration of 125 nM glycine. 2 million
fixed mouse cells were mixed with 10 millions of fixed K562 cells. The cells were lysed in 0.5%
SDS, quenched with 10% Triton X-100, and digested with Mbol (NEB R0147M). The DNA
overhangs were blunted, biotinylated (ThermoFisher 19524016), and ligated. Nuclei were spun
down, resuspended in nuclear lysis buffer, and sonicated using a Covaris LE220 with the following
conditions: Fill level 10, PIP 450, Duty factor 30, CPB 200. The sheared DNA was incubated with
Dynabeads Protein A (ThermoFisher 10001D) for 2 hours at 4 °C. The tubes were placed on a
magnet and the supernatant was kept. Immunoprecipitation was performed with a cross-species
reactive H3K27ac antibody (Active Motif 39133). The samples were incubated with the antibody
overnight at 4 °C. The samples were then washed, eluted, and treated with Proteinase K. The
samples were purified using Zymo DNA Clean & Concentrator. Biotin capture was performed
with Dynabeads M-280 Streptavidin (ThermoFisher 11205D), followed by library preparation.
The amplified libraries were purified with I[llumina Sample Purification Beads. The libraries were



900

905

910

915

920

925

930

935

Submitted Manuscript: Confidential

sequenced using paired-end reads with a NovaSeq 6000 S2 (Illumina) to generate 100 to 200
million read pairs per sample.

HiChlIP paired end reads were mapped to the hgl19 genome using HiC-Pro v.2.10.1 (/20). Default
settings were using to remove duplicate reads, identify valid interactions, and generate contact
maps. Statistically significant contacts were identified using FitHiChIP v.9.1 (/217) at a 5% FDR.
H3K27ac ChIP-seq data (65) were used as a reference set of peaks in the FitHiChIP pipeline.

Trans-regulated network gene set enrichments

We used chromatin immunoprecipitation sequencing (ChIP-seq) datasets in K562 cells to identify
GFIIB (64), NFE2, IKZF1, and RUNXI (65) transcription factor binding sites. There we no
publicly available HHEX K562 ChIP-seq datasets. We assigned the closest protein-coding gene to
each ChIP-seq peak with bedtools v2.25.0 (90). For predicted miRNA targets we used the
TargetScan database (66, 67). To test for enrichment of ChIP-seq peak or TargetScan genes in
trans-regulatory gene sets, we fit logistic regression models adjusting for K562 expression (gene
expression counts from scRNA-seq data) and computed odds ratios with 95% confidence intervals.
To construct GWAS-identified sets of genes, we used all fine-mapped SNPs from the 29 UKBB
GWAS:s and 15 BCX GWASs previously described (categorized by cell type) with a high Bayes
factor for being plausibly causal (logio BF > 2) and that were at least 1% plausibly causal. GWAS
gene enrichment was performed in a similar fashion as for ChIP-seq peaks.

Gene co-expression analyses and bone marrow single cell gene expression

To compute co-expression matrices for each trans-regulatory network, we used cDNA UMI count
matrices with missing genes per cell imputed with the MAGIC algorithm (/22). As a measure of
co-expression, the biweight midcorrelation, a weighted correlation analysis, was calculated for
each pair of genes (/23). Genes were then clustered based on their co-expression patterns by
hierarchical clustering. Transcription factor binding site, direct miRNA target, and GWAS gene
enrichment was performed as described above. We used Human Cell Atlas single cell RNA-
sequencing from 35 bone marrow donors (69) and identified 27 cell types as described previously
(70). Single cell data were processed with Seurat v.4.0.0 to generate UMAP plots and heatmaps.
To visualize entire frans-regulatory network clusters on a UMAP plot, we plotted the mean
expression of all cluster genes within each cell.

STING-seq power estimations

We down-sampled 136 cis-effects of gRNAs targeting CREs on their target genes across two key
conditions for experimental design: sequencing read depth per cell and the number of cells per
gRNA. We sequenced all STING-seq libraries to a depth of approximately 55,000 to 65,000 reads
per cell, therefore we repeated the entire STING-seq quality control and differential expression
testing pipeline with 5,000, 15,000, 25,000, 35,000, 45,000 and 55,000. Sequencing reads were
down-sampled to generate cDNA UMI count matrices with DropletUtils v.1.18.0 (124, 125) and
repeated 10-times with different seed numbers. For each set of 10 randomly down-sampled UMI
count matrices at each read depth, we repeated differential expression testing with SCEPTRE. We
required at least 500 cells bearing each set of gRNAs, then at each set of 10 randomly down-
sampled UMI count matrices at each read depth, we randomly down-sampled the number of cells
bearing each set of gRNA from at least 500 cells to 50, and repeated this process 10-times at each
stage. We averaged the SCEPTRE skew fit ¢-test p-values within replicates at each to compute
precise measurements for each stage in the down-sampling procedures. We then divided all genes

N
[\



Submitted Manuscript: Confidential

by their expression level and cis-effects by their log, fold-changes into tertiles to examine at what
940 number of cells and read depth could nominal significance (skew fit #-test p < 0.0001) be attained.
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Main figure legends

Figure 1. Overview of Systematic Targeting and Inhibition of Noncoding GWAS loci with
single-cell sequencing (STING-seq).

(A) STING-seq pipeline for perturbation and single-cell analysis of human genetic variants from
genome-wide association studies (GWAS). First, plausibly causal variants are identified via
statistical fine-mapping of GWAS. After further refinement of candidate cis-regulatory elements
(cCRESs) using key molecular hallmarks of regulatory elements, CRISPR guide RNAs (gRNAs)
are designed to target cCREs and lentivirally transduced at a high multiplicity-of-infection into
human cells. Using multimodal single-cell sequencing, target genes for GWAS variants are
identified using differential transcript or protein expression. (B) The number of targeted GWAS
variants mapping to cCREs across 29 blood traits in UK Biobank (n = 361,194 participants) and
15 blood traits in the Blood Cell Consortium (n = 746,667 participants). (C) Lentiviral CRISPR
inhibition (CRISPRi) vector with a single effector domain (KRAB-dCas9) or dual effector
domains (KRAB-dCas9-MeCP2). (D) Mean digital PCR gene expression in human erythrocyte
cells (K562) by targeting the transcription start sites (TSS) and known enhancers of three genes
(MRPS23, SLC25427 and FSCNI) with either single-effector KRAB-dCas9 or dual-effector
KRAB-dCas9-MeCP2 CRISPRI. Error bars indicate s.e.m.

Figure 2. Mapping cis-regulatory target genes for blood trait GWAS variants.

(A) Quantile-quantile plot of cis-effects (within 500 kb) of 531 candidate CREs (cCREs, defined
as regions with regulatory hallmarks: ATAC/DHS or H3K27ac) overlapping 535 GWAS variants
(GWAS-cCREs), 41 GWAS variants without CRE hallmarks, and 32 non-targeting (NT) gRNAs.
Genes for NT tests were randomly sampled from the set of genes in cis for targeting gRNAs. We
identified 154 pairs of target genes and CREs for GWAS variants with CRE hallmarks, 1 target
gene-CRE pair for GWAS variants without CRE hallmarks and no target genes with NT gRNAs
significant at a 5% FDR (Benjamini-Hochberg adjusted SCEPTRE p-value). (B) Targeted GWAS-
cCREs with and without target genes detected, and their functional hallmarks of enhancer activity
(ATAC/DHS or H3K27ac) in K562 cells. (C) Volcano plot of cis-regulatory effects. Significant
pairs of genes and GWAS-CRE:s are indicated in red. (D) Distance to gene rank for GWAS-CREs
and target genes, where genes were ranked according to closest TSS to a given GWAS-CRE. (E)
Number of target genes in cis per GWAS-CRE. (F) (top) For a multi-ancestry corpuscular volume
locus, two fine-mapped variants were targeted, the lead variant, rs4845124 (blue), and rs12140898
(red). MAPKAPK? (green) was nominated as the target gene by fine-mapped blood cell eQTLs
for both variants. (bottom) rs12140898 mapped to a K562 HiChIP loop, connecting its GWAS-
CRE to the MAPKAPK?2 promoter. (G) Single-cell gene expression for cells with gRNAs targeting
GWAS-cCREs (rs4845124 or rs12140898) or NT. Only rs12140898 had a target gene within 500
kb, MAPKAPK?2. (H) For a multi-ancestry monocyte count locus, one fine-mapped variant was
targeted, the lead variant, rs741613 (red). ZNF593, SH3BGRL3, CD52, and CRYBG?2 (green) were
nominated as target genes by fine-mapped blood cell eQTLs. (I) Single-cell gene expression for
cells with gRNAs targeting the GWAS-cCRE 15741613 or NT. CD52 and ZNF593 were both
identified as target genes. (J) Single-cell protein expression for cells with gRNAs targeting the
GWAS-cCRE 15741613, the CD52 transcription start site (TSS) or NT. Asterisks denote
significant g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* g < 0.05, ** ¢ < 0.01,
*H%k g <0.001).
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Figure 3. Precise GWAS variant editing with base editing STING-seq (BeeSTING-seq).

(A) Lentiviral CRISPR base editor (FNLS-BE3) with a relaxed protospacer-adjacent motif (PAM)
SpCas9 variant, SpRY, for base editing STING-seq (beeSTING-seq). (B) Flow cytometry of CD46
cell surface protein after base editing at CD46 splice donor sites. CD46 knockdown was compared
to untransduced and non-targeting (NT) controls. (C) Target gene fold-change for the two gRNAs
with the most concordant effects for each variant. (D) Quantile-quantile plot of NT gRNAs and
gRNAs targeting 46 fine-mapped GWAS variants mapping to STING-seq GWAS-CREs with cis-
effect genes. Genes for NT tests were randomly sampled from the set of genes in cis for targeting
gRNAs. (E) (top) For a multi-ancestry corpuscular volume locus, one fine-mapped variant was
targeted, the lead variant, rs142122062 (blue). (bottom) Base editing by gRNA-1 and gRNA-2
changes the rs142122062 allele from reference to alternative; for both gRNAs, this is the only
cytosine in the base editing window. (F) Single-cell gene expression for cells with gRNAs
targeting the GWAS-cCRE rs142122062 or NT. APPBP2 was identified as a cis-target gene. (G)
BeeSTING-seq of rs142122062 increases APPBP2 expression with two independent gRNAs
whose positions are shown in panel E. Asterisks denote significant g-values, Benjamini-Hochberg
adjusted SCEPTRE p-values (* ¢ <0.05, ** ¢ <0.01, *** 4 <0.001).

Figure 4. Trans-regulatory network discovery of genes that impact diverse blood cell traits.
(A) Quantile-quantile plots of frans-effects (whole transcriptome) of GWAS-CREs and non-
targeting (NT) gRNAs. We identified significant genes at a 1% FDR (Benjamini-Hochberg
adjusted SCEPTRE p-value) for GWAS-CRESs with transcription factors (GFIIB, NFE2, IKZF I,
HHEX, and RUNXT) and microRNAs (miR-142 and miR-144/451) as cis-regulatory target genes.
No trans-effects were found for NT gRNAs. (B) Two GWAS-CREs targeted at the GFI1B locus,
1$524137 and rs79755767. (C) Single-cell gene expression for cells with gRNAs targeting GWAS-
cCREs at the GFIIB locus (rs524137 or 1s79755767) or NT. (D) Expression of rs524137-CRE
significant trans-target genes in cells with perturbation of either GWAS-CRE at the GFI/B locus
(rs524137 or 1s79755767) (n = 1,161 genes at a 1% FDR). (E) Two GWAS-CRE:s targeted at the
NFE?2 locus, 1579755767 and rs35979828. (F) Single-cell gene expression for cells with gRNAs
targeting GWAS-cCREs at the NFE?2 locus (1579755767 or rs35979828) or NT. (G) Expression
of rs79755767-CRE significant trans-target genes in cells with perturbation of either GWAS-CRE
at the GFIIB locus (1579755767 or rs35979828) (n = 343 genes at a 1% FDR). (H) Protein-coding
genes with changes in expression for trans-regulatory networks. (I) Gene set enrichment odds
ratios (diamonds) and 95% confidence intervals (lines) for transcription factor and microRNA
targets within each trans-regulatory network. Targets for transcription factors (TFs) were given as
the closest gene to each TF-specific ENCODE K562 ChlP-seq peak and for microRNAs as
TargetScan-predicted targets based on sequence. (J) For each trans-regulatory network, gene set
enrichment odds ratios (diamonds) and 95% confidence intervals (lines) of closest genes to fine-
mapped variants from WBC, platelet, and RBC GWASs from 29 UK Biobank blood traits and 15
Blood Cell Consortium blood traits. Asterisks in panels C and F denote significant Benjamini-
Hochberg adjusted SCEPTRE p-values and in panels I and J denote logistic regression p-values (*
p <0.05, ** p <0.01, *** p <0.001).
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Figure 5. Subnetworks of GFIIB target genes are expressed in specific hematopoietic
progenitors and differentiated cells.

(A) Co-expression matrix of rs524137-CRE GFIIB network genes in K562 with hierarchical
clustering. Three clusters (A, B, and C) are indicated. The vertical bars below the dendrogram
indicate if genes had increased (blue) or decreased (red) expression upon inhibiting the GFIIB
CRE. (B) For each trans-regulatory GFI1B subnetwork (cluster), gene set enrichment odds ratios
(diamonds) and 95% confidence intervals (lines) of closest genes to (top) GFI11B K562 ChIP-seq
peaks and (bottom) fine-mapped variants from WBC, platelet, and RBC GWASs from 29 UK
Biobank blood traits and 15 Blood Cell Consortium blood traits. Asterisks denote logistic
regression p-values (* p <0.05, ** p <0.01, *** p <0.001). (C) Uniform Manifold Approximation
and Projection (UMAP) of human bone marrow cell gene expression from 35 Human Cell Atlas
donors. Labels and colors indicate cell types (B 2prog: progenitor B-2 cells; RBCprog: red blood cell
progenitors; DCprog: dendritic cell progenitors; full list in Table S4D). The black dots denote cells
expressing GFIIB. GFIIB is most highly expressed in RBC progenitors, megakaryocyte
progenitors, and hematopoietic stem cells. (D) Expression of genes from Clusters A, B, and C in
each human bone marrow cell type (/eff) and in each cell in the UMAP space from panel C (right).
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Fig. S1. Digital PCR for CRISPR inhibition (CRISPRi) of genes and guide RNAs.
Digital PCR gene expression in K562 cells by targeting the transcription start sites (TSS) and
known enhancers of FSCNI (A), MRPS23 (B), and SLC25437 (C) with either CRISPRi with
KRAB-dCas9 or KRAB-dCas9-MeCP2. Each bar represents one guide RNA (gRNA) (n =3

biological replicates per gRNA).
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Fig. S2. Genome-scale screen for dual-effector CRISPRi (KRAB-dCas9-MeCP2).

A pooled screen of 1,992 guide RNAs targeting within 5 kb of 263 essential genes (DepMap
essentiality score less than -1). We used 100 nt sliding windows to quantify regions where at least
50% of the gRNAs were depleted greater than the median of 1,000 non-targeting gRNA controls.
We found that the dual-effector CRISPRi (KRAB-dCas9-MeCP2) is active at a distance of -400
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Fig. S5. Gene and protein expression for TSS-targeting positive controls guide RNAs.
Quantile-quantile plots for positive control gRNAs and their effects on gene expression (A) and
protein levels (B). Comparison of cells with positive control gRNAs and their effects on target
gene expression with non-targeting gRNA controls (C for gene expression, D for protein).
Asterisks denote g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* ¢ <0.05, ** g <
0.01, *** g <0.001).
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Fig. S6. Individual CRE-targeting gRNA effects on target gene expression.

We explored three facets for possible gRNA discrepancy between gRNAs targeting the same CRE
and found that the number of cells bearing each gRNA is the main driver of statistical power (A).
We observed a weak effect of gRNA position (less significant gRNAs tend to be further from
significant gRNAs) (B), and no effect of off-target scores (C).
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Fig. S7. A multi-ancestry white blood cell count locus with weak enhancer activity.

(A) The lead, and only, fine-mapped variant, rs2286599 was targeted as it was highly plausibly
causal but did not map to a called peak of biochemical hallmarks of enhancers. However, open
chromatin data revealed weak enhancer activity, and we detected in single-cell expression data a
cis-target gene, LTBR, for rs2286599-CRE targeting gRNAs and not for NT gRNAs (B). Asterisks
denote g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* ¢ < 0.05, ** g < 0.01, ***
q <0.001).
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Fig. S8. Plausibly causal variants without biochemical hallmarks of enhancers.

We targeted four independent loci where the lead variant was the sole fine-mapped variant but did
not map to called peaks for biochemical hallmarks of enhancers. We did not identify any cis-target
genes, including the genes with the closest transcription start sites for: (A) rs72836346 and
BCL2L11,(B)1s61823972 and TMCC2, (C) rs60237566 and ITM2C, and (D) 1s333947 and CSF 1.
Each panel shows the locus with biochemical hallmarks of enhancers and closest gene (/eft) and
the expression of the closest gene for cells receiving the GWAS-CRE perturbation or a non-
targeting (NT) gRNA (right).
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Fig. S9. Additional GWAS loci where STING-seq identifies target genes.
(A) An ancestry-specific neutrophil count locus, only detected in individuals with African
ancestries (gray) and not in individuals with European ancestries (purple). The lead variant,
156674304, did not map to hallmarks of enhancers, therefore we targeted the remaining three
variants in the credible set that did: rs6660743 (blue), rs12087680 (red), and rs7544679 (orange).
(B) Single-cell gene expression for cells bearing NT and targeting gRNAs. Only rs12087680 had
a cis-target gene, ATPIA1. (C) A European ancestries reticulocyte count locus. One fine-mapped
variant was targeted, the lead variant, rs1065853 (red). (D) Single-cell gene expression for cells
bearing NT and targeting gRNAs. APOE and APOCI were both identified as cis-target genes.
Asterisks denote g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* ¢ < 0.05, ** g <

0.01, *** ¢ < 0.001).
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Fig. S10. STING-seq of nine GWAS variants at the PTPRC locus.

(A) Heatmap of p-values from 10 blood trait GWASs for nine variants mapping to cCREs proximal
to PTPRC. The maximal color value indicates genome-wide significance (6.6x10”). (B) Pairwise
linkage disequilibrium matrix (R? and D’) for the nine targeted variants using the 1000 Genomes
CEU and GBR populations. (C) Targeted GWAS-cCRE locations located at least 1 kb distal to the
PTPRC TSS. (D) Normalized single cell PTPRC expression for the top targeting gRNAs. PTPRC
was differentially expressed upon perturbation of six out of nine variants, identifying six
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significant CREs (5% FDR). Two variants (rs1926231 and rs75567729) were located closest to
the TSS of the PTPRC gene and had the strongest impact on gene expression. However, they were
not in LD and had different GWAS significance patterns. Two other variants (rs78900449 and
rs4915152) were not significant but were in strong LD (R?> 0.95) with variant-identified CREs
for PTPRC (rs1326270 and rs1998843, respectively), suggesting they may be non-functional LD
proxy variants. Asterisks denote g-values, Benjamini-Hochberg adjusted SCEPTRE p-values (* ¢
<0.05, ¥* ¢ <0.01, *** ¢ <0.001).
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Fig. S11. Cytosine base editing of CD46 splice donor sites.

We designed 12 CD46 targeting gRNAs to engineer C>T mutations predicted to disrupt splice
donor sites and used flow cytometry to measure CD46 protein depletion, compared to non-
targeting gRNAs and untransduced cells (negative controls). gRNAs were designed for assorted
non-canonical PAMs.
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Fig. S12. Trans-effects of the rs524137-CRE for GFI1B on transcript and protein expression.
(A) Volcano plot of the transcriptome-wide effects on differential expression upon inhibiting the
r$524137-CRE for GFIIB. We labeled nine additional genes that had significant changes in gene
expression (1% FDR) and found that their changes in expression were highly correlated with
changes in protein measured with oligo-tagged antibodies (B).
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Fig. S13. A trans-regulatory network uncovered by perturbing a short RNA gene.

(A) A multi-ancestry platelet count locus, where we targeted a fine-mapped variant that was also
the lead variant, rs2526377 (red). Rs2526377 does not map to any protein coding regions, however
it does map to a promoter for a short, noncoding microRNA host gene for miR-142. (B) Single-
cell gene expression for cells bearing NT and targeting gRNAs. The miR-142 host gene, a
noncoding RNA gene, was identified as a cis-target gene. (C) Volcano plot of the transcriptome-
wide effects of perturbing the miR-142 host gene, where the top two up-regulated genes, WASL
and CFL2, were known targets of miR-142. Asterisks denote g-values, Benjamini-Hochberg
adjusted SCEPTRE p-values (* ¢ <0.05, ** ¢ <0.01, *** g <0.001).
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Fig. S14. Counts for the number of trans-regulatory network genes identified within each
GWAS gene set for red blood cells (RBCs), platelets, and white blood cells (WBCs).

(A) All protein-coding genes and whether they were unique or shared across RBC, platelet, and
WBC GWAS gene sets. We then inspected the GFIIB (B), NFE2 (C), IKZF1 (D), HHEX (E),
RUNXI (F), miR-142 (G), and miR-144-451 (H) networks and whether they were found in our
GWAS gene sets.
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Fig. S15. Subnetworks have distinct gene set enrichment profiles.

Co-expression matrices of network genes with hierarchical clustering in K562 and their
subnetwork cluster enrichments as odds ratios (diamonds) and 95% confidence intervals (/ines)
for direct targets and GWAS gene sets for the: (A) NFE2 1s79755767-CRE, (B) IKZF I rs6592965-
CRE, (C) HHEX rs12784232-CRE, (D) RUNXI rs2834670-CRE, (E) miR-142 rs2526377-CRE,
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and (F) miR-144-451 rs35531439-CRE. There were no HHEX ChIP-seq data in K562 for testing
predicted direct target enrichments. Asterisks denote logistic regression p-values (* p <0.05, ** p
<0.01, *** p <0.001).
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Fig. S16. A GFI1B target gene, CD33, is up-regulated upon GFI1B CRE inhibition.

(A) A GFI1B ChIP-seq peak was found directly upstream of CD33 in K562. GFIIB is known to
act as a transcription repressor, and we observed upon inhibiting the GFI1/B CRE that CD33 had
increased expression (B) and protein (C). (D) These findings were consistent with GFI/I/B and
CD33 expression patterns in human bone marrow cells, where GFII/B was expressed in
hematopoietic stem cells, RBC progenitors, and megakaryocyte progenitors, but not in WBC
progenitors and differentiated myeloid cells. CD33 is a marker of myeloid cells and was not
expressed in cells where GFIIB was active. Asterisks denote g-values, Benjamini-Hochberg
adjusted SCEPTRE p-values (* ¢ <0.05, ** ¢ <0.01, *** g <0.001).
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Fig. S17. Detection limits of cis-regulatory effects in STING-seq.

(A) CRE:s for target genes grouped by effect size and gene expression, and down-sampled from
1,000 cells bearing perturbations to 50 and from 55,000 to 5,000 sequencing reads per cell. (B)
Distribution of genes with detected cis-regulatory effects and their expression rank relative to the
full K562 transcriptome. (C) Number of genes for each corresponding down-sampling group.
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