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Abstract

Geologic carbon storage represents one of the few truly scalable
technologies capable of reducing the CO, concentration in the
atmosphere. While this technology has the potential to scale, its
success hinges on our ability to mitigate its risks. An important
aspect of risk mitigation concerns assurances that the injected
CO, remains within the storage complex. Among the different
monitoring modalities, seismic imaging stands out due to its
ability to attain high-resolution and high-fidelity images. However,
these superior features come at prohibitive costs and time-intensive
efforts that potentially render extensive seismic monitoring unde-
sirable. To overcome this shortcoming, we present a methodology
in which time-lapse images are created by inverting nonreplicated
time-lapse monitoring data jointly. By no longer insisting on
replication of the surveys to obtain high-fidelity time-lapse images
and differences, extreme costs and time-consuming labor are
averted. To demonstrate our approach, hundreds of realistic
synthetic noisy time-lapse seismic data sets are simulated that
contain imprints of regular CO, plumes and irregular plumes that
leak. These time-lapse data sets are subsequently inverted to
produce time-lapse difference images that are used to train a deep
neural classifier. The testing results show that the classifier is
capable of detecting CO, leakage automatically on unseen data
with reasonable accuracy. We consider the use of this classifier as
afirst step in the development of an automatic workflow designed
to handle the large number of continuously monitored CO,
injection sites needed to help combat climate change.

Introduction

Seismic monitoring of geologic carbon storage (GCS) comes
with its own unique challenges. Among these challenges, the
need for low-cost highly repeatable, high-resolution, and high-
fidelity images ranks chiefly. Densely sampled and replicated
time-lapse surveys, which rely on permanent reservoir monitoring
systems or on replicated streamer or node surveys, may be able
to provide images conducive to interpretation and reservoir
management, but these approaches are often too costly and
require too much hand-holding to be of practical use for GCS
at many injection sites.

To overcome these challenges, we replace the current paradigm
of costly replicated acquisition, cumbersome time-lapse processing,
and interpretation with a joint-inversion framework that maps
time-lapse data to high-fidelity and high-resolution images from
sparse nonreplicated time-lapse surveys. We demonstrate that we
arrive at an imaging framework that is suitable for automatic
detection of pressure-induced CO, leakage, which represents one

of the possible leakage scenarios. Rather than relying on meticulous
4D workflows in which baseline and monitoring surveys are
processed separately to yield accurate and artifact-free time-lapse
differences, our approach exposes information that is shared
among the different vintages by formulating the imaging problem
in terms of an unknown fictitious common component and innova-
tions of the baseline and monitor surveys with respect to this
common component. Because the common component is informed
by all time-lapse surveys, its image quality improves when the
surveys bring complementary information, which is the case when
the surveys are not replicated. In turn, the enhanced common
component results in improved images for the baseline survey,
the monitor survey(s), and their time-lapse difference(s). Our joint
wave-equation-based imaging formulation is versatile and capable
of accounting for real data time-lapse issues such as changes in
the background velocity model, calibration errors in shot and
receiver locations (Oghenekohwo and Herrmann, 2017), and noise
(Tian et al., 2018; Wei et al., 2018). The same applies to corrections
for the source signature using on-the-fly source estimations (Yang
etal., 2020; Z. Yin et al., 2020). We acknowledge, however, that
the robustness of our method to such real data issues needs to be
validated and is a topic for future study.

To showcase the achievable imaging gains and how these can
be used in a GCS setting where CO, leakage is of major consid-
eration, we create hundreds of time-lapse imaging experiments
involving CO, plumes whose behavior is determined by the
two-phase flow equations. To mimic irregular flow due to pressure-
induced opening of fractures, we increase the permeability in the
seal at random locations and pressure thresholds. The resulting
flow simulations are used to generate time-lapse data sets that
serve as input to our joint imaging scheme. The produced time-
lapse difference images are subsequently used to train and test a
neural network that as an explainable classifier determines whether
the CO, plume behaves regularly or shows signs of leakage.

Our contributions are organized as follows. First, we discuss
the time-lapse seismic imaging problem and its practical difficulties.
Next, we introduce the joint recovery model (JRM) that takes
explicit advantage of information shared by multiple surveys. By
means of a carefully designed synthetic case study involving saline
aquifers made of Bunter Sandstone in the southern North Sea, we
demonstrate the uplift of the JRM and how its images can be used
to train a deep neural network classifier to detect erroneous growth
of the CO, plume automatically. Aside from determining whether
the CO, plume behaves regularly or not, our network also provides
class activation mappings (CAMs) that visualize areas in the image
on which the network is basing its classification.
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Seismic monitoring with time-lapse imaging

To keep track of CO, plume development during GCS projects,
multiple time-lapse surveys are collected. Baseline surveys are
acquired before the supercritical CO, is injected into the reservoir.
These baseline surveys, denoted by the index ; = 1, are followed
by one or more monitor surveys, collected at later times and
indexed by j =2, ---, n, with 7, the total number of surveys.

Seismic monitoring of GCS brings its own unique set of
challenges that stem from the fact that its main concern is (early)
detection of possible CO, leakage from the storage complex. To
be successful in this task, monitoring GCS calls for a time-lapse
imaging modality that is capable of

* detecting weak time-lapse signals associated with small rock-
physics changes induced by CO, leakage;

* attaining high lateral resolution from active-source surface
seismic data to detect vertically moving leakage;

* handling an increasing number of not perfectly calibrated
seismic surveys collected over long periods of time (approxi-
mately 50 to 100 years);

*  reducing costs drastically by no longer insisting on replication of
time-lapse surveys to attain high degrees of repeatability; and

* lowering the cumulative environmental imprint of active-
source acquisition.

Monitoring with the JRM. To meet these challenges, we
choose a linear imaging framework where observed linearized
data for each vintage are related to perturbations in the acoustic
impedance via

bj =ijj te for j=12,- n, @

In this expression, the matrix A, stands for the linearized Born
scattering operator for the j* vintage. Observed linearized data,
collected for all shots in the vector b, are generated by applying
the As to the (unknown) impedance perturbations denoted by
x; forj = 1,2,-+, n, with the noise term e;. The task of time-lapse
imaging is to create high-resolution, high-fidelity, true-amplitude
estimates for the time-lapse images, {% j};ij, from nonreplicated
sparsely sampled noisy time-lapse data.

We argue that our choice for linearized imaging is justified
for four reasons. First, CO, injection sites undergo baseline studies
involving vintage data and possible follow-up surveys, which
means that accurate information on the background velocity model
is generally available. Second, changes in the acoustic parameters
induced by CO, injection are typically small, so it suffices to work
with one and the same background model for the baseline and
monitor surveys. Third, when the background model is sufficiently
close to the true model, linearized inversion, which corresponds
to a single Gauss-Newton iteration of full-waveform inversion,
converges quadratically. Fourth, because the forward model is
linear, it is conducive to the use of the JRM where inversions are
carried out with respect to the common component, which is
shared between all vintages, and innovations with respect to the
common component. Because the common component represents
an average, we expect this joint imaging method to be relatively
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robust with respect to kinematic changes induced by time-lapse
effects or by lack of calibration of the acquisition (Oghenekohwo
and Herrmann, 2017).

By parameterizing time-lapse images, {x};, in terms of the
common component, z,, and innovations with respect to the
common component, {Z_,-}/Z, we arrive at the JRM where representa-

tions for the images are given by
1 )
X, ==z,+z; for j=12,n,. )
Y

Here, the parameter y controls the balance between the common
component, z,, and innovation components, {zj}_;:} (X.Li, 2015).
Compared to traditional time-lapse approaches, where data are
imaged separately or where time-lapse surveys are subtracted,
inversions for time-lapse images based on the above parameter-
ization are carried out jointly and involve inverting the following
matrix:

While traditional time-lapse imaging approaches strive toward
maximal replication between surveys to suppress acquisition-
related artifacts, imaging with the JRM, which entails inverting
the underdetermined system in equation 3 using structure-
promotion techniques (e.g., via £;-norm minimization), improves
the image quality of the vintages themselves in situations where
the surveys are not replicated. This occurs in cases where A, # A,
for Vi # j, or in situations where there is significant noise. This
remarkable result was shown to hold for sparsity-promoting
denoising of time-lapse field data (Tian et al., 2018; Wei et al.,
2018), for various wavefield reconstructions of randomized
simultaneous-source dynamic (towed-array) and static (ocean-
bottom cable/node) marine acquisitions (Oghenekohwo and
Herrmann, 2017; Oghenekohwo et al., 2017, Wason et al., 2017),
and for wave-based inversion, including least-squares reverse time
migration (RTM) and full-waveform inversion (Herrmann and
Oghenekohwo, 2017; Oghenekohwo, 2017). The observed quality
gains in these applications can be explained by improvements in
the common component resulting from complementary informa-
tion residing in nonreplicated time-lapse surveys. This enhanced
recovery of the common component in turn improves the recovery
of the innovations and therefore the vintages themselves. The
time-lapse differences themselves also improve, or at the very
least, remain relatively unaffected when the surveys are not rep-
licated. Relaxing replication of surveys obviously leads to reduction
in cost and environmental impact. Below, we show how GCS
monitoring also benefits from this approach.

Monitoring with curvelet-domain structure promotion. To
obtain high-resolution and high-fidelity time-lapse images, we
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invert the system in equation 3 (Witte et al., 2019b; M. Yang
etal., 2020; Z. Yin et al., 2021) with

L 1
minimize 2] Cz||,+=|Cz||}
Z

2
subject to ||b—Az||§S o, 4)

where C is the forward curvelet transform, A is the threshold
parameter, and o is the magnitude of the noise. At iteration #and
for ¢ = 0, solving equation 4 corresponds to computing the fol-
lowing iterations:

= uw-1A](Az,-b,)
= C’S,(Cu,,), )

Uy

Zi

where A, with a slight abuse of notation, represents the matrix
in equation 5 for a subset of shots randomly selected from sources
in each survey. The vector b, contains the extracted shot records
from b and the symbol T refers to the adjoint. The dynamic
b, [13/ || Ai(Az, = b3
(Lorenz et al., 2014). Sparsity is promoted via curvelet-domain
soft thresholding, §,(-) =
threshold. The vector z, contains the baseline and innovation

steplength #, is given by #, = || Az, -
max (|-| - 4, 0)sign(), where 4 is the
components.

Numerical case study: Bunter Sandstone in the southern North Sea

Before discussing the impact of high-resolution and high-
fidelity time-lapse imaging with the JRM on the downstream
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task of automatic leakage detection with a neural network
classifier, we first detail the setup of our numerical experiments
using techniques from simulation-based acquisition design as
described by Z. Yin et al. (2021). To generate realistic time-
lapse data and training sets for the automatic leakage classifier,
we follow the workflow summarized in Figure 1. In this
approach, use is made of proxy models for seismic properties
derived from real 3D-imaged seismic and well data (Jones
et al., 2012). With rock physics, these seismic models are
converted to fluid-flow models that serve as input to two-phase
flow simulations. The resulting data sets, which include
pressure-induced leakage, will be used to create time-lapse
data used to train our classifier. For more detail, refer to the
caption of Figure 1.

Proxy seismic and fluid-flow models. Among the various CO,
injection projects, GCS in offshore saline aquifers has been most
successful in reaching scale and in meeting injection targets
(Michael et al., 2010). For that reason, we consider a proxy
model derived from real 3D-imaged seismic and well data (Jones
et al., 2012) and representative for CO, injection in the south
of the North Sea involving a saline aquifer made of the highly
permeable Bunter Sandstone. This area, which is actively being
considered for GCS (Kolster et al., 2018), consists of the following
three geologic sections (see Figure 2 for the permeability and
porosity distribution):

1) the highly porous (average 33%) and permeable (more than
170 mD) Bunter Sandstone reservoir of about 300-500 m
thick. This section, denoted by red colors in Figure 2, cor-
responds to the saline aquifer and serves as the reservoir for
CO, injection;

time-lapse models
wavespeed, density

.-
-~ i

time-lapse imaging @

CO: fiynamics @

concentration, pressure

leakage

regular

time-lapse (diff) data

Figure 1. Simulation-based monitoring design framework. (a) Starting with a proxy model for the wavespeed and density, the workflow proceeds by converting these seismic properties
into () permeability and porosity. (c) These fluid-flow properties are used to simulate CO, plumes that behave regularly or exhibit leakage outside the storage complex. Induced changes
by the CO, plume for the wavespeed and density are depicted in (d) and serve as input to simulations of time-lapse seismic data (S/N 8.0 dB) and shot-domain time-lapse differences
(S/N-31.4 dB). Imaging results for regular and irregular plume developments are plotted in (f) and serve as input to (g) the deep neural classifier, which determines whether the flow
hehaves regularly or leaks. Activation mappings in (h) show regions on which the network is basing its classification. As expected, the activation mapping is diffusive in case of regular C0,

plume development and focused on the leakage location when CO, plume behaves irregularly.
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Figure 2. (a) Permeability and (b) porosity derived from a 2D slice of the Compass model.

2) the primary seal (permeability 10~*~102 mD) made of the
Rot Halite Member, which is 50 m thick and continuous
(black layer in Figure 2); and

3) the secondary seal made of the Haisborough group, which is
more than 300 m thick and consists of low-permeability
(15-18 mD) mudstone (purple section in Figure 2).

To arrive at the fluid-flow models, we consider 2D subsets of
the 3D Compass model (Jones et al., 2012) and convert these
seismic models to fluid-flow properties (see Figure 1b) by assuming
a linear relationship between compressional wavespeed and
permeability in each stratigraphic section. For further details on
the conversion of compressional wavespeed and density to perme-
ability and porosity, we refer to empirical relationships reported
in Klimentos (1991). During conversion, an increase of 1 km/s
in compressional wavespeed is assumed to correspond to an
increase of 1.63 mD in permeability. From this, porosity is
calculated with the Kozeny-Carman equation (Costa, 2006)

1.527
0.0314%(1—¢)
(mD) and porosity (%) with constants taken from the Strategic
UK CCS Storage Appraisal Project report.

Fluid-flow simulations. To model CO, plumes that behave
regularly and irregularly, the latter due to leakage, we solve the

K=¢ , where K and ¢ denote permeability

two-phase flow equations numerically? for both pressure and
concentration (D. Li and Xu, 2021; D. Li et al., 2020). To mimic
possible pressure-induced CO, leakage, we increase the perme-
ability at random distances away from the injection well within

the seal from 10~ to 500 mD when the pressure exceeds approxi-
mately 15 MPa. At that depth, the pressure is below the fracture
gradient (Ringrose, 2020). Because pressure-induced fractures
come in different sizes, we also randomly vary the width of the
pressure-induced fracture openings from 12.5 to 62.5 m. Examples
of fluid-flow simulations without and with leakage are shown in
Figure 1c.

Rock-physics conversion. To monitor temporal variations in
the plume’s CO, concentration seismically, we use the patchy
saturation model (Avseth et al., 2010) to convert the CO, con-
centration to decrease in compressional wavespeed and density.
These changes are shown in Figure 1d. The fact that these induced
changes in the time-lapse differences in seismic properties are
relatively small in spatial extent (approximately 800 m for the
plume and less than 62.5 m for the leakage) and amplitude (1.68%
time-lapse change in the acoustic impedance) calls for a time-lapse
imaging modality with small normalized root-mean-square (Nrms)
values (Kragh and Christie, 2002).

Time-lapse seismic simulations. Training and validating
automatic detection of CO, leakage from the storage complex
requires the creation of realistic synthetic time-lapse data sets
that contain the seismic imprint of regular as well as irregular
(leakage) plume development. To this end, baseline surveys are
simulated prior to CO, injection for different subsets of the
Compass model. Monitor surveys are simulated 200 days after
leakage occurs to verify that potential leakage can be detected
automatically early on. For regular plume development, we shoot
monitor surveys for each subset at random times after CO, injec-
tion. To strike a balance between acquisition productivity and
time-lapse image quality, use is made of dense semipermanent
acoustic monitoring at the seafloor with 25 m receiver spacing.
Contrary to expensive permanent reservoir monitoring systems
with multicomponent geophones, our system works with hydro-
phones connected to underwater buoys located 2 m above the
ocean bottom. Aside from being relatively low cost, this system
also avoids complications arising from elastic wave interactions
at the seabed. Time-lapse acquisition costs are further reduced
by nonreplicated coarse shooting with the source towed at 10 m
below the ocean surface. Subsampling artifacts are reduced by
using a randomized technique from compressive sensing where
32 sources are located at nonreplicated jittered (Herrmann and
Hennenfent, 2008) source positions, yielding an average source
sampling of 125 m. Given this acquisition geometry, linear data
are generated® with equation 1 for a 25 Hz Ricker wavelet and
with the band-limited noise term set so that the data’s signal-to-
noise ratio (S/N) is 8.0 dB. This noise level leads to an extremely
poor S/N of =31.4 dB for time-lapse differences in the shot domain.
See Figure le.

Imaging with JRM versus RTM. Given the simulated
time-lapse data sets with and without leakage, time-lapse
difference images are created according to two different imaging
scenarios, namely via independent RTM, conducted on the

*We used the open-source software FwiFlow.jl (D. Li et al., 2020; D. Li and Xu, 2021) to solve the two-phase flow equations for both the pressure and

concentration.

3We used the open-source software JUDLjl (Witte et al., 2019a; Louboutin et al., 2022) to model the wave propagation. This Julia package implements
highly optimized propagators using Devito (Louboutin et al., 2019; Luporini et al., 2020, 2022).
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baseline and monitor surveys separately, and via inversion of
the JRM (cf. equations 3 and 4). To limit the computational
cost of the Bregman iterations (equation 5), four shot records
are selected per iteration at random from each survey for imaging
(W. Yin et al., 2008; Witte et al., 2019b; Yang et al., 2020;
Z. Yin et al., 2021). This limits the cost of the joint inversion
to the equivalent of three RTMs. The recovered baseline images
are shown in Figure 3a for RTM and Figure 3b for JRM. For
the leakage scenario, the time-lapse differences are plotted in
Figures 3¢ and 3d for RTM and JRM, respectively. For the
regular plume, the time-lapse differences are plotted in
Figures 3¢ and 3f for RTM and JRM, respectively. From these
images, it is clear that joint inversion leads to relatively

500 1000 1500 2000 2500 3000 3500 4000
X[m]

3000 3500 4000
X[m]

500 1000 1500 2000 2500 3000 3500 4000
X[m]

artifact-free recovery of the vintages and time-lapse differences.
This observation is reflected in the Nrms values, which improve
considerably as shown by the histograms in Figure 4 for 1000
imaging experiments. Not only do the Nrms values shift toward
the left, their values are also more concentrated when inverting
time-lapse data with the JRM. Both features are beneficial to
automatic leakage detection.

Deep neural network classifier for C0, leakage detection

The injection of supercritical CO, into the storage complex
perturbs the physical, chemical, and thermal environment of the
reservoir (Newell and Ilgen, 2019). Because CO, injection increases
the pressure, this process may trigger CO, leakage across the seal
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Figure 3. RTM versus inversion JRM. (a) RTM image of the baseline; (b) JRM image of the baseline; (c) time-lapse difference and CO, plume for independent RTM images with leakage;
(d) time-lapse obtained by inverting the time-lapse data jointly with leakage; (e) time-lapse difference and CO, plume for independent RTM images without leakage; (f) time-lapse obtained
by inverting the time-lapse data jointly without leakage. Notice improvement in the time-lapse image quality. This improvement in reflected in the Nrms values that decrease from 8.48%

for RTM to 3.20% for JRM.
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Figure 4. Nrms values for 1000 time-lapse experiments.
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Figure 5. Confusion matrix for classifier trained on recovery images from JRM.

when the pressure increase induces opening of pre-existing faults
or fractures zones (Pruess, 2006; Ringrose, 2020). To ensure safe
operation of CO, storage, we develop a quantitative leakage
detection tool based on a deep neural classifier. This classifier is
trained on time-lapse images that contain the imprint of CO,
plumes that behave regularly and irregularly. In case of irregular
flow, CO, escapes the storage complex through a pressure-induced
opening in the seal, which causes a localized increase in perme-
ability (shown in Figure 3d).

Because time-lapse differences are small in amplitude and
strongly localized laterally when leakage occurs, highly sensitive
learned classifiers are needed. For this purpose, we follow Erdinc
etal. (2022) and adopt the Vision Transformer (ViT) (Dosovitskiy
etal., 2021). This state-of-the-art classifier originated from the
field of natural language processing (Vaswani et al., 2017).
Thanks to their attention mechanism, ViTs have been shown
to achieve superior performance on image classification tasks
where image patches are considered as word tokens by the
transformer network. As a result, ViTs have much less image-
specific inductive bias compared to convolutional neural networks

(Dosovitskiy et al., 2021).

To arrive at a practical and performant ViT classifier, we start
from a ViT that is pretrained on image tasks with 16 x 16 patches
and apply transfer learning (Yosinski et al., 2014) to fine-tune
this network on 1576 labeled time-lapse images. Catastrophic
forgetting is avoided by freezing the initial layers, which are
responsible for feature extraction, during the initial training. After
the initial training of the last dense layers, all network weights
are updated for several epochs while keeping the learning rate
small. The labeled (regular versus irregular flow) training set itself
consists of 1576 time-lapse data sets divided equally between
regular and irregular flow.

After the training is completed, baseline and monitor surveys
are simulated for 394 unseen earth models with regular and
irregular plumes. These simulated time-lapse data sets are imaged
with JRM by inverting the matrix in equation 3 via Bregman
iterations in equation 5. The resulting time-lapse difference images
(see Figures 3d and 3f for two examples) serve as input to the ViT
classifier. Refer to Figure 5 for performance, which corresponds
to a2 x 2 confusion matrix. The first row denotes the classification
results for samples with regular plume (negative samples), where
193 (true negative) out of 206 samples are classified correctly. The
second row denotes the classification results for samples with CO,
leakage over the seal (positive samples), where 147 (true positive)
out of 188 samples are classified correctly. Because JRM recovers
relatively artifact-free time-lapse differences, the classifier does
not pick up too many artifacts related to finite acquisition as CO,

leakage. This leads to much fewer false alarms for CO, leakage.

Class activation mapping-based saliency map

While our ViT classifier is capable of achieving good perfor-
mance (see Figure 5), making intervention decisions during GCS
projects calls for interpretability and trustworthiness of our clas-
sifier (Hooker et al., 2019; Mackowiak et al., 2021; Zhang et al.,
2021). To enhance these features, we take advantage of CAMs
(Zhou et al., 2016). These saliency maps help us identify the
discriminative spatial regions in each image that support a par-
ticular class decision. In our application, these regions correspond
to areas where the classifier deems the CO, plume to behave
irregularly (if the classification result is leakage). By overlaying
time-lapse difference images with these maps, interpretation is
facilitated, assisting practitioners to make decisions on how to
proceed with GCS projects and take associated actions. Figure 6
illustrates how the Score CAM approach (Wang et al., 2020)
serves this purpose’. Figure 6a shows the CAM result for a
time-lapse difference image classified as a CO, leakage (Figure 3d).
Despite few artifacts around the image, the CAM clearly focuses
on the CO, leakage over the seal, which could potentially alert
the practitioners of GCS. When the plume is detected as growing
regularly, the CAM result is diffusive (shown in Figure 6b). This
shows that the classification decision is based on the entire image
and not only at the plume area. The scripts to reproduce the
experiments are available on the SLIM GitHub page: https://
github.com/slimgroup/GCS-CAM.

“We used the open-source software PyTorch library for CAM methods (Gildenblat and contributors, 2021) to calculate the CAM images.
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Discussion and conclusion

As afirst step in the development of scalable automatic work-
flows for seismic monitoring of GCS, we propose a methodology
for low-cost time-lapse imaging that exploits commonality between
baseline and monitor surveys through the JRM. By means of
carefully designed realistic synthetic time-lapse seismic experi-
ments, we have shown that highly repeatable, high-resolution,
and high-fidelity images are achievable without insisting on
replication of the baseline and monitor surveys. Because our
method relies on a joint-inversion methodology, it also averts
labor-intensive 4D processing to compensate for less-than-ideal
acquisitions. Aside from establishing our claim of relaxing the
need for replication empirically, through hundreds of synthetic
time-lapse experiments yielding significant improvements in
time-lapse image quality and Nrms values, we also showed that
a deep neural classifier can be trained to detect CO, leakage
automatically. While the classification results are encouraging,
false positives and negatives remain. We argue that these may be
acceptable because decisions to intervene, e.g., to stop injection
of CO,, typically involve other complementary sources of informa-
tion such as pressure drops at the wellhead. In future work, we
plan to extend our methodology to different leakage scenarios
and quantification of uncertainty. We also intend to further
investigate robustness of the proposed joint imaging methodology
with respect to calibration errors and variations in the source
signature within and across different surveys. Finally, interpret-
ability of the neural classifier’s output and different leakage sce-
narios and their impact on the shape of the CO, plume also will
be investigated further. Rl
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