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Abstract

Thanks to continued performance improvements in software and hardware, wave-

equation-based imaging technologies, such as full-waveform inversion and reverse-time

migration, are becoming more commonplace. However, widespread adaptation of these

advanced imaging modalities has not yet materialized because current implementations

are not able to reap the full benefits from accelerators, in particular those offered by

memory-scarce graphics processing units. Through the use of randomized trace estima-

tion, we overcome the memory bottleneck of this type of hardware. At the cost of limited

computational overhead and controllable incoherent errors in the gradient, the memory

footprint of adjoint-state methods is reduced drastically. Thanks to this relatively sim-

ple to implement memory reduction via an approximate imaging condition, we are able

to benefit from graphics processing units without memory offloading. We demonstrate

the performance of the proposed algorithm on acoustic two- and three-dimensional full-

waveform inversion examples and on the formation of image gathers in transverse tilted

isotropic media.
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full-waveform inversion, finite differences, inversion, reverse-time migration, stochastic

INTRODUCTION

With the advance of high-performance computing, wave-

equation-based inversions such as full-waveform inversion

(FWI) and reverse-time migration (Lions, 1971; Tarantola,

1984; Virieux & Operto, 2009) have become pivotal research

topics with academic and industrial applications. While pow-

erful, these wave-based inversion methods come at high com-

putational and memory costs, which explains their relatively

limited application to real-world problems. The fundamen-

tal limitation of wave-equation-based inversion lies in the

excessive memory footprint of the time-domain adjoint-state

method (Lions, 1971; Tarantola, 1984), which requires access

to the complete time history of the forward modelled wave-

field when applying the imaging condition. In its simplest

*Equally contributing authors.

form, this imaging condition entails, for each source exper-

iment, on-the-fly accumulation of a spatial cross correlation

between the (stored) forward wavefield and time snapshots

of solutions of the adjoint wave equation as they become

available. Because three-dimensional (3D) forward modelled

wavefields require terabytes of storage, memory usage and

input/output (I/O) bandwidth demand continue to be major

bottlenecks. While dedicated high-memory hardware may

address this issue, it precludes the use of modern accelerators

(e.g., graphical processing units (GPUs)), which generally do

not have access to large amounts of low-latency memory.

To tackle the high-memory requirements of the adjoint-

state method, several solutions have been proposed. Griewank

and Walther (2000) and Symes (2007) presented opti-

mal checkpointing, which avoids excessive memory usage

by balancing I/O and computational overhead optimally.

This approach, which was initially developed for generic
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adjoint-state methods on CPUs (Griewank & Walther, 2000),

has been used successfully in seismic imaging (Symes,

2007) and machine learning (Chen et al., 2016) and has

recently been extended to multi-stage timestepping (Zhang

& Constantinescu, 2022). By adding on-the-fly compression

and decompression of the checkpointed forward wavefields,

Kukreja et al. (2020) further reduced the computational over-

head of optimal checkpointing. Instead of checkpointing the

forward wavefield, McMechan (1983), Mittet (1994), and

Raknes and Weibull (2016) rely on time reversibility to recon-

struct forward wavefields during backpropagation from values

stored on the boundary. Unfortunately, this type of wave-

field reconstruction is only stable for attenuation-free wave

equations, which limits its applicability. Finally, optimized

implementations of accelerators of these approaches quickly

become involved, especially in situations where the wave

physics becomes more complex, for example, when deal-

ing with elastic or tilted transversely isotropic media. This

added complexity explains the lack of native implementa-

tions of the time-domain adjoint-state method on accelerators

including GPUs.

While recomputing or decompressing forward wavefields

as part of memory-footprint mitigation certainly has its mer-

its, we put forward algorithmically much simpler randomized

approaches where memory use and accuracy are traded

against computational overhead. Unlike lossless approaches,

which aim to compute gradients exactly, we propose to

approximate gradients with randomized estimates that bal-

ance computational gains and loss of accuracy. Examples

of trading computational cost and accuracy include working

with random subsets of shots (Friedlander & Schmidt, 2012),

with simultaneous shots (Haber et al., 2015; Krebs et al.,

2009; van Leeuwen & Herrmann, 2013; Moghaddam et al.,

2013; Romero et al., 2000), or with randomized singular value

decompositions (van Leeuwen et al., 2017; Yang et al., 2021)

and trace estimation (Halko et al., 2011). The latter random

trace estimation technique was used by Haber et al. (2015) to

analyse computational speedups of FWI with computational

simultaneous sources. As long as errors are controlled (Fried-

lander & Schmidt, 2012; van Leeuwen and Herrmann, 2014),

these approximate methods all lead to inversion results that in

stochastic expectation are equivalent to the original problem

but at a fraction of the computational costs.

Inspired by these contributions, and ideas from random-

ized trace estimation, we propose an approximate adjoint-state

method that leads to major memory improvements (Louboutin

& Herrmann, 2021, 2022) is unbiased, relatively easy to

implement, and supported by rigorous theory (Avron &

Toledo, 2011; Meyer et al., 2020). Unlike methods based on

lossy compression (Kukreja et al., 2020) or on the on-the-

fly Fourier transform, artefacts introduced by our proposed

randomized trace estimation appear as incoherent Gaussian-

like noise, which can be handled easily by stacking, sparsity

promotion (Witte, Louboutin, Luporini, et al., 2019) or con-

strained optimization (Peters et al., 2018; Peters & Herrmann,

2019). Below, we will support this claim empirically by means

of carefully selected seismic inversion examples.

Our paper is organized as follows. First, we introduce the

method of randomized-trace estimation and derive how com-

puting gradients with the adjoint-state method can be recast

in terms of trace estimation. We show that random trace esti-

mates allow for approximations with a low memory footprint

and low computational overhead. Next, we describe how to

increase the accuracy of randomized-trace estimation with

data-informed probing vectors. After comparing the compu-

tational costs of our method with traditional memory-saving

approaches, we show how our method leads to significant

cost reductions when computing image volumes and com-

plex imaging conditions. Performance of our method on two

realistic seismic inversion problems will be demonstrated. We

conclude by showcasing a 3D FWI example produced with a

purely GPU-native implementation.

ADJOINT-STATE METHOD WITH
RANDOMIZED PROBING

To arrive at our low-memory wave-equation-based inver-

sion formulation, we first describe the main theoretical

features of randomized-trace estimation. Next, we show

how randomized-trace estimation can be used to reduce

the memory footprint of time-domain gradient (isotropic an

anisotropic) and subsurface-offset image volume calculations.

For comparison with existing state-of-the-art memory reduc-

tion approaches, we will also derive estimates for memory use

and computational overhead.

Randomized-trace estimation

With the increasing demand for large-scale data-driven appli-

cations, randomized algorithms have steadily gained popular-

ity especially in situations where memory access comes at

a premium and where access to compute cycles is relatively

abundant. Unlike conventional techniques in linear algebra,

which aim to carry out accurate calculations at the price of

high-memory pressure, randomized algorithms (Halko et al.,

2011; Yang et al., 2021) limit their memory footprint at the

cost of a controllable error. The technique we consider relies

on an unbiased estimator based on a randomized probing

technique that yields estimates for the trace (sum of the diag-

onal elements) of a matrix with errors that average to zero in

stochastic expectation. Instead of forming the matrix explic-

itly, randomize-trace estimation (Avron & Toledo, 2011;

Meyer et al., 2020) relies on matrix-free actions on random

probing vectors. As long as these matrix–vector products are

available and cheap, the trace can be estimated even for matri-

ces that are too large to fit into memory. Contrary to earlier
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work where random-trace estimation was used to reduce the

number of wave-equation solves (Haber et al., 2015), we use

randomized-trace estimation to reduce the memory cost of

computing gradients of wave-equation themselves.

At its heart, randomized-trace estimation (Avron & Toledo,

2011; Meyer et al., 2020) derives from an unbiased approx-

imation of the identity, � = �[��⊤] – that is, we have

tr(�) = tr
(
��

[
��⊤

])
= �

[
tr
(
���⊤

)]

= �
[
�⊤��

]

≈
1

�

�∑

�=1

[
�⊤� ���

]
=

1

�
tr
(
�⊤��

)
.

(1)

In these expressions, the ��s are the random probing vectors

collected as columns in the matrix�. The operator� stands for

stochastic expectation with respect to these random vectors.

By ensuring �(�⊤�) = 1, the above trace estimator is unbi-

ased (exact in expectation) and converges to the true trace of

the matrix �, that is, tr(�) =
∑

� ���, with an error that decays

to zero for increasing �. Compared to the original computation

of the trace, randomized-trace estimation does not need access

to the entries of the matrix �. Only actions of the matrix �

on probing vectors are needed. To improve the computational

performance of the estimator, we follow Graff-Kray et al.

(2017) and Meyer et al. (2020) and use a partial qr factor-

ization (Trefethen & Bau, 1997) to derive the probing vectors

collected in the matrix
[
�,∼

]
= qr(��). These orthogonal

probing vectors are computed from the � × � matrix � with

random probing vectors collected in the tall � × � (with � ≪ �)

Rademacher matrix � with ±1 entries (1 or −1 with proba-

bility 0.5 each). In the ensuing sections, we will exploit this

randomized-trace estimation technique to reduce the memory

footprint of gradient calculations for the adjoint-state method

of wave-equation-based inversion.

Approximate gradient calculations

While this may sound controversial but non-convex opti-

mization problems such as full-waveform inversion (FWI)

(Tarantola, 1984; Virieux & Operto, 2009) benefit from

stochastic errors in their gradients whether these are due

to working with randomized minibatches, as in stochastic

gradient descent, a technique widely employed by machine

learning, or with sub-samplings in terms of randomized

(super)shots as in FWI. In either case, computational costs

are reduced and the optimization is less prone to local min-

ima thanks to an annealing effect (Neelakantan et al., 2015).

As shown by van Leeuwen and Herrmann (2014), it can

also be computationally advantageous to allow for errors in

the gradient calculation themselves, which is the approach

taken here.

For this purpose, let us consider the standard adjoint-state

FWI problem, which aims to minimize the misfit between

recorded field data and numerically modelled synthetic data

(Lions, 1971; Louboutin et al., 2017; Louboutin, Witte,

Lange, et al., 2018; Tarantola, 1984; Virieux & Operto, 2009).

In its simplest form, the data misfit objective for a single shot

record is given by

minimize
�

1

2
||�(�;	) − 
obs||22. (2)

In this expression, the vector� represents the unknown physi-

cal model parameter (e.g. the squared slowness in the isotropic

acoustic case), 	 is assumed to be the known source, and


obs is the observed data. The symbol � denotes the nonlin-

ear forward modelling operator. This data misfit is typically

minimized with gradient-based optimization methods such as

gradient descent (Plessix, 2006) or Gauss–Newton (Li et al.,

2016). Without loss of generality, let us first consider scalar

isotropic acoustic wave physics where the gradient �� can be

written as the sum over �	 timesteps – that is, we have

�� =

�	∑

	=1

�̈[	]⊙ �[	], (3)

where the vectors �[	] and �[	] denote the vectorized (along

space) forward and reverse-time solutions of the wave equa-

tion at time index 	. The symbols ̈ and ⊙ represent second-

order time derivative and elementwise (Hadamard) product,

respectively. To arrive at a form where randomized-trace

estimation can be invoked, we rewrite the above zero-lag

crosscorrelations over time for each space index 
 separately

in terms of the trace of the outer product. By combining

the dot product property, �⊤� = tr(��⊤), for vectors � and

�, with Equation (1), we approximate the exact gradient in

Equation (3) by

��[
] = tr
(
�̈[	, 
]�[	, 
]⊤

)
≈

1

�
tr
(
(�⊤�̈[
])(�[
]⊤�)

)
.

(4)

We added parentheses and made dependence on the spatial

coordinates (collected in the spatial index vector 
) explicit

to show that the matrix–vector products between the forward

and adjoint wavefields and the adjoint of the time-probing

matrix � ∈ ℝ
�	×� can be computed separately, independently

along all spatial locations. This property is essential because

it allows us to on-the-fly accumulate, �⊤�̈[
], the second

time derivative of the forward wavefield in the variable �̈.

Compared to the original wavefield, the dimension of this

wavefield is reduced to � × � ≪ � × �	, where � is the
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4 LOUBOUTIN AND HERRMANN

number of spatial gridpoints in 
 and �	 is the number of

time samples employed by the forward solver. As before, �

represents the number of probing vectors (columns) of �.

Similarly, the dimensionality reduced adjoint wavefield, �,

can be computed after the forward sweep is completed via

�[
]⊤�. To avoid the build-up of coherent errors in the gra-

dient due to the randomized probing, we repeat this process

for each separate gradient with a different probing matrix, �.

We compute this matrix with a different random realization of

the Rademacher matrix used in the qr factorization, which we

use to improve the accuracy of the random-trace estimator.

Practical choice for the probing matrix �

While the proposed random-trace estimator works for strictly

random probing vectors, for example, vectors with random

±1 entries, as in Rademacher matrices, or matrices with inde-

pendently and identically distributed Gaussian entries (Avron

& Toledo, 2011), its accuracy can according to Meyer et al.

(2020) be improved. This leads to a reduction in the num-

ber of probing vectors, �, and associated memory footprint

needed to attain certain accuracy. However, this improvement

in performance calls for an extra orthogonalization step that

involves a qr factorization of ��, which reduces errors due to

‘cross-talk’ – that is ��⊤ ≠ �. Unfortunately, we do not have

easy access to matrix–vector multiplications with � during

gradient calculations. Moreover, factorization costs become

prohibitively expensive when carried out for each of the �

gridpoints separately.

Shot data informed QR factorization

To overcome computational costs and lack of access to

matrix–vector products, we propose to work with a single fac-

torization for each shot record. We derive this factorization

from observed shot data. To this end, single shot data col-

lected in the vector, 
obs, are reshaped into a matrix, �obs

with the time index arranged along the rows and the receiver

coordinate(s) along the columns. Because the observed shot

data contain the wavefield along the receiver coordinate(s),

we form the outer product, � = �obs�
⊤
obs

and argue that the

resulting �	 × �	 matrix can serve as a proxy for the tempo-

ral characteristics of the wavefield everywhere. For each shot

record, the � probing vectors are computed as follows:

[
�,∼

]
= qr(��) with � = �obs�

⊤
obs

. (5)

Remember, as before we never form the matrix �. We only

compute its action on the Rademacher matrix �.

To demonstrate the benefits of the additional orthogonal-

ization step, we include Figure 1 where comparisons are made

between crosstalk produced by probing with Rademacher vec-

tors (Figure 1 first row); with orthogonalized vectors derived

A L G O R I T H M 1 Approximate gradient calculation with random

trace estimation

Draw probing matrix � with Equation (5), set initial condition �

[0],�[1] and final conditions �[�	], �[�	 − 1].

0. for 	 = 1 ∶ �	 − 1 # forward propagation

1. �[	 + 1] = forward(�[	],�[	 − 1],�,	[	])

2. for � = 1 ∶ �

�[�] += �[�, 	]�̈[	]

end for

3. end for

4. for 	 = �	 − 1 ∶ −1 ∶ 1 # back propagation

5. �[	 − 1] = backward(�[	], �[	 + 1],�, �
[	])

6. for � = 1 ∶ �

�[�] += �[	]�[�, 	]

end for

7. end for

8. output:
1

�
tr(� �

⊤
) =

1

�

∑�

�=1
�[�]⊙ �[�]

from Rademacher probing according to Equation (5) (Figure 1

second row); and probing with vectors selected randomly

from the Fourier matrix (Figure 1 third row). The orthogonal-

ized vectors are computed using the same shot record from

the 2D overthrust model with �	 = 751 samples and a 4-ms

sampling rate (3 s recording). As expected, the crosstalk –

that is, energy leakage away from the main diagonal, for these

different cases, varies but decreases with increasing � for all.

However, the frequency content and coherence of the errors

do differ. Because the outer product converges the fastest the

identity matrix within the seismic frequency band, we argue

that the orthogonalized probing vectors perform the best.

Algorithmic details and validation

Based on the above practical and computational consid-

erations, we propose the implementation as outlined in

Algorithm 1. This algorithm runs for each source indepen-

dently (possibly in parallel) and redraws a new probing matrix

� for each gradient computation. By propagating the forward

wavefield with a single timestep (line 1), forward(�[	],�[	 −

1],�,	[	]), followed by probing with � vectors (line 2),

the second derivative of the dimensionality reduced for-

ward wavefield is accumulated for each time index (the ‘for

loop’ starting at line 2). Notice that we suppressed the loop

over the spatial index 
, which is implied. After the for-

ward loop is completed, a similar process is followed when

accumulating the dimensionality reduced adjoint wavefield

after backpropagation with a single timestep via �[	 − 1] =

backward(�[	], �[	 + 1],�, �
[	]). After the second loop is

completed, Algorithm 1 produces an estimate for the trace via
1

�
tr(� �

⊤
) =

1

�

∑
� �[�, ∶]⊙ �[�, ∶] in which use is made of the

Matlab-style notation.
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WAVE-BASED INVERSION AT SCALE ON GPUs 5

F I G U R E 1 Crosstalk for different implementations of randomized probing as a function of increasing probing size � = 4, 16, 32, 64, 256.

Compared to probing with Fourier vectors (third column), crosstalk for probing with Rademacher (first column) and orthogonalized Rademacher

(second column) is less coherent with energy converging to the main diagonal faster. As expected, this effect is the strongest for the orthogonalized

probing vectors within the seismic frequency band.

Before reviewing predicted memory savings, let us first

make a comparison between single-source gradients com-

puted with the three different probing vectors juxtaposed in

Figure 1. To assess the accuracy of results with randomized-

trace estimation, we set side by side the approximate gradients

as a function of the probing size, � = 4, 16, 32, 64, 256 and

compare these gradients with the true gradient. We make

these comparisons for two-dimensional (2D) gradients com-

puted from the overthrust model (Lecomte et al., 1994)

with an experimental setting detailed in the Numerical case

studies section.

The results of this exercise are summarized in Figure 2,

which includes difference plots between the true and approx-

imate gradients. The following observations can be made.

First, in accordance with the results in Figure 1, the accuracy

of the approximate gradient calculations improves for increas-

ing �. Second, probing with Rademacher vectors (Figure 2a)

yields gradients that contain noisy relatively high-spatial fre-

quency artefacts that extend across the model and that decay

relatively slowly as � increases. Results obtained with the

orthogonalization (Figure 2b) and Fourier (Figure 2c) build

up the gradient more slowly as a function of increasing �, cap-

turing the small amplitudes far away from the source only

for relatively large �. Because both the orthogonalized and

Fourier approaches act within the data’s temporal frequency

spectrum, they do not contain high-frequency artefacts. Third,

as expected results from the orthogonalized probing vectors

converge the fastest with the smallest errors.

To further analyse the error, we consider its theoretical

bound. As per Avron and Toledo (2011), error estimates for

the trace decrease as (
1

�
) when Rademacher or Gaussian

probing vectors are used on semi-definite positive matrices,

where � represents the number of random probing. This can

be expressed as

‖t̂r(�) − tr(�)‖ ≤
const

�
, (6)

where t̂r(�) represents the randomized-trace estimate and ‖.‖
is the absolute value. In our case, we approximate the trace

of the rank one matrix � = �̈[	, 
]�[	, 
]⊤, whose only non-

zero singular value is � = �̈[	, 
]⊤�[	, 
]. Therefore, � or −�

is always semi-definite positive (� ≥ 0 or � ≤ 0), satisfying

the convergence-bound hypothesis introduced by Avron and

Toledo (2011). The decay of our estimator’s error is shown in

Figure 3, where expected accuracy gains are achieved when

increasing the number of probing vectors, �, irrespective of

whether Rademacher or Gaussian probing vectors are used.

Although Meyer et al. (2020) introduced a tighter error bound

for probing vectors based on the QR factorization, we cannot

expect to achieve this theoretical convergence rate because

we use the observed data �obs as a proxy for the full-space

wavefield, which is too large to manipulate. Nevertheless,

we observe that the error for QR probing decays faster and

is significantly lower, supporting the aforementioned claims

regarding its benefits. We also note that the mathematical

definition of the estimator and its upper bound are indepen-

dent of the data’s and wavefield’s frequency content data.

Consequently, the required number of probing vectors for an

accurate estimate remains the same for various frequency and
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6 LOUBOUTIN AND HERRMANN

F I G U R E 2 Comparison between approximate gradients of the 2D overthrust model for a single source and increasing numbers of probing

vectors: (a) contains approximate gradients and errors obtained by probing with Rademacher vectors, (b) the same but with orthogonalized

Rademacher probing vectors and (c) the same but with probing vectors randomly selected from the Fourier matrix.

F I G U R E 3 Relative error decay of our estimator compared to the theoretical upper bound of (
1

�
) as a function of the number of probing

vectors. Errors averaged over all gridpoints for the gradient of the 2D overthrust model for a single source (left) and 25 sources (right) are plotted.
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WAVE-BASED INVERSION AT SCALE ON GPUs 7

recording time settings. Finally, Figure 3b includes the decay

of relative errors in the gradient approximations for the differ-

ent probing vectors as a function of � for the single gradient

case as (Figure 3a) as well as for the case where the gradients

are stacked (Figure 3b). From these plots, we make the fol-

lowing observations. First, while probing with Gaussian and

Rademacher probing vectors follow the theoretical bound, the

relative errors for the QR-based probing are always smaller.

Second, the errors for QR probing decay faster after the num-

ber of probing vectors is large enough to compensate for the

approximation of the QR factorization the proxy derived from

the observed data. Third, the relative errors after stacking

the gradients decrease significantly while the relative errors

for the other probing vectors stay close to the convergence

bound. These improvements in relative errors not only justify

the proposed algorithm but also demonstrate the validity of

our implementation.

Before conducting more rigorous tests and emonstrating

our claims on realistic two- and three-dimensional models,

we will first discuss projected memory savings and various

extensions involving more elaborate imaging conditions and

derived products such as subsurface-offset image volumes.

Estimates for the memory footprint

As we mentioned before, the excessive memory usage of

adjoint-state methods constitutes a major impediment to the

implementation of wave-based inversion technology on mod-

ern accelerators where memory access comes at a premium.

For this reason, we proposed approximate calculations with

randomized probing where the dimensionality of the forward

and adjoint wavefield is reduced by the method described in

Algorithm 1. Theoretical estimates of the memory imprint can

be computed easily from Equation (4). We compare these esti-

mates with the memory footprint and computational overhead

associated with other low-memory approaches, including

optimal checkpointing (Griewank & Walther, 2000; Kukreja

et al., 2020; Symes, 2007), reconstruction from wavefields

on the boundary (McMechan, 1983; Mittet, 1994; Raknes &

Weibull, 2016) and the closely related method based on prob-

ing with the discrete Fourier transform (DFT) (Nihei & Li,

2007; Sirgue et al., 2010; Witte, Louboutin, Luporini, et al.,

2019). Without loss of generality, we will make these com-

parisons for the scalar acoustic wave equation in 3D, where

� = �� ×�� ×�� is the total number of grid points and

��, ��, and �� are the number of gridpoints in the �-, �- and

�-directions. In that setting, the total memory requirement of

conventional FWI is � × �	 (single-precision) floating point

values, which is prohibitive in practice.

Table 1 lists estimates for memory use and computational

overhead to achieve the anticipated memory savings. Val-

ues for optimal checkpointing and reconstruction from the

boundary are taken from the literature. From these figures,

we observe that optimal checkpointing could in principle

achieve the largest memory savings at the expense of compu-

tational overhead and a relatively complex implementation.

While memory savings achieved with the boundary recon-

struction method do limit memory usage, this approach scales

unfavourably with the number of timesteps, �	, compared to

the methods based on probing with Fourier or the proposed

orthogonalized data-adaptive vectors. Because probing with

the DFT involves complex numbers, its memory use and com-

putational overhead doubles. Our method, on the other hand,

probes with� ∈ ℝ
�	×� and thus requires storage of only� × �

floating point values during each of the forward and backward

passes, which results in a total storage of 2 ×� × � values and

a memory reduction by a factor of, �	∕2�. This memory reduc-

tion corresponds to approximating the gradient with
�

2
Fourier

modes and puts the DFT approach at a relative disadvantage.

Because the errors decay more slowly with � compared to our

randomized-trace method, this drawback is made worse for

the Fourier-based method.

Aside from its relative simplicity and favourable (�	-

independent) memory scaling, probing methods can, as we

will show below, relatively easily be extended to differ-

ent imaging conditions and vector-valued wave equations.

In addition, the proposed method also works for wave

propagation in attenuating media, which renders wavefield

reconstruction from the boundaries unstable.

EXTENSIONS

In this section, we will show how the proposed random-

ized probing technique also leads to computationally efficient

implementations of more involved imaging conditions includ-

ing formating of subsurface offset image gathers. Both

instances benefit from reductions in computational costs by

a factor of �	∕� ≪ 1.

Imaging conditions

So far, we limited ourselves to the scalar isotropic acoustic

wave equation with the standard zero-offset imaging condi-

tion. While adequate in some applications, seismic imaging

and inversion methodologies often call for more sophis-

ticated imaging conditions designed to bring out certain

features in migrated images or to make full-waveform inver-

sion (FWI) more sensitive to reflections. Because imposing

various imaging conditions requires manipulations with the

forward and adjoint wavefields, we stand to benefit from

replacing these wavefields with their dimensionality reduced

counterparts. After incurring the computational overhead of

probing, by mapping {�̈, �} → {�, �}, these wavefield manip-

ulations come almost at no additional costs. Below, we

showcase a number of illustrative examples that underline this

important feature.

 1
3

6
5

2
4

7
8

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/1

3
6

5
-2

4
7

8
.1

3
4

0
5

 b
y

 G
eo

rg
ia In

stitu
te O

f T
ech

n
o
lo

g
y
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [3

0
/0

7
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



8 LOUBOUTIN AND HERRMANN

T A B L E 1 Memory estimates and computational overhead of different seismic inversion methods for �	 time steps and � grid points.

Analytical estimates are extracted from the literature for the methods listed in the table.

FWI

Randomized-

trace

DFT (Witte, Louboutin,

Luporini, et al., 2019)

Optimal checkpointing

(Symes, 2007)

Boundary reconstruction

(Mittet, 1994)

Memory � × �	 � ×� 2� ×� (log(�	)) ×� �	 ×�
2

3

Compute 0 (�) × �	 ×� (2�) × �	 ×� (log(�	)) × �	 ×� �	 ×�

Abbreviations: DFT, discrete Fourier transform; FWI, full-waveform inversion.

Spatial differential operations

To improve reverse-time migration or FWI, different con-

tributions of the gradient of the adjoint-state method can

be (de)emphasized by changing the imaging condition. For

instance, tomographic artefacts can be removed from reverse-

time migrated images by imposing the inverse scattering

imaging condition (Stolk et al., 2009; Op’t Root et al., 2012;

Whitmore & Crawley, 2012; Witte et al., 2017). In a related

but different approach, in reflection FWI (Chang et al., 2020;

Irabor & Warner, 2016; Liu et al., 2011), tomographic con-

tributions to the gradient can be emphasized via wavefield

separation. As with most imaging conditions, the inverse scat-

tering condition does not entail manipulations along time

and involves (differential) operators acting along the spatial

coordinates only. Because imaging conditions are often lin-

ear, these operations commute with probing, which allows for

direct application of imaging conditions on the dimensionality

reduced wavefield by using the following identity:

�⊤
(
���[⋅, 
]

)
= ��

(
�⊤�[⋅, 
]

)
, (7)

where the symbol �� represents a linear differential operator

acting along the spatial coordinates. By virtue of this identity,

numerically expensive operations with�� can be factored out,

reducing the number of applications of this operator from �	 to

�. Because � ≪ �	, this can lead to significant computational

savings, especially in the common situation where imposing

imaging conditions may become almost as computationally

expensive as solving the wave equation itself.

Subsurface-offset image gathers

Another benefit of approximating gradients via the trace

(cf. Equation 4) is that it makes it possible to compute

subsurface-offset image volumes directly on graphical pro-

cessing units by working with the dimensionality reduced

wavefields – that is, we have

�[
,�] ≈
1

�
tr
(
̄̈�[⋅, 
 + �]�̄[⋅, 
 − �]⊤

)
. (8)

In this expression, the symbol � corresponds to the (hori-

zontal) subsurface offset and �[�] to the subsurface image

volume. As with computing the zero-offset imaging condi-

tion (Equation 4), the cost of computing these extended image

volumes is reduced by a factor of �∕�	. Finally, note that

��[
] = �[
, ℎ]|�=0.

Coupled vector-valued wave equation

Adequate representation of the wave physics balanced by

computational considerations are prerequisites to the suc-

cess of seismic inversion on three-dimensional (3D) field

data. A good example where such a balance is struck is

wave modelling with the acoustic tilted transverse isotropic

(TTI) wave-equation, where elastic anisotropic behaviour of

the subsurface is modelled by an acoustic approximation

(Thomsen, 1986) that is computationally feasible. However,

compared to the isotropic scalar acoustic wave equation, the

TTI wave equation requires the solution of two coupled par-

tial differential equation (PDEs). Because the gradient with

respect to the squared slowness and anisotropic parameters

now involves four wavefields, this increases memory pres-

sure. According to Bube et al. (2016), Louboutin, Witte, &

Herrmann (2018) and Zhang et al. (2011), the gradient for the

squared slowness in TTI media reads

�� =
∑

	

�̈[	]⊙ ⃖⃖�[	] + �̈[	]⊙ ⃖⃖�[	] = tr(�̈⃖⃖�⊤) + tr(�̈⃖⃖�⊤), (9)

where � and � are solutions of two coupled PDEs and ⃖⃖� and

⃖⃖� are solutions of the adjoint of these coupled PDEs. When

implemented naively, the memory footprint would effectively

double when the above gradients are approximated with sep-

arate randomized-trace estimations for �̈[	]⊙ ⃖⃖�[	] and �̈[	]⊙

⃖⃖�[	]. However, these extra costs can be avoided if we make use

of the following identity:

tr(�̈⃖⃖�⊤) + tr(�̈⃖⃖�⊤) = tr(

[
�̈

�̈

] [
⃖⃖�

⃖⃖�

]⊤
), (10)

which holds for the trace of vector-valued wavefields. When

cast in this form, the above gradient can be approximated by

�� = tr(

[
�̈

�̈

] [
⃖⃖�

⃖⃖�

]⊤
) ≈

1

�
tr(

[
�

�

]⊤ [
�̈

�̈

] [
⃖⃖�

⃖⃖�

]⊤ [
�

�

]
)

≈
1

�
tr
(
(�⊤(�̈ + �̈))((⃖⃖� + ⃖⃖�)⊤�)

)
(11)
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WAVE-BASED INVERSION AT SCALE ON GPUs 9

F I G U R E 4 Comparison of FWI on the 2D overthrust model between our proposed probed method with 16, 32 and 64 orthogonalized probing

vectors and results obtained with on-the-fly DFTs with an equivalent memory imprint, which corresponds to 8, 16 and 32 Fourier modes.

if the same probing vectors are used for each component of

the vector-valued wavefield. Using this expression reduces

the memory cost to that of a single probed wavefield and,

consequently, its memory use remains the same as that of

gradients of isotropic acoustic media, which we consider as

a major advantage of our method. In practice, we observe that

the accuracy of this approximation does not decrease when

the same probing matrix � is used. With significant computa-

tional and memory savings established, we will now validate

its performance on realistic numerical experiments of varying

complexity and problem size.

NUMERICAL CASE STUDIES

While the presented methodology has the potential to unlock

the usage of memory-scarce accelerators, its performance

needs to be validated on realistic wave-equation-based inver-

sion examples. For this purpose, we consider three synthetic

examples that vary in complexity of the wave physics. First,

we revisit the two-dimensional overthrust model and com-

pare conventional full-waveform inversion (FWI) results with

inversions obtained with randomized-trace estimation for

increasing numbers of probing vectors. In the second exam-

ple, we demonstrate that our probing method is capable

of producing high-quality subsurface-offset image volumes

at a significantly reduced computational cost. We conclude

by showcasing a three-dimensional FWI example. We limit

our considerations to synthetic data because it allows us to

make informed comparisons between exact and approximate

gradient calculations.

TWO-DIMENSIONAL FULL-WAVEFORM
INVERSION

As part of validating our random-trace estimation tech-

nique, we consider a synthetic two-dimensional (2D) acoustic

full-waveform inversion (FWI) example with a geometry rep-

resenting a sparse ocean bottom nodes (OBN) acquisition

while applying source–receiver reciprocity (coarse sources,

dense receivers). The data are simulated for a 20-km by
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10 LOUBOUTIN AND HERRMANN

F I G U R E 5 Subsurface offset (a) and angle b) gathers with −500 m to 500 m horizontal subsurface offset and −0.5 to 0.5 rad subsurface

angles.

5-km section taken from the overthrust model (Lecomte et al.,

1994) and plotted in Figure 4 (top left). For the FWI experi-

ment, we work with 97 shot records sampled 200-m apart,

mimicking sparse OBNs sampled at one source position per

wavelength. Each shot record contains between 127 and 241

receivers 50-m apart, yielding a maximum offset of 6-km.

The data are modelled with an 8-Hz Ricker wavelet and 3-

s recording.

For reference, we first conduct conventional FWI given the

smooth starting model depicted in Figure 4 (top middle). We

compare this conventional FWI result plotted in Figure 4 (top

tight) with results yielded by approximate gradient calcula-

tions where the memory footprint is kept the same experiment

by experiment – that is, � = 16, 32, � = 64 for randomized-

trace estimation with orthogonalized probing vectors, and

8, 16, 32 for probing with randomly selected Fourier modes.

Results of these experiments are included in the second and

third rows of Figure 4. In all cases, FWI results are com-

puted with 20 iterations of the spectral projected gradient

method (Schmidt et al., 2009), which imposes box and total-

variation (TV) constraints on the inverted velocity model.

Computational costs are limited by working with subsets of

eight randomly selected (without replacement) shots (Aravkin

et al., 2012). From the approximations plotted in Figure 4,

we can make the following observations. First, compared to

results obtained with 16 Fourier modes our result for the same

number of probing vectors contains fewer coherent steeply

dipping artefacts especially at deeper areas of the inverted

velocity model. Second, when memory use is kept constant,

for example, by choosing � = 32 orthogonalized probing vec-

tor and 16 complex-valued discrete Fourier transform modes,

our method produces results that are more accurate and less

noisy. This observation is consistent with results presented in

Figure 1.

TWO-DIMENSIONAL EXTENDED TILTED
TRANSVERSE ISOTROPIC IMAGING

To illustrate our ability to handle more realistic physics, we

show that it is possible to create high-fidelity subsurface-

offset image gathers with the proposed randomized-trace

estimation technique. For this purpose, shot data provided

with the 2007 BP tilted transverse isotropic model is migrated

using our randomized approximation. The resulting image –

that is, the zero offset/angle section, is shown in Figure 5 and

shows the accurate location and continuity of reflectors com-

pared to the existing literature (Sun et al., 2016; Louboutin,

Witte, & Herrmann , 2018). We also computed subsurface

image gathers using the approximation given in Equation (11).

We show the computed subsurface-offset image gathers in

Figure 5a and corresponding subsurface-angle gathers in

Figure 5b. Even though only a limited number of probing

vectors (� = 64 ≪ �	 = 4600, 70× memory reduction) were

used, the resulting image gathers are properly focused and

nearly noise-free thanks to the relatively high fold. Each

image volume, of size �� × �� × �offsets, consists of 81 off-

sets between −500 and 500 m sampled at 12.5 m. Remark

that formation of these image volumes requires more memory,

namely 81 model-size arrays, than carrying out the probing

itself, which involves only 64 model-size probed wavefields

for �, �. This highlights how memory frugal our proposed

randomized-trace estimation method really is.

THREE-DIMENSIONAL FULL-WAVEFORM
INVERSION

Finally, to demonstrate scalability we run three-dimensional

(3D) full-waveform inversion (FWI) on the overthrust model.
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12 LOUBOUTIN AND HERRMANN

The computational resources needed for this inversion exceed

available memory on Azure’s Standard_NC6 instances whose

NVIDIA K80 GPUs are limited to 8 Gb each, rendering FWI

implementations without checkpointing/offloading/streaming

impractical. Because our method only requires a fraction

of memory, we are actually able to run 3D FWI with

randomized-trace estimation (for � = 32 ≪ �	 = 2001, 30×

memory reduction) on 50 instances.

Specifically, we consider a narrow azimuth towed streamer

acquisition on a 20 km × 2 km × 5 km (inline × crossline ×

depth) subsection of the overthrust model. The acquisition

consists of 1902 sources (50 m inline spacing and 200 m

crossline spacing) with six 8 km long cables 100 m apart

with a receiver spacing of 12.5 m per. We simulate the shot

data with a 12.5-Hz Ricker wavelet. To avoid unrealistic low

frequencies, frequencies below 3 Hz are removed with a high-

pass filter. Given these simulations, 20 iterations of FWI are

performed using � = 32 orthogonalized probing vectors and

400 sources per iteration. As before, FWI is carried out with

projected quasi-Newton (Schmidt et al., 2009) imposing both

box and total-variation (TV) constraints (Peters et al., 2018;

Peters & Herrmann, 2019). The box constraints guarantee

physical velocities, while the TV constraint removes noisy

artefacts due to the randomized-trace estimation. The inverted

velocity model is included in Figure 6.

From this experiment, we see that we recover an accu-

rate velocity model that contains most of the main features

of the true model and recovered most of the fine layers at

depth. Swing artefacts are being observed towards the edges

of the model. However, these are more likely to be associ-

ated with the marine acquisition rather than with the proposed

gradient approximation. As shown in the two-dimensional

(2D) example (Figure 4), our method only introduces incoher-

ent noise instead of coherent structural artefacts. This result

shows that the proposed method scales to a realistic three-

dimensional model without the need for additional probing

vectors to compensate for the added dimension (cf. the 2D

FWI result).

DISCUSSION AND CONCLUSIONS

By approximating the gradient of wave-based inversion with

randomized trace estimation, we were able to drastically

reduce the memory footprint of time-domain full-waveform

inversion and reverse-time migration with the adjoint-state

method. Through careful design of data-adaptive probing vec-

tors, memory reductions of about 50× were achieved without

tangible loss in accuracy. These attained memory reductions,

in turn, facilitate accelerator-native software implementa-

tions for the time-domain adjoint-state method, which benefit

maximally from graphics processing units with limited com-

putational overhead. To achieve these results, we controlled

the approximation errors due to randomized-trace estima-

tion by increasing the number of probing vectors, the fold

and by imposing additional constraints, for example, the

total-variation norm, during inversion. Because of its rela-

tive simplicity, the proposed method can be extended readily

to more complicated wave physics, including vector-valued

wavefields in transversely isotropic media. By virtue of the

memory footprint reduction, the proposed method is also

capable of efficient calculation of extended (subsurface-

offset) image volumes with computational gains that are

proportional to the reductions in memory usage. In future

work, we plan to expand this work to include extended Born

least-squares migration and extended full-waveform inver-

sion.
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