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Abstract

Thanks to continued performance improvements in software and hardware, wave-
equation-based imaging technologies, such as full-waveform inversion and reverse-time
migration, are becoming more commonplace. However, widespread adaptation of these
advanced imaging modalities has not yet materialized because current implementations
are not able to reap the full benefits from accelerators, in particular those offered by
memory-scarce graphics processing units. Through the use of randomized trace estima-
tion, we overcome the memory bottleneck of this type of hardware. At the cost of limited
computational overhead and controllable incoherent errors in the gradient, the memory
footprint of adjoint-state methods is reduced drastically. Thanks to this relatively sim-
ple to implement memory reduction via an approximate imaging condition, we are able
to benefit from graphics processing units without memory offloading. We demonstrate
the performance of the proposed algorithm on acoustic two- and three-dimensional full-
waveform inversion examples and on the formation of image gathers in transverse tilted

isotropic media.
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form, this imaging condition entails, for each source exper-
iment, on-the-fly accumulation of a spatial cross correlation

With the advance of high-performance computing, wave-
equation-based inversions such as full-waveform inversion
(FWI) and reverse-time migration (Lions, 1971; Tarantola,
1984; Virieux & Operto, 2009) have become pivotal research
topics with academic and industrial applications. While pow-
erful, these wave-based inversion methods come at high com-
putational and memory costs, which explains their relatively
limited application to real-world problems. The fundamen-
tal limitation of wave-equation-based inversion lies in the
excessive memory footprint of the time-domain adjoint-state
method (Lions, 1971; Tarantola, 1984), which requires access
to the complete time history of the forward modelled wave-
field when applying the imaging condition. In its simplest

*Equally contributing authors.

between the (stored) forward wavefield and time snapshots
of solutions of the adjoint wave equation as they become
available. Because three-dimensional (3D) forward modelled
wavefields require terabytes of storage, memory usage and
input/output (I/O) bandwidth demand continue to be major
bottlenecks. While dedicated high-memory hardware may
address this issue, it precludes the use of modern accelerators
(e.g., graphical processing units (GPUs)), which generally do
not have access to large amounts of low-latency memory.

To tackle the high-memory requirements of the adjoint-
state method, several solutions have been proposed. Griewank
and Walther (2000) and Symes (2007) presented opti-
mal checkpointing, which avoids excessive memory usage
by balancing I/O and computational overhead optimally.
This approach, which was initially developed for generic
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adjoint-state methods on CPUs (Griewank & Walther, 2000),
has been used successfully in seismic imaging (Symes,
2007) and machine learning (Chen et al., 2016) and has
recently been extended to multi-stage timestepping (Zhang
& Constantinescu, 2022). By adding on-the-fly compression
and decompression of the checkpointed forward wavefields,
Kukreja et al. (2020) further reduced the computational over-
head of optimal checkpointing. Instead of checkpointing the
forward wavefield, McMechan (1983), Mittet (1994), and
Raknes and Weibull (2016) rely on time reversibility to recon-
struct forward wavefields during backpropagation from values
stored on the boundary. Unfortunately, this type of wave-
field reconstruction is only stable for attenuation-free wave
equations, which limits its applicability. Finally, optimized
implementations of accelerators of these approaches quickly
become involved, especially in situations where the wave
physics becomes more complex, for example, when deal-
ing with elastic or tilted transversely isotropic media. This
added complexity explains the lack of native implementa-
tions of the time-domain adjoint-state method on accelerators
including GPUs.

While recomputing or decompressing forward wavefields
as part of memory-footprint mitigation certainly has its mer-
its, we put forward algorithmically much simpler randomized
approaches where memory use and accuracy are traded
against computational overhead. Unlike lossless approaches,
which aim to compute gradients exactly, we propose to
approximate gradients with randomized estimates that bal-
ance computational gains and loss of accuracy. Examples
of trading computational cost and accuracy include working
with random subsets of shots (Friedlander & Schmidt, 2012),
with simultaneous shots (Haber et al., 2015; Krebs et al.,
2009; van Leeuwen & Herrmann, 2013; Moghaddam et al.,
2013; Romero et al., 2000), or with randomized singular value
decompositions (van Leeuwen et al., 2017; Yang et al., 2021)
and trace estimation (Halko et al., 2011). The latter random
trace estimation technique was used by Haber et al. (2015) to
analyse computational speedups of FWI with computational
simultaneous sources. As long as errors are controlled (Fried-
lander & Schmidt, 2012; van Leeuwen and Herrmann, 2014),
these approximate methods all lead to inversion results that in
stochastic expectation are equivalent to the original problem
but at a fraction of the computational costs.

Inspired by these contributions, and ideas from random-
ized trace estimation, we propose an approximate adjoint-state
method that leads to major memory improvements (Louboutin
& Herrmann, 2021, 2022) is unbiased, relatively easy to
implement, and supported by rigorous theory (Avron &
Toledo, 2011; Meyer et al., 2020). Unlike methods based on
lossy compression (Kukreja et al., 2020) or on the on-the-
fly Fourier transform, artefacts introduced by our proposed
randomized trace estimation appear as incoherent Gaussian-
like noise, which can be handled easily by stacking, sparsity
promotion (Witte, Louboutin, Luporini, et al., 2019) or con-
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strained optimization (Peters et al., 2018; Peters & Herrmann,
2019). Below, we will support this claim empirically by means
of carefully selected seismic inversion examples.

Our paper is organized as follows. First, we introduce the
method of randomized-trace estimation and derive how com-
puting gradients with the adjoint-state method can be recast
in terms of trace estimation. We show that random trace esti-
mates allow for approximations with a low memory footprint
and low computational overhead. Next, we describe how to
increase the accuracy of randomized-trace estimation with
data-informed probing vectors. After comparing the compu-
tational costs of our method with traditional memory-saving
approaches, we show how our method leads to significant
cost reductions when computing image volumes and com-
plex imaging conditions. Performance of our method on two
realistic seismic inversion problems will be demonstrated. We
conclude by showcasing a 3D FWI example produced with a
purely GPU-native implementation.

ADJOINT-STATE METHOD WITH
RANDOMIZED PROBING

To arrive at our low-memory wave-equation-based inver-
sion formulation, we first describe the main theoretical
features of randomized-trace estimation. Next, we show
how randomized-trace estimation can be used to reduce
the memory footprint of time-domain gradient (isotropic an
anisotropic) and subsurface-offset image volume calculations.
For comparison with existing state-of-the-art memory reduc-
tion approaches, we will also derive estimates for memory use
and computational overhead.

Randomized-trace estimation

With the increasing demand for large-scale data-driven appli-
cations, randomized algorithms have steadily gained popular-
ity especially in situations where memory access comes at
a premium and where access to compute cycles is relatively
abundant. Unlike conventional techniques in linear algebra,
which aim to carry out accurate calculations at the price of
high-memory pressure, randomized algorithms (Halko et al.,
2011; Yang et al., 2021) limit their memory footprint at the
cost of a controllable error. The technique we consider relies
on an unbiased estimator based on a randomized probing
technique that yields estimates for the trace (sum of the diag-
onal elements) of a matrix with errors that average to zero in
stochastic expectation. Instead of forming the matrix explic-
itly, randomize-trace estimation (Avron & Toledo, 2011;
Meyer et al., 2020) relies on matrix-free actions on random
probing vectors. As long as these matrix—vector products are
available and cheap, the trace can be estimated even for matri-
ces that are too large to fit into memory. Contrary to earlier
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WAVE-BASED INVERSION AT SCALE ON GPUs

work where random-trace estimation was used to reduce the
number of wave-equation solves (Haber et al., 2015), we use
randomized-trace estimation to reduce the memory cost of
computing gradients of wave-equation themselves.

At its heart, randomized-trace estimation (Avron & Toledo,
2011; Meyer et al., 2020) derives from an unbiased approx-
imation of the identity, I =E[zz"] — that is, we have

tr(A) = tr(AE[z2"]) = E[tr(Azz")]

Elz"Az
2" Az] 0

Q

-
% Z [ziTAzi] = %tr(ZTAZ).
i=1

In these expressions, the z;s are the random probing vectors
collected as columns in the matrix Z. The operator E stands for
stochastic expectation with respect to these random vectors.
By ensuring E(z'z) = 1, the above trace estimator is unbi-
ased (exact in expectation) and converges to the true trace of
the matrix A, that is, tr((A) = ), A;;, with an error that decays
to zero for increasing r. Compared to the original computation
of the trace, randomized-trace estimation does not need access
to the entries of the matrix A. Only actions of the matrix A
on probing vectors are needed. To improve the computational
performance of the estimator, we follow Graff-Kray et al.
(2017) and Meyer et al. (2020) and use a partial qr factor-
ization (Trefethen & Bau, 1997) to derive the probing vectors
collected in the matrix [Q, N] = qr(AZ). These orthogonal
probing vectors are computed from the # X n matrix A with
random probing vectors collected in the tall n X r (with r < n)
Rademacher matrix Z with +1 entries (1 or —1 with proba-
bility 0.5 each). In the ensuing sections, we will exploit this
randomized-trace estimation technique to reduce the memory
footprint of gradient calculations for the adjoint-state method
of wave-equation-based inversion.

Approximate gradient calculations

While this may sound controversial but non-convex opti-
mization problems such as full-waveform inversion (FWI)
(Tarantola, 1984; Virieux & Operto, 2009) benefit from
stochastic errors in their gradients whether these are due
to working with randomized minibatches, as in stochastic
gradient descent, a technique widely employed by machine
learning, or with sub-samplings in terms of randomized
(super)shots as in FWI. In either case, computational costs
are reduced and the optimization is less prone to local min-
ima thanks to an annealing effect (Neelakantan et al., 2015).
As shown by van Leeuwen and Herrmann (2014), it can
also be computationally advantageous to allow for errors in
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the gradient calculation themselves, which is the approach
taken here.

For this purpose, let us consider the standard adjoint-state
FWI problem, which aims to minimize the misfit between
recorded field data and numerically modelled synthetic data
(Lions, 1971; Louboutin et al., 2017; Louboutin, Witte,
Lange, et al., 2018; Tarantola, 1984; Virieux & Operto, 2009).
In its simplest form, the data misfit objective for a single shot
record is given by

S |
minimize - [F(m: q) = dqp |13 )

In this expression, the vector m represents the unknown physi-
cal model parameter (e.g. the squared slowness in the isotropic
acoustic case), q is assumed to be the known source, and
d,, is the observed data. The symbol F denotes the nonlin-
ear forward modelling operator. This data misfit is typically
minimized with gradient-based optimization methods such as
gradient descent (Plessix, 2006) or Gauss—Newton (Li et al.,
2016). Without loss of generality, let us first consider scalar
isotropic acoustic wave physics where the gradient 6m can be
written as the sum over n, timesteps — that is, we have

om = Z ii[t] © v[7], 3)

=1

where the vectors u[¢] and v[¢] denote the vectorized (along
space) forward and reverse-time solutions of the wave equa-
tion at time index ¢. The symbols “and © represent second-
order time derivative and elementwise (Hadamard) product,
respectively. To arrive at a form where randomized-trace
estimation can be invoked, we rewrite the above zero-lag
crosscorrelations over time for each space index x separately
in terms of the trace of the outer product. By combining
the dot product property, a'b = tr(ab"), for vectors a and
b, with Equation (1), we approximate the exact gradient in
Equation (3) by

sm[x] = tr(iaft, x]v[t,x]") » %tr((QTﬁ[x])(v[x]TQ)). "

We added parentheses and made dependence on the spatial
coordinates (collected in the spatial index vector x) explicit
to show that the matrix—vector products between the forward
and adjoint wavefields and the adjoint of the time-probing
matrix Q € R"*" can be computed separately, independently
along all spatial locations. This property is essential because
it allows us to on-the-fly accumulate, QTii[x], the second
time derivative of the forward wavefield in the variable i.
Compared to the original wavefield, the dimension of this
wavefield is reduced to N Xr <« N X n,, where N is the
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number of spatial gridpoints in x and n, is the number of
time samples employed by the forward solver. As before, r
represents the number of probing vectors (columns) of Q.
Similarly, the dimensionality reduced adjoint wavefield, Vv,
can be computed after the forward sweep is completed via
v[x]TQ. To avoid the build-up of coherent errors in the gra-
dient due to the randomized probing, we repeat this process
for each separate gradient with a different probing matrix, Q.
We compute this matrix with a different random realization of
the Rademacher matrix used in the qr factorization, which we
use to improve the accuracy of the random-trace estimator.

Practical choice for the probing matrix Q

While the proposed random-trace estimator works for strictly
random probing vectors, for example, vectors with random
+1 entries, as in Rademacher matrices, or matrices with inde-
pendently and identically distributed Gaussian entries (Avron
& Toledo, 2011), its accuracy can according to Meyer et al.
(2020) be improved. This leads to a reduction in the num-
ber of probing vectors, r, and associated memory footprint
needed to attain certain accuracy. However, this improvement
in performance calls for an extra orthogonalization step that
involves a qr factorization of AZ, which reduces errors due to
‘cross-talk’ — that is ZZ" # L Unfortunately, we do not have
easy access to matrix—vector multiplications with A during
gradient calculations. Moreover, factorization costs become
prohibitively expensive when carried out for each of the N
gridpoints separately.

Shot data informed QR factorization

To overcome computational costs and lack of access to
matrix—vector products, we propose to work with a single fac-
torization for each shot record. We derive this factorization
from observed shot data. To this end, single shot data col-
lected in the vector, d, are reshaped into a matrix, D
with the time index arranged along the rows and the receiver
coordinate(s) along the columns. Because the observed shot
data contain the wavefield along the receiver coordinate(s),
we form the outer product, A = DobsDIbS and argue that the
resulting n, X n; matrix can serve as a proxy for the tempo-
ral characteristics of the wavefield everywhere. For each shot
record, the r probing vectors are computed as follows:

[@~] =arAZ) with A=DyD}. )

Remember, as before we never form the matrix A. We only
compute its action on the Rademacher matrix Z.

To demonstrate the benefits of the additional orthogonal-
ization step, we include Figure 1 where comparisons are made
between crosstalk produced by probing with Rademacher vec-
tors (Figure 1 first row); with orthogonalized vectors derived
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ALGORITHM 1 Approximate gradient calculation with random

trace estimation

Draw probing matrix Q with Equation (5), set initial condition u

[0],u[1] and final conditions v[n,], v[n, — 1].
O.fort=1:n-1 # forward propagation

1. u[t+ 1] = forward(u[¢], u[r — 1], m, q[?])

2. fori=1:r
u[i] += Q[i, #][#]
end for

3. end for

4.fort=n—-1:-1:1
5. V[t — 1] = backward(v[¢], V[t + 1], m, 6d[7])

# back propagation

6. fori=1:r
v[i] += v[t1Qli, ]
end for

7. end for

8. output: %tr(l_lVT) = % > ulil o vli]

from Rademacher probing according to Equation (5) (Figure 1
second row); and probing with vectors selected randomly
from the Fourier matrix (Figure 1 third row). The orthogonal-
ized vectors are computed using the same shot record from
the 2D overthrust model with n, = 751 samples and a 4-ms
sampling rate (3 s recording). As expected, the crosstalk —
that is, energy leakage away from the main diagonal, for these
different cases, varies but decreases with increasing r for all.
However, the frequency content and coherence of the errors
do differ. Because the outer product converges the fastest the
identity matrix within the seismic frequency band, we argue
that the orthogonalized probing vectors perform the best.

Algorithmic details and validation

Based on the above practical and computational consid-
erations, we propose the implementation as outlined in
Algorithm 1. This algorithm runs for each source indepen-
dently (possibly in parallel) and redraws a new probing matrix
Q for each gradient computation. By propagating the forward
wavefield with a single timestep (line 1), forward(u[¢], u[z —
1], m, q[#]), followed by probing with r vectors (line 2),
the second derivative of the dimensionality reduced for-
ward wavefield is accumulated for each time index (the ‘for
loop’ starting at line 2). Notice that we suppressed the loop
over the spatial index x, which is implied. After the for-
ward loop is completed, a similar process is followed when
accumulating the dimensionality reduced adjoint wavefield
after backpropagation with a single timestep via v[t — 1] =
backward(v[z], v[t + 1],m, 6d[¢]). After the second loop is
completed, Algorithm 1 produces an estimate for the trace via
%tr(ﬁVT) = % Y., ulr, :1© V[r, :]in which use is made of the
Matlab-style notation.
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FIGURE 1

Crosstalk for different implementations of randomized probing as a function of increasing probing size r = 4, 16, 32, 64, 256.

Compared to probing with Fourier vectors (third column), crosstalk for probing with Rademacher (first column) and orthogonalized Rademacher

(second column) is less coherent with energy converging to the main diagonal faster. As expected, this effect is the strongest for the orthogonalized

probing vectors within the seismic frequency band.

Before reviewing predicted memory savings, let us first
make a comparison between single-source gradients com-
puted with the three different probing vectors juxtaposed in
Figure 1. To assess the accuracy of results with randomized-
trace estimation, we set side by side the approximate gradients
as a function of the probing size, r = 4, 16,32, 64,256 and
compare these gradients with the true gradient. We make
these comparisons for two-dimensional (2D) gradients com-
puted from the overthrust model (Lecomte et al., 1994)
with an experimental setting detailed in the Numerical case
studies section.

The results of this exercise are summarized in Figure 2,
which includes difference plots between the true and approx-
imate gradients. The following observations can be made.
First, in accordance with the results in Figure 1, the accuracy
of the approximate gradient calculations improves for increas-
ing r. Second, probing with Rademacher vectors (Figure 2a)
yields gradients that contain noisy relatively high-spatial fre-
quency artefacts that extend across the model and that decay
relatively slowly as r increases. Results obtained with the
orthogonalization (Figure 2b) and Fourier (Figure 2c) build
up the gradient more slowly as a function of increasing r, cap-
turing the small amplitudes far away from the source only
for relatively large r. Because both the orthogonalized and
Fourier approaches act within the data’s temporal frequency
spectrum, they do not contain high-frequency artefacts. Third,
as expected results from the orthogonalized probing vectors
converge the fastest with the smallest errors.

To further analyse the error, we consider its theoretical
bound. As per Avron and Toledo (2011), error estimates for

the trace decrease as (9(%) when Rademacher or Gaussian
probing vectors are used on semi-definite positive matrices,
where r represents the number of random probing. This can
be expressed as

IE(A) — tr(A)]| < C"f“, ©6)

where r(A) represents the randomized-trace estimate and ||.||
is the absolute value. In our case, we approximate the trace
of the rank one matrix A = [z, x]v[t,x] ", whose only non-
zero singular value is 4 = u[?, x]Tv[z, x]. Therefore, A or —A
is always semi-definite positive (1 > 0 or A < 0), satisfying
the convergence-bound hypothesis introduced by Avron and
Toledo (2011). The decay of our estimator’s error is shown in
Figure 3, where expected accuracy gains are achieved when
increasing the number of probing vectors, r, irrespective of
whether Rademacher or Gaussian probing vectors are used.
Although Meyer et al. (2020) introduced a tighter error bound
for probing vectors based on the QR factorization, we cannot
expect to achieve this theoretical convergence rate because
we use the observed data D, as a proxy for the full-space
wavefield, which is too large to manipulate. Nevertheless,
we observe that the error for QR probing decays faster and
is significantly lower, supporting the aforementioned claims
regarding its benefits. We also note that the mathematical
definition of the estimator and its upper bound are indepen-
dent of the data’s and wavefield’s frequency content data.
Consequently, the required number of probing vectors for an
accurate estimate remains the same for various frequency and
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FIGURE 2 Comparison between approximate gradients of the 2D overthrust model for a single source and increasing numbers of probing

vectors: (a) contains approximate gradients and errors obtained by probing with Rademacher vectors, (b) the same but with orthogonalized

Rademacher probing vectors and (c) the same but with probing vectors randomly selected from the Fourier matrix.
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recording time settings. Finally, Figure 3b includes the decay
of relative errors in the gradient approximations for the differ-
ent probing vectors as a function of r for the single gradient
case as (Figure 3a) as well as for the case where the gradients
are stacked (Figure 3b). From these plots, we make the fol-
lowing observations. First, while probing with Gaussian and
Rademacher probing vectors follow the theoretical bound, the
relative errors for the QR-based probing are always smaller.
Second, the errors for QR probing decay faster after the num-
ber of probing vectors is large enough to compensate for the
approximation of the QR factorization the proxy derived from
the observed data. Third, the relative errors after stacking
the gradients decrease significantly while the relative errors
for the other probing vectors stay close to the convergence
bound. These improvements in relative errors not only justify
the proposed algorithm but also demonstrate the validity of
our implementation.

Before conducting more rigorous tests and emonstrating
our claims on realistic two- and three-dimensional models,
we will first discuss projected memory savings and various
extensions involving more elaborate imaging conditions and
derived products such as subsurface-offset image volumes.

Estimates for the memory footprint

As we mentioned before, the excessive memory usage of
adjoint-state methods constitutes a major impediment to the
implementation of wave-based inversion technology on mod-
ern accelerators where memory access comes at a premium.
For this reason, we proposed approximate calculations with
randomized probing where the dimensionality of the forward
and adjoint wavefield is reduced by the method described in
Algorithm 1. Theoretical estimates of the memory imprint can
be computed easily from Equation (4). We compare these esti-
mates with the memory footprint and computational overhead
associated with other low-memory approaches, including
optimal checkpointing (Griewank & Walther, 2000; Kukreja
et al., 2020; Symes, 2007), reconstruction from wavefields
on the boundary (McMechan, 1983; Mittet, 1994; Raknes &
Weibull, 2016) and the closely related method based on prob-
ing with the discrete Fourier transform (DFT) (Nihei & Li,
2007; Sirgue et al., 2010; Witte, Louboutin, Luporini, et al.,
2019). Without loss of generality, we will make these com-
parisons for the scalar acoustic wave equation in 3D, where
N =N,XN,x N, is the total number of grid points and
N,, N 7 and N, are the number of gridpoints in the x-, y- and
z-directions. In that setting, the total memory requirement of
conventional FWI is N X n, (single-precision) floating point
values, which is prohibitive in practice.

Table 1 lists estimates for memory use and computational
overhead to achieve the anticipated memory savings. Val-
ues for optimal checkpointing and reconstruction from the
boundary are taken from the literature. From these figures,
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we observe that optimal checkpointing could in principle
achieve the largest memory savings at the expense of compu-
tational overhead and a relatively complex implementation.
While memory savings achieved with the boundary recon-
struction method do limit memory usage, this approach scales
unfavourably with the number of timesteps, n,, compared to
the methods based on probing with Fourier or the proposed
orthogonalized data-adaptive vectors. Because probing with
the DFT involves complex numbers, its memory use and com-
putational overhead doubles. Our method, on the other hand,
probes with Q € R"*" and thus requires storage of only N X r
floating point values during each of the forward and backward
passes, which results in a total storage of 2 X N X r values and
amemory reduction by a factor of, n, /2r. This memory reduc-
tion corresponds to approximating the gradient with % Fourier
modes and puts the DFT approach at a relative disadvantage.
Because the errors decay more slowly with r compared to our
randomized-trace method, this drawback is made worse for
the Fourier-based method.

Aside from its relative simplicity and favourable (n,-
independent) memory scaling, probing methods can, as we
will show below, relatively easily be extended to differ-
ent imaging conditions and vector-valued wave equations.
In addition, the proposed method also works for wave
propagation in attenuating media, which renders wavefield
reconstruction from the boundaries unstable.

EXTENSIONS

In this section, we will show how the proposed random-
ized probing technique also leads to computationally efficient
implementations of more involved imaging conditions includ-
ing formating of subsurface offset image gathers. Both
instances benefit from reductions in computational costs by
afactorof n,/r < 1.

Imaging conditions

So far, we limited ourselves to the scalar isotropic acoustic
wave equation with the standard zero-offset imaging condi-
tion. While adequate in some applications, seismic imaging
and inversion methodologies often call for more sophis-
ticated imaging conditions designed to bring out certain
features in migrated images or to make full-waveform inver-
sion (FWI) more sensitive to reflections. Because imposing
various imaging conditions requires manipulations with the
forward and adjoint wavefields, we stand to benefit from
replacing these wavefields with their dimensionality reduced
counterparts. After incurring the computational overhead of
probing, by mapping {ii, v} — {u,V}, these wavefield manip-
ulations come almost at no additional costs. Below, we
showcase a number of illustrative examples that underline this
important feature.
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TABLE 1
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Memory estimates and computational overhead of different seismic inversion methods for n, time steps and N grid points.

Analytical estimates are extracted from the literature for the methods listed in the table.

Randomized- DFT (Witte, Louboutin, Optimal checkpointing Boundary reconstruction
FWI trace Luporini, et al., 2019) (Symes, 2007) (Mittet, 1994)
Memory N Xn, rx N 2rx N O(og(n,)) x N n, X N:
Compute 0 O@r)xXn, X N OQ@2r)yxn, x N O(log(n,)) X n, X N n, XN

Abbreviations: DFT, discrete Fourier transform; FWI, full-waveform inversion.

Spatial differential operations

To improve reverse-time migration or FWI, different con-
tributions of the gradient of the adjoint-state method can
be (de)emphasized by changing the imaging condition. For
instance, tomographic artefacts can be removed from reverse-
time migrated images by imposing the inverse scattering
imaging condition (Stolk et al., 2009; Op’t Root et al., 2012;
Whitmore & Crawley, 2012; Witte et al., 2017). In a related
but different approach, in reflection FWI (Chang et al., 2020;
Irabor & Warner, 2016; Liu et al., 2011), tomographic con-
tributions to the gradient can be emphasized via wavefield
separation. As with most imaging conditions, the inverse scat-
tering condition does not entail manipulations along time
and involves (differential) operators acting along the spatial
coordinates only. Because imaging conditions are often lin-
ear, these operations commute with probing, which allows for
direct application of imaging conditions on the dimensionality
reduced wavefield by using the following identity:

Q" (D, ul-,x]) = D, (Q"ul-,x1), )

where the symbol D, represents a linear differential operator
acting along the spatial coordinates. By virtue of this identity,
numerically expensive operations with D, can be factored out,
reducing the number of applications of this operator from »; to
r. Because r < n,, this can lead to significant computational
savings, especially in the common situation where imposing
imaging conditions may become almost as computationally
expensive as solving the wave equation itself.

Subsurface-offset image gathers

Another benefit of approximating gradients via the trace
(cf. Equation 4) is that it makes it possible to compute
subsurface-offset image volumes directly on graphical pro-
cessing units by working with the dimensionality reduced
wavefields — that is, we have

SM[x,h] ~ 1tr(ﬁ[-, x+h]v[-,x —h]"). (8)
r
In this expression, the symbol h corresponds to the (hori-

zontal) subsurface offset and 6 M [h] to the subsurface image
volume. As with computing the zero-offset imaging condi-

tion (Equation 4), the cost of computing these extended image
volumes is reduced by a factor of r/n,. Finally, note that
om[x] = 6MI[X, hllp—o-

Coupled vector-valued wave equation

Adequate representation of the wave physics balanced by
computational considerations are prerequisites to the suc-
cess of seismic inversion on three-dimensional (3D) field
data. A good example where such a balance is struck is
wave modelling with the acoustic tilted transverse isotropic
(TTI) wave-equation, where elastic anisotropic behaviour of
the subsurface is modelled by an acoustic approximation
(Thomsen, 1986) that is computationally feasible. However,
compared to the isotropic scalar acoustic wave equation, the
TTI wave equation requires the solution of two coupled par-
tial differential equation (PDEs). Because the gradient with
respect to the squared slowness and anisotropic parameters
now involves four wavefields, this increases memory pres-
sure. According to Bube et al. (2016), Louboutin, Witte, &
Herrmann (2018) and Zhang et al. (2011), the gradient for the
squared slowness in TTI media reads

sm = ' plt] © plt] + £[1] © Ft] = r(pp ) + tr(¥F1), (9)
1

where p and r are solutions of two coupled PDEs and p and
I are solutions of the adjoint of these coupled PDEs. When
implemented naively, the memory footprint would effectively
double when the above gradients are approximated with sep-
arate randomized-trace estimations for p[¢] ® p[¢] and ¥[t] ©
r[¢]. However, these extra costs can be avoided if we make use
of the following identity:

1 r=1T
tr(ﬁﬁT)+tr(fFT)=tr([§] [g] )s (10)

which holds for the trace of vector-valued wavefields. When
cast in this form, the above gradient can be approximated by

om=ce ] [ = (3] B (3

~ %tr((QT(f) +iNE+D'Q)

an
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FIGURE 4 Comparison of FWI on the 2D overthrust model between our proposed probed method with 16, 32 and 64 orthogonalized probing

vectors and results obtained with on-the-fly DFTs with an equivalent memory imprint, which corresponds to 8, 16 and 32 Fourier modes.

if the same probing vectors are used for each component of
the vector-valued wavefield. Using this expression reduces
the memory cost to that of a single probed wavefield and,
consequently, its memory use remains the same as that of
gradients of isotropic acoustic media, which we consider as
a major advantage of our method. In practice, we observe that
the accuracy of this approximation does not decrease when
the same probing matrix Q is used. With significant computa-
tional and memory savings established, we will now validate
its performance on realistic numerical experiments of varying
complexity and problem size.

NUMERICAL CASE STUDIES

While the presented methodology has the potential to unlock
the usage of memory-scarce accelerators, its performance
needs to be validated on realistic wave-equation-based inver-
sion examples. For this purpose, we consider three synthetic
examples that vary in complexity of the wave physics. First,
we revisit the two-dimensional overthrust model and com-

pare conventional full-waveform inversion (FWI) results with
inversions obtained with randomized-trace estimation for
increasing numbers of probing vectors. In the second exam-
ple, we demonstrate that our probing method is capable
of producing high-quality subsurface-offset image volumes
at a significantly reduced computational cost. We conclude
by showcasing a three-dimensional FWI example. We limit
our considerations to synthetic data because it allows us to
make informed comparisons between exact and approximate
gradient calculations.

TWO-DIMENSIONAL FULL-WAVEFORM
INVERSION

As part of validating our random-trace estimation tech-
nique, we consider a synthetic two-dimensional (2D) acoustic
full-waveform inversion (FWI) example with a geometry rep-
resenting a sparse ocean bottom nodes (OBN) acquisition
while applying source—receiver reciprocity (coarse sources,
dense receivers). The data are simulated for a 20-km by
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5-km section taken from the overthrust model (Lecomte et al.,
1994) and plotted in Figure 4 (top left). For the FWI experi-
ment, we work with 97 shot records sampled 200-m apart,
mimicking sparse OBNs sampled at one source position per
wavelength. Each shot record contains between 127 and 241
receivers 50-m apart, yielding a maximum offset of 6-km.
The data are modelled with an 8-Hz Ricker wavelet and 3-
s recording.

For reference, we first conduct conventional FWI given the
smooth starting model depicted in Figure 4 (top middle). We
compare this conventional FWI result plotted in Figure 4 (top
tight) with results yielded by approximate gradient calcula-
tions where the memory footprint is kept the same experiment
by experiment — that is, r = 16, 32, r = 64 for randomized-
trace estimation with orthogonalized probing vectors, and
8, 16, 32 for probing with randomly selected Fourier modes.
Results of these experiments are included in the second and
third rows of Figure 4. In all cases, FWI results are com-
puted with 20 iterations of the spectral projected gradient
method (Schmidt et al., 2009), which imposes box and total-
variation (TV) constraints on the inverted velocity model.
Computational costs are limited by working with subsets of
eight randomly selected (without replacement) shots (Aravkin
et al., 2012). From the approximations plotted in Figure 4,
we can make the following observations. First, compared to
results obtained with 16 Fourier modes our result for the same
number of probing vectors contains fewer coherent steeply
dipping artefacts especially at deeper areas of the inverted
velocity model. Second, when memory use is kept constant,
for example, by choosing r = 32 orthogonalized probing vec-
tor and 16 complex-valued discrete Fourier transform modes,
our method produces results that are more accurate and less
noisy. This observation is consistent with results presented in
Figure 1.

Angle (rad)

Depth (m)

Subsurface offset (a) and angle b) gathers with —500 m to

LOUBOUTIN AND HERRMANN

5000 10000 15000 20000 25000 30000 35000 -0.4

(b) X (m) ‘angle (rad)

500 m horizontal subsurface offset and —0.5 to 0.5 rad subsurface

TWO-DIMENSIONAL EXTENDED TILTED
TRANSVERSE ISOTROPIC IMAGING

To illustrate our ability to handle more realistic physics, we
show that it is possible to create high-fidelity subsurface-
offset image gathers with the proposed randomized-trace
estimation technique. For this purpose, shot data provided
with the 2007 BP tilted transverse isotropic model is migrated
using our randomized approximation. The resulting image —
that is, the zero offset/angle section, is shown in Figure 5 and
shows the accurate location and continuity of reflectors com-
pared to the existing literature (Sun et al., 2016; Louboutin,
Witte, & Herrmann , 2018). We also computed subsurface
image gathers using the approximation given in Equation (11).
We show the computed subsurface-offset image gathers in
Figure 5a and corresponding subsurface-angle gathers in
Figure 5b. Even though only a limited number of probing
vectors (r = 64 < n, = 4600, 70X memory reduction) were
used, the resulting image gathers are properly focused and
nearly noise-free thanks to the relatively high fold. Each
image volume, of size n, X n, X Ry, consists of 81 off-
sets between —500 and 500 m sampled at 12.5 m. Remark
that formation of these image volumes requires more memory,
namely 81 model-size arrays, than carrying out the probing
itself, which involves only 64 model-size probed wavefields
for w,v. This highlights how memory frugal our proposed
randomized-trace estimation method really is.

THREE-DIMENSIONAL FULL-WAVEFORM
INVERSION

Finally, to demonstrate scalability we run three-dimensional
(3D) full-waveform inversion (FWI) on the overthrust model.

0 'SLYTSIEL

:sdny woiy papeoy

ASULOI] SUOWIOY) 2ANEaI)) 2[qeorjdde ay) £q PAUILA0S ale SA[oNIe Y() fasn JO sajni 10§ KIeIqI] aul[uQ) A3[IA| UO (SUOHIPUOD-PUB-SULIA)/W0D Ka[im Kreiqijaur[uoy/:sdny) suonipuo)) pue swid ], oyl 228 *[£707/L0/0€] uo Areiqr auruQ La[ip ‘ASojouysa], JO amnsuy vIS1090 £q SO 1'8LFZ-S9E /111 1°01/10p/Wwod K[Im”



ns) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

.wiley.com/ters d

(https://onli

.wiley.com/doi/10.1111/1365-2478.13405 by Georgia Institute Of Technology, Wiley Online Library on [30/07/2023]. See the Terms and Cq

ded from https:

13652478, 0, Dy

(w) yadag H
0005 000v 000E 000Z 000T O  0000Z 006.T 000ST 00521 0000T
7

000T

payaAu]

(w) yadag
000S 000F 000€ 000Z 000T

] 0000T

000€

(w) yadag

o
S
S
~

aniL

(®)

0002

r 00ST

000T 3

(w) yadeq
000S 000v O000E 000Z 000T

o 00002 00SLT 000ST 00sZT

000

000€

(w) yadag

0002

000T

fenu

‘Sunurodyoayo Jo wioy Aue uo Surk[a1 Jnoyim sNdo Y3 uo A[PAneu jusrpels yoes ayewrxoidde yorgm (g¢ = 4) 103004 Surqoid z¢ yym
pawiogrod sem UOISIOAUT A ], “sapou (A1oweul ) § ‘I9[doy] VIAIAN) 083 (S SuIsn 2InZy U0 [9POW ISNIYIISA0 ¢ A3 JO [M dE

9 HINDIA

1d _ﬂu_m>_._a_oww $NdD NO FTVOS LV NOISYHANI ASVE-HAVM



2 | Geophysical Prospecting |

The computational resources needed for this inversion exceed
available memory on Azure’s Standard_NC6 instances whose
NVIDIA K80 GPUs are limited to 8 Gb each, rendering FWI
implementations without checkpointing/offloading/streaming
impractical. Because our method only requires a fraction
of memory, we are actually able to run 3D FWI with
randomized-trace estimation (for r = 32 <« n, = 2001, 30x
memory reduction) on 50 instances.

Specifically, we consider a narrow azimuth towed streamer
acquisition on a 20 km X 2 km X 5 km (inline X crossline X
depth) subsection of the overthrust model. The acquisition
consists of 1902 sources (50 m inline spacing and 200 m
crossline spacing) with six 8 km long cables 100 m apart
with a receiver spacing of 12.5 m per. We simulate the shot
data with a 12.5-Hz Ricker wavelet. To avoid unrealistic low
frequencies, frequencies below 3 Hz are removed with a high-
pass filter. Given these simulations, 20 iterations of FWI are
performed using r = 32 orthogonalized probing vectors and
400 sources per iteration. As before, FWI is carried out with
projected quasi-Newton (Schmidt et al., 2009) imposing both
box and total-variation (TV) constraints (Peters et al., 2018;
Peters & Herrmann, 2019). The box constraints guarantee
physical velocities, while the TV constraint removes noisy
artefacts due to the randomized-trace estimation. The inverted
velocity model is included in Figure 6.

From this experiment, we see that we recover an accu-
rate velocity model that contains most of the main features
of the true model and recovered most of the fine layers at
depth. Swing artefacts are being observed towards the edges
of the model. However, these are more likely to be associ-
ated with the marine acquisition rather than with the proposed
gradient approximation. As shown in the two-dimensional
(2D) example (Figure 4), our method only introduces incoher-
ent noise instead of coherent structural artefacts. This result
shows that the proposed method scales to a realistic three-
dimensional model without the need for additional probing
vectors to compensate for the added dimension (cf. the 2D
FWI result).

DISCUSSION AND CONCLUSIONS

By approximating the gradient of wave-based inversion with
randomized trace estimation, we were able to drastically
reduce the memory footprint of time-domain full-waveform
inversion and reverse-time migration with the adjoint-state
method. Through careful design of data-adaptive probing vec-
tors, memory reductions of about 50X were achieved without
tangible loss in accuracy. These attained memory reductions,
in turn, facilitate accelerator-native software implementa-
tions for the time-domain adjoint-state method, which benefit
maximally from graphics processing units with limited com-
putational overhead. To achieve these results, we controlled
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the approximation errors due to randomized-trace estima-
tion by increasing the number of probing vectors, the fold
and by imposing additional constraints, for example, the
total-variation norm, during inversion. Because of its rela-
tive simplicity, the proposed method can be extended readily
to more complicated wave physics, including vector-valued
wavefields in transversely isotropic media. By virtue of the
memory footprint reduction, the proposed method is also
capable of efficient calculation of extended (subsurface-
offset) image volumes with computational gains that are
proportional to the reductions in memory usage. In future
work, we plan to expand this work to include extended Born
least-squares migration and extended full-waveform inver-
sion.

ACKNOWLEDGEMENTS

This research was carried out with the support of the Georgia
Research Alliance and partners of the ML4Seismic Center.
We thank John Washbourne for the constructive discussions.

DATA AVAILABILITY STATEMENT

Our implementation and examples are available as open-
source software, TimeProbeSeismic.jl, at https://github.com/
slimgroup/TimeProbeSeismic.jl , which extends our Julia
inversion framework, JUDL,]l (https://github.com/slimgroup/
JUDLjl) (Louboutin et al., 2022; Witte, Louboutin, Kukreja,
et al., 2019). Our code is available at https://github.com/
slimgroup , and since it is built on Devito (https://www.
devitoproject.org) (Louboutin et al., 2019; F. Luporini et al.,
2020; Luporini et al., 2022) it supports more complicated
wave physics.

ORCID
Mathias Louboutin
2107

https://orcid.org/0000-0002-1255-

REFERENCES

Aravkin, A.Y., Friedlander, M.P., Herrmann, F.J. & van Leeuwen,
T. (2012) Robust inversion, dimensionality reduction, and random-
ized sampling. Mathematical Programming, 134(1), 101-125. http://
www.springerlink.com/content/35rwr101h5736340/

Avron, H. & Toledo, S. (2011) Randomized algorithms for estimating the
trace of an implicit symmetric positive semi-definite matrix. Journal
of ACM, 58(2), 1-34.https://doi.org/10.1145/1944345.1944349

Bube, K., Washbourne, J., Ergas, R. & Nemeth, T. (2016) Self-adjoint,
energy-conserving second-order pseudoacoustic systems for VTI and
TTI media for reverse time migration and full-waveform inversion.
In SEG Technical Program Expanded Abstracts 2016, Housten, TX:
Society of Exploration Geophysicists, pp. 1110-1114. https:/library.
seg.org/doi/10.1190/segam2016-13878451.1

Chang, K., Song, C., Alkhalifah, T. & Zhang, H. (2020) In SEG Technical
Program Expanded Abstracts 2020 Housten, TX: Society of Explo-
ration Geophysicists, pp. 770-774. https://library.seg.org/doi/abs/10.
1190/segam2020-3427081.1

ASULOI] SUOWIOY) dANEaI) d[qeorjdde ai G PAUILA0S Ik SN YO (2SN JO Sa[nI 10§ AIeIqI] aul[uQ) KJ[IAL UO (SUONIPUOD-PUB-SULIA) W0 Aa[1m  KIeIqI[aul[uoy/:sdny) suonipuo)) pue sua ], oy 23S *[£z07/L0/0€] uo Areiqi aurjuQ Laip ‘ASojouyoda], O aimnsuf ei81090 £q SO 1°8LHZ-S9E /1 111°01/10p/wod Ka[im Kreiqrjaurjuoy/:sdny woiy papeojumod ‘0 ‘8.47S9€ [



WAVE-BASED INVERSION AT SCALE ON GPUs

Chen, T., Xu, B., Zhang, C. & Guestrin, C. (2016) Training deep nets
with sublinear memory cost. CoRR. abs/1604.06174. http://arxiv.org/
abs/1604.06174

Friedlander, M.P. & Schmidt, M. (2012) Hybrid deterministic-stochastic
methods for data fitting. SIAM Journal on Scientific Computing,
34(3), A1380-A1405. https://doi.org/10.1137/110830629

Graff-Kray, M., Kumar, R. & Herrmann, F.J. (2017) Low-rank repre-
sentation of omnidirectional subsurface extended image volumes.
https://slim.gatech.edu/Publications/Public/Conferences/SINBAD/
2017/Fall/graff2017SINBADFIrp/graff2017SINBADFIrp.pdf

Griewank, A. & Walther, A. (2000) Algorithm 799: Revolve: An
implementation of checkpointing for the reverse or adjoint mode of
computational differentiation. ACM Transactions on Mathematical
Software, 26(1), 19-45. http://doi.acm.org/10.1145/347837.347846

Haber, E., van den Doel, K. & Horesh, L. (2015) Optimal design
of simultaneous source encoding. Inverse Problems in Science
and Engineering, 23(5), 780-797. https://doi.org/10.1080/17415977.
2014.934821

Halko, N., Martinsson, P.G. & Tropp, J.A. (2011) Finding structure with
randomness: Probabilistic algorithms for constructing approximate
matrix decompositions. SIAM Review, 53(2), 217-288. https://doi.
org/10.1137/090771806

Irabor, K. & Warner, M. (2016) Reflection FWI. In SEG Technical
Program Expanded Abstracts 2016. Housten, TX: Society of Explo-
ration Geophysicists, pp. 1136—1140. https://library.seg.org/doi/abs/
10.1190/segam2016-13944219.1

Krebs, J.R., Anderson, J.E., Hinkley, D., Neelamani, R., Lee, S.,
Baumstein, A. & Lacasse, M.-D. (2009) Fast full-wavefield seismic
inversion using encoded sources. Geophysics, 74(6), WCC177-
WCC188. https://doi.org/10.1190/1.3230502

Kukreja, N., Hiickelheim, J., Louboutin, M., Washbourne, J., Kelly,
P.H.J. & Gorman, G.J. (2020) Lossy checkpoint compression in full
waveform inversion. Geoscientific Model Development Discussions,
2020, 1-26. https://gmd.copernicus.org/preprints/gmd-2020-325/

Lecomte, J.-C., Campbell, E. & Letouzey, J. (1994) Building the
SEG/EAGE overthrust velocity macro model. In Conference Pro-
ceedings. Houten, the Netherlands: European Association of Geosci-
entists and Engineers. https://www.earthdoc.org/content/papers/10.
3997/2214-4609.201407587

Li, X., Esser, E. & Herrmann, F.J. (2016) Modified Gauss-Newton
full-waveform inversion explained—why sparsity-promoting updates
do matter. Geophysics, 81(3), R125-R138. https://slim.gatech.edu/
Publications/Public/Journals/Geophysics/2016/1i201 5SGEOPmgn/
1i2015GEOPmgn.pdf

Lions, J.L. (1971) Optimal control of systems governed by partial
differential equations, 1st ed. Berlin: Springer-Verlag.

Liu, F., Zhang, G., Morton, S.A. & Leveille, J.P. (2011) An effec-
tive imaging condition for reverse-time migration using wavefield
decomposition. Geophysics, 76(1), S29-S39. https://doi.org/10.1190/
1.3533914

Louboutin, M. & Herrmann, F. (2022) Enabling wave-based inversion
on GPUs with randomized trace estimation. In Conference proceed-
ings, volume 2022. Houten, the Netherlands: European Association
of Geoscientists and Engineers, pp. 1-5. https://www.earthdoc.org/
content/papers/10.3997/2214-4609.202210531

Louboutin, M. & Herrmann, FJ. (2021) Ultra-low memory
seismic inversion with randomized trace estimation. In SEG
Technical Program Expanded Abstracts (IMAGE, Denver). Hous-
ton, TX: Society of Exploration Geophysicists, pp. 787-791.

Geophysical Prospecting

EUROPEAN

ASSOCIATION OF
GEOSCIENTISTS &

ENGINEERS

https://slim.gatech.edu/Publications/Public/Conferences/SEG/2021/
louboutin2021SEGulm/louboutinp.html

Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A.,
Herrmann, F.J., Velesko, P. & Gorman, G.J. (2019) Devito (v3.1.0):
an embedded domain-specific language for finite differences and
geophysical exploration. Geoscientific Model Development, 12(3),
1165-1187. https://www.geosci-model-dev.net/12/1165/2019/

Louboutin, M., Witte, P. & Herrmann, F.J. (2018) Effects of wrong
adjoints for RTM in TTI media. In SEG Technical Program
Expanded Abstracts 2018, Houston, TX: Society of Exploration
Geophysicists, pp. 331-335. https://library.seg.org/doi/abs/10.1190/
segam2018-2996274.1

Louboutin, M., Witte, P., Yin, Z.F., Modzelewski, H. & Herrmann,
FJ. (2022) slimgroup/judi.jl: v3.2.1. https://doi.org/10.5281/zenodo.
7429592

Louboutin, M., Witte, P.A., Lange, M., Kukreja, N., Luporini,
F., Gorman, G. & Herrmann, F.J. (2017) Full-waveform inver-
sion - part 1: forward modeling. The Leading Edge, 36(12),
1033-1036. https://slim.gatech.edu/Publications/Public/Journals/
TheLeadingEdge/2017/louboutin2017fwi/louboutin2017fwi.html

Louboutin, M., Witte, P.A., Lange, M., Kukreja, N., Luporini, F.,
Gorman, G. & Herrmann, F.J. (2018) Full-waveform inversion - part
2: adjoint modeling. The Leading Edge, 37(1), 69-72. https://slim.
gatech.edu/Publications/Public/Journals/TheLeadingEdge/2018/
louboutin2017fwip2/louboutin2017fwip2.html

Luporini, F., Louboutin, M., Lange, M., Kukreja, N., rhodrin, Bisbas,
G., Pandolfo, V., Cavalcante, L., Burgess, T., Gorman, G. & Hester,
K. (2022) devitocodes/devito: v4.7.1. https://doi.org/10.5281/zenodo.
6958070

Luporini, F., Louboutin, M., Lange, M., Kukreja, N., Witte, P,
Hiickelheim, J., Yount, C., Kelly, P. HJ., Herrmann, F.J. & Gorman,
G.J. (2020) Architecture and performance of Devito, a system for
automated stencil computation. ACM Transactions on Mathematical
Software, 46(1), 1-28. https://doi.org/10.1145/3374916

McMechan, G.A. (1983) Migration by extrapolation of time-dependent
boundary values. Geophysical Prospecting, 31(3), 413-420. http://
doi.org/10.1111/j.1365-2478.1983.tb01060.x

Meyer, R.A., Musco, C., Musco, C. & Woodruff, D.P. (2020) Hutch++:
optimal stochastic trace estimation. arXiv. arXiv:2010.09649.

Mittet, R. (1994) Implementation of the Kirchhoff integral for elas-
tic waves in staggered-grid modeling schemes. Geophysics, 59(12),
1894-1901. http://doi.org/10.1190/1.1443576

Moghaddam, P.P., Keers, H., Herrmann, F.J. & Mulder, W.A. (2013)
A new optimization approach for source-encoding full-waveform
inversion. Geophysics, 78(3), R125-R132. https://doi.org/10.1190/
£e02012-0090.1

Neelakantan, A., Vilnis, L., Le, Q.V., Sutskever, 1., Kaiser, L., Kurach,
K. & Martens, J. (2015) Adding gradient noise improves learning for
very deep networks. https://arxiv.org/abs/1511.06807

Nihei, K.T. & Li, X. (2007) Frequency response modelling of seis-
mic waves using finite difference time domain with phase sensitive
detection (TD-PSD). Geophysical Journal International, 169(3),
1069-1078. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-
246X.2006.03262.x

Op’t Root, T.J., Stolk, C.C. & Maarten, V. (2012) Linearized inverse
scattering based on seismic reverse time migration. Journal de
mathématiques pures et appliquées, 98(2), 211-238.

Peters, B. & Herrmann, F.J. (2019) Generalized Minkowski sets for the
regularization of inverse problems. https://arxiv.org/abs/1903.03942

ASULOI] SUOWIOY) dANEaI) d[qeorjdde ai G PAUILA0S Ik SN YO (2SN JO Sa[nI 10§ AIeIqI] aul[uQ) KJ[IAL UO (SUONIPUOD-PUB-SULIA) W0 Aa[1m  KIeIqI[aul[uoy/:sdny) suonipuo)) pue sua ], oy 23S *[£z07/L0/0€] uo Areiqi aurjuQ Laip ‘ASojouyoda], O aimnsuf ei81090 £q SO 1°8LHZ-S9E /1 111°01/10p/wod Ka[im Kreiqrjaurjuoy/:sdny woiy papeojumod ‘0 ‘8.47S9€ [



1 | Geophysical Prospecting

Peters, B., Smithyman, B.R. & Herrmann, F.J. (2018) Projection
methods and applications for seismic nonlinear inverse prob-
lems with multiple constraints. Geophysics, 84(2), R251-R269.
https://slim.gatech.edu/Publications/Public/Journals/Geophysics/
2018/peters2018pmf/peters2018pmf.html

Plessix, R.-E. (2006) A review of the adjoint-state method for computing
the gradient of a functional with geophysical applications. Geophysi-
cal Journal International, 167(2), 495-503. http://doi.org/10.1111/j.
1365-246X.2006.02978.x

Raknes, E.B. & Weibull, W. (2016) Efficient 3D elastic full-waveform
inversion using wavefield reconstruction methods. Geophysics, 81(2),
R45-R55. http://geophysics.geoscienceworld.org/content/81/2/R45

Romero, L.A., Ghiglia, D.C., Ober, C.C. & Morton, S.A. (2000) Phase
encoding of shot records in prestack migration. Geophysics, 65(2),
426-436. https://doi.org/10.1190/1.1444737

Schmidt, M., Berg, E., Friedlander, M. & Murphy, K. (2009) Optimizing
costly functions with simple constraints: a limited-memory projected
quasi-Newton algorithm. In Proceedings of the Twelfth International
Conference on Artificial Intelligence and Statistics, Vol. 5, 456—
463. Cambridge, MA: MIT Press. http://proceedings.mlr.press/v5/
schmidt09a.html

Sirgue, L., Etgen, J., Albertin, U. & Brandsberg-Dahl, S. (2010) System
and method for 3D frequency domain waveform inversion based on
3D time-domain forward modeling. US Patent 7,725,266. http://www.
google.ca/patents/US7725266

Stolk, C., De Hoop, M. & Op’t Root, T. (2009) Inverse scattering of
seismic data in the reverse time migration (RTM) approach. In Pro-
ceedings of the Project Review, Geo-Mathematical Imaging Group,
vol. 1. 91-108.

Sun, J., Fomel, S. & Ying, L. (2016) Low-rank one-step wave extrapola-
tion for reverse time migration. Geophysics, 81(1), S39-S54. https://
doi.org/10.1190/ge02015-0183.1

Symes (2007) Reverse time migration with optimal checkpointing.
Geophysics, 72(5), SM213-SM221. http://library.seg.org/doi/abs/10.
1190/1.2742686

Tarantola, A. (1984) Inversion of seismic reflection data in the acous-
tic approximation. Geophysics, 49(8), 1259. http://doi.org/10.1190/1.
1441754

Thomsen, L. (1986) Weak elastic anisotropy. Geophysics, 51(10), 1954—
1966.

Trefethen, L.N. & Bau, D., IIL. (1997) Numerical linear algebra. 1st ed..
Philadelphia, PA: SIAM.

van Leeuwen, T. & Herrmann, F.J. (2013) Fast waveform inversion with-
out source-encoding. Geophysical Prospecting, 61(1), 10-19. https://
onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.2012.01096.x

van Leeuwen, T. & Herrmann, F.J. (2014) 3D frequency-domain seis-
mic inversion with controlled sloppiness. SIAM Journal on Scientific
Computing, 36(5), S192-S217.

ASSOCIATION OF
GEOSCIENTISTS &

ENGINEERS

EUROPEAN

LOUBOUTIN AND HERRMANN

van Leeuwen, T., Kumar, R. & Herrmann, F.J. (2017) Enabling afford-
able omnidirectional subsurface extended image volumes via probing.
Geophysical Prospecting, 65(2), 385-406. https://slim.gatech.
edu/Publications/Public/Journals/GeophysicalProspecting/2016/
vanleeuwen2015GPWEMVA/vanleeuwen2015SGPWEMVA . pdf

Virieux, J. & Operto, S. (2009) An overview of full-waveform inversion
in exploration geophysics. Geophysics, 74(5), WCC1-WCC26. http://
library.seg.org/doi/abs/10.1190/1.3238367

Whitmore, N.D. & Crawley, S. (2012) Applications of RTM inverse
scattering imaging conditions. In SEG Technical Program Expanded
Abstracts 2012. Houston, TX: Society of Exploration Geophysicists,
pp- 1-6. https://library.seg.org/doi/abs/10.1190/segam2012-0779.1

Witte, P., Louboutin, M., Luporini, F., Gorman, G.J. & Herrmann,
FJ. (2019) Compressive least-squares migration with on-
the-fly Fourier transforms. Geophysics, 84(5), R655-R672.
https://slim.gatech.edu/Publications/Public/Journals/Geophysics/
2019/witte2018cls/witte2018cls.pdf

Witte, P, Yang, M. & Herrmann, F. (2017) Sparsity-promoting least-
squares migration with the linearized inverse scattering imaging
condition. In 79th EAGE Conference and Exhibition 2017, volume
2017, Houten, the Netherlands: European Association of Geosci-
entists and Engineers, pp. 1-5. https://www.earthdoc.org/content/
papers/10.3997/2214-4609.201701125

Witte, P.A., Louboutin, M., Kukreja, N., Luporini, F., Lange, M.,
Gorman, G.J. & Herrmann, F.J. (2019) A large-scale framework for
symbolic implementations of seismic inversion algorithms in Julia.
Geophysics, 84(3), F57-F71. https://doi.org/10.1190/ge02018-0174.
1

Yang, M., Graff, M., Kumar, R. & Herrmann, F.J. (2021) Low-rank rep-
resentation of omnidirectional subsurface extended image volumes.
Geophysics, 86(3), 1-41. https://slim.gatech.edu/Publications/Public/
Journals/Geophysics/2021/yang2020lrpo/Paper_final.html

Zhang, H. & Constantinescu, E.M. (2022) Optimal checkpointing for
adjoint multistage time-stepping schemes. Journal of Computational
Science, 101913.

Zhang, Y., Zhang, H. & Zhang, G. (2011) A stable TTI reverse time
migration and its implementation. Geophysics, 76(3), WA3-WA11.
https://doi.org/10.1190/1.3554411

How to cite this article: Louboutin, M. & Herrmann,
F.J. (2023) Wave-based inversion at scale on graphical
processing units with randomized trace estimation.
Geophysical Prospecting, 1-14.
https://doi.org/10.1111/1365-2478.13405

ASULOI] SUOWIOY) dANEaI) d[qeorjdde ai G PAUILA0S Ik SN YO (2SN JO Sa[nI 10§ AIeIqI] aul[uQ) KJ[IAL UO (SUONIPUOD-PUB-SULIA) W0 Aa[1m  KIeIqI[aul[uoy/:sdny) suonipuo)) pue sua ], oy 23S *[£z07/L0/0€] uo Areiqi aurjuQ Laip ‘ASojouyoda], O aimnsuf ei81090 £q SO 1°8LHZ-S9E /1 111°01/10p/wod Ka[im Kreiqrjaurjuoy/:sdny woiy papeojumod ‘0 ‘8.47S9€ [



