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Region expansion—the growth of regions to include all points within a certain distance of their
perimeters—is a basic, widely applicable operation, but is expensive to perform exactly. It has been shown
that, if the solution is approximated by relaxing the distance metric to the L..-norm, efficiency can be
greatly improved using properties of quadtrees. The method as described, however, requires the quadtrees
to be square, both for the metric and the particular details of the algorithm. In some cases, such as spher-
ical surface approximation, it is desirable for the quadtree nodes to be triangular instead. In this work, we
thus describe an adaptation of the L.,-norm metric and the previously described algorithm to allow effi-
cient approximation of region expansion in images represented as regular triangulated meshes. Like the
original method for square quadtrees, our algorithm achieves sublinear time with respect to expansion

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Region expansion (also called image dilation) is the process of
growing all instances of a specific class of region—e.g. black pix-
els in a binary image—to include all points within a certain dis-
tance metric to the original regions. Applications for this basic op-
eration include the creation of buffers or corridors in Geographic
Information Systems (GIS) and pick operations for user interfaces,
with further uses in photo editing, computer vision, and robot mo-
tion planning. A naive, though commonly used, method for re-
gion expansion in raster images is to apply a square or disc ker-
nel, which effectively grows each pixel independently, using the
union as the result. Though speed can be gained by leveraging
matrix operations with dedicated graphics hardware, this method
still uses significant computing resources and does not scale well
due to a quadratic dependence on the expansion radius. Ang et al.,
and others, have been able to instead achieve constant complex-
ity when the distance metric is the L,,-norm (also known as the
"chessboard" distance) by exploiting the dimension-reducing prop-
erties of quadtrees [1-3,10,15,17,19]. Because of the requirement
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of the L.,-norm, however, the method as published pertains only
to square quadtrees and not those of other shapes. Triangular
quadtrees, for example, are commonly used in geodesic approxi-
mations [7,8,20], which could benefit from optimizations in region
expansion (but see [9] for applications in higher dimensions). We
thus report the adaptation of the general principles of the Ang
et al. method to triangular quadtrees and show that similar gains
in efficiency are possible by using a hexagonal norm as the dis-
tance metric.

2. Methods

The components of the algorithm are fairly straightforward
adaptations of the original Ly,-norm algorithm as defined by Ang
et al.,, with some exceptions. Throughout, we assume that our im-
age is stored in a regular triangular quadtree, and, without loss of
generality, that it is binary, comprising only black and white trian-
gles (more generally, black triangles could represent, for example,
a particular color, or all those triangles that meet a certain lumi-
nance threshold, or that match a query of associated spatial data).

Note that, unlike square quadtrees, triangular quadtrees contain
nodes with two orientations, which we will refer to as tip-up and
tip-down. Since these two orientations are symmetrical, we will de-
pict below only the tip-up case; operations for tip-down nodes are
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Fig. 1. Loci of points for different shapes. In (a), the locus of points for euclidean (L) distance of d is a circle. In (b), the locus of points within the LL,-norm, as in Ang
et al,, is a square. A distance metric that creates a triangle (c), would enable triangular mesh optimization but would be a poor approximation of the euclidean distance. Our
proposed metric creates a hexagonal locus of points (d), which is a much better approximation.

simply mirror images, reflected vertically.

|Ay|+ﬁ|Ax|)

- (1)

Dpex(Ax, Ay) = max <|Ay|,

2.1. Hexagonal distance metric

We start from the notion that the (regular) hexagon is the ideal
kernel shape for region expansion in a triangular mesh (Fig. 1).
This is because, though we desire to use the shape of the mesh
to gain efficiency, the triangle itself is not a good approximation of
a circle (Fig. 1c). The hexagon, however, is a much better approxi-
mation (Fig. 1d), with a 10% over-estimation of area (compared to
65% for a triangle, or 27% for a square) and a 13% under-estimation
of distance at the corners of the kernel (compared to 50% for a tri-
angle, or 29% for a square). Further, since the hexagon decomposes
into equilateral triangles, it can easily be mapped onto a regular
triangulated mesh without weighted distances such as [11].

A distance metric Djp,, producing a hexagon as its unit circle
can be formally defined by Eq. (1). However, we can also describe
this metric in terms of the Ly,-norm by (conceptually) adding a di-
mension to the expansion space and rotating it by /2 radians on
two axes [14]. We can then expand by the L,,-norm in three di-
mensions, producing a cube for each point. When rotated back to
the original orientation, and projected back to two dimensions, the
locus of all points within the L,,-norm of each original point is a
hexagon, as illustrated for a single point in Fig. 2. Note that this
metaphor is used only for the formal metric definition; in practice,
we do not need to perform any rotations or dimensional increases.
Instead, we simply count by triangle edges, which correspond to
distance maxima (the corners of the cube), or by triangle altitudes
(segments perpendicular to one edge and incident to the opposite
vertex), which correspond to minima (the midpoints of the cube
edges). As with the standard L,,-norm, the result is an underesti-
mation of the euclidean distance, or L,-norm, producing an overes-

Fig. 2. The locus of points within the three-dimensional L..-norm for distance r is
a cube of width 2r. If obliquely projected into two dimensions, the resulting shape
is a hexagon whose corners are 2r from the original point, and whose edges are
least rv/3 from the point.

timated area of expansion. When all points within this metric are
included for a single triangle, the result is not a regular hexagon,
but a truncated equilateral triangle, as shown in Fig. 3.
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Fig. 3. The perimeter resulting from expanding a single black block of a triangular mesh with a hexagonal kernel becomes a truncated equilateral triangle. Here the resulting
shape is illustrated as if generated by moving a hexagonal kernel around the perimeter of the black block.

2.2. Merging clusters

The first key observation of Ang et al. is that a “gray” quadtree
node (i.e. one that is split and therefore has both black and white
children) whose edge length is less than or equal to R+ 1, where
R is the expansion radius, can be directly set to black. This is be-
cause all white children of that node must be within the radius of
expansion of some black sibling according to the distance metric.
Such nodes are called merging clusters, and are defined as internal
quadtree nodes of edge size

WR)=2"2"<R+1 < 2"

for expanding by radius R. In other words, the merging cluster
node size is the largest integral power of 2 less than or equal to
R+ 1. This operation is identical for the triangular case as for the
square case (Fig. 4).

2.3. Vertex sets and frontiers

With the triangular merging cluster set to black, we next must
expand outward from this node based on the positions of its black
internal nodes (descendants). The second key observation of Ang
et al. is that the expansion from a merging cluster depends only

Fig. 4. A merging cluster (shown within heavy outline) of size 4 and its expanded
region (dashed line) for radius 3. All the “white” blocks (shown hashed) within the
cluster must be within 3 units of one of the “black” blocks (dark gray); thus the
entire parent node (heavily outlined triangle) can be set to black, reducing com-
plexity.

on certain vertices from black child nodes within it, and that these
vertices can be further subdivided to correspond to different di-
rections of expansion. Ang et al. define two different cases for ex-
pansion directions. The first case is expanding along orthogonal
corridors, projecting N, E, S, and W of a square node. The “fron-
tier,” or leading edge of growth, in these corridors will simply be
a line segment. The position of this frontier is only dependent on
the black node vertex closest to the relevant edge of the merging
cluster, with ties broken arbitrarily. The second case is expanding
in diagonal corridors in between the orthogonal corridors, which
project from the corners of a square merging cluster. The frontiers
of growth in these regions will be staircase-like, and depend on
groups of vertices called vertex sets (Fig. 6). Vertex sets are filtered
using the opposite quadrant operation, which, for a given vertex
and expansion direction, returns whether another vertex is in the
quadrant opposite the expansion direction. For example, when ex-
panding SW, any vertex in the closed NW quadrant of any other
vertex can be excluded from the set, since that other vertex will
push the frontier at least as far in the SW direction (See Fig. 2 and
Table 1 of Ang et al.). For triangles, the two cases are analogous—
that in which expansion will fall on parallel lines, and that in
which the expansion must represent the more complex patterns
of the internal nodes, taking on staircase-like patterns. However,
for triangles, there are six directions for each case, rather than the
four, owing to the hexagonal kernel shape, and thus six vertex sets.
Vertex sets are used for expanding in the magenta regions. The tri-
angular opposite quadrant operation differs from the rectilinear ver-
sion of Ang et al. in that we must choose two of the three avail-
able axes to define the quadrants. These will be the two axes that
are not parallel to the axis of expansion in the relevant region.
Similarly to the rectilinear case, in the complex frontier regions
(shown in magenta in Fig. 5), a projection of the vertex set for the
appropriate quadrant will always form a monotonic, staircase-like
boundary, allowing a simple loop to fill in the region without re-
dundancy.

2.4. Vertex set bounds

Here we bound the sizes of the vertex sets based on the merg-
ing cluster size. Note that one vertex of a black node may appear
in multiple vertex sets, in which case we consider it to be multiple
distinct items when unioning the sets.

Lemma 1. The maximum number of vertices in a vertex set is
W (R)/2, and this bound is attainable.

Proof. Consider the two axes of an opposite quadrant operation
(e.g. the E-W and NE-SW axes for the SE expansion direction) to
be an affine transformation of a Cartesian grid. Clearly, no two ver-
tices can share the same x or y value, due to the closed nature of
the opposite quadrant operation. Now consider an axis orthogonal
to the expansion direction, which corresponds to altitudes of the
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Fig. 5. The black blocks of the merging cluster (center triangle) have been expanded (dotted lines) to all possible distances (3,4,5,6) for a merging cluster of size 4. Only
the trapezoidal regions in magenta will have nontrivial frontiers. These frontiers will have staircase patterns and must be monotonic. The triangular and hourglass-shaped
regions in between the magenta regions will have trivial frontiers parallel to a gridline. The orange line illustrates offsetting within one of these trivial regions using a vertex

set, which in this case is the single orange vertex.

triangular nodes. Because the vertices in the set cannot share x or
y value, each one adds at least two altitudes on the orthogonal axis
(dashed line in Fig. 7a). By definition of the merging cluster and
distance metric Dy, the altitude of the merging cluster is W (R),
and thus the maximum number of vertices in a vertex set for a
given direction is W (R)/2. Figure 7a is an example of attaining this
bound. O

Lemma 2. The size of the union of any two adjacent vertex sets (i.e.
in directions that share one opposite quadrant axis) is bounded by
W(R)/2 + 1, and this bound is attainable.

Proof. Consider adjacent vertex sets Vg, and Vg, for the directions
SW and SE, respectively. Let vg,, denote the easternmost vertex in
Vsw. Now consider a vertex vg; in Vs that is to the west of vg,,.
This vertex must be to the south of v, or it would have been
excluded by a vertex of the same black node that donated vg,,.
However, vg, must come from a black node that would have ex-
cluded vg,, from Vgy. Thus, vertex v, cannot exist, and all vertices
in Vg are to the east of those in Vg,,. Lemma 1 combined with the
allowance that a single black node can contribute to both of two
adjacent vertex sets achieves the bound of W(R)/2 + 1. It is easy
to find examples that attain this bound (e.g. Fig. 7a) By symmetry,
the same holds for any two adjacent vertex sets. O

Claim The size of the union Vy, of all vertex sets for a merging
cluster is bounded as a function Vihax(R) of expansion radius R by

Virax (R) = SW(R) +3. @

Proof: Any two adjacent vertex sets can achieve a total of
W(R)/2+1 (Lemma 2). The six vertex sets needed for expand-
ing from a given merging cluster are arranged hexagonally, each
with two neighbors. Any two vertex set sizes that add to W(R)/2 +
1 could be tiled around this hexagon in an alternating pat-
tern. Adding any additional vertex to such a tiling would violate
Lemma 2. Thus, the bound is 3[W (R)/2 + 1] = 3W(R) + 3, leading
to Eq. (2).

Attainability: It is as of yet unknown whether the bound in
Eq. (2) is attainable. Here we explore configurations of vertex sets
that approach the theoretical worst case. We will discuss two
strategies for maximizing the size of the union Vj of all vertex
sets, in which we maximize either (1) two opposite vertex sets or
(2) three regularly spaced vertex sets (Fig. 7).

Strategy (1) only allows two of six sets (e.g. NW and SE in the
example in Fig. 7a) to achieve the individual maximum of W (R)/2
(Lemma 1), because each set with this maximum needs to have
both of its neighbors restricted to one vertex as a consequence
of Lemma 2. The bound for this strategy is W(R)/2%x2+1x4 =
W(R) +4

Strategy (2) is equivalent to decomposing the cluster into 4
equal triangles, and using the altitudes of the 3 outer triangles
to reach maxima of W(R)/4 for 3 directions (e.g. W, SE, and NE
in the example in Fig. 7b). The other 3 interstitial directions can
only have 2 in this case, creating a bound of W(R)/4%3 +2%3 =
SW(R) +6.

The two strategies intersect at W(R) =8, with strategy (1)
dominant when W(R) > 8 and strategy (2) dominant when
W(R) < 8.
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Fig. 6. Top, the vertex sets for the six directions (E,NE,;NW,W,SW,SE) of an exam-
ple tip-up node. Bottom, the result of expanding by 3 units, showing the frontier
vertices corresponding to the vertex sets.

The currently proven attainable maximum V/,,(R) is thus the
piecewise function:

W(R) + 4,

. W(R)=>8
VmaX(R) = {2W(R) + 6,

W@®) < 8

3. Empirical results

We examine the performance of the expansion algorithm em-
pirically with an implementation in c++. For data, we use a bitmap
representation of a map overlay depicting the floodplain of the
Russian River in northern California, which has been used previ-
ously to benchmark quadtree operations [3,16,18]. The bitmap was
converted to a binary regular triangulated mesh with the same
number of rows (such that the altitude of each triangle corre-
sponded to the height of an original square pixel), using a near-
est neighbor approximation. A triangular quadtree was then built
using the mesh triangles as leaf nodes and merging hierarchically.
The original and expanded meshes with quadtrees overlaid can be
seen in Fig. 8.

As a baseline, we also implemented the naive, kernel-based al-
gorithm described earlier. For each black triangle of the grid, this
amounts to setting all surrounding triangles to black within the
shape of a truncated triangle (or irregular hexagon) similar to that
shown in the rightmost panel of Fig. 3. While it is not highly op-
timized and does not utilize dedicated hardware, this implemen-
tation should faithfully represent complexity with respect to ex-
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Fig. 7. The two types of worst case arrangements for vertex set complexity. The ar-
rangement in (a) produces the maximum vertex set size for W (R) > 8, while the ar-
rangement in (b) produces the maximum vertex set size for W (R) < 8. The two ar-
rangements produce the same size vertex set (12), when W (R) = 8, as shown here.

pansion radius and thus provides a good baseline against which
to compare the new algorithm. Both implementations were tested
by growing the same region with various radii. As expected, the
naive algorithm exhibits quadratic growth in time with increases
in radius, while the new algorithm is sublinear (Fig. 9). Code
and data for this experiment are available at https://github.com/
ondovb/triangle.

4. Discussion

This work shows that efficient methods for approximating re-
gion expansion can be adapted from square quadtrees to triangular
quadtrees, by adopting a norm whose locus of points is hexagonal.
While the implementation tested already achieved sublinear time,
additional gains can likely be made by avoiding expansion into
neighboring blocks that are already black, which can be queried
quickly using a linear quadtree implementation [4,5,12] or color-
ing [13]. As the original square quadtree expansion algorithm was
able to achieve constant time, we expect this to be the theoretical
bound of improving the triangular algorithm as well.

While many GIS applications use square quadtrees, one poten-
tial application of this work is in systems for querying astronom-
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Fig. 8. Left, a binary image stored in a triangular quadtree. Center, the same image expanded by 5 units. Right, a composite of the original and expanded images. Note that
all colored regions correspond to “black” nodes in the quadtree; we vary the color here for the sake of compositing.
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Fig. 9. Runtime comparison of a naive algorithm (BUFFER1, red) and the adapted quadtree algorithm (BUFFER2, blue). Both were implemented in c++ and used to expand
the mesh in Fig. 8, repeating 10,000 times for each radius, running on a 2.3Ghz Intel core i5 processor. BUFFER1 exhibits quadratic complexity with respect to radius, while

BUFFER2 is sublinear. The x-axis is log base 2 scale; the y-axis is log base 10.

ical footprint databases [6], which use triangular quadtrees to in-
dex regions of the night sky for searches and boolean operations.
These systems already provide region expansion functionality but
could benefit from optimization.
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