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a b s t r a c t 

Region expansion—the growth of regions to include all points within a certain distance of their 

perimeters—is a basic, widely applicable operation, but is expensive to perform exactly. It has been shown 

that, if the solution is approximated by relaxing the distance metric to the L ∞ -norm, efficiency can be 

greatly improved using properties of quadtrees. The method as described, however, requires the quadtrees 

to be square, both for the metric and the particular details of the algorithm. In some cases, such as spher- 

ical surface approximation, it is desirable for the quadtree nodes to be triangular instead. In this work, we 

thus describe an adaptation of the L ∞ -norm metric and the previously described algorithm to allow effi- 

cient approximation of region expansion in images represented as regular triangulated meshes. Like the 

original method for square quadtrees, our algorithm achieves sublinear time with respect to expansion 

radius. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Region expansion (also called image dilation) is the process of 

rowing all instances of a specific class of region—e.g. black pix- 

ls in a binary image—to include all points within a certain dis- 

ance metric to the original regions. Applications for this basic op- 

ration include the creation of buffers or corridors in Geographic 

nformation Systems (GIS) and pick operations for user interfaces, 

ith further uses in photo editing, computer vision, and robot mo- 

ion planning. A naïve, though commonly used, method for re- 

ion expansion in raster images is to apply a square or disc ker- 

el, which effectively grows each pixel independently, using the 

nion as the result. Though speed can be gained by leveraging 

atrix operations with dedicated graphics hardware, this method 

till uses significant computing resources and does not scale well 

ue to a quadratic dependence on the expansion radius. Ang et al., 

nd others, have been able to instead achieve constant complex- 

ty when the distance metric is the L ∞ -norm (also known as the 

chessboard" distance) by exploiting the dimension-reducing prop- 

rties of quadtrees [1–3,10,15,17,19] . Because of the requirement 
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f the L ∞ -norm, however, the method as published pertains only 

o square quadtrees and not those of other shapes. Triangular 

uadtrees, for example, are commonly used in geodesic approxi- 

ations [7,8,20] , which could benefit from optimizations in region 

xpansion (but see [9] for applications in higher dimensions). We 

hus report the adaptation of the general principles of the Ang 

t al. method to triangular quadtrees and show that similar gains 

n efficiency are possible by using a hexagonal norm as the dis- 

ance metric. 

. Methods 

The components of the algorithm are fairly straightforward 

daptations of the original L ∞ -norm algorithm as defined by Ang 

t al., with some exceptions. Throughout, we assume that our im- 

ge is stored in a regular triangular quadtree, and, without loss of 

enerality, that it is binary, comprising only black and white trian- 

les (more generally, black triangles could represent, for example, 

 particular color, or all those triangles that meet a certain lumi- 

ance threshold, or that match a query of associated spatial data). 

Note that, unlike square quadtrees, triangular quadtrees contain 

odes with two orientations, which we will refer to as tip-up and 

ip-down . Since these two orientations are symmetrical, we will de- 

ict below only the tip-up case; operations for tip-down nodes are 

https://doi.org/10.1016/j.patrec.2023.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2023.02.014&domain=pdf
mailto:brian.ondov@nih.gov
https://doi.org/10.1016/j.patrec.2023.02.014


B. Ondov and H. Samet Pattern Recognition Letters 168 (2023) 1–7 

Fig. 1. Loci of points for different shapes. In (a), the locus of points for euclidean ( L 2 ) distance of d is a circle. In (b), the locus of points within the L L ∞ -norm, as in Ang 

et al., is a square. A distance metric that creates a triangle (c), would enable triangular mesh optimization but would be a poor approximation of the euclidean distance. Our 

proposed metric creates a hexagonal locus of points (d), which is a much better approximation. 
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Fig. 2. The locus of points within the three-dimensional L ∞ -norm for distance r is 

a cube of width 2 r. If obliquely projected into two dimensions, the resulting shape 

is a hexagon whose corners are 2 r from the original point, and whose edges are 

least r 
√ 

3 from the point. 

t

i

b

imply mirror images, reflected vertically. 

 hex (�x , �y ) = max 

(
| �y | , | �y | + 

√ 

3 | �x | 
2 

)
(1) 

.1. Hexagonal distance metric 

We start from the notion that the (regular) hexagon is the ideal 

ernel shape for region expansion in a triangular mesh ( Fig. 1 ). 

his is because, though we desire to use the shape of the mesh 

o gain efficiency, the triangle itself is not a good approximation of 

 circle ( Fig. 1 c). The hexagon, however, is a much better approxi-

ation ( Fig. 1 d), with a 10% over-estimation of area (compared to 

5% for a triangle, or 27% for a square) and a 13% under-estimation 

f distance at the corners of the kernel (compared to 50% for a tri- 

ngle, or 29% for a square). Further, since the hexagon decomposes 

nto equilateral triangles, it can easily be mapped onto a regular 

riangulated mesh without weighted distances such as [11] . 

A distance metric D hex producing a hexagon as its unit circle 

an be formally defined by Eq. (1) . However, we can also describe 

his metric in terms of the L ∞ -norm by (conceptually) adding a di- 

ension to the expansion space and rotating it by π/ 2 radians on 

wo axes [14] . We can then expand by the L ∞ -norm in three di-

ensions, producing a cube for each point. When rotated back to 

he original orientation, and projected back to two dimensions, the 

ocus of all points within the L ∞ -norm of each original point is a

exagon, as illustrated for a single point in Fig. 2 . Note that this

etaphor is used only for the formal metric definition; in practice, 

e do not need to perform any rotations or dimensional increases. 

nstead, we simply count by triangle edges, which correspond to 

istance maxima (the corners of the cube), or by triangle altitudes 

segments perpendicular to one edge and incident to the opposite 

ertex), which correspond to minima (the midpoints of the cube 

dges). As with the standard L ∞ -norm, the result is an underesti- 

ation of the euclidean distance, or L -norm, producing an overes- 
2 

2 
imated area of expansion. When all points within this metric are 

ncluded for a single triangle, the result is not a regular hexagon, 

ut a truncated equilateral triangle, as shown in Fig. 3 . 
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Fig. 3. The perimeter resulting from expanding a single black block of a triangular mesh with a hexagonal kernel becomes a truncated equilateral triangle. Here the resulting 

shape is illustrated as if generated by moving a hexagonal kernel around the perimeter of the black block. 
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.2. Merging clusters 

The first key observation of Ang et al. is that a “gray” quadtree 

ode (i.e. one that is split and therefore has both black and white 

hildren) whose edge length is less than or equal to R + 1 , where

 is the expansion radius, can be directly set to black. This is be-

ause all white children of that node must be within the radius of 

xpansion of some black sibling according to the distance metric. 

uch nodes are called merging clusters , and are defined as internal 

uadtree nodes of edge size 

 ( R ) = 2 r , 2 r ≤ R + 1 < 2 r+1 

or expanding by radius R . In other words, the merging cluster 

ode size is the largest integral power of 2 less than or equal to 

 + 1 . This operation is identical for the triangular case as for the

quare case ( Fig. 4 ). 

.3. Vertex sets and frontiers 

With the triangular merging cluster set to black, we next must 

xpand outward from this node based on the positions of its black 

nternal nodes (descendants). The second key observation of Ang 

t al. is that the expansion from a merging cluster depends only 
ig. 4. A merging cluster (shown within heavy outline) of size 4 and its expanded 

egion (dashed line) for radius 3. All the “white” blocks (shown hashed) within the 

luster must be within 3 units of one of the “black” blocks (dark gray); thus the 

ntire parent node (heavily outlined triangle) can be set to black, reducing com- 

lexity. 

f

f

V

a

s  

a

a

S

(  

a

b

d

2

i

i

d

L

W

P

(

b

t  

t

t

3 
n certain vertices from black child nodes within it, and that these 

ertices can be further subdivided to correspond to different di- 

ections of expansion. Ang et al. define two different cases for ex- 

ansion directions. The first case is expanding along orthogonal 

orridors, projecting N, E, S, and W of a square node. The “fron- 

ier,” or leading edge of growth, in these corridors will simply be 

 line segment. The position of this frontier is only dependent on 

he black node vertex closest to the relevant edge of the merging 

luster, with ties broken arbitrarily. The second case is expanding 

n diagonal corridors in between the orthogonal corridors, which 

roject from the corners of a square merging cluster. The frontiers 

f growth in these regions will be staircase-like, and depend on 

roups of vertices called vertex sets ( Fig. 6 ). Vertex sets are filtered

sing the opposite quadrant operation, which, for a given vertex 

nd expansion direction, returns whether another vertex is in the 

uadrant opposite the expansion direction. For example, when ex- 

anding SW, any vertex in the closed NW quadrant of any other 

ertex can be excluded from the set, since that other vertex will 

ush the frontier at least as far in the SW direction (See Fig. 2 and

able 1 of Ang et al.). For triangles, the two cases are analogous—

hat in which expansion will fall on parallel lines, and that in 

hich the expansion must represent the more complex patterns 

f the internal nodes, taking on staircase-like patterns. However, 

or triangles, there are six directions for each case, rather than the 

our, owing to the hexagonal kernel shape, and thus six vertex sets. 

ertex sets are used for expanding in the magenta regions. The tri- 

ngular opposite quadrant operation differs from the rectilinear ver- 

ion of Ang et al. in that we must choose two of the three avail-

ble axes to define the quadrants. These will be the two axes that 

re not parallel to the axis of expansion in the relevant region. 

imilarly to the rectilinear case, in the complex frontier regions 

shown in magenta in Fig. 5 ), a projection of the vertex set for the

ppropriate quadrant will always form a monotonic, staircase-like 

oundary, allowing a simple loop to fill in the region without re- 

undancy. 

.4. Vertex set bounds 

Here we bound the sizes of the vertex sets based on the merg- 

ng cluster size. Note that one vertex of a black node may appear 

n multiple vertex sets, in which case we consider it to be multiple 

istinct items when unioning the sets. 

emma 1. The maximum number of vertices in a vertex set is 

 (R ) / 2 , and this bound is attainable. 

roof. Consider the two axes of an opposite quadrant operation 

e.g. the E-W and NE-SW axes for the SE expansion direction) to 

e an affine transformation of a Cartesian grid. Clearly, no two ver- 

ices can share the same x or y value, due to the closed nature of

he opposite quadrant operation. Now consider an axis orthogonal 

o the expansion direction, which corresponds to altitudes of the 
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Fig. 5. The black blocks of the merging cluster (center triangle) have been expanded (dotted lines) to all possible distances (3,4,5,6) for a merging cluster of size 4. Only 

the trapezoidal regions in magenta will have nontrivial frontiers. These frontiers will have staircase patterns and must be monotonic. The triangular and hourglass-shaped 

regions in between the magenta regions will have trivial frontiers parallel to a gridline. The orange line illustrates offsetting within one of these trivial regions using a vertex 

set, which in this case is the single orange vertex. 
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riangular nodes. Because the vertices in the set cannot share x or 

 value, each one adds at least two altitudes on the orthogonal axis 

dashed line in Fig. 7 a). By definition of the merging cluster and 

istance metric D hex , the altitude of the merging cluster is W (R ) ,

nd thus the maximum number of vertices in a vertex set for a 

iven direction is W (R ) / 2 . Figure 7 a is an example of attaining this

ound. �

emma 2. The size of the union of any two adjacent vertex sets (i.e. 

n directions that share one opposite quadrant axis) is bounded by 

 (R ) / 2 + 1 , and this bound is attainable. 

roof. Consider adjacent vertex sets V SW 
and V SE , for the directions 

W and SE, respectively. Let v ′ SW 
denote the easternmost vertex in 

 SW 
. Now consider a vertex v ′ 

SE 
in V SE that is to the west of v ′ 

SW 
.

his vertex must be to the south of v ′ 
SW 

, or it would have been

xcluded by a vertex of the same black node that donated v ′ SW 
. 

owever, v ′ 
SE 

must come from a black node that would have ex- 

luded v ′ 
SW 

from V SW 
. Thus, vertex v ′ 

SE 
cannot exist, and all vertices 

n V SE are to the east of those in V SW 
. Lemma 1 combined with the

llowance that a single black node can contribute to both of two 

djacent vertex sets achieves the bound of W (R ) / 2 + 1 . It is easy

o find examples that attain this bound (e.g. Fig. 7 a) By symmetry, 

he same holds for any two adjacent vertex sets. �

Claim The size of the union V M 
of all vertex sets for a merging

luster is bounded as a function V max (R ) of expansion radius R by

 max (R ) = 

3 

2 
W (R ) + 3 . (2) 
4 
Proof: Any two adjacent vertex sets can achieve a total of 

 (R ) / 2 + 1 (Lemma 2). The six vertex sets needed for expand-

ng from a given merging cluster are arranged hexagonally, each 

ith two neighbors. Any two vertex set sizes that add to W (R ) / 2 +
 could be tiled around this hexagon in an alternating pat- 

ern. Adding any additional vertex to such a tiling would violate 

emma 2. Thus, the bound is 3[ W (R ) / 2 + 1] = 
3 
2 W (R ) + 3 , leading

o Eq. (2) . 

Attainability: It is as of yet unknown whether the bound in 

q. (2) is attainable. Here we explore configurations of vertex sets 

hat approach the theoretical worst case. We will discuss two 

trategies for maximizing the size of the union V M 
of all vertex 

ets, in which we maximize either (1) two opposite vertex sets or 

2) three regularly spaced vertex sets ( Fig. 7 ). 

Strategy (1) only allows two of six sets (e.g. NW and SE in the 

xample in Fig. 7 a) to achieve the individual maximum of W (R ) / 2

Lemma 1), because each set with this maximum needs to have 

oth of its neighbors restricted to one vertex as a consequence 

f Lemma 2. The bound for this strategy is W (R ) / 2 ∗ 2 + 1 ∗ 4 =
 (R ) + 4 

Strategy (2) is equivalent to decomposing the cluster into 4 

qual triangles, and using the altitudes of the 3 outer triangles 

o reach maxima of W (R ) / 4 for 3 directions (e.g. W, SE, and NE

n the example in Fig. 7 b). The other 3 interstitial directions can 

nly have 2 in this case, creating a bound of W (R ) / 4 ∗ 3 + 2 ∗ 3 =
3 
4 W (R ) + 6 . 

The two strategies intersect at W (R ) = 8 , with strategy (1)

ominant when W (R ) > 8 and strategy (2) dominant when 

 (R ) < 8 . 
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Fig. 6. Top, the vertex sets for the six directions (E,NE,NW,W,SW,SE) of an exam- 

ple tip-up node. Bottom, the result of expanding by 3 units, showing the frontier 

vertices corresponding to the vertex sets. 
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The currently proven attainable maximum V ′ max (R ) is thus the 

iecewise function: 

 
’ 
max ( R ) = 

{
W ( R ) + 4 , W ( R ) ≥ 8 
3 
4 
W ( R ) + 6 , W ( R ) < 8 

. 

. Empirical results 

We examine the performance of the expansion algorithm em- 

irically with an implementation in c++. For data, we use a bitmap 

epresentation of a map overlay depicting the floodplain of the 

ussian River in northern California, which has been used previ- 

usly to benchmark quadtree operations [3,16,18] . The bitmap was 

onverted to a binary regular triangulated mesh with the same 

umber of rows (such that the altitude of each triangle corre- 

ponded to the height of an original square pixel), using a near- 

st neighbor approximation. A triangular quadtree was then built 

sing the mesh triangles as leaf nodes and merging hierarchically. 

he original and expanded meshes with quadtrees overlaid can be 

een in Fig. 8 . 

As a baseline, we also implemented the naïve, kernel-based al- 

orithm described earlier. For each black triangle of the grid, this 

mounts to setting all surrounding triangles to black within the 

hape of a truncated triangle (or irregular hexagon) similar to that 

hown in the rightmost panel of Fig. 3 . While it is not highly op-

imized and does not utilize dedicated hardware, this implemen- 

ation should faithfully represent complexity with respect to ex- 
5 
ansion radius and thus provides a good baseline against which 

o compare the new algorithm. Both implementations were tested 

y growing the same region with various radii. As expected, the 

aïve algorithm exhibits quadratic growth in time with increases 

n radius, while the new algorithm is sublinear ( Fig. 9 ). Code 

nd data for this experiment are available at https://github.com/ 

ndovb/triangle . 

. Discussion 

This work shows that efficient methods for approximating re- 

ion expansion can be adapted from square quadtrees to triangular 

uadtrees, by adopting a norm whose locus of points is hexagonal. 

hile the implementation tested already achieved sublinear time, 

dditional gains can likely be made by avoiding expansion into 

eighboring blocks that are already black, which can be queried 

uickly using a linear quadtree implementation [4,5,12] or color- 

ng [13] . As the original square quadtree expansion algorithm was 

ble to achieve constant time, we expect this to be the theoretical 

ound of improving the triangular algorithm as well. 

While many GIS applications use square quadtrees, one poten- 

ial application of this work is in systems for querying astronom- 

https://github.com/ondovb/triangle
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Fig. 8. Left, a binary image stored in a triangular quadtree. Center, the same image expanded by 5 units. Right, a composite of the original and expanded images. Note that 

all colored regions correspond to “black” nodes in the quadtree; we vary the color here for the sake of compositing. 

Fig. 9. Runtime comparison of a naïve algorithm (BUFFER1, red) and the adapted quadtree algorithm (BUFFER2, blue). Both were implemented in c++ and used to expand 

the mesh in Fig. 8 , repeating 10,0 0 0 times for each radius, running on a 2.3Ghz Intel core i5 processor. BUFFER1 exhibits quadratic complexity with respect to radius, while 

BUFFER2 is sublinear. The x-axis is log base 2 scale; the y-axis is log base 10. 
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cal footprint databases [6] , which use triangular quadtrees to in- 

ex regions of the night sky for searches and boolean operations. 

hese systems already provide region expansion functionality but 

ould benefit from optimization. 
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