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Abstract

NMR spectroscopy is an inherently insensitive technique with respect to the amount of
observable signal. A common element in all NMR spectra is random thermal noise that is often
characterized by a signal-to-noise ratio (SNR). SNR can be generically improved experimentally
with repetitive signal averaging or during post-processing with apodization; the former of which
often results in long experimental times and the latter results in the loss of spectral resolution.
Denoising techniques can instead be used during post-processing to enhance SNR without
compromising resolution. The most common approach relies on the singular-value
decomposition (SVD) to discard noisy components of NMR data. SVD-based approaches work
well, such as Cadzow and PCA, but are computationally expensive when used for large datasets
that are often encountered in NMR (e.g., Carr-Purcell/Meiboom-Gill and nD datasets). Herein,
we describe the implementation of a new wavelet transform (WT) routine for the fast and robust
denoising of 1D and 2D NMR spectra. Several simulated and experimental datasets are denoised
with both SVD-based Cadzow or PCA and WT’s, and the resulting SNR enhancements and
spectral uniformity are compared. WT denoising offers similar and improved denoising
compared with SVD and operates faster by several orders-of-magnitude in some cases. All
denoising and processing routines used in this work are included in a free and open-source

Python library called DESPERATE.
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1. Introduction

Due to its low-energy nature, NMR spectroscopy is the most powerful spectroscopic
technique for the identification of unique chemical environments and explorations of molecular-
level dynamics; however, this comes at a steep price in terms of sensitivity (i.e., the amount of
observable signal from a sample). The sensitivity of NMR largely depends on the nuclear
Zeeman interaction, which is associated with energies that depend on the gyromagnetic ratio of
the nucleus (y) and the magnetic field strength (By), and are orders of magnitude less than
thermal energy (i.e., |hwo| = |hyBo| < kT). Hence, NMR signals can be enhanced, thereby
increasing the sensitivity of the NMR experiment, by working at higher fields,'* lower
temperatures,’ and/or choosing to study high-y nuclei — however, these options are not always
the reasonable or desirable. High magnetic fields are extremely costly, low temperatures that
substantially enhance the Boltzmann ratios to yield high signals are not accessible or practical for
most spectrometers and many chemical/biological samples, and often, it is important to study the
many unreceptive, low-y, low-natural abundance nuclei from across the Periodic Table.

There are many alternate means of enhancing both signal and signal-to-noise ratios
(SNR) in NMR experiments, including high-quality shims and field stabilization hardware;
improved advanced designs in electronics, probes, and coils; and most recently,
hyperpolarization techniques that require specialized hardware (e.g., dynamic nuclear
polarization, DNP).*® Another option is to sensitize the NMR signal by way of radiofrequency
(RF) pulse sequences, including general techniques for coherence transfer (e.g., nuclear
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Overhauser effect,’ cross polarization,*'? etc.), exploiting relaxation (e.g., steady-state free
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precession,!! Carr-Purcell/Meiboom-Gill,'>!* paramagnetic doping,'*! etc.), indirect detection

(e.g., HSQC, HMQC,!'%!8 ¢rc.), and many other approaches.!?! There is no one piece of



hardware or pulse sequence that is guaranteed to provide enhancements of signals under all
conditions. However, one feature universal to all NMR experiments is the presence of random
uncorrelated noise, the decrease of which can greatly impact the outcome of NMR experiments
and their general sensitivity.

In pulsed-Fourier transform (FT) NMR, repeated acquisitions of NMR transients allow
for the summation of the coherent and correlated signals, which average against the random
uncorrelated noise.?? Subsequently, in order to achieve an N-fold increase in SNR, N number of
repetitions/scans are required,?® which often leads to long experimental times. An alternative
approach is to use signal processing techniques to increase the SNR. This can be accomplished
using one of the simplest approaches by multiplication of time-domain FIDs with window
functions or filters (i.e., apodization). This has the key dilemma that increasing the SNR with
apodization often comes at the cost of resolution, or vice-versa.

Advanced processing techniques can instead be used to denoise NMR spectra (i.e., partial
or complete removal of the noise). Denoising techniques often rely on statistical analysis where
singular value decomposition (SVD)-based techniques have been implemented widely for
denoising NMR and other spectroscopic data.?* ¢ Koprivica et al. recently developed
compressed sensing-based methods for multidimensional denoising.?” Cadzow denoising uses
time-domain data (i.e., from the NMR FID) to first form a Hankel or Toeplitz matrix, and then
SVD is used to factor that matrix.?®*> A certain number of singular values and singular vectors
are discarded (i.e., the ones that are highly correlated with noise) and reverse factorization is
performed to yield a denoised Hankel or Toeplitz matrix,**>? from which a denoised NMR FID
can then be reconstructed and processed as normal. Principal component analysis (PCA), an

SVD-based matrix factorization, has also been used for denoising 2D relaxation datasets.*>



The wavelet transform (WT) is another approach for denoising that has found application
in many areas of signal processing. WT’s represent signals as a superposition of orthonormal
basis functions called wavelets.>”*® The traditional discrete WT (DWT) downsamples the signal
to a number of decomposition levels, &, where the scaling of the wavelet is adjusted at each level.
Scaling has the benefit of analyzing highly localized frequencies in a signal, making it useful for
the identification of noise and its subsequent removal.>>** Once the signal is represented in these
downsampled and scaled decomposition levels, noise is removed with thresholding. Hard
thresholding sets spectral intensities to zero that are below some threshold constant, A, whereas
soft thresholding scales spectral intensities according to some modulation of the spectral
intensity, the thresholding constant, and sometimes other constants.>** Sirivastava et al. have
implemented several WT protocols that use either hard or soft thresholding for denoising
electron paramagnetic resonance (EPR) spectra.* 7 To date, WT denoising has found some
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usage for processing NMR data, including denoising relaxation data®™* and a limited number of

applications to processing 2D NMR datasets.**!

Herein, we explore the potential of using WTs for denoising 1D and 2D NMR data with
differing lineshapes and compare their performance to SVD-based methods. Signals in NMR
spectra generally appear as high-resolution peaks originating from isotropic manifestations of
NMR interactions [i.e., often encountered in solution-state NMR or magic-angle spinning (MAS)
solid-state NMR (SSNMR)] or as patterns with large frequency dispersions originating from
anisotropic interactions or other sources of inhomogeneous broadening (i.e., static or slow-MAS
SSNMR spectra). WT denoising is applied to both static and MAS SSNMR spectra and

demonstrated to be robust for spectra with sharp peaks and anisotropically broadened powder

patterns. 2D multiple-quantum MAS (MQMAS) spectra,>>>* which feature both isotropic peaks



and anisotropic dispersions, are also processed with WT denoising. The performance of WT
denoising is comparable or superior to that of standard SVD-based approaches and operates with
decreased computation times, in some cases, by several orders of magnitude. Careful
consideration is given to the appearance and uniformity of peaks and patterns in the denoised
spectra via assessment with SNR measurements and the differences in structural similarity
indices (SSIM, vide infra). The WT denoising routines are implemented, along with other useful
processing functions, in a free and open-source Python library called DEnoising SPEctRA in

pyThon with wavElets (DESPERATE).

2. Methods
2.1 Samples

Tin(II) oxide [SnO, Sigma Aldrich], Pt(NH3)4Cl>-H2O [Sigma Aldrich], sodium chloride
[NaCl, Sigma Aldrich], sodium sulfate [Na;SOs4, Sigma Aldrich], and rubidium nitrate [RbNO3,
Sigma Aldrich] were purchased and used in all NMR experiments without further purification.
The identities and purities of the samples were verified through comparisons with previously
reported NMR spectra and PXRD patterns.>*>¢ All samples were ground into fine powders and

packed into 3.2 mm rotors.

2.2 Solid-State NMR Spectroscopy

NMR spectra were acquired using a Bruker Avance NEO console and a 14.1 T
Magnex/Bruker (vo('H) = 600 MHz) wide-bore magnet at resonance frequencies of vo(!!°Sn) =
223.772 MHz, vo(**°Pt) = 129.001 MHz, vo(**Na) = 158.738 MHz, and vo(*’Rb) = 196.348 MHz.

A home-built 3.2 mm triple resonance (HXY) magic-angle spinning (MAS) probe was used for



all experiments. Spectra were acquired with 'H continuous-wave (CW) decoupling with RF
fields of 50 kHz for compounds having protons. RF pulse powers and chemical-shift reference
frequencies were calibrated using the following standards: ''°Sn reference: Sn(CH3)4 (/) with Siso
= 0.0 ppm; '*°Pt reference: 1.0 M NaxPtCls (ag) with 8iso = 0.0 ppm; and the following were only
used as chemical-shift references: >*Na reference: NaCl (s) with 8iso = 0.0 ppm; 8’Rb reference:
0.1 M RbCl in D20 (aq) with 8iso = 0.0 ppm. >*Na and 3’Rb RF pulse powers were calibrated by
finding the main spin-lock rotary resonance conditions, (S+1/2)vi = Vrot,>’ at vrot = 5 kHz and 10

kHz with Na;SO4 and RbNOs, respectively.

2.3 Computational methods

All numerical simulations were conducted in SIMPSON 4.2.1°360

using either 4180 or
28656 orientations sampled according to the ZCW averaging scheme.®! CPMG experiments were
simulated using ideal pulses with 50 or 300 spin echoes. MQMAS experiments were simulated
using a three-pulse whole-echo style sequence® using ideal pulses and matrix filtration for
coherence selection.

All processing and denoising routines were performed using a custom in-house Python 3
library called DESPERATE. The library can be found at github.com/rschurko/desperate and
pypi.org/project/desperate. It has dependencies on NUMPY,** SciPy,% PyWavelets,* and
Matplotlib.5

All simulations and processing were performed on a PC operating with Windows 10

using an Intel 19-9920X CPU.

2.4 Denoising Techniques



In this work, denoising is accomplished with either SVD-based techniques or using
wavelet transforms (WT). SVD approaches include either the Cadzow denoising technique on
time-domain signal or running PCA of 2D time- or frequency-domain signal.?®?*33-* Cadzow
denoising has been described in detail elsewhere**? and has been implemented in DESPERATE
by running SVD on the Hankel matrix of the time-domain NMR FID. The number of discarded
singular values is determined automatically using a derivative of the singular values (Figure S1).
PCA has also been implemented and should, in principle, be used for processing 2D NMR data.

Herein, we have implemented a WT method for denoising frequency-domain 1D and 2D
NMR data that operates with the following steps (Scheme 1):

1. Preprocess the 1D or 2D NMR FID, including the application of window functions, echo-
coaddition, zero-filling, FFT, phase correction, and/or shearing, etc.

2. Evaluate the stationary WT (SWT) of the real component of the complex frequency-
domain data to some number k of decomposition levels, dx, that each contain an
approximation component and detail component, Ax and Dy, respectively.

3. Use signal windowing to isolate the baseline noise in every 4.

4. Perform a modified soft-thresholding routine on all Ax and Dy using a threshold constant,
A, determined from the windowed noise per decomposition level.

5. Evaluate the inverse-SWT (ISWT) to reconstruct the denoised NMR spectrum.

The SWT returns undecimated values of Ax and D whereas a discrete WT (DWT)
decimates the components from down sampling. The biorthogonal 2.2 (bior2.2) wavelet is used
for the SWT by default,% but others can be used in the WT method above. A modified soft-

thresholding routine is used as described by Wang and Dai,®” where
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for each ith decomposition level up to i = k, where d; represents both the approximation and
detail components, A = G(noise)\/Tg(n) for a component with » number of points, and a € [0,1]
(o = 0 by default). For SWTs, n must be divisible by 2, i.e., n = 2*, where the maximum possible
k = x, and k is manually set by the user.

Denoising in the frequency domain, as opposed to the time domain, has the benefits of
easy identification of baseline noise with or without signal windowing (i.e., the signal and noise
are defined as binary regions using a baseline derivative and in an FFT-shifted spectrum the
noise can be easily isolated or sampled since it is dispersed to the edges of the window, Figure
S2); artificially increasing the resolution of the signal via zero-filling, which also aids in signal
windowing; and the flexibility to allow the selection of more & levels by adjusting zero-filling
(the maximum k cannot be changed using fixed-size time-domain data unless zero padding is
used). Similar signal windowing has been used in the NERD WT denoising algorithm introduced
by Srivastava et al.;*’ however, our approach differs by (i) the use of windowing for isolating the
noise for calculating A at each decomposition level and (i1) thresholding all values of values of 4;
and D; (fromi=1 ... k).

One clear advantage of using WTs over SVD-based approaches is computational time.
For a dataset with n» number of points, the corresponding Hankel matrix for Cadzow denoising in
this work has dimensions a X b, where a = n/2 + 1 and b = n/2; the subsequent SVD has a
computational complexity of O(ab?) whereas that of the WT is O(n).>>! An example of this is

illustrated by calculating the computational times required to perform Cadzow and WT denoising



routines with different numbers of decomposition levels for time- and frequency-domain data of
varying sizes (Figure S3).
2.5 Metrics

Several metrics are used to measure and benchmark the performance of denoising
techniques. Signal-to-noise ratios are defined as the maximum value of the real frequency-
domain spectrum over the standard deviation of the noise: SNR = max(spectrum)/c(noise). The
peak-to-peak SNR (SNR)) is defined as the difference between the highest and lowest intensity
‘peaks’ or parts of the real frequency-domain spectrum over the standard deviation of the noise:
SNR, = [max(spectrum) — min(spectrum)]/c(noise). The structural similarity index (SSIM) is
used to measure the uniformity of the spectrum or pattern as compared to some ground truth
noise-free measurement either from a simulation without noise, or from an experimental

spectrum with high signal averaging. SSIM is defined as* 768

(pyy)(26xy) (2)

SSIM(X,Y) = —e¢
(13 + 12)(o% + 69)

where Y is the reference spectrum that is considered noise-free (or has very little noise), X is the
denoised spectrum, L is the mean of the signal, ¢ is the standard deviation of the signal, and c is a
small constant that ensures the SSIM is bound over a range of [-1, 1] and is calculated with ¢ =

SSIM(Y,Y) — 1. A value of SSIM = 1 indicates that the two signals are identical.

3. Results and Discussion
3.1 Overview

In the following sections, denoising techniques are compared with one another using 1D
and 2D SSNMR spectra (both simulated and experimental). The standard SVD/Cadzow

approach is compared against our WT method for denoising. In every case, we show arrays of
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spectra that have different amounts of noise and corresponding SNR and SNR,, values as input for
denoising, and comparisons of the SNR, SNRy,, and/or SSIM’s obtained from each denoising
technique. WT methods are applied to (i) simulated and experimental CPMG datasets subjected
to different types of processing (i.e., echo coaddition and spikelet representations); (ii)
experimental wideline MAS SSNMR spectra; and (iii) experimental and simulated 2D MQMAS

spectra.

3.2 1D Simulations

The performance of denoising of 1D NMR data is first benchmarked using synthetic
CPMG data of a simulated solid-state static powder pattern associated with an axially symmetric
chemical shielding (CS) tensor. This pattern is a good test case since the SNR varies across the
pattern breadth, with the high- and low-frequency limits having relatively high and low SNRs,
respectively, with intermediate SNR values captured in between these limits; here, the SNR,,
metric is used to reflect these SNR differences. There are two primary ways of processing CPMG
datasets that can affect the choice of denoising technique, including (i) FT of the entire CPMG
echo train, revealing a “spikelet” representation of the pattern, or (i) coaddition of the echoes
into a single echo, which is subsequently Fourier transformed to yield a standard NMR pattern.
The key difference is that the echo train has some » number of points, whereas the corresponding
coadded echo train has n/N number of points, where N is the number of CPMG loops. We note
that the latter case represents a dramatic reduction in computational time for Cadzow denoising,
and as such, we do not include corresponding benchmarks for 1D CPMG spikelet spectra (cf.

Figure S3 and Figure S4). To aid in this type of processing we have included several processing
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routines in DESPERATE, including automatic CPMG echo coaddition, automatic phasing up-to
second order, and other useful features.

Synthetic CPMG datasets used in Figure 1 are generated and processed with the
following progression. CPMG echo trains are simulated in SIMPSON by calculating 512
complex points for each spin echo over a total of 50 CPMG loops resulting in an FID with 25600
total complex points. The echo train is then multiplied by an exponential decay function with an
effective 7> constant to help mimic experimental datasets. At this point, pseudorandom Gaussian
noise is added to the time-domain signal with an intensity that is set as a percentage of the
maximum intensity of the signal; adjusting this percentage changes the SNR. Then, all of the
echoes are coadded to give a single echo with 512 points. The coadded echo FIDs and
corresponding spectra of varying SNR are regarded as the “input” data that are analyzed prior to
denoising. At this point, Cadzow denoising may be used with the time-domain data. Subsequent
zero-filling, FT, and phase correction then yields the NMR spectrum. If Cadzow denoising is not
used, the post-FT and processed spectrum can be used as input for WT denoising instead. All
coadded synthetic CPMG spectra have 16384 points. The SNRy’s and SSIM’s are all measured
for the input, Cadzow denoised, and WT denoised spectra, and are denoted as SNRy,in, SNRp.c,
SNRpwt, SSIMin, SSIMc, SSIMwrT, respectively.

Benchmarking is first presented for synthetic coadded CPMG echo trains (Figure 1). The
input spectra resulting from the addition of different amounts of noise to the CPMG FID and
subsequent echo coaddition and FT are pictured in the left column of Figure 1 (the values of
SNRyin are given in Table 1). These same input FIDs are denoised with the Cadzow routine,
multiplied by a Gaussian window function to help attenuate sinc-artifacts (the input coadded FID

is also multiplied by an identical Gaussian function, Figure S5), and processed with FT and
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phase correction (Figure 1 — middle column). SNR), c increases dramatically compared to SNRpin
in every case (Table 1); however, these gains should be interpreted with caution, as significant
spectral distortions are observed in most cases (cf. Figure 1d-h). It is perhaps more beneficial to
compare the SS/Ms with that of a reference spectrum that has no added noise (i.e., SSIM =
1.0000 indicates an identical match between the denoised spectrum and the noiseless input
spectrum). SSIMc is higher than SSIM;, for spectra in Figure 1a-d (Table 1a-d) but drops off
significantly for those in Figure 1f-h (Table 1f-h) (i.e., SSIM < 0.9900 and is lower than
SSIMin), which corresponds to SNRpin values below ca. 70. This suggests a minimum SNR, = 70
may be necessary to properly utilize Cadzow denoising in this case.

The spectra resulting from similar processing and WT denoising of the frequency-domain
spectra with k£ = 7 decomposition levels (Figure 1 — right column, Table 1) reveal that in every
case, the SNRp wt is much higher than SNR;i» (Table 1), though not to the same degree as
SNRyc. The values of SSIMwr are higher than SS/Mi, values in every case except those of the
spectra shown in Figure 1g,h (Table 1g,h), and also higher than all values of SSIMc except that
of the spectrum in Figure 1h (Table 1h). A qualitative examination of the spectra also reveal
that patterns can be partially recovered when the input SNR,, values are = 63 or 57 (Figure 1f,g)
as evidenced by the higher uniformity of the CSA patterns in comparison to those arising from
Cadzow denoising. These results suggest that WT denoising may be used to recover powder
patterns with SNR, £ 60 in this case. Examples of the detail and approximation components
before and after thresholding are available in the supporting information (Figure S6).

A comparison of input and WT denoised CPMG spikelet spectra are shown in Figure 2
(N.B.: in this case, a smaller CS span was used in simulations to help better visualize the

spikelets, and Cadzow denoising was not benchmarked due to the lengthy time requirements, see
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Figure S3 and Figure S4). Here, the echo train is simulated with 300 echoes that have 512
points each, multiplied by an exponential decay with an effective 7> constant, noise is added,
then the FID zero filled to 262144 points and Fourier transformed without any additional
apodization, and then phase corrected. WT denoising with £ = 3 results in spectra with increased
SNRp,wt in comparison to SNRpin. The SSIMwt’s are higher than SSIM;, for every spectrum
except the first two (Figure 2a,b and Table 2a,b). The discrepancy between the first two spectra
and the rest is the result of WT denoising removing inherent sinc artifacts and small baseline
offsets in CPMG data sets (Figure S7). By comparison, the SSIM values measured from the low-
frequency halves of the spectra that span from ca. —30 to — 90 kHz (SSIMow — Table 2), where
there are less intrinsic baseline offsets and sinc artifacts, reveals dramatic increases in SSIMwT,low
in comparison to SS/Min 1ow in most cases. A closer examination of the denoised CPMG spikelets
(Figure 2 - inset) reveals recovery of spikelets with Lorentzian-like shapes and very minor
artifacts from residual noise. It is important to note that a relatively smaller number of
decomposition levels, k= 3, and a large zero fill (i.e., 262144) is optimal for WT denoising of
spikelet data in comparison to that of the coadded spectra, which requires £ = 7. This may be due
to the sparse representation of the data with spikelets. The optimal choice of & can be determined
empirically by comparing the resulting SNR’s, SSIM’s, and qualitative appearances of the spectra
(e.g., pattern uniformity and minimal artifacts); at a minimum, this is the only free variable that
needs to be adjusted with WT denoising. The fast computational times associated with WT
denoising makes the adjustment of & as simple as adjustment of line-broadening coefficients in

standard apodization processing routines.

3.3 1D Experiments
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9Sn NMR spectra of SnO were acquired for the purpose of providing an experimental
comparison to the aforementioned simulations. 1D WURST-CPMG® spectra were acquired with
varying number of scans to systematically change the SNR;, of the data. The data was first
processed with echo coaddition, resulting in an FID size of 290 points for Cadzow denoising,
and spectra with 8192 points after zero-filling (Figure 3 and Table 3). The input spectrum
acquired with 8 scans (Figure 3h — left column) has an SSIM;, = 0.9878 as compared to the
spectrum acquired with 1024 scans (Figure 3a - left column); the former may represent a limit at
which the spectrum is difficult to analyze and characterize (i.e., SSIMi» < 0.9900). Cadzow
denoising again offers a substantial gain in SNR,, as well as improved SSIMc in every case
(Table 3). The Cadzow denoised spectra all feature sinc artifacts at the edges of the patterns,
which result from the amplification of signal at the edges of the echo after Cadzow denoising
(Figure S5). Again, these artifacts can be attenuated by multiplying the coadded echo with an
appropriately positioned Gaussian (or some other) window function; however, this can cause a
loss of resolution if the standard deviation of the Gaussian is too high. WT denoising with k=7
increases SNRp,wt over SNRp in and improves the SSIMwt over SSIM;, and SSIMc (except for
Figure 3g), and does so without introducing any sinc artifacts. Cadzow and WT denoising both
result in values of SSIM > 0.9900 for the 8-scan dataset (Figure 3h), but a higher value of
SSIMwt = 0.9974 is achieved with WT denoising. The input, Cadzow denoised, and WT
denoised spectra are all processed with the same Gaussian function for consistency; however,
these results suggest that WT can denoise data while also using less apodization, thereby
providing superior resolution to Cadzow denoised spectra.

The same experimental dataset was processed without echo coaddition, resulting in

CPMG spikelet spectra (Figure 4 and Table 4). The experimental CPMG echo train was zero-
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filled to 32768 points and k& = 3 decomposition levels were used. The SNRp wt gains are
substantial, but are not as high as in analogous simulated data (cf. Table 2). The SSIMwrt values
are again lower than the SSIM;, values, due to removal of intrinsic sinc artifacts in the CPMG
spikelet spectra by WT denoising as demonstrated with SSIMiow measurements for synthetic data
(c.f- Figure 2, Table 2, and Figure S7); this is a great benefit for ensuring a uniform pattern
shape, but lowers the SSIMwrt. A closer look at the spikelets qualitatively illustrates the high-
fidelity recovery of the Lorentzian-like spikelets (Figure 4 — inset), but some line broadening is
noticeable. The apparent line broadening is still far less severe than that resulting from removal
of the same amount of noise with apodization. The efficient denoising of spikelet data is a great
test case, as it is an analogue to denoising a high-resolution spectrum consisting of many
isotropic, Lorentzian peaks, such as those observed in solution-state NMR or fast-MAS SSNMR
spectra, or even in spinning-sideband (SSB) manifolds (vide infra).

Another 1D test case is the !> Pt WURST-CPMG/MAS NMR of Pt(NH3)4Cl2-H,O. The
SSB manifold of this pattern spans nearly 1 MHz under slow MAS (viot = 10 kHz) at 14.1 T
(Figure 5 and Table 5).”° The CPMG echo train is coadded in this case to properly reveal the
SSB manifold (here, spikelet representations are not useful).”! The coadded FID’s have 3606
points for use in Cadzow denoising and the zero-filled spectra have 16384 points for WT
denoising, where k£ = 2 is used. This is another good test case, since we can investigate the effects
of different denoising routines on patterns that are anisotropically broadened but also possess
high-resolution features. Substantial SNR,, gains are afforded from both Cadzow and WT
denoising (Table 5). There is no clear superior performance indicated by comparison of SS/Mc
and SSIMwr across all of the spectra, as compared against the input spectrum acquired with the

highest signal averaging (2048 scans, Figure 5a). Both techniques appear to fail to recover
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reliable spectra when the SNRyin < 55 (Figure Se,f), which agrees with benchmarks established
by simulations. We note that since many data points need to be recorded for high-resolution
MAS data, that WT denoising may offer better scalability in terms of reducing computation
times.

A final 1D test case is presented to simultaneously test denoising of isotropic and broad
anisotropic spectral features. The 2*Na NMR of a NaCl:Na>SO4 3:50 w/w mixture was acquired
with Bloch decay at viot = 10 kHz and features a single sharp peak for NaCl and a comparatively
broader anisotropic powder pattern for Na>xSO4 (Figure 6) due to the relatively small and large
quadrupolar couplings, Cq, respectively. The rotor was half-filled with the mixture and half-
filled with adamantane to decrease the sample’s receptivity. The FIDs have 1978 points for use
in Cadzow denoising and the zero-filled spectra have 8192 points for WT denoising, where k=5
is used. Previous 1D tests (vide supra) reveal an optimal k=7 or 2-3 for broad anisotropic-type
spectra or sparse isotropic-type spectra (i.e., series of spikelets or SSBs), respectively. Therefore,
an intermediate value of £ = 5 used herein may be optimal when both types of features arise in
the same spectrum. Cadzow and WT denoising perform comparatively well except for the lowest
SNR experiments (Figure 6g,h and Table 6). For the spectra acquired in 2 scans with SNRp in =
46 (Figure 6g) the denoised spectra have comparable SNR,’s and SSIM’s (Table 6); however,
the Cadzow denoised spectrum shows an artifact at ca. — 12 ppm and reduced resolution in the
NazSOy4 pattern at ca. — 26 ppm, whereas the WT denoised spectrum maintains the pattern
resolution. The denoised spectrum acquired with 1 scan has SNRpi» = 33 (Figure 6h) where WT
denoising appears to maintain the pattern resolution better than Cadzow; however, the WT

denoised spectrum reveals a distorted baseline as reflected by SSIMwt = 0.9978 being lower than

17



SSIMc = 0.9984. These results approximately agree with other 1D data, where a lower limit for

using WT denoising is around SNRpin < 46 in this case.

3.4 2D Simulations

An exciting aspect of using WT for denoising is its fast and easy implementation for nD
NMR data. Herein, we test the 2D WT denoising routine on a synthetic MQMAS dataset with
varying amounts of noise. MQMAS datasets represent ideal test cases as denoising can be
simultaneously tested for direct (F2) and indirect (/1) dimensions, which respectively represent
anisotropic and isotropic patterns. F is properly scaled for the isotropic chemical shift axis (it is
sometimes referred to as Fis, but herein, is called F; for simplicity).”” For 2D MQMAS data, the
SNR (N.B.: not the SNRy) is reported for /> and F; dimensions for simplicity (referred to as
SNR' and SNRF!, respectively), along with the SSIMs for the anisotropic slices extracted along
the F axis (referred to as SSIM', i = 1, 2, and 3 for the F; spectra from top to bottom in the order
they are displayed). Herein, ’Rb MQMAS datasets for RbNO3 are simulated in the time domain,
with Bo = 14.1 T and viot = 10 kHz, using reported EFG and CS tensor parameters for the three
87Rb sites.’® The time-domain data are simulated with 1024 x 128 points (¢> * #1) and then noise
is added with varying intensity to cause corresponding varying SNR’s in the different input
spectra, and then are zero-filled to 4096 x 512 points (F2 x F1) prior to generating the frequency-
domain spectra. All MQMAS spectra are displayed with the F> projection spectrum as a skyline
of the maximum intensity over all of the F slices, while the F projection spectrum is shown as a
sum of all F> slices, to properly capture the relative F1 peak intensities (Figure S8). N.B.: a
forthcoming study will highlight the simultaneous usage of 2D WT denoising and non-uniform

sampling for various multidimensional NMR experiments.
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The first example input spectrum has a moderate SNRin"' and SNRix" (Figure 7a and
Table 7). 2D Cadzow denoising was tested by running the routine over each time-domain ¢ slice
individually. The resulting spectrum shows no increase in SNRc'! and a small increase in
SNRcF?, with some artifacts/defects noticeable in the F| slices (Figure 7b and Table 7). Cadzow
denoising is time consuming even when applied to a single FID; therefore, incremented Cadzow
over a number of #; slices is very computationally expensive. A better alternative is to apply
SVD directly on the 2D spectral matrix; here, this is implemented with PCA denoising where
three principal components are retained for denoising (Figure 7¢). PCA does a good job of
increasing SNRpca™ over SNRix''; however, SNRpca™ decreases, and no significant differences
are observed in the F slices between the input and PCA denoised spectra. This agrees with
previous results for PCA denoising of relaxation data, where the SNR is enhanced in the indirect
‘relaxation dimension’ rather than in the frequency dimension (F).*?

2D WT denoising is implemented in a similar manner as described earlier (Scheme 1),
where the 2D SWT operation instead yields four components in each decomposition level: one
approximation and three detail; in addition, a 2D signal windowing algorithm is used (Figure
S9). WT denoising uses k£ = 2 decomposition levels for all MQMAS datasets. For the simulated
MQMAS data, 2D WT increases both SNRwt'! and SNRwt™2, and increases the SSIMwrt of the F)
slices, where the SSIM is now compared to the noiseless F spectra as references (Figure 7d,
Table 7, and Table 8 - row 7d). Further benchmarks are only carried out with WT denoising,
since it outperforms the other 2D denoising techniques in terms of SNR enhancements over both
axes and computational costs.

MQMAS datasets were simulated with various amounts of noise and were denoised with

2D WT’s in every case (Table 8). Two examples are shown with relatively low SNRF! and SNR*?
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(Figure 8). As SNRi, decreases over both dimensions (c.f. Figure 7), WT yields enhanced
SNRwr, but also enhanced SSIMwr’s for all but the second Fiso-slice spectrum (Figure 8a,b and
Table 8). For even lower SNRi»’s (Figure 8c,d), the SSIMwts are not enhanced above ca.
0.9900, which indicates that the patterns may not be fully recovered (as benchmarked from 1D
examples). Visual examination of the corresponding Fi-slice spectra shows that the lower SNR
discontinuities at the edges of the pattern are not completely recovered after WT denoising.
These results suggest that when SNRFF2 > ca. 50, complete spectral information can be

recovered as measured with SSIM’s that are referenced to a noiseless spectrum.

3.5 2D Experiments
87Rb (I =3/2) MQMAS NMR experiments on RbNOs were conducted to acquire several
datasets with different number of scans and with different modifications to the MQMAS pulse

sequence to change the SNRix"/*? in each case. A whole-echo style sequence is used with an

added SPAM pulse for sensitivity enhancement;” it is important to note that sequences with
better sensitivity are available,”* ¢ but for this proof-of-concept study we want to demonstrate
lower SNR regimes. Experiments were carried out at 14.1 T with a spinning speed of 10 kHz.
Datasets are the same size as the simulated cases with 1024 x 128 points (¢> x #1) for the time
domain and 4096 x 512 (F2 x F1) for the frequency domain. The first example shows the 2D
MQMAS-SPAM spectra acquired with 96 scans (Figure 9a). This is the minimum number of
scans for the phase cycling, so this represents the lowest SNVR;, for this type of acquisition. The
2D spectrum can be denoised in the same manner as described above for the simulated cases.

The resulting SNRwrt’s are higher for both dimensions and the F slices have increased SSIMwt’s

in comparison to the input data (Figure 9b and Table 9), where the SSIM’s are referenced to the
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spectra acquired with 382 scans, where SSIM(NS = 382, NS =382) = 1.0000. A simple way to
lower the experimental SNRi 1s to use a less efficient MQMAS sequence, which was done by
using weaker RF amplitudes for TQ-excitation and conversion pulses (Table 9) or by removing
the SPAM pulse (Figure 9c and Table 9). The resulting SNRi,’s in the latter case are
approximately the lowest obtained for these experiments (i.e., the experiment with 75 kHz RF
fields features similar SNRi»’s). Nonetheless, the denoising helps increase the SNRwrt in both
dimensions and increase the SSIMwr of all the extracted spectra (Figure 9d and Table 9). In
both examples above it is important to note the reduction of #1-noise, or an increase of SNR'!. In
experimental cases, #1-noise originates from a combination of thermal noise and small spinning
instabilities causing rotor desynchronization in the pulse sequence.’® This can readily be
observed as some of the more systematic #-noise forms ridges with well-defined slopes of
F>/F1=+7/9, as would be expected for residual anisotropy in spin-3/2 triple-quantum MQMAS.
A final test case featuring lower SNR than 8’Rb experiments is the !’O triple-quantum
(3Q) MQMAS of the metal organic framework a-Mg3(HCOO)s (Figure 10). This data was
previously acquired by Martins et al. at the National High Magnetic Field Laboratory (NHMFL)
using the series-connected hybrid (SCH) magnet operating at 35.2 T.”” The data was acquired
with a shifted-echo sequence at a spinning speed of 18 kHz. Since the pulse sequence is rotor-
synchronized, the 1 window is limited to 18 kHz, which causes aliasing from the SSB signal.
This is remedied with Q-shearing and spectral zero-filling to expand the /1 window (isotropic
shearing, Q-shearing, and F; expansion protocols are included in DESPERATE).”? The high-
magnetic field strength results in substantial narrowing of the !’O central-transitions patterns,
yielding 2D spectra with a combination of narrow and broad features, making this an excellent

test case for WT denoising.
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The 170 3QMAS spectra contain patterns corresponding to twelve unique oxygen sites,
with six of the CT patterns overlapped and centered around ca. 220 ppm on F> and the other six
CT patterns are overlapped and centered around ca. 270 ppm (Figure 10). The features above
and below these shifts correspond to SSB signal (Figure 10 - marked with *). The signal and
noise are dispersed over a slope due to the shearing and F1 expansion (vide supra). Therefore, the
SNR is measured as a single value using baseline noise isolated from this slope. SNRi, = 60 prior
to any denoising, where minimal apodization is used (Figure 10a) and SNRwt = 589 after WT
denoising with k£ =3 (Figure 10b). WT denoising also outperforms PCA denoising (Figure S10)
where efficient denoising is challenging while also maintaining the resolution of the broad and
narrow spectral features in the spectrum, similar to simulated MQMAS benchmarks (c.f. Figure
7¢). The CT and SSB signal is clearly identifiable after denoising, which can allow for easier

characterization of the system.

4. Conclusions

WT denoising is a robust and efficient technique for denoising 1D and 2D NMR data.
Simulated and experimental results display improved performance over established SVD-based
approaches for denoising. Frequency-domain WT denoising is reliable for use with different
types of NMR spectra, including anisotropic dispersion-type spectra or isotropic high-resolution
spectra, or combinations of both, as demonstrated with anisotropic powder patterns, CPMG
spikelets, SSB manifolds, and 2D MQMAS spectra. WT denoising can be used on any type of
NMR spectrum as evidenced by the variety in SSNMR spectra shown throughout (i.e., different
peak and pattern shapes). Large enhancements in SNR are somewhat trivial to obtain, whereas a

key factor throughout this work is enhancements in SS/Ms, which are indicative of partial or
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significant recovery of patterns or improvements in spectral uniformity in most cases. WT
denoising is ultimately limited by the SNR of the input data, where there are certain limits at
which a pattern can no longer be recovered/improved by denoising; in this work we find this
limit to be SNR < 50 (N.B.: this is based on how we have measured SNR herein, which is not
consistent across the literature and in various software packages). Combined improvements in
SNR and SSIM from denoising can allow for faster experimental acquisitions by necessitating
less signal averaging and can be useful for improving the quality of regression analysis of NMR
data (e.g., fitting tensor parameters, relaxometry, efc.) where SNR is a limiting factor. The low
computational cost of WT denoising as applied to 1D and 2D NMR datasets should make it an
attractive option for many types of NMR experiments, especially for those involving the
acquisition of CPMG and high-resolution datasets with large numbers of data points. Since the
frequency-domain signal windowing for thresholding samples noise in both /> and F
dimensions, systematic #-noise (i.e., not random thermal noise) is substantially reduced with WT
denoising. SVD-based and WT denoising have been implemented in a free and open-source
Python library called DESPERATE, which is designed for easy use by end users. We anticipate
the aforementioned denoising techniques will find routine use in D NMR and will be

commonplace in the same way standard apodization is used.

5. Supplementary Material

See supplementary material for additional simulations, experiments, and experimental

details.
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