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Abstract
Concurrent multiscale structural optimization is concerned with the improvement of macroscale structural performance 
through the design of microscale architectures. The multiscale design space must consider variables at both scales, so design 
restrictions are often necessary for feasible optimization. This work targets such design restrictions, aiming to increase 
microstructure complexity through deep learning models. The deep neural network (DNN) is implemented as a model for 
both microscale structural properties and material shape derivatives (shape sensitivity). The DNN’s profound advantage is 
its capacity to distill complex, multidimensional functions into explicit, efficient, and differentiable models. When compared 
to traditional methods for parameterized optimization, the DNN achieves sufficient accuracy and stability in a structural opti-
mization framework. Through comparison with interface-aware finite element methods, it is shown that sufficiently accurate 
DNNs converge to produce a stable approximation of shape sensitivity through back propagation. A variety of optimization 
problems are considered to directly compare the DNN-based microscale design with that of the Interface-enriched General-
ized Finite Element Method (IGFEM). Using these developments, DNNs are trained to learn numerical homogenization of 
microstructures in two and three dimensions with up to 30 geometric parameters. The accelerated performance of the DNN 
affords an increased design complexity that is used to design bio-inspired microarchitectures in 3D structural optimization. 
With numerous benchmark design examples, the presented framework is shown to be an effective surrogate for numerical 
homogenization in structural optimization, addressing the gap between pure material design and structural optimization.
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1  Introduction

Multiscale structural design targets two scales to achieve 
a desirable structural response (e.g., maximum stiffness, 
minimum stress, or tailored mechanical actuation). The 
observable or macroscale domain is evaluated based on this 
performance metric, while the microscale domain is resolved 
to interpretable material characteristics. The intimate con-
nection between scales creates a prohibitively large design 
space, and the resulting optimization is generally ill-posed 
(Allaire et al. 1997). To resolve the prohibitive design space, 
topology optimization (Bendsøe and Kikuchi 1988) has 

implemented numerical homogenization to frame admis-
sible designs and join microscale features to a macroscale 
space (Guedes and Kikuchi 1990; Sigmund 1994; Hassani 
and Hinton 1998; Wu et al. 2021a).

Numerical homogenization represents composite media 
through the local repetition of very small microstructures 
(Guedes and Kikuchi 1990; Torquato and Haslach 2002; 
Allaire and Brizzi 2005; Andreassen and Andreasen 2014). 
Given a microstructure unit cell, the effective material prop-
erties of a composite material may be approximated through 
the asymptotic expansion of its governing equations with 
respect to the ratio between length scales (Guedes and 
Kikuchi 1990). Numerical homogenization has been exten-
sively used in heterogeneous cellular material optimization 
(Torquato 2010), including the design of free material dis-
tributions (Sigmund 1994; Guedes et al. 2003; Andreasen 
and Sigmund 2012), truss geometries (Watts and Tortorelli 
2017; Kazemi and Norato 2022), and nonlinear materials 
(Wang et al. 2014; Najafi et al. 2021). Although numerical 
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homogenization is an effective method to resolve microscale 
structures, its implementation in multiscale design optimiza-
tion presents computational challenges. The homogenization 
formulation requires that scales must be separated by multi-
ple orders of magnitude (Guedes and Kikuchi 1990; Allaire 
et al. 1997), and simplified geometries are often necessary 
to adequately model multiscale structures (Wu et al. 2021a; 
Cheng et al. 2019; Groen and Sigmund 2018; Garner et al. 
2019).

Parameterized representations of the microscale unit cell 
are used in multiscale optimization to alleviate the compu-
tational burdens of the intractable design space. Through 
parameterization of the microscale material, as originally 
presented in Bendsøe and Kikuchi (1988), multiscale design 
optimization has produced stiffness optimal designs that 
approach the theoretical limit using rank-2 laminates (Sig-
mund et al. 2016). The de-homogenization approach (Pantz 
and Trabelsi 2008), a post-processing method for realizing 
viable structures composed of varying microarchitectures, 
has been implemented to produce high-resolution mono-
scale designs optimized through parameterized, homoge-
nization-based topology optimization (Groen and Sigmund 
2018; Groen et al. 2019). The de-homogenization approach 
for stiffness optimal structures typically employs plate-like 
microscale geometry, but other objectives (e.g., tailor-
able actuation, increased buckling strength) benefit from 
increased microscale geometric complexity (Zhu et al. 2017; 
Wang and Sigmund 2021). Therefore, there is a need for 
increased parameterization of the microscale unit cell, and 
multiscale modeling techniques must adapt to accommodate 
the increasing design complexity.

With increasing parameterization and design complex-
ity, surrogate models of numerical homogenization are 
used to approximate effective microstructure properties for 
multiscale design. A surrogate model for homogenization 
in multiscale optimization must resolve the effective mate-
rial properties—and their derivative information—from the 
design parameters. As such, increasing parameterization 
requires sophisticated regression techniques to adequately 
approximate numerical homogenization. Low-order poly-
nomial approximations (Watts et al. 2019) and multidimen-
sional surrogates (Imediegwu et al. 2019) have been used 
to relate microscale features to their respective macroscale 
properties. Parameterization also offers explicit control of 
material interfaces, aiding design for manufacturing appli-
cations. Parameterized truss-like microstructures have been 
extensively evaluated in multiscale structures designed for 
additive manufacturing (Imediegwu et al. 2019; Murphy 
et al. 2021; Watts et al. 2019; Wu et al. 2021b). Other highly 
parameterized multiscale optimization methods employ 
the metamaterial, a strategy for design that uses geometry 
rather than material constituents to tailor performance (Yu 
et al. 2018). Metamaterial design generally favors intricate 

microscale features, so data-driven methods are necessary 
for efficient implementation in multiscale design (Wang 
et al. 2020).

To address the growing complexity of microscale geom-
etry, machine learning (ML) models have been proposed as 
a new surrogate for multiscale analysis. ML has attracted 
attention in multiscale modeling with applications to mate-
rial optimization (Kollmann et al. 2020; Wang et al. 2020) 
and nonlinear analysis (Logarzo et al. 2021). ML frame-
works, specifically the neural network (NN), have also been 
implemented as surrogate models for numerical homogeni-
zation in multiscale optimization. The NN offers an explicit 
model for multidimensional functions and has shown the 
capacity to approximate highly nonlinear functions (Hornik 
et al. 1989; Gallant and White 1992; Nguyen-Thien and 
Tran-Cong 1999; Goodfellow et al. 2016).

NN techniques are commonly employed in parameterized 
multiscale optimization to approximate the effective elastic 
properties of a microstructure. Zhou et al. implemented a NN 
in the multiscale optimization of parameterized lattice struc-
tures (Zhou et al. 2022); White et al. implemented a Sobolev 
norm NN (a NN that is directly trained on derivative data) in 
fine-scale multiscale truss optimization (White et al. 2019); 
Kim et al. used a DNN surrogate model for homogeniza-
tion in graded composite structural design (Kim et al. 2021). 
Zheng et al. implemented a NN surrogate for evaluation and 
sensitivity analysis of spinodoid metamaterials (Zheng et al. 
2021). Other non-parameterized techniques may use the NN 
to navigate a library of microstructure geometries (Wang 
et al. 2020; Chan et al. 2022). These techniques, however, 
fail to capture highly complex microstructure features with 
tens to hundreds of features. Furthermore, it is still unclear 
how NN architecture and training procedures affect its sen-
sitivity analysis in the context of multiscale optimization.

The development of these NN surrogate models requires 
pre-computation of a training dataset followed by the itera-
tive optimization of the model’s parameters. These two 
characteristics affect both the model’s execution accuracy 
and the accuracy of its derivative information. This work 
explores these characteristics as they apply to multiscale 
design and surrogate models for numerical homogenization. 
This work is presented to evaluate the DNN as a surrogate 
model for numerical homogenization in the context of mul-
tiscale design. The goal of this evaluation is to characterize 
the surrogate model’s capacity for geometric complexity and 
increase the design space from lattice-like designs to more 
complex geometries akin to metamaterials. To this end, we 
establish the DNN as a viable surrogate for evaluation and 
sensitivity through comparison with Interface-enriched Gen-
eralized Finite Element Methods (IGFEM). The verification 
process involves experimentation with DNN architecture and 
training data to establish a framework for training DNNs as 
surrogates in highly parameterized multiscale optimization. 
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With this verification, we can characterize DNN perfor-
mance and generate effective training datasets. Finally, we 
are able to extend these models to highly parameterized 
microstructures, approaching the design freedom charac-
teristic of mechanical metamaterials. As an example of this 
complexity, we introduce a bio-inspired 3D truss design 
defined by 30 geometric parameters.

Section 2 presents the proposed framework for integrat-
ing ML in multiscale analysis with the DNN. Section 3 
introduces the formulation for structural optimization, 
then Sect. 4 examines the DNN performance compared to 
IGFEM in the context of multiscale optimization. Once the 
ML framework is sufficiently scrutinized, various optimiza-
tion examples are presented in Sect. 5 to extend the approach 
to highly parameterized designs.

2 � Numerical model and DNN surrogate

In this study, we aim to perform gradient-based optimiza-
tion of a multiscale structure. To reduce the computational 
burden of the microscale design parameters, we integrate the 
DNN as a surrogate model for numerical homogenization. 
Such a surrogate model must not only provide an approxima-
tion of a microstructure’s behavior, but it also must model 
its sensitivity with respect to multiple design parameters. 
We are concerned with the accuracy and stability of this 
implementation in the context of multiscale design.

Numerical homogenization is used to approximate the 
effective properties of a microstructure. Each microstructure 
is defined within the bounds of a repeated unit cell geometry 
consisting of two or more linear elastic materials (Fig. 1). 
Given sufficient separation of length scales such that the 
microstructure’s geometry is much smaller than its macro-
scale domain, the composite microstructure can be distilled 

into a single homogenized representation. As such, numeri-
cal homogenization is a powerful tool in multiscale opti-
mization used to link the multiscale features to macroscale 
performance. We include the relevant results of the energy-
based homogenization approach here; a thorough presenta-
tion of the homogenization procedure is offered in Guedes 
and Kikuchi (1990), Hassani and Hinton (1998), Allaire and 
Brizzi (2005), and Andreassen and Andreasen (2014).

For the constitutive relation �ij = Cijkl�kl of stress �ij and 
strain �kl , the effective constitutive tensor of a periodic com-
posite can be expressed as

where Y represents the microstructure cell volume, �0(ij)pq  
refers to the prescribed unit strain case on the unit cell (there 
are 3 unique prescribed elastic strains in 2D, 6 in 3D). The 
local strain field �∗(ij)pq  is associated with the Y-periodic solu-
tion to the elasticity condition

for the Y-periodic admissible displacement field v. The con-
stitutive tensor Cijkl can be expressed in matrix form using 
Voigt notation; discretized for finite element analysis (FEA), 
the microstructure is homogenized using (1) in matrix nota-
tion appropriate for FEA as

for N� elements e� with element stiffness matrix ke� , dis-
placement field u0

e�
 corresponding to the unit strain test case 

�0 , and displacement field ue� corresponding to the strain �∗ 
induced by microstructure geometry. Note that the subscript 
e� indicates an element in the microscale structure. For the 
most general elastic problems, CH has 6 unique components 
in 2D and 21 unique components in 3D. The DNN surrogate 
models developed here will target the homogenized constitu-
tive tensor represented by CH.

2.1 � Multiscale analysis

In a macroscale domain discretized for FEA as N ele-
ments (Fig. 2), we introduce the macroscale design vari-
able � = {�1,�2,…�N} ∈ (0, 1] to indicate the pres-
ence of material and the microscale design variable 
x = {x1

1
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,… , x1

N
, x2

1
, x2

2
,… , x2
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,… , xM
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represent N microarchitectures defined by M parameters.
The solid isotropic microstructure with penalty (SIMP) 

method (Zhou and Rozvany 1991; Rozvany et al. 1992) is 

(1)CH
ijkl

=
1

|Y| ∫Y

Cpqrs

(
�0(ij)
pq

− �∗(ij)
pq

)(
�0(kl)
rs

− �∗(kl)
rs

)
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(2)∫Y

Cijpq�
∗(kl)
pq

�vi

�yj
dY = ∫Y

Cijpq�
0(kl)
pq

�vi

�yj
dY

(3)CH = CH
ij
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1
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N�∑
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(
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e�

)T

ke�

(
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Fig. 1   A macroscale domain subjected to generic boundary condi-
tions ( tp on ��N and up on ��D ) is characterized by microscale geom-
etries at X defined with periodically varying microstructures. This 
multiscale representation is shown in 2D for simplicity, but the rela-
tions are equally applicable to 3D
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applied to penalize intermediate macroscale representa-
tions. The SIMP method links the macroscale analysis to 
the homogenized constitutive behavior [cf. (3)] through 
the following penalized expression for the constitutive 
matrix:

A nearly zero valued matrix Cmin is introduced to avoid sin-
gularities in numerical analysis, and the penalization power 
p favors �e toward 0 or 1. Note that (4) implements CH , 
which may be determined through numerical homogeniza-
tion and (3) or through an appropriate surrogate model.

With this complete expression for effective macroscale 
constitutive behavior in (4), implementation into FEA is 
performed with the element stiffness matrix

where B is the strain–displacement matrix and Ce is the con-
stitutive matrix of the element e from (4). Macroscale equi-
librium for linear elastic FEA is subsequently expressed as

where � is the assembled global stiffness matrix, � is the 
finite element nodal displacement, and �  is the finite element 
nodal force.

Parameterization of the microarchitecture via x offers 
explicit control over the microarchitecture’s geometric 
limits. The added control may be leveraged to enforce 
a specific engineering quality, unit cell connectivity, or 
manufacturing constraints.

Implementing numerical homogenization into a numeri-
cal framework for concurrent multiscale optimization, 
however, presents some practical challenges. Namely, the 
design space quickly becomes intractable considering (i) 

(4)Ce(�e, xe) = Cmin + �p
e

(
CH(xe

)
− Cmin).

(5)ke = ∫
�e

BTCeBd�e,

(6)�� = � ,

the number of M parameters necessary to achieve sufficient 
design flexibility in each microstructure and (ii) the num-
ber of N microstructures necessary to achieve sufficient 
separation of scales. Facing these challenges, we turn to 
the DNN as a surrogate model for numerical homogeniza-
tion. The subsequent section introduces the NN formula-
tion and the developments necessary for implementation 
into concurrent multiscale optimization.

2.2 � Deep learning model for homogenization 
and design sensitivity

The NN is a common building block in scientific ML frame-
works (Baker et al. 2019), and is broadly promoted as a uni-
versal function approximator given sufficient parametriza-
tion (Hornik et al. 1989). Practically, the NN represents a 
sequence of matrix operations. Given an input vector x = h0 , 
each layer Ti of the NN produces a latent representation hi 
from a variable matrix of weights Wi and vector of biases 
bi such that Ti+1 = Wihi + bi . Optionally, the layer output is 
passed element-wise through an activation function A (e.g., 
sigmoid, tanh, Rectified Linear Unit) so the layer output 
becomes Ai(Ti) = Ai . With multiple layers added sequen-
tially, the NN is classified as a deep NN (DNN) whose out-
put representation ŷ becomes a composite function of the 
weights and biases for L total layers,

The DNN parameters of W and b are trained through 
the iterative optimization of an objective function L . With 
numerical homogenization as an example, the microstructure 
design parameters become the input x , and the components 
of CH are arranged as the output vector ŷ . Using the mean 
squared error objective function,

(7)DNN(x) = ŷ = AL
◦AL−1

◦⋯◦A1(T1(x)).

Fig. 2   A macroscale, finite element domain is characterized by the 
variable � at each element to indicate the presence of a microstruc-
ture geometry. Within each element, a parameterized microstructure 
is characterized by x . For illustrative purposes, three parameters are 

used as a simple example for an elliptical inclusion defined by the 
major r1 and minor r2 axis and an angle of rotation � . Ultimately, each 
microstructure is homogenized and implemented into macroscale 
FEA
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the NN is trained or optimized to minimize the difference 
between output ŷ and known value y . The inclusion of y 
in this approach requires the pre-computation of a training 
dataset. Again with numerical homogenization as an exam-
ple, the training dataset might consist of sampled microscale 
geometries and their respective homogenized constitutive 
properties. A thorough exploration of the computational 
cost of this approach must include the generation of these 
training data. Critically, the Jacobian of the DNN model can 
be recovered efficiently using back propagation through the 
network, shown as

As the NN model is trained, the model’s error is reduced 
through repeated application of (9) applied to the model’s 
variable parameters or weights. This training process is par-
ticularly appealing for design optimization applications, as 
not only is the DNN trained to mimic some complex ana-
lytical function [i.e., numerical homogenization (1)], but 
the model’s sensitivity is also tuned indirectly. Note that 
the indirect tuning of the sensitivity offers no guarantees of 
accuracy or stability. This sensitivity behavior is investigated 
by White et al. (2019) for a single layer NN. Evaluating the 
DNN’s sensitivity limits is notoriously difficult, and charac-
terization of smoothness is typically constrained to bounded 
Lipschitz constants (Bian and Chen 2012; Fazlyab et al. 
2019; Gouk et al. 2021). This work is primarily concerned 
with (i) how increasing the nonlinearity of the DNN model 
through the addition of multiple layers can improve the 
model’s sensitivity behavior in an optimization context, (ii) 
if this nonlinearity can compensate for low-fidelity, compu-
tationally efficient training data, and (iii) how such a model 
functions with highly parameterized microstructure designs.

To answer these questions, the following work investi-
gates the indirect influence of DNN architecture and training 
procedure on the accuracy of its sensitivity. We evaluate this 
“accuracy” both as a value relative to an analytical solution 
and as an operation within multiscale structural optimization. 
A successful surrogate model may therefore not produced per-
fect analytical sensitivities; instead the successful surrogate 
should provide enough information to navigate the multiscale 
design space.

(8)L(W, b, y) =
1

Ny

(y − ŷ)T(y − ŷ),

(9)
𝜕ŷ

𝜕x
=

𝜕ŷ

𝜕AL

𝜕AL

𝜕TL

𝜕TL

𝜕AL−1

⋯

𝜕T1

𝜕x
.

3 � Concurrent multiscale optimization 
framework

Concurrent multiscale optimization aims to improve struc-
tural performance by optimizing material distribution � and 
microstructure geometry x . This work considers the design 
methods for a microstructure defined by x , comparing 
advanced finite element methods (IGFEM) and DNN-based 
surrogate models. For convenience, the design variables are 
combined into � = {�, x} , so the optimization problem is 
formulated as

where � is the objective function, X is the nodal coordi-
nates for the finite element mesh, and g represents applicable 
inequality constraints. We define two objective functions for 
investigating the proposed method for concurrent structural 
optimization. The first, structural compliance, is expressed 
as

The second objective represents the difference between a 
target structural deformation �T and the actual structural 
deformation field � (Wang et al. 2020), formulated as

where NT represents the number of nodes with targeted 
deformation behavior and � is a binary vector indicating a 
targeted or untargeted node.

Volume constraints are defined for the macroscale, micro-
scale, and net volume of the optimized structure. Given the 
microstructure volume vx , the appropriate volume con-
straints are

where V� and Vx are the volume fractions for the macroscale 
distribution of material and volume fraction of the micro-
scale structure. The macroscale volume fraction V� controls 
the fraction of the macroscale domain that contains any 
material and ranges from 0 (no material in domain) to 1 
(material present in entire domain). The microscale volume 
fraction Vx represents the volume fraction of the micro-
scale features present in the design and ranges from 0 (the 

(10)

min
�

𝛩(�(X(�),�), � (�),�),

such that: 𝛼min
i

< 𝛼i < 𝛼max
i

,

and: g(�(X(�),�), � (�),�) ≤ 0,

�(X(�))�(X(�),�) = � (X(�)),

(11)�c(�(X(�),�), � (�)) = �
T
�.

(12)
�p

(
�(X(�),�),�T

)

=
1

NT

(� ⋅ (�T − �))T(� ⋅ (�T − �)),

(13)g =

{
1

N

N∑

e=1

�e − V�,
1

N

N∑

e=1

�evx − Vx

}
,
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structure is composed of empty cells) to 1 (the structure is 
composed of solid cells). The minimum volume fraction of 
each microscale cell is a function of its parameterization and 
is limited by the geometric restrictions imposed by �min

i
 and 

�max
i

 . Given this formulation, the net volume fraction within 
the design domain V is then V�Vx.

A mesh-independent filtering technique of the design 
variables is also employed (Bruns and Tortorelli 2001). For 
an element i and filter radius r, the elements j within that 
radius are defined as those whose centroid falls within r to 
the centroid of i. The centroid–centroid distance dj is used in 
Gaussian-weighted kernel for each design variable,

Filtering is a popular technique in topology optimization 
to enforce a length-scale on the design variable � (Bourdin 
2001); in multiscale design, we propose the same filter as a 
technique for limiting local variations in the microstructure 
geometry. The filtered geometry represents a local averag-
ing of the features, penalizing rapid local changes in the 
microscale geometry.

3.1 � Sensitivity analysis for macroscale performance

This subsection begins with a presentation of the macroscale 
sensitivity analysis formulated from the macroscale objec-
tives (11) and (12). The objective function’s sensitivity with 
respect to the design variable ��

��
 is found through adjoint 

sensitivity analysis. The full multiscale sensitivity analysis 
requires a microscale sensitivity (discussed in Sect. 3.2), 
evaluated from the microarchitecture’s homogenized prop-
erties, the microarchitecture’s parameterization, and a mac-
roscale sensitivity evaluated based on the macroscale struc-
tural response.

For FEA on a fixed mesh (i.e., �X
��

=
��

��
= 0 ) and the 

objective functions (11) and (12), differentiation (in the mac-
roscale) with respect to a single design variable �i produces

where ��
��

 can be found analytically, and ��
��i

 is annihilated 
through the addition of an adjoint variable. The adjoint 
expression is

(14)𝛼̄i =
∑

j

𝜔j

𝜔
𝛼j,

(15)�j = max

(
1 −

dj

r
, 0

)
,

(16)� =
∑

j

�j.

(17)
��

��i
=

��

��

T ��

��i
,

where � is  the arbi trary adjoint  vector  and (
−�

��

��i
+ �pseudo

)
= 0 . The pseudo-force �pseudo is derived 

from known quantities:

The following expression for the adjoint variable � is used 
to annihilate ��

��i
 in (18):

With the adjoint variable, we obtain the gradient of the 
objective function in terms of known quantities:

For both objective functions (11) and (12), adjoint sensitiv-
ity analysis eliminates the unknown quantity ��

��i
 through the 

addition of the adjoint variable � . Solving (20) for � and 
evaluating (21) produces the sensitivity of our objective 
functions with respect to the design variables. In compliance 
minimization problems (11), ��c

��
= �  and ��

��i
= 0 . For pre-

scribed deformation problems (12), ��p

��
=

1

NT

(� ⋅ (�T − �)) 
and ��

��i
= 0.

The assembly of �pseudo is achieved through the element-
wise assembly of ��

��i
 through

for

where

and

(18)

��

��i
=

��

��

T ��

��i
+ �T

(
−�

��

��i
+ �pseudo

)

=

(
��

��

T

− �T
�

)
��

��i
+ �T

�pseudo,

(19)�pseudo = −
��

��i
� +

��

��i
.

(20)
��

��
− �T

� = 0.

(21)
��

��i
= �T(�pseudo) = �T

(
−
��

��i
� +

��

��i

)
.

(22)
�ke

��i
= ∫

�e

BT �Ce

��i
Bd�e

(23)
�Ce

��e

=

{
�Ce

��e

,
�Ce

�x1
e

,
�Ce

�x2
e

,… ,
�Ce

�xM
e

}
,

(24)
�Ce

��e

= Cmin + p ⋅ �p−1
e

(CH(xe) − Cmin)

(25)
�Ce

�xi
e

= Cmin + �p
e

(
�CH

�xi
e

− Cmin

)

i = 1, 2,… ,M.
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Microscale sensitivity analysis of the homogenized micro-
architectures enters the sensitivity analysis through �Ce

�xi
e

 . Sec-
tion 3.2 compares a finite element-based evaluation of �Ce

�xi
e

 
with its DNN surrogate, including a discussion of various 
ML formulations and their implications in multiscale opti-
mization. If filtering via (14) is used, the filtered variable 
may be expressed in terms of a weight matrix G as

Evaluations are then performed using the filtered design 
variable �̄ . Sensitivities with respect to the raw design vari-
ables are recovered using

3.2 � Sensitivity analysis for microscale geometry

Numerical representations of the microstructure geometry 
require an expression of material interface. In the formula-
tion for multiscale analysis, the material interface is param-
eterized in each finite element by xe . The interface is marked 
by a solid–void transition, where void material is approxi-
mated by an artificially soft material. For example, Fig. 4a 
shows a unit cell with a uniform mesh and material interface 
represented by two materials E1 and E2 where E2 ≪ E1 . 
Although this representation may appropriately approximate 
numerical homogenization through (3), the step-wise inter-
face is fundamentally incompatible with the shape derivative 
�CH

�xi
e

 used in (25).
The optimization, therefore, requires an explicit expres-

sion for CH in terms of xe . This section presents a finite 
element-based model for the material interface and com-
pares performance to a DNN-based surrogate model in the 
context of multiscale structural optimization. The DNN for-
mulation presented in (7) and Fig. 3 provides such an expres-
sion but requires the iterative optimization of the DNN 
parameters. As discussed in Sect. 2.2, this optimization is 

(26)�̄ = G�.

(27)
𝜕�̄

𝜕�
= GT.

formulated to ensure the DNN produces an accurate evalu-
ation Ĉ

H
 relative to some set of training data CH . Addition-

ally, (9) can approximate 𝜕Ĉ
H

𝜕xi
e

 as

In practice, training via (8) directly targets the approxima-
tion of CH which indirectly affects to accuracy of (28). This 
correlation is explored hereafter as we seek to improve the 
evaluation of �C

H

�xi
e

 using the DNN trained with a dataset of 
finite element training data.

4 � Sensitivity verification with finite element 
methods

The Interface-enriched Finite Element Method (IGFEM) 
(Soghrati et al. 2012; Safdari et al. 2015, 2016) was used as 
an evaluation metric for the DNN formulation. IGFEM rep-
resents the material interface through an element enrichment 

(28)𝜕Ĉ
H

𝜕xi
e

=
𝜕Ĉ

H

𝜕AL

𝜕AL

𝜕TL

𝜕TL

𝜕AL−1

⋯

𝜕T1

𝜕xi
e

.

Fig. 3   Implemented as a surrogate model for numerical homogeniza-
tion, the DNN uses the unit cell parameters (e.g., r1 , r2 , � ) as an input 
vector x , produces a sequence of latent representations hi via the opti-
mized variables W and b , and approximates an output ŷ that is recon-
structed into the microstructure’s effective properties CH

Fig. 4   a The finite element method approximates the microstructure 
geometry using solid E1 , and void E2 material but creates a discon-
tinuous material interface. b The Interface-enriched Generalized 
Finite Element Method uses a series of enriched elements to create 
a smooth approximation of the microstructure’s material interface. c 
An enriched element �e is shown, including the enriched or interface 
nodes that separate the two child elements �(1)

e
 and �(2)

e
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scheme that directly evaluates displacement values at the 
interface (Fig. 4b). The enriched or parent element (Fig. 4c) 
is split at the interface into two child elements. The interface 
nodes are a direct function of the microstructure’s geometric 
parameters xe , so (3) can be expressed in terms of ke� (xe) 
and an analytical expression for shape sensitivity is formu-
lated as

Equation (29) and the formulation of 
�ke�

�xi
e

 are discussed fur-
ther in “Appendix 1,” with additional formulation available 
in Najafi et al. (2015, 2017, 2021) and Brandyberry et al. 
(2020). The formulation has also been verified using finite 
difference methods to an absolute relative error on the order 
of 10−6 or lower for all material shape derivative terms.

Root mean square error (RMSE) is used as an evaluation 
metric for the DNN surrogate model. As an example, the 
error in predicting CH is evaluated as

 where NCi represents the number of independent compo-
nents of CH , the component C is evaluated via IGFEM and 
(3), and Ĉ is evaluated via DNN. Similarly, RMSE is used 
to evaluate shape sensitivity performance using the inde-
pendent components of �C

H

�xi
e

.
To compare the DNN and IGFEM formulation, a sim-

ple elliptical inclusion was considered with parameters 
xe = {r1, r2, �} as in Fig. 3. Various DNN training strate-
gies were examined to explore the relationship between (28) 
and the iterative optimization of (8). Through comparing the 
shape sensitivity produced via the trained DNN (28) and 
the analytical shape sensitivity produced via IGFEM (29), 
the performance of the DNN in an optimization context can 
be evaluated. Simple geometry is used here for illustrative 
purposes; homogenization of elliptical architecture may 
be approximated using simpler methods (e.g., polynomial 
models). For our purposes, the elliptical inclusion provides 
sufficient complexity to evaluate the DNN.

The training dataset was generated from randomized sam-
ples of 20 × 20 IGFEM mesh with base material ( E1 = 1 Pa, 
� = 0.3 ) and void material ( E1 = 10−6 Pa, � = 0.3 ). With 
667 examples dedicated to training and 333 examples used 
for testing, model training was performed using the Adam 
optimizer (Kingma and Ba 2017) with an initial learning 

(29)

�CH
IGFEM

�xi
e

=
1

|Y|

N�∑

e�=1

(
u0(i)
e�

− u(i)
e�

)T �ke�

�xi
e

(
u0(j)
e�

− u(j)
e�

)
.

(30)RMSE =

�����
∑NCi

i=1

∑NCi

j=1
(Cij − Ĉij)

2 where i ≤ j

∑NCi

k=1
k

,

rate of 10−4 over 105 iterations of full-batch gradient descent. 
All layers except the final layer are activated by the sigmoid 
logistic function. The results of (8), reported as an average 
over the 333 test examples, are shown in Table 1 for different 
model architectures. As expected, sufficiently large networks 
( n ≥ 32 ) were increasingly accurate, and deeper networks 
( L ≥ 1 ) generally outperformed shallower networks. As the 
layer count increased beyond L = 4 , the networks failed to 
converge due to vanishing gradients. “Appendix 2” offers 
more information of this phenomenon and presents more 
practical considerations for training DNNs for concurrent 
multiscale optimization. Based on these results, all subse-
quent analysis of DNN architecture will limit the number of 
hidden layers to L ≤ 3.

4.1 � DNN shape sensitivity performance

A pedagogical compliance minimization problem is con-
sidered to illustrate the DNN’s performance in concurrent 
multiscale optimization as an approximator of the homog-
enized constitutive properties CH , microscale sensitivity 
�CH

�x
 , and resulting macroscale sensitivity ��c

�x
 . It is important 

to note that the DNN has been trained to approximate the 
homogenized constitutive properties, and this approxima-
tion is independent of the particular objective (i.e., compli-
ance or prescribed deformation). The domain, illustrated in 
Fig. 5a, features a unit load applied to the first free node 
along X2 = 1 . The domain is defined by L = 3 , W = 1 , and 
m =

1

4
 . A randomized selection of microarchitectures was 

generated to demonstrate the DNN’s performance as a sur-
rogate model. For the 48 randomized microstructures in the 
12 × 4 macroscale mesh Fig. 5a, RMSE [cf. (30)] was used 
to compare the independent components of the DNN’s CH , 
�CH

�x
 , and ��c

�x
 with the equivalent IGFEM analysis.

RMSE for CH is plotted for various DNN architec-
tures in Fig. 5b; the DNN’s performance in the pedagogi-
cal example affirms its evaluation by the test dataset (cf. 
Table 1), with increasing layer size h and neuron count 

Table 1   The Loss values of (8) are reported as L × 103 for different 
DNN frameworks

Layers L Neurons n

8 16 32 64 128

1 0.0622 0.0424 0.0418 0.0578 0.0646
2 0.0837 0.0579 0.0724 0.0647 0.0481
3 0.3078 0.2541 0.0323 0.0256 0.0230
4 0.2719 0.2899 0.0319 0.0270 0.0171
5 3.6462 0.2703 0.8665 0.0180 0.0313
6 3.6454 3.6111 0.0534 3.7668 3.9569
7 3.6420 3.6428 3.8530 3.9963 4.1985
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n leading to increased accuracy. The plotted RMSE in 
Fig. 5b demonstrates sufficient accuracy on the order of 
1% relative to IGFEM. Figure 5c also shows the CPU time, 
measured with a single PC with Intel Core i7 (6x 2.20 
GHz) and 32 GB of DDR4RAM over 48 microarchitec-
tures, where the DNN model reduces computation time by 
a factor of approximately 104 . These performance gains are 
expected, as the DNN is executed as a sequence of matrix 
multiplications.

The pedagogical compliance minimization problem in 
Fig. 5a was also used to evaluate the DNN’s microscale 
sensitivity performance. RMSE of the independent com-
ponents of �C

H

�xi
 was calculated for different DNN architec-

tures and is illustrated in Fig. 6. Using normalized error 

norms, the DNN’s error in evaluating CH is strongly cor-
related to its resulting shape sensitivity �C

H

�xi
 (Fig. 6b).

The macroscale sensitivity ��c

�xi
 was also evaluated using 

different DNN architectures. Figure 7a compares the mac-
roscale sensitivity performance for IGFEM and DNN 
models using RMSE. The DNN model was shown to 
closely approximate shape sensitivity for many architec-
tures. The DNN’s RMSE in evaluating macroscale sensi-
tivity was consistently near or less than 10 for all param-
eters. Because ��c

�r1
 and ��c

�r2
 are significantly larger in 

magnitude than ��c

��
 (Fig. 7b), the relative error induced by 

the DNN surrogate model is shown to be larger for less-
sensitive parameters like � . Regardless of this error, the 
DNN surrogate model correctly indicates the direction of 

Fig. 5   DNN performance is shown for a pedagogical compliance 
minimization example. a A randomized collection of microarchitec-
tures is assembled into a 2D beam subjected to nodal force F. b The 
root mean squared error is shown for the ML-predicted homogenized 

constants compared to the IGFEM-evaluated homogenized constants. 
c The CPU time for the analytical IGFEM method is compared to its 
ML equivalent

Fig. 6   The DNN’s performance in shape optimization is illustrated. 
a Shape sensitivity for the three elliptical parameters is compared 
using RMSE of the ML approach compared to the analytical IGFEM 

approach. b Using normalized error metrics, the correlation between 
training accuracy and the resulting approximation of shape sensitivity 
is shown
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increasing performance for all microscale parameters and 
successfully navigates the microscale design space.

For both the test dataset and pedagogical example, the 
sufficiently parameterized DNNs achieved higher accuracy 
in predicting CH from geometric parameters. Instability was 
also observed for over parameterized models including the 
3 layer, 128 neuron model as shown in Fig. 6a, indicating an 
upper limit to the model’s parameterization. Perhaps more 
interesting is the strong correlation between the accuracy 
of the DNN’s Ĉ

H
 and its predicted shape sensitivity evalu-

ated via (28). The strong correlations, illustrated in Fig. 6b, 
indicate that a sufficiently accurate DNN also produces a 
sufficiently accurate (but not analytical) approximation of 
shape sensitivity, provided that the DNN was successfully 
trained without vanishing/exploding gradients or overfit-
ting. Therefore, we theorize that if a DNN is successfully 
trained via (8), then the model will still produce shape sen-
sitivity information capable of navigating the multiscale 
design space. This implies that the DNN—trained under the 
right conditions without over parameterization—can infer 
a smooth approximation of physical properties without an 
explicit representation of the shape geometry. A DNN sur-
rogate for homogenization and shape sensitivity would have 
significant impact in multiscale design, as more complex 
parameterized architectures may be introduced to the con-
current design space.

4.2 � FEM vs. IGFEM training data

The previous section demonstrated a strong correlation 
between evaluation accuracy and the resulting shape sensi-
tivity for multiple DNN architectures trained using IGFEM 
training data. The DNN was shown to infer a smooth and 
accurate approximation of parameterized homogeniza-
tion. This section examines the training data necessary 
to achieve this smooth approximation. If imperfect train-
ing data (i.e., data without an analytical representation of 
shape parameters) can inform a suitable DNN surrogate, 
then the computational cost of dataset generation may be 
reduced. We propose FEM training data with an approxi-
mate representation of material interface to inform the 
DNN training. The FEM-trained DNN, IGFEM-trained 
DNN, and IGFEM models for homogenization are subse-
quently compared in concurrent multiscale optimization.

From evidence in the previous section, we propose a 3 
hidden layer, 32 neuron DNN with all layers except the final 
activated by the sigmoid logistic function. The FEM-trained 
DNN uses 1000 examples of 50 × 50 mesh to approximate 
an elliptical microstructure, as in Fig. 4a, with linear, 4-node 
elements. In contrast, the IGFEM-trained DNN uses 1000 
examples of 20 × 20 IGFEM mesh to provide an better 
approximation of the elliptical microstructure with linear, 
3-node elements. The different discretization fidelities 
( 50 × 50 FEM and 20 × 20 IGFEM) were chosen as accept-
able resolutions to capture the material interface (Fig. 4) 
while maintaining computational efficiency. The different 
fidelities and element formulations will produce slightly 

Fig. 7   a For the microstructure defined by r1 , r2 , and � , the three com-
ponents of ��

�

�xi
 are shown for different DNN configurations. Root 

mean square error (RMSE) is used to compare the evaluation of 

shape sensitivity via ML and via IGFEM. b The predicted sensitivity 
��

�

�xi
 for the DNN ( h = 3 , n = 32 ) is compared to its analytical IGFEM 

equivalent
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varied homogenized parameters and thus slightly different 
displacement fields. To ensure fair comparison, designs pro-
duced via IGFEM, IGFEM-trained DNN, and FEM-trained 
DNN are all evaluated using IGFEM.

For both FEM and IGFEM training configurations, 667 
instances of input ( xe = {r1, r2, �} ) and output ( CH ) pairs 
were used during model training, while 333 examples were 
used for testing and the subsequent model evaluations. 
Model training was performed using the Adam optimizer 
(Kingma and Ba 2017) with an initial learning rate of 10−4 
over 105 iterations of full-batch gradient descent. The FEM-
trained DNN converged to L = 7.611 × 10−5 , and when 
compared to the IGFEM performance shown in Table 1, was 
considered sufficiently accurate to implement in multiscale 
structural optimization.

Once trained, the FEM-trained DNN and IGFEM-trained 
DNN were compared to analytical IGFEM in two concur-
rent multiscale structural optimizations. A 2D, plane-strain 
structure was considered. Each microstructure was defined 
by a base material ( E1 = 1 Pa, � = 0.3 ) and void mate-
rial ( E1 = 10−6 Pa, � = 0.3 ) to apply elliptical inclusions. 
The elliptical inclusion’s radii ( r1 and r2 ) were limited to 
�min = 10% and �max = 80% of the unit cell width, while 
the volume constraint of the entire structure was defined as 
V = Vx = 0.75 . Both optimizations were performed using 
the MMA algorithm for gradient-based optimization (Svan-
berg 1987). Although this macroscale mesh is too coarse 
to adequately model a multiscale structure and the separa-
tion between scales is not adequate (cf. Sect. 2), the mesh 
is appropriate for comparing our models for homogeniza-
tion, as we can still directly compare the optimization con-
vergence of an analytical IGFEM model against its DNN 
alternatives.

4.2.1 � Compliance minimization verification example

For the first optimization, the domain presented in Sect. 4 
was optimized to minimize the compliance of a 12 × 4 2D 
structure (Fig. 8a). Over 100 iterations, three methods were 
compared for the microstructure sensitivity: (i) the IGFEM 
method and (29), (ii) ML-based differentiation (28) with 
an FEM-trained DNN, and (iii) ML-based differentiation 
(28) with an IGFEM-trained DNN. The three methods are 
compared in Fig. 8c with the optimization results shown 
in Fig. 8d–f. Evaluated analytically using IGFEM, the con-
verged compliance values �c were 125.4, 124.6, and 125.0 
for the IGFEM, IGFEM-trained DNN, and FEM-trained 
DNN designs, respectively; the converged objective was 66% 
of the original objective for all three designs. Furthermore, 
the optimized designs all agree well with the density-based 
topology optimization result ( 120 × 40 mesh, filtered with 
radius r = 1.5 , and penalized by p = 4 ). Shown in Fig. 8b 
the density-based topology optimization result produced 
similar material concentrations as the multiscale design 
results. As a reference, on a single PC with Intel Core i7 (6x 
2.20 GHz) and 32 GB of DDR4RAM, the optimization in 
Fig. 8d took roughly 8 h, while the ML optimizations each 
took roughly 1 min with 47 min of data generation time and 
11 min of model training. The data generation and model 
training times are one-time costs for each training dataset 
(training is only necessary once for each microstructure 
geometry), so the same model can be reused for multiple 
macroscale structures; the model must be trained just once 
for a given microstructure parameterization and may be 
reused as a model for homogenization in any context.

Fig. 8   a The boundary conditions for the compliance minimization 
[cf. (11)] problem used to validate the DNN in multiscale structural 
optimization. b The density-based topology optimization result is 
included as a reference for the same problem. c Convergence behavior 

of the IGFEM optimization, ML trained with IGFEM data, and ML 
trained with FEM data is illustrated over 100 iterations. d–f The opti-
mization results are shown for the three models of homogenization
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4.2.2 � Prescribed deformation verification example

The second optimization example uses the parameterized 
microstructures to achieve a prescribed deformation. For 
a 12 × 6 2D structure compressed 20% of its length, a tar-
get displacement was assigned to the structure’s free edges 
(Fig. 9a). The target displacement �T is defined by cosine 
waves for the X2 component

for an amplitude c1 and period c2 . For this example, c1 is 
2.5% of the beam width, and c2 is 50% of the beam length. 
A large prescribed strain is used here to sufficiently differ-
entiate optimization results. Over 100 iterations, the three 
design paradigms—IGFEM, ML trained with IGFEM data, 
and ML trained with FEM data—converged to similar meas-
ured performance (Fig. 9b). Evaluated analytically using 
IGFEM, the converged objective values �p were 1.46 × 10−5 , 
2.44 × 10−5 , and 2.57 × 10−5 for the IGFEM, IGFEM-trained 
DNN, and FEM-trained DNN designs, respectively; relative 
to the initial objective of �p = 2.72 × 10−4 , the converged 
objectives were 5.4%, 9.0%, and 9.4% of the objective for 
the IGFEM, IGFEM-trained DNN, and FEM-trained DNN 
designs, respectively. Additionally, converged designs were 
geometrically similar for all three paradigms (Fig. 9c–e). We 
do not address buckling at either macro- or microscales, but 
we do observe design patterns that align with the diagonal, 
shear buckling behavior observed in Vilardell et al. (2019).

(31)
�T2(X1,X2) = c1 − c1 cos(2X1�∕c2),
X2 = 0.5 ∨ X2 = − 0.5

For both compliance and prescribed displacement exam-
ples, the FEM-trained DNN, IGFEM-trained DNN, and 
analytical IGFEM models produced homogenized properties 
and shape sensitivities for concurrent multiscale structural 
optimization. All three approaches produced nearly identical 
designs in both performance and topology. In these applied 
examples, we note that the previously reported errors in 
shape sensitivity (cf. Figs. 6, 7) resulted in no adverse effects 
in the structural optimization process. Instead, we observed 
computation time decrease by multiple orders of magnitude. 
Furthermore, the IGFEM-trained and FEM-trained DNNs 
were shown to produce practically identical optimized struc-
tures. This phenomenon, which leads to many local optima 
that satisfy the design constraints, is further explored in 
Sect. 5.1. The DNN was able to infer a smooth function 
of material interface from the imperfect, discontinuous sur-
face representations of FEM, permitting extension to DNN-
driven optimization of highly parameterized, geometrically 
complex microarchitectures represented by computationally 
efficient FEM models.

5 � Examples

5.1 � Elliptical inclusion

With increased computational efficiency afforded by the ML 
model for homogenization, the number of unique micro-
architectures in each structure can be increased. The fol-
lowing examples present some key findings of this increased 
design space using the ML model trained with FEM data. 

Fig. 9   a The initial displacement (red-dotted line) and target displace-
ment (black-solid line) are shown for the verification example formu-
lated as a prescribed displacement optimization [cf. (12)]. b The con-
vergence behavior is shown for the IGFEM optimization, ML trained 

with IGFEM data, and ML trained with FEM data. c–e The results for 
the three methods of optimization are shown in their deformed condi-
tions. (Color figure online)
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Even with this rather simple geometry, there exists some 
important properties of the concurrent microscale design 
space: (i) a dependence on initial condition, (ii) a depend-
ence on the macroscale mesh, and (iii) the existence of mul-
tiple local optima. The elliptical inclusion of Fig. 4a is again 
considered with three parameters per element xe = {r1, r2, �} 
with radii ( r1 and r2 ) limited to �min = 0% and �max = 99% of 
the unit cell width.

The dependence on initial condition is evident in Fig. 10, 
where an optimization for prescribed deformation was per-
formed using two sets of initial elliptical inclusions. The 
prescribed deformation is defined similar to (31)

for an amplitude c1 set to 25% of the beam width and 
period c2 set to the beam length. In the first group, the ini-
tial condition was set to x(init)

e
= {0.1, 0.1, 0} for each unit 

cell, while the second group’s initial condition was set to 
x(init)
e

= {0.35, 0.35, 0} . Both optimizations feature a pre-
scribed deformation problem for a elastic 2D structure 
compressed 10% of its length and use the ML model trained 
with FEM data for microscale analysis and sensitivity. The 
target displacement is defined by (32) for c1 equal to 25% of 
beam width and c2 = 10 . Figure 10b shows the results of an 
unconstrained optimization, where the initial conditions con-
verged to different passable designs with �(1)

p = 2.093 × 10−4 
and �(2)

p = 4.329 × 10−4 as evaluated by the FEM-trained 
DNN. A volume constraint of V = 0.75 was then applied 
to each initial condition (Fig.  10c), and the multiscale 
optimization converged to nearly identical designs with 
�

(1)
p = 1.380 × 10−4 and �(2)

p = 1.360 × 10−4 as evaluated 

(32)
�T2(X1,X2) = c1 − c1 cos(2X1�∕c2),

X2 = 0

by the FEM-trained DNN. For both cases of constrained 
and unconstrained optimization, the ML model for micro-
scale sensitivity performed as expected and remained stable 
during multiscale optimization.

Concurrent multiscale design is also mesh-dependent. 
To illustrate this phenomenon, a prescribed deformation 
problem was considered for a beam compressed 10% of its 
length with the ML model trained with FEM data applied 
for microscale analysis and sensitivity. Two mesh fidelities 
are introduced in Fig. 11 with identical initial conditions and 
volume constraints; an additional example is provided that 
enforces symmetry along the beam’s length via a fixed dis-
placement boundary condition in X2 . Over 100 iterations, �p 
converged to 1.556 × 10−5 , 4.604 × 10−6 , and 1.941 × 10−6 
for the 12 × 6 , 48 × 24 , and 48 × 12 macroscale meshes as 
evaluated by the FEM-trained DNN. Despite the varying 
objective values, the three designs follow similar trends with 
inclusions orienting in similar orientations and locations.

There also are multiple functionally equivalent designs 
in the multiscale design space. The ML-based model for 
microscale analysis captures this phenomenon as illustrated 
in Fig. 12. A reference design was considered as a baseline 
within the parameter space. As in the previous example, the 
design was compressed 10% of its length with the FEM-
trained DNN applied for microscale analysis and sensitivity. 
For the multiple initial conditions outlined in Fig. 12, the 
multiscale structural optimization process produced mul-
tiple unique and functionally equivalent designs. For the 
five scenarios in Fig. 12, �p converged to 4.687 × 10−10 , 
4.258 × 10−9 , 1.282 × 10−8 , 1.1404 × 10−9 , and 1.999 × 10−10 
as evaluated by the FEM-trained DNN.

Various applications of multiscale design for compli-
ance minimization are shown in Fig. 13 for the 2D domain 

Fig. 10   a An optimization for prescribed deformation is formulated 
for an initial displacement (red-dotted line) and target displacement 
(black-solid line). Two initial conditions are considered to explore the 
multiscale design space using a ML model for microarchitecture. b 

Unconstrained optimization produces different designs with similar 
performance, while c constrained optimization produces nearly iden-
tical designs and performance. (Color figure online)
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presented in Sect. 4. Depending on the selection of volume 
constraints ( V�,Vx,V  ), filter radius r, and penalization 
parameter p, a variety of optimized designs were achieved. 

The density-based result (Fig. 13a) was used as a benchmark 
for �c and different optimization formulations were with the 
ML model trained with FEM data applied for microscale 

Fig. 11   a Three macroscale domains are considered marked by their 
12 × 6 , 48 × 24 , and 48 × 12 macroscale meshes. b A prescribed 
deformation optimization problem is considered for an initial dis-
placement (red-dotted line) and target displacement (black-solid line). 

For illustrative purposes, the 48 × 12 uses a symmetry condition 
along X2 = 0 . c The optimized designs for the three cases are com-
pared after 100 iterations. (Color figure online)

Fig. 12   Given a reference design and a prescribed deformation, the five different initial conditions for multiscale optimization with ML micro-
structure analysis produce five unique optimized designs with nearly identical structural performance
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analysis and sensitivity (Fig. 13b–f). Figure 13b presents 
the formulation with a macroscale distribution variable 
(i.e., � = 1 ) and constrained microscale volume fraction 
Vx . As expected, this formulation performed worse than 
those with more design freedom and did not improve com-
pliance over the density-based result. Figure 13c initializes 
both � and x as design variable, but only constrains the net 
volume fraction V. The converged result produces a mac-
roscale volume fraction of V� = 0.92 and microscale vol-
ume fraction Vx = 0.65 and improved performance over the 
restricted design space of Fig. 13b. Figure 13d–f introduces 
strict constraints for both macro- and microscale volumes 
with filtering of � (Fig. 13d) or both � and x (Fig. 13e–f). 
Design variable filtering via (14) did not drastically change 
the microarchitecture design, but did improve the objective 
calculation in Fig. 13e. Lastly, as the macroscale volume 
fraction approached the density-based formulation Fig. 13f, 
structural compliance converged to the density-based result 
(Fig. 13a). The relative importance of the macroscale and 
microscale design variables depends on the objective (Wu 
et al. 2021a); in this compliance optimization problem, the 
macroscale distribution of material dominates the micro-
scale effects.

The concurrent multiscale design space is character-
ized by extensive dependence on initial condition, mesh 
fidelity, and constraints leading to many local optima. Any 
error inherent in the ML-based approximation of numerical 
homogenization is quickly overshadowed by these obstacles 
in multiscale design. Within this context, the FEM-trained 
DNN inferred a smooth approximation of a parameterized 
microstructure from imperfect training data and was inte-
grated unobtrusively into multiscale optimization.

5.2 � BioTruss

The previous sections introduced a microscale geometry 
parameterized by a simple elliptical inclusion. The DNN can 
also interpret highly parameterized geometry, accurately pre-
dicting both the homogenized elastic parameters and shape 
sensitivities. To illustrate this flexibility, we introduce the 
BioTruss, a microstructure geometry inspired by the twisted 
structures in trabecular bone. The BioTruss is defined using 
quadratic Bézier curves to represent material interfaces. In 
parametric form, the Bézier curve is defined as

for the 2D control points f a , f n , and � . For a fixed starting 
point f a and end point f b , the two components of � are 
tuned to achieve gradual variation in the curve (Fig. 14a). If 
f a and f b are defined in terms of the unit cell edge width a 
and b, the parameters {a, b, �(1), �(2), �(3), �(4)} define the 2D 
BioTruss architecture (Fig. 14b). In the following examples, 
we set a = b = 0.5 to ensure smooth connectivity between 
unit cells.

Expansion into 3D is achieved by defining twelve Bézier 
curves for each edge of a unit cube then revolving the curves 
around each edge (Fig. 15a, b). To ensure uniform connec-
tivity between cells, the term � is introduced with six compo-
nents (one component for each cube face). The components 
of � define a face-thinning parameter that removes material 
within a cone with base diameter 1.1 and height �i . Once 
material is removed at each face, the connections between 
each BioTruss cell are made invariant to changes of � , so 

(33)
B(t)(i) = (1 − t)2f (i)

a
+ 2t(1 − t)� (i) + t2f

(i)

b
,

0 ≤ t ≤ 1

Fig. 13   Compliance minimiza-
tion problems illustrate the use 
of design constraint to produce 
unique designs. *Objective val-
ues reported via analysis with a 
FEM-trained DNN



	 N. Black, A. R. Najafi 

1 3

   20   Page 16 of 25

connectivity is ensured. Given twelve Bézier curves (24 
parameters) for each edge and 6 face-thinning parameters, 
the BioTruss is fully defined in 3D by 30 unique parameters 
{�(1),… , � (12), � (1),… , � (6)} (Fig. 15c).

The DNN ( h = 3 , n = 32 , all layers except the final layer 
activated by the sigmoid logistic function) was imple-
mented to homogenize the BioTruss geometry. Training 
was performed as in Sect. 3.2. In 2D, a DNN trained with 
667 examples of FEM data ( 50 × 50 mesh, linear 4-node 
elements in plane strain) achieved L = 8.23 × 10−5 on a 
333 example validation dataset. Another DNN trained 
with 3D data ( 24 × 24 × 24 mesh, linear 8 node elements) 
achieved L = 8.38 × 10−6 on a 333 example validation 
dataset. Because both the 2D and 3D DNNs were suffi-
ciently accurate compared to the validation examples (cf. 
Sect. 3.2), both models were considered appropriate for 
implementation into multiscale structural optimization.

The results of both 2D and 3D applications of the 
BioTruss in compliance-based optimizations (Fig.  16) 
agree with previous designs. The 2D example (Fig. 16) was 
characterized in the macroscale by V� ≤ 0.8 , r = 1.5 , and 
p = 3 and in the microscale by Vx ≤ 0.75 and r = 1.5 . After 
100 iterations of multiscale optimization, the resulting 

compliance was 13% higher than the density-based result 
(Fig. 13a), likely because filtering effects limited spa-
tial variation of microarchitectures. In 3D (Fig. 16b–d), 
the DNN-based design of each BioTruss in a 36 × 6 × 12 
mesh produced spatially varying architecture that emu-
late the previously observed behavior in 2D. Although the 
BioTruss is a sub-optimal parameterization for compliance 
minimization (Sigmund 1994), the DNN surrogate model 
was still able to produce sufficiently varying multiscale 
features within the geometric limits imposed by its param-
eterization (Fig. 17). This characteristic implies that the 
DNN can interpret shape sensitivity from highly param-
eterized microarchitectures.

The BioTruss was also implemented into a prescribed 
displacement problem in 2D and 3D (Fig. 18). For an 18 × 6 
mesh in 2D, the prescribed displacement was defined using 
(31) for c1 set to 2.5% of the beam width, and c2 set to 50% 
of the beam length. After 100 iterations of concurrent mul-
tiscale optimization, the DNN-based model reduced �p from 
2.61 × 10−4 to 8.78 × 10−6 (evaluated via the DNN model for 
homogenization). The 3D prescribed displacement problem 
defined the target displacement as

Fig. 14   a A quadratic Bézier 
curve is shown to demonstrate 
sufficient geometric freedom, 
where two control points (i) �1 
and (ii) �2 control the curve. b 
Four Bézier curves applied to 
a 2D microstructure produce 
unique geometry with 10 
parameters

Fig. 15   a Twelve unique Bézier curves are revolved around the edges of a unit cube. b The twelve Bézier curves are shown as projections onto 
each of the cube’s six faces. c The 3D BioTruss shown parameterized by 12 Bézier curves and 6 face-thinning parameters �
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Fig. 16   A compliance optimization is shown for the a 2D BioTruss and b 3D BioTruss. The DNN surrogate model for homogenization produced 
spatially varying architecture from the parameterized cell geometry (c, d)

Fig. 17   The distribution of 3 out of 30 microscale parameters is shown for the compliance minimization problem of Fig. 16b

Fig. 18   A prescribed displacement optimization is shown for the a 2D BioTruss and b 3D BioTruss. c and d The variance in 3D microarchitec-
ture agrees with previous designs, producing increasingly intricate geometries
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for c1 set to 5% of the beam width and c2 set to 50% of 
the beam length. The DNN-based model reduced �p from 
4.98 × 10−2 to 1.26 × 10−2 (evaluated via the DNN model for 
homogenization) after 100 iterations of multiscale optimiza-
tion. The optimized result is approximately 25% of the initial 
condition; as shown in Fig. 19, this optimization reached 
the geometric limits of the microarchitecture. As with the 
compliance minimization application, the prescribed dis-
placement optimization of the 3D BioTruss produced sig-
nificant variations in microscale geometry for the 30 design 
parameters (Fig. 19).

6 � Conclusion

In this paper, the DNN was used as a surrogate model for 
numerical homogenization in the context of concurrent mul-
tiscale design optimization. Using a parameterized unit cell, 
we compared the shape sensitivities produced through back 
propagation of the DNN with the analytical sensitivities pro-
duced via IGFEM. These results indicated a clear positive 
correlation between the DNN’s evaluation accuracy and its 
accuracy in producing shape sensitivities through back prop-
agation. Therefore, the DNN offers an appropriately smooth 
approximation of parameterized homogenization provided it 
is successfully trained.

Through numerous optimization examples, we compared 
IGFEM with a IGFEM-trained DNN and FEM-trained 
DNN. Although the FEM material interface is discontinu-
ous, the continuous DNN approximation of the geometry 
provided reliable shape sensitivities in concurrent multiscale 
optimization. This affirms our conclusion that a sufficiently 
accurate DNN also provides sufficiently accurate shape 
sensitivity for navigating the design space. Because FEM 
training data were sufficient to train an accurate DNN sur-
rogate model, the resulting DNN was effective in providing 

(34)

�T2(X1,X2) = c1 − c1 cos(2X1�∕c2),

X2 = 0.5 ∨ X2 = −0.5

�T3(X1,X3) = c1 − c1 cos(2X1�∕c2),

X3 = 0.5 ∨ X3 = −0.5

sensitivity information during design optimization. With this 
revelation, we extended the DNN into 3D with the highly 
parameterized BioTruss. With numerous design optimi-
zations and an experimental validation, we illustrated the 
DNN’s effectiveness in exploring the microscale design 
space. The DNN surrogate model extends the multiscale 
design space, allowing more geometric freedom in param-
eterizing the microarchitecture in spatially varying struc-
tures. Future work in parameterized concurrent multiscale 
optimization may explore the imposition of manufacturing 
constraints on the parameterization.

We implemented the DNN as a tool for exploring the 
multiscale design space, which is distinctly different than a 
tool for multiscale analysis. Accurate analysis of multiscale 
structures will require a larger computational investment 
including high-fidelity microscale data and analysis of local, 
nonlinear structural deformation. Furthermore, the designs 
presented in this work (particularly the BioTruss) demon-
strate the increased geometric freedom afforded by the DNN, 
but are not necessarily optimal representations. Future work 
should couple results from material optimization to define 
the microarchitecture parameterization.

Appendix 1: IGFEM shape sensitivity 
of the homogenized elasticity tensor

This section introduces the relevant IGFEM sensitivity 
analysis for the homogenized elasticity tensor in relation to 
material shape parameters. We begin with the energy-based 
expression of the homogenized elasticity tensor:

If we simplify the expression to a single component of the 
homogenized tensor and omit the subscripts used to indicate 

(35)CH = CH
ij
=

1

|Y|

N�∑

e�=1

(
u0(i)
e�

− u(i)
e�

)T

ke�

(
u0(j)
e�

− u(j)
e�

)

(36)=
1

|Y|

N�∑

e�=1

(
�0(i)
e�

− �(i)
e�

)T

Ce�

(
�0(j)
e�

− �(j)
e�

)
.

Fig. 19   The distribution of 3 out of 30 microscale geometries is shown for the prescribed displacement problem in Fig. 18b
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microscale element quantities, we can write an element’s 
contribution to the homogenized tensor as

We remark that in this expression, only the strain � is a func-
tion of the shape parameters. The strain �0 is prescribed, the 
element-wise constitute relation Ce�

 is not a function of the 
design variables in the IGFEM shape optimization 
formulation.

The strain � can be represented as the function 
�(X(x), x) = �(X(x), x)�(X(x), x) for the shape parameters 
x . Hereafter, we consider a single shape parameter xi . We 
introduce the simple notation ��

�xi
 as the expression for the 

shape derivative of � . The defining feature of IGFEM is 
�(X(x), x) , where the strain–displacement is a function of 
the shape parameters; for more information on the IGFEM 
implementation of ��

�xi
 , see Najafi et al. (2015, 2017, 2021) 

and Brandyberry et al. (2020). The shape material derivative 
of � is introduced as �∗

i
 . Following these definitions, the 

shape derivative of � is expressed element-wise as

while the shape derivative �∗
i
 is evaluated through the fol-

lowing pseudo-problem:

The pseudo-problem is assembled from the element quanti-
ties �Ke

�xi
 and �Fe

�xi
 . We assert that the material derivative 

�Ce�

�xi
 is 

zero, so the element stiffness derivative follows:

 where we note that ��
�xi

T
Ce�

� is symmetric and div(�i) fol-
lows from the shape velocity term (Najafi et al. 2015). For 
the homogenization case where d�0

dxi
= 0 , the element force 

derivative is

where

Recalling that only � is a function of the design param-
eter with its shape sensitivity in (38), then the sensitivity 

(37)c = ∫
�e

(
�0 − �

)T
Ce�

(
�0 − �

)
d�.

(38)
d�

dxi
=

��

�xi
�e + ��

∗
ei
,

(39)𝕂𝕌
∗
i
= ℙ

i
ps
= −

�𝕂

�xi
𝕌 +

�𝔽

�xi
.

(40)

�Ke

�xi
= ∫

�e

(
��

�xi

T

Ce�
� + �

TCe�

��

�xi
+ �

TCe�
�div(�i)

)
d�,

(41)
�Fe

�xi
= ∫

�e

(
��

�xi

T

Ce�
�0 + �

TCe�
�0div(�i)

)
d�,

(42)�0 = ��
0
e
.

expression of the homogenized elasticity tensor can be 
defined similar to (40):

Next we target the term ��
�xi
�e + ��

∗
ei

 . If we combine the 
expression for the pseudo-element with the relation 
�e = �

TCe�
� , the pseudo-element can be used to eliminate 

��
∗
ei

 in (43) using the element-wise pseudo-force of (39):

 Applying the symmetry of ��
�xi

T
Ce�

� in (44), we conclude

Using (45) in the expression for constitutive sensitivity (43), 
we produce

(43)

dc
dxi

= −∫�e

[

(

��
�xi

�e + ��∗
ei

)T

Ce�

(

�0 − �
)

+
(

�0 − �
)TCe�

(

��
�xi

�e + ��∗
ei

)

+
(

�0 − �
)TCe�

(

�0 − �
)

div(�i)

]

d�.

(44)

𝔹
TCe�

(
�𝔹

�xi
𝕌e + 𝔹𝕌

∗
ei

)

= 𝔹
TCe�

�𝔹

�xi
𝕌e + ℙ

i
pse

= 𝔹
TCe�

�𝔹

�xi
𝕌e −

�Ke

�xi
𝕌 +

�Fe

�xi

= 𝔹
TCe�

�𝔹

�xi
𝕌e

−

(
�𝔹

�xi

T

Ce�
𝔹 + 𝔹

TCe�

�𝔹

�xi
+ 𝔹

TCe�
𝔹div(𝕍i)

)
𝕌e

+

(
�𝔹

�xi

T

Ce�
�0 + 𝔹

TCe�
�0div(𝕍i)

)

=
�𝔹

�xi

T

Ce�
𝔹𝕌

0
e
−

�𝔹

�xi

T

Ce�
𝔹𝕌e

+ 𝔹
TCe�

𝔹div(𝕍i)𝕌
0
e
− 𝔹

TCe�
𝔹div(𝕍i)𝕌e

=

(
�𝔹

�xi

T

Ce�
𝔹 + 𝔹

TCe�
𝔹div(𝕍i)

)(
𝕌
0
e
− 𝕌e

)
.

(45)

�
T
C
e�

(
��
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�
e
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∗
ei
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(
�
T
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e�

��
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Using this element contribution to the shape sensitivity of 
the constitutive parameters, we recover the form in (29).

(46)

dc
dxi

= ∫�e

[

−
((

��
�xi

+ �div(�i)
)

(

�0
e − �e

)

)T

Ce�

(

�0 − �
)

−
(

�0 − �
)TCe�

((

��
�xi

+ �div(�i)
)

(

�0
e − �e

)

)

+
(

�0 − �
)TCe�

(

�0 − �
)

div(�i)
]

d�

= −∫�e

[

−
(

�0
e − �e

)T ��
�xi

T
Ce��

(

�0
e − �e

)

−
(

�0
e − �e

)T�TCe��div(�i)
(

�0
e − �e

)

−
(

�0
e − �e

)T�TCe�
��
�xi

(

�0
e − �e

)

−
(

�0
e − �e

)T�TCe��div(�i)
(

�0
e − �e

)

+
(

�0 − �
)TCe�

(

�0 − �
)

div(�i)
]

d�

= ∫�e

[

(

�0
e − �e

)T ��
�xi

T
Ce��

(

�0
e − �e

)

+
(

�0
e − �e

)T�TCe��div(�i)
(

�0
e − �e

)

+
(

�0
e − �e

)T�TCe�
��
�xi

(

�0
e − �e

)

]

d�

=
(

�0
e − �e

)T �Ke

�xi

(

�0
e − �e

)

.

Appendix 2: Practical considerations

The appropriate DNN architecture and training procedure 
heavily depend on the application (that is, it depends on the 
function space to be emulated). For multiscale optimization 
problems employing homogenization, including applications 
in structural, thermal, and acoustic simulations that employ 
parameterized microstructures, this section may be used 
to generally guide the DNN training process. This section 
reviews some of the key issues associated with DNN train-
ing including vanishing/exploding gradients, batch size, and 
training dataset generation.

Gradient propagation

As the DNN trains, its weights are iteratively updated to 
improve some objective function. The back propagation pro-
cedure [cf. (9)] is used to update the weights and biases of 
the DNN. The convergence of these model parameters is not 
guaranteed; some combinations of model initialization and 
training procedures will produce unstable gradients, often 
referred to as vanishing or exploding gradients (Glorot and 
Bengio 2010; Goodfellow et al. 2016).

In this work, vanishing gradients were observed and are 
reported in Table 1 as the number of DNN hidden layers was 
increased past L = 3 . Figure 20 illustrates the propagation of 
the DNN’s Jacobian for a collection of architectures all trained 

Fig. 20   The gradient produced through back propagation is represented as a histogram for a DNN of size n = 32 and L = 1, 2, 3, 4, 5 or 6 for 
(a–f), respectively. Each DNN was trained to homogenize the IGFEM ellipse microstructure using full-batch training
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with 667 IGFEM elliptical training examples with an initial 
learning rate of 10−4 over 105 iterations of full-batch gradi-
ent descent. As the number of hidden layers increases, as in 
Fig. 20e, f, the Jacobian tends toward zero and caused the train-
ing failures reported in Table 1. In all examples, the vanishing 
gradient phenomena manifested during training and resulted in 
blatantly poor models. For the relatively small models in this 
work, if the training process was stable, then the DNN’s Jaco-
bian was adequate for applications in multiscale optimization.

Batch size

The batch size in a DNN training procedure refers to the 
number of training examples used to calculate the model’s 
sensitivity for a given training iteration (Goodfellow et al. 
2016). Full-batch training was implemented in this work 
because the training datasets are relatively small (100s to 
1000s of examples) and an efficient training procedure was 

desirable. Training in mini batches, generally samples of 
4–32 training examples may improve generalization and 
robustness (Nikolakakis et al. 2022; Novak et al. 2018). 
Table 2 compares the objective values for two identical DNN 
architectures trained via full-batch gradient descent and 
small-batch gradient descent (batch size = 32 ). Small-batch 
training did improve the DNN’s performance as parame-
terization increased. The sensitivity, shown in Fig. 21, was 
inconsistently improved. Based on this evidence, the gains 
achieved through small-batch training do not significantly 
outweigh the additional training cost. For more complicated 
systems that require highly parameterized models, however, 
small-batch training may be necessary to build accurate sur-
rogate models Fig. 22.

Training dataset size

A training dataset is necessary to construct a viable DNN 
surrogate model for engineering applications. The ideal 
training dataset captures the depth and complexity of the 
target function so that the DNN may learn a general and 
robust map within the function space. Whether due to exces-
sively costly data generation or incalculable complexity, the 
ideal training dataset is not always feasible.

Parameterized homogenization is apt for building effec-
tive training datasets. Input parameters are bounded by geo-
metric limits, and output parameters are bounded by the con-
stitutive limits of the material. Given these conditions, it is 
possible to create a representative dataset with 100s to 1000s 
of examples that may be used to create a relatively small 
yet general surrogate model for homogenization. Figure 23 
illustrates correlation between accurate execution and train-
ing dataset size for a DNN of L = 3 and n = 32 . For more 
complicated geometric parameterizations and/or nonlinear 
physics, it is likely that more data are needed to capture the 
complexity of the feature space.

Table 2   The Loss values of (8) are reported as L × 103 for different 
DNN frameworks to compare a full-batch and small-batch training 
strategies

Full-batch training results are denoted by parenthesis

Layers L Neurons n

8 16 32 64 128

1 0.0480 0.0367 0.0311 0.0297 0.0330
(0.0622) (0.0424) (0.0418) (0.0578) (0.0646)

2 0.0451 0.0318 0.0210 0.0159 0.0160
(0.0837) (0.0579) (0.0724) (0.0647) (0.0481)

3 3.0948 0.0330 0.0149 0.0122 0.0135
(0.3078) (0.2541) (0.0323) (0.0256) (0.0230)

4 3.6491 0.0538 0.0256 0.0163 0.0163
(0.2719) (0.2899) (0.0319) (0.0270) (0.0171)

Fig. 21   The shape sensitivities are compared for full-batch and batch size 32 DNNs trained to homogenized the IGFEM ellipse microstructure. 
RMSE error is reported using Eq. (30)
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Homogenization in multiscale optimization

Homogenization assumes a significant separation of 
scales, approximating the local effects of a periodically 
varying microstructure (cf. Sect. 2). The examples pre-
sented in this work have largely focused on the numerical 
behavior of DNN surrogate models for homogenization 
in a selection of optimization exercises. Continued work 
through full-scale simulation and physical experimenta-
tion is necessary to judge the effects of homogenization 
on multiscale structures. This “Appendix” is presented as 

a short illustrative study to show the limits of homogeni-
zation-based multiscale design.

The test case for experimental validation is derived from 
a prescribed deformation problem characterized by

which targets the displacement of a zero Poisson’s ratio 
structure given the boundary conditions shown in Fig. 24a. 
Design optimization was performed using the FEM-
informed DNN model for the 3D BioTruss, producing the 
10 × 10 × 1 structure shown in Fig. 24a after 100 iterations. 
Designs are compared using measured Poisson’s ratio of the 
macroscale structure

where the strains �lat and �long are the lateral and longitu-
dinal strains measured along the specimen’s centroidal 
axes. The initial uniform specimen [ �(i) = {0.5, 0.5}i=1∶12 ; 
� (i) = 0.5i=1∶6 ] has a Poisson’s ratio of 0.33 as evaluated by 
FEM-based homogenization. After 200 iterations of design 
optimization ( Vx = 0.2 ), the BioTruss design converged to a 
Poisson’s ratio of 0.00 (as evaluated by FEM-based homog-
enization). Because the design space reached the parameter 
limits imposed by the BioTruss geometry (Fig. 25), this 
specific microarchitecture formulation is likely unable to 
produce a negative Poisson’s ratio.

(47)�T1 = �T2 = �T3 = 0

(48)� =
−�lat

�long
,

Fig. 22   The gradient produced 
through back propagation is 
represented as a histogram 
for a DNN of size n = 32 and 
L = 1, 2, 3, or 4 for (a–d), 
respectively. Each DNN was 
trained to homogenize the 
IGFEM ellipse microstructure 
using a batch size of 32

Fig. 23   The Ellipse microstructure (3 parameters per cell), the 2D 
BioTruss (8 parameters per cell), and the 3D BioTruss (30 parameters 
per cell) illustrate the correlation between number of training data 
and the accuracy of a trained DNN ( n = 32 , L = 3)
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The design produced via DNN-driven multiscale opti-
mization was manufactured using 3D printing of TPU 95a 
filament ( E1 = 49 MPa, � = 0.32 Lee et al. 2022) via fused 
deposition modeling (Fig. 24b, c). The properties of TPU 
95a differ from the simulated fictitious material ( E1 = 1 Pa, 
� = 0.30 ), but because the structural deformation is displace-
ment controlled, the deformation of both materials are suf-
ficiently similar for comparison. Indeed both the fictitious 
material and TPU 95a produce an initial Poisson’s ratio of 
0.33 for the uniform specimen and 0.00 for the optimized 
structure, as evaluated by FEM-based homogenization.

The optimized design of TPU 95a microarchitectures 
was analyzed in the displacement controlled compres-
sion fixture shown in in Fig.  26. The Poisson’s ratio 
was measured experimentally using �lat and �long meas-
ured along the specimen’s respective centroidal axes. At 
�long = −0.10 , the calculated Poisson’s ratio was −0.06 , 
and at �long = −0.20 , the measured Poisson’s ratio was 
−0.02 . The variation between modeled ( � = 0.00 ) and 
experimental Poisson’s ratios is attributed to localized 
buckling near the compression plates. A full exploration of 
the observed nonlinear behavior is well outside the scope 
of this work; we simply conclude that the optimized design 
did indeed approach the targeted displacement within the 

limits of its parameterized geometry provided the DNN’s 
evaluations and shape sensitivities. Beyond navigating the 
design space, a thorough validation of the final analysis 
would require full-scale simulation and experimentation 
as in Cheng et al. (2019).

Fig. 24   a The boundary conditions and optimization result are shown for the test specimen with spatially varying microstructures (b). c The 
manufactured specimen is shown in its undeformed condition

Fig. 25   A selection of the BioTruss features is illustrated to explore the optimization result of Fig. 24a

Fig. 26   The compression fixture (buckling guides and compression 
plates) used to reproduce the boundary conditions for the auxetic 
design is shown at 20% longitudinal compression
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