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Abstract

Concurrent multiscale structural optimization is concerned with the improvement of macroscale structural performance
through the design of microscale architectures. The multiscale design space must consider variables at both scales, so design
restrictions are often necessary for feasible optimization. This work targets such design restrictions, aiming to increase
microstructure complexity through deep learning models. The deep neural network (DNN) is implemented as a model for
both microscale structural properties and material shape derivatives (shape sensitivity). The DNN’s profound advantage is
its capacity to distill complex, multidimensional functions into explicit, efficient, and differentiable models. When compared
to traditional methods for parameterized optimization, the DNN achieves sufficient accuracy and stability in a structural opti-
mization framework. Through comparison with interface-aware finite element methods, it is shown that sufficiently accurate
DNNSs converge to produce a stable approximation of shape sensitivity through back propagation. A variety of optimization
problems are considered to directly compare the DNN-based microscale design with that of the Interface-enriched General-
ized Finite Element Method (IGFEM). Using these developments, DNNs are trained to learn numerical homogenization of
microstructures in two and three dimensions with up to 30 geometric parameters. The accelerated performance of the DNN
affords an increased design complexity that is used to design bio-inspired microarchitectures in 3D structural optimization.
With numerous benchmark design examples, the presented framework is shown to be an effective surrogate for numerical
homogenization in structural optimization, addressing the gap between pure material design and structural optimization.

Keywords Topology optimization - Deep learning - Multiscale design - Parameterized microstructures

1 Introduction implemented numerical homogenization to frame admis-

sible designs and join microscale features to a macroscale

Multiscale structural design targets two scales to achieve
a desirable structural response (e.g., maximum stiffness,
minimum stress, or tailored mechanical actuation). The
observable or macroscale domain is evaluated based on this
performance metric, while the microscale domain is resolved
to interpretable material characteristics. The intimate con-
nection between scales creates a prohibitively large design
space, and the resulting optimization is generally ill-posed
(Allaire et al. 1997). To resolve the prohibitive design space,
topology optimization (Bendsge and Kikuchi 1988) has
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space (Guedes and Kikuchi 1990; Sigmund 1994; Hassani
and Hinton 1998; Wu et al. 2021a).

Numerical homogenization represents composite media
through the local repetition of very small microstructures
(Guedes and Kikuchi 1990; Torquato and Haslach 2002;
Allaire and Brizzi 2005; Andreassen and Andreasen 2014).
Given a microstructure unit cell, the effective material prop-
erties of a composite material may be approximated through
the asymptotic expansion of its governing equations with
respect to the ratio between length scales (Guedes and
Kikuchi 1990). Numerical homogenization has been exten-
sively used in heterogeneous cellular material optimization
(Torquato 2010), including the design of free material dis-
tributions (Sigmund 1994; Guedes et al. 2003; Andreasen
and Sigmund 2012), truss geometries (Watts and Tortorelli
2017; Kazemi and Norato 2022), and nonlinear materials
(Wang et al. 2014; Najafi et al. 2021). Although numerical
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homogenization is an effective method to resolve microscale
structures, its implementation in multiscale design optimiza-
tion presents computational challenges. The homogenization
formulation requires that scales must be separated by multi-
ple orders of magnitude (Guedes and Kikuchi 1990; Allaire
et al. 1997), and simplified geometries are often necessary
to adequately model multiscale structures (Wu et al. 2021a;
Cheng et al. 2019; Groen and Sigmund 2018; Garner et al.
2019).

Parameterized representations of the microscale unit cell
are used in multiscale optimization to alleviate the compu-
tational burdens of the intractable design space. Through
parameterization of the microscale material, as originally
presented in Bendsge and Kikuchi (1988), multiscale design
optimization has produced stiffness optimal designs that
approach the theoretical limit using rank-2 laminates (Sig-
mund et al. 2016). The de-homogenization approach (Pantz
and Trabelsi 2008), a post-processing method for realizing
viable structures composed of varying microarchitectures,
has been implemented to produce high-resolution mono-
scale designs optimized through parameterized, homoge-
nization-based topology optimization (Groen and Sigmund
2018; Groen et al. 2019). The de-homogenization approach
for stiffness optimal structures typically employs plate-like
microscale geometry, but other objectives (e.g., tailor-
able actuation, increased buckling strength) benefit from
increased microscale geometric complexity (Zhu et al. 2017;
Wang and Sigmund 2021). Therefore, there is a need for
increased parameterization of the microscale unit cell, and
multiscale modeling techniques must adapt to accommodate
the increasing design complexity.

With increasing parameterization and design complex-
ity, surrogate models of numerical homogenization are
used to approximate effective microstructure properties for
multiscale design. A surrogate model for homogenization
in multiscale optimization must resolve the effective mate-
rial properties—and their derivative information—from the
design parameters. As such, increasing parameterization
requires sophisticated regression techniques to adequately
approximate numerical homogenization. Low-order poly-
nomial approximations (Watts et al. 2019) and multidimen-
sional surrogates (Imediegwu et al. 2019) have been used
to relate microscale features to their respective macroscale
properties. Parameterization also offers explicit control of
material interfaces, aiding design for manufacturing appli-
cations. Parameterized truss-like microstructures have been
extensively evaluated in multiscale structures designed for
additive manufacturing (Imediegwu et al. 2019; Murphy
et al. 2021; Watts et al. 2019; Wu et al. 2021b). Other highly
parameterized multiscale optimization methods employ
the metamaterial, a strategy for design that uses geometry
rather than material constituents to tailor performance (Yu
et al. 2018). Metamaterial design generally favors intricate
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microscale features, so data-driven methods are necessary
for efficient implementation in multiscale design (Wang
et al. 2020).

To address the growing complexity of microscale geom-
etry, machine learning (ML) models have been proposed as
a new surrogate for multiscale analysis. ML has attracted
attention in multiscale modeling with applications to mate-
rial optimization (Kollmann et al. 2020; Wang et al. 2020)
and nonlinear analysis (Logarzo et al. 2021). ML frame-
works, specifically the neural network (NN), have also been
implemented as surrogate models for numerical homogeni-
zation in multiscale optimization. The NN offers an explicit
model for multidimensional functions and has shown the
capacity to approximate highly nonlinear functions (Hornik
et al. 1989; Gallant and White 1992; Nguyen-Thien and
Tran-Cong 1999; Goodfellow et al. 2016).

NN techniques are commonly employed in parameterized
multiscale optimization to approximate the effective elastic
properties of a microstructure. Zhou et al. implemented a NN
in the multiscale optimization of parameterized lattice struc-
tures (Zhou et al. 2022); White et al. implemented a Sobolev
norm NN (a NN that is directly trained on derivative data) in
fine-scale multiscale truss optimization (White et al. 2019);
Kim et al. used a DNN surrogate model for homogeniza-
tion in graded composite structural design (Kim et al. 2021).
Zheng et al. implemented a NN surrogate for evaluation and
sensitivity analysis of spinodoid metamaterials (Zheng et al.
2021). Other non-parameterized techniques may use the NN
to navigate a library of microstructure geometries (Wang
et al. 2020; Chan et al. 2022). These techniques, however,
fail to capture highly complex microstructure features with
tens to hundreds of features. Furthermore, it is still unclear
how NN architecture and training procedures affect its sen-
sitivity analysis in the context of multiscale optimization.

The development of these NN surrogate models requires
pre-computation of a training dataset followed by the itera-
tive optimization of the model’s parameters. These two
characteristics affect both the model’s execution accuracy
and the accuracy of its derivative information. This work
explores these characteristics as they apply to multiscale
design and surrogate models for numerical homogenization.
This work is presented to evaluate the DNN as a surrogate
model for numerical homogenization in the context of mul-
tiscale design. The goal of this evaluation is to characterize
the surrogate model’s capacity for geometric complexity and
increase the design space from lattice-like designs to more
complex geometries akin to metamaterials. To this end, we
establish the DNN as a viable surrogate for evaluation and
sensitivity through comparison with Interface-enriched Gen-
eralized Finite Element Methods (IGFEM). The verification
process involves experimentation with DNN architecture and
training data to establish a framework for training DNNs as
surrogates in highly parameterized multiscale optimization.
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With this verification, we can characterize DNN perfor-
mance and generate effective training datasets. Finally, we
are able to extend these models to highly parameterized
microstructures, approaching the design freedom charac-
teristic of mechanical metamaterials. As an example of this
complexity, we introduce a bio-inspired 3D truss design
defined by 30 geometric parameters.

Section 2 presents the proposed framework for integrat-
ing ML in multiscale analysis with the DNN. Section 3
introduces the formulation for structural optimization,
then Sect. 4 examines the DNN performance compared to
IGFEM in the context of multiscale optimization. Once the
ML framework is sufficiently scrutinized, various optimiza-
tion examples are presented in Sect. 5 to extend the approach
to highly parameterized designs.

2 Numerical model and DNN surrogate

In this study, we aim to perform gradient-based optimiza-
tion of a multiscale structure. To reduce the computational
burden of the microscale design parameters, we integrate the
DNN as a surrogate model for numerical homogenization.
Such a surrogate model must not only provide an approxima-
tion of a microstructure’s behavior, but it also must model
its sensitivity with respect to multiple design parameters.
We are concerned with the accuracy and stability of this
implementation in the context of multiscale design.
Numerical homogenization is used to approximate the
effective properties of a microstructure. Each microstructure
is defined within the bounds of a repeated unit cell geometry
consisting of two or more linear elastic materials (Fig. 1).
Given sufficient separation of length scales such that the
microstructure’s geometry is much smaller than its macro-
scale domain, the composite microstructure can be distilled
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Fig.1 A macroscale domain subjected to generic boundary condi-
tions (#” on 02 and #” on d€2p,) is characterized by microscale geom-
etries at X defined with periodically varying microstructures. This
multiscale representation is shown in 2D for simplicity, but the rela-
tions are equally applicable to 3D

into a single homogenized representation. As such, numeri-
cal homogenization is a powerful tool in multiscale opti-
mization used to link the multiscale features to macroscale
performance. We include the relevant results of the energy-
based homogenization approach here; a thorough presenta-
tion of the homogenization procedure is offered in Guedes
and Kikuchi (1990), Hassani and Hinton (1998), Allaire and
Brizzi (2005), and Andreassen and Andreasen (2014).

For the constitutive relation 6; = Cy,€y, of stress o;; and
strain g, the effective constltutlve tensor of a periodic com-
posite can be expressed as

O(U) (i) OCkl)
ljkl |Y|/ Plﬂ’b qu )(6”

where Y represents the microstructure cell volume, ¢,
refers to the prescribed unit strain case on the unit cell (there
are 3 unique prescribed elastic strains in 2D, 6 in 3D). The
local strain field 6*(1) is associated with the Y-periodic solu-
tion to the elastlclty condition

ov;
#(kl)
/YCUM P _0 Ldy =

for the Y-periodic admissible displacement field v. The con-
stitutive tensor Cy, can be expressed in matrix form using
Voigt notation; discretized for finite element analysis (FEA),
the microstructure is homogenized using (1) in matrix nota-
tion appropriate for FEA as

Nﬂ
T
H_ ~H_ L 0G) _ () 0G) _ (i))
= CU B |Y| 21 <ueﬂ ueh) ke“ (ugu ueu (3)
e,=

for N, elements e, with element stiffness matrix k, , dis-
M

6*(kl))dY, )

0(11)

O(kl) Vi
/Y Cirara 5y, 5.9 )

placement field ug}‘ corresponding to the unit strain test case
€9, and displacement field u, corresponding to the strain £*
induced by microstructure geometry. Note that the subscript
e, indicates an element in the microscale structure. For the
most general elastic problems, C™ has 6 unique components
in 2D and 21 unique components in 3D. The DNN surrogate
models developed here will target the homogenized constitu-
tive tensor represented by CH.

2.1 Multiscale analysis

In a macroscale domain discretized for FEA as N ele-
ments (Fig. 2), we introduce the macroscale design vari-
able @ = {@, @,,... oy} € (0,1] to indicate the pres-
ence of material and the microscale design variable

x = {x},x} L X2, x2 S MYy to

SYRTTRE VIS ol R & X
represent N microarchitectures deﬁned by M parameters.
The solid isotropic microstructure with penalty (SIMP)

method (Zhou and Rozvany 1991; Rozvany et al. 1992) is
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Fig.2 A macroscale, finite element domain is characterized by the
variable @ at each element to indicate the presence of a microstruc-
ture geometry. Within each element, a parameterized microstructure
is characterized by x. For illustrative purposes, three parameters are

applied to penalize intermediate macroscale representa-
tions. The SIMP method links the macroscale analysis to
the homogenized constitutive behavior [cf. (3)] through
the following penalized expression for the constitutive
matrix:

Ce((pe’xe) = Cmin + (pley(CH(xe) - Cmin)' (4)

A nearly zero valued matrix C,;, is introduced to avoid sin-
gularities in numerical analysis, and the penalization power
p favors @, toward O or 1. Note that (4) implements ch,
which may be determined through numerical homogeniza-
tion and (3) or through an appropriate surrogate model.

With this complete expression for effective macroscale
constitutive behavior in (4), implementation into FEA is
performed with the element stiffness matrix

k, = / B'C,BdQ,, (5)
Q

e

where B is the strain—displacement matrix and C, is the con-
stitutive matrix of the element e from (4). Macroscale equi-
librium for linear elastic FEA is subsequently expressed as

KU =F, (6)

where K is the assembled global stiffness matrix, U is the
finite element nodal displacement, and [ is the finite element
nodal force.

Parameterization of the microarchitecture via x offers
explicit control over the microarchitecture’s geometric
limits. The added control may be leveraged to enforce
a specific engineering quality, unit cell connectivity, or
manufacturing constraints.

Implementing numerical homogenization into a numeri-
cal framework for concurrent multiscale optimization,
however, presents some practical challenges. Namely, the
design space quickly becomes intractable considering (i)
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used as a simple example for an elliptical inclusion defined by the
major r; and minor r, axis and an angle of rotation . Ultimately, each
microstructure is homogenized and implemented into macroscale
FEA

the number of M parameters necessary to achieve sufficient
design flexibility in each microstructure and (ii) the num-
ber of N microstructures necessary to achieve sufficient
separation of scales. Facing these challenges, we turn to
the DNN as a surrogate model for numerical homogeniza-
tion. The subsequent section introduces the NN formula-
tion and the developments necessary for implementation
into concurrent multiscale optimization.

2.2 Deep learning model for homogenization
and design sensitivity

The NN is a common building block in scientific ML frame-
works (Baker et al. 2019), and is broadly promoted as a uni-
versal function approximator given sufficient parametriza-
tion (Hornik et al. 1989). Practically, the NN represents a
sequence of matrix operations. Given an input vector x = h°,
each layer T" of the NN produces a latent representation A’
from a variable matrix of weights W' and vector of biases
b* such that 7' = W'h' + b'. Optionally, the layer output is
passed element-wise through an activation function A (e.g.,
sigmoid, tanh, Rectified Linear Unit) so the layer output
becomes A'(T%) = A’. With multiple layers added sequen-
tially, the NN is classified as a deep NN (DNN) whose out-
put representation y becomes a composite function of the
weights and biases for L total layers,

= ALoaAl-1o

DNN(x) = - oAN (T (x)). @)

The DNN parameters of W and b are trained through
the iterative optimization of an objective function £. With
numerical homogenization as an example, the microstructure
design parameters become the input x, and the components
of C" are arranged as the output vector §. Using the mean
squared error objective function,
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y

the NN is trained or optimized to minimize the difference
between output ¥ and known value y. The inclusion of y
in this approach requires the pre-computation of a training
dataset. Again with numerical homogenization as an exam-
ple, the training dataset might consist of sampled microscale
geometries and their respective homogenized constitutive
properties. A thorough exploration of the computational
cost of this approach must include the generation of these
training data. Critically, the Jacobian of the DNN model can
be recovered efficiently using back propagation through the
network, shown as

oy 0y 0A, oT,  oT,
ox 0A, 0T, 0A,_, ox ' ©)

As the NN model is trained, the model’s error is reduced
through repeated application of (9) applied to the model’s
variable parameters or weights. This training process is par-
ticularly appealing for design optimization applications, as
not only is the DNN trained to mimic some complex ana-
lytical function [i.e., numerical homogenization (1)], but
the model’s sensitivity is also tuned indirectly. Note that
the indirect tuning of the sensitivity offers no guarantees of
accuracy or stability. This sensitivity behavior is investigated
by White et al. (2019) for a single layer NN. Evaluating the
DNN’s sensitivity limits is notoriously difficult, and charac-
terization of smoothness is typically constrained to bounded
Lipschitz constants (Bian and Chen 2012; Fazlyab et al.
2019; Gouk et al. 2021). This work is primarily concerned
with (i) how increasing the nonlinearity of the DNN model
through the addition of multiple layers can improve the
model’s sensitivity behavior in an optimization context, (ii)
if this nonlinearity can compensate for low-fidelity, compu-
tationally efficient training data, and (iii) how such a model
functions with highly parameterized microstructure designs.

To answer these questions, the following work investi-
gates the indirect influence of DNN architecture and training
procedure on the accuracy of its sensitivity. We evaluate this
“accuracy” both as a value relative to an analytical solution
and as an operation within multiscale structural optimization.
A successful surrogate model may therefore not produced per-
fect analytical sensitivities; instead the successful surrogate
should provide enough information to navigate the multiscale
design space.

3 Concurrent multiscale optimization
framework

Concurrent multiscale optimization aims to improve struc-
tural performance by optimizing material distribution ¢ and
microstructure geometry x. This work considers the design
methods for a microstructure defined by x, comparing
advanced finite element methods (IGFEM) and DNN-based
surrogate models. For convenience, the design variables are
combined into a = {@,x}, so the optimization problem is
formulated as

min O(UX(a), @), F(a), a),
such that: ™" < a; < ™,
and: g(UX (), @), F(a), ) < 0,
KX (@)UX (o), @) = F(X(a)),

10)

where O is the objective function, X is the nodal coordi-
nates for the finite element mesh, and g represents applicable
inequality constraints. We define two objective functions for
investigating the proposed method for concurrent structural
optimization. The first, structural compliance, is expressed
as

0. (UX(a), @), F(a)) = FTU. (11)

The second objective represents the difference between a
target structural deformation Uy and the actual structural
deformation field U (Wang et al. 2020), formulated as

0, (UX(a), @), Uy)

= L U -0 - Uy - L)), (12

Ny
where Ny represents the number of nodes with targeted
deformation behavior and y is a binary vector indicating a
targeted or untargeted node.

Volume constraints are defined for the macroscale, micro-
scale, and net volume of the optimized structure. Given the
microstructure volume v,, the appropriate volume con-
straints are

1N
g={]v€=zl(pe_

where V, and V, are the volume fractions for the macroscale
distribution of material and volume fraction of the micro-
scale structure. The macroscale volume fraction V,, controls
the fraction of the macroscale domain that contains any
material and ranges from 0 (no material in domain) to 1
(material present in entire domain). The microscale volume
fraction V, represents the volume fraction of the micro-
scale features present in the design and ranges from 0 (the

e=1

N
1
V(p’]T] z(pevx_ Vx}’ (13)

@ Springer



20 Page 6 of 25

N. Black, A. R. Najafi

structure is composed of empty cells) to 1 (the structure is
composed of solid cells). The minimum volume fraction of
each microscale cell is a function of its parameterization and
is limited by the geometric restrictions imposed by a;m“ and
a:.“‘“. Given this formulation, the net volume fraction within
the design domain V'is then V,, V..

A mesh-independent filtering technique of the design
variables is also employed (Bruns and Tortorelli 2001). For
an element i and filter radius r, the elements j within that
radius are defined as those whose centroid falls within r to
the centroid of i. The centroid—centroid distance d; is used in
Gaussian-weighted kernel for each design variable,

:
3. — -
a; = ; % (14)
dj
wj=max<1—7,0>, (15)
=0 (16)
J

Filtering is a popular technique in topology optimization
to enforce a length-scale on the design variable ¢ (Bourdin
2001); in multiscale design, we propose the same filter as a
technique for limiting local variations in the microstructure
geometry. The filtered geometry represents a local averag-
ing of the features, penalizing rapid local changes in the
microscale geometry.

3.1 Sensitivity analysis for macroscale performance

This subsection begins with a presentation of the macroscale
sensitivity analysis formulated from the macroscale objec-
tives (11) and (12). The objective function’s sensitivity with
respect to the design variable % is found through adjoint
sensitivity analysis. The full multiscale sensitivity analysis
requires a microscale sensitivity (discussed in Sect. 3.2),
evaluated from the microarchitecture’s homogenized prop-
erties, the microarchitecture’s parameterization, and a mac-
roscale sensitivity evaluated based on the macroscale struc-
tural response.

For FEA on a fixed mesh (i.e., % = % =0) and the
objective functions (11) and (12), differentiation (in the mac-
roscale) with respect to a single design variable «; produces

06 _ 00"y -
da; OU oa;’ an

where % can be found analytically, and Z%J is annihilated

through the addition of an adjoint variable. The adjoint
expression is

@ Springer

00 90TOU 1 ou
=== =4 AT -K=+F
da;  oU da, < da; Pse“d°>

(13)
= <@T - lTK) Y L

oU da. pseudo?

1

where A4 is the arbitrary adjoint vector and

(‘K% + [Fpseud0> = 0. The pseudo-force Fq.,q, is derived
from known quantities:

oK oF
u:pseudo=_£[U+£. (19)

The following expression for the adjoint variable 4 is used
. ou .

to annihilate - in (18):

00 T

— -1 K=0.

oU 20)

With the adjoint variable, we obtain the gradient of the

objective function in terms of known quantities:

00
P = /lT([FPSeudo) = AT(

LKy, OF "
aal ° ( )

U+ —
Ja; oa;
For both objective functions (11) and (12), adjoint sensitiv-
ity analysis eliminates the unknown quantity % through the

addition of the adjoint variable A. Solving (20) for 4 and
evaluating (21) produces the sensitivity of our objective
functions with respect to the design variables. In compliance

minimization problems (11), ad% =[F and :—5 = 0. For pre-
scribed deformation problems (12), (;TJP = NL(y (U =U))
and % =0.

The assembly of F .4, is achieved through the element-
wise assembly of % through
ok, 19C,

= B —Bd«, (22)

oa; Q, Ja;
for

o, {ace aC, oC, ace}

da, a—(pe,a—xl,a—xz,---,axy (23)
where

oC, 1

a@ = Cmin +p- (P‘Z (CH(xe) - Cmin) (24)
and

oC, oCy c

6xf3 min e axi, min (25)
i=12,....M
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Microscale sensitivity analysis of the homogenized micro-

architectures enters the sensitivity analysis through ‘;if. Sec-
tion 3.2 compares a finite element-based evaluation of ij

e

with its DNN surrogate, including a discussion of various
ML formulations and their implications in multiscale opti-
mization. If filtering via (14) is used, the filtered variable
may be expressed in terms of a weight matrix G as

@ =Ga. (26)

Evaluations are then performed using the filtered design
variable &. Sensitivities with respect to the raw design vari-
ables are recovered using

ox _ gt

e @7

3.2 Sensitivity analysis for microscale geometry

Numerical representations of the microstructure geometry
require an expression of material interface. In the formula-
tion for multiscale analysis, the material interface is param-
eterized in each finite element by x,. The interface is marked
by a solid—void transition, where void material is approxi-
mated by an artificially soft material. For example, Fig. 4a
shows a unit cell with a uniform mesh and material interface
represented by two materials £, and E, where E, < E|.
Although this representation may appropriately approximate
numerical homogenization through (3), the step-wise inter-
face is fundamentally incompatible with the shape derivative
9% sed in (25).

ox,

The optimization, therefore, requires an explicit expres-
sion for CM in terms of x,. This section presents a finite
element-based model for the material interface and com-
pares performance to a DNN-based surrogate model in the
context of multiscale structural optimization. The DNN for-
mulation presented in (7) and Fig. 3 provides such an expres-
sion but requires the iterative optimization of the DNN
parameters. As discussed in Sect. 2.2, this optimization is

Input Output

Latent Representations

Cu(x.)

@

x, = {1}, 1, 6}

5 6 6@ O
hl

X h! h? y

Fig.3 Implemented as a surrogate model for numerical homogeniza-
tion, the DNN uses the unit cell parameters (e.g., ry, r,, 6) as an input
vector x, produces a sequence of latent representations k' via the opti-
mized variables W and b, and approximates an output y that is recon-
structed into the microstructure’s effective properties Ct!

(a) FEM
ﬂ.l-

(b) IGFEM

(c)

Fig.4 a The finite element method approximates the microstructure
geometry using solid £, and void E, material but creates a discon-
tinuous material interface. b The Interface-enriched Generalized
Finite Element Method uses a series of enriched elements to create
a smooth approximation of the microstructure’s material interface. ¢
An enriched element £2, is shown, including the enriched or interface
nodes that separate the two child elements Q( and Q%

formulated to ensure the DNN produces an accurate evalu-
ation CH relative to some set of training data C'!. Addition-

ally, (9) can approximate (;7 as

o€” _ot" oA, o1, 0T, %)
oxi  0A, 0T, 0A;_, oxi’

In practice, training via (8) directly targets the approxima-
tion of C" which indirectly affects to accuracy of (28). This
correlation is exlg)lored hereafter as we seek to improve the

evaluation of ’j; using the DNN trained with a dataset of

i
e

finite element training data.

4 Sensitivity verification with finite element
methods

The Interface-enriched Finite Element Method (IGFEM)
(Soghrati et al. 2012; Safdari et al. 2015, 2016) was used as
an evaluation metric for the DNN formulation. IGFEM rep-
resents the material interface through an element enrichment

@ Springer
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scheme that directly evaluates displacement values at the
interface (Fig. 4b). The enriched or parent element (Fig. 4¢)
is split at the interface into two child elements. The interface
nodes are a direct function of the microstructure’s geometric
parameters x,, so (3) can be expressed in terms of keﬂ (x,)
and an analytical expression for shape sensitivity is formu-
lated as

IC1Grey
oxi
N, 1ok (29)
-1 <u0(’) u<’)> il <uoo> u(»)
|Y| = ey €y axle €y €y

Equation (29) and the formulation of * are discussed fur-

ther in “Appendix 1,” with additional formulatlon available
in Najafi et al. (2015, 2017, 2021) and Brandyberry et al.
(2020). The formulation has also been verified using finite
difference methods to an absolute relative error on the order
of 1076 or lower for all material shape derivative terms.

Root mean square error (RMSE) is used as an evaluation
metric for the DNN surrogate model. As an example, the
error in predicting C™ is evaluated as

ZNC' ZN“’ é‘ij)z wherei < j
RMSE = , (30)
Na k
k=1

where N, represents the number of independent compo-

nents of CY, the component C is evaluated via IGFEM and
(3), and C is evaluated via DNN. Similarly, RMSE is used
to evaluate shape sen51t1V1ty performance using the inde-
pendent components of —-

To compare the DNN and IGFEM formulation, a sim-
ple elliptical inclusion was considered with parameters
x, = {r|,r,0} as in Fig. 3. Various DNN training strate-
gies were examined to explore the relationship between (28)
and the iterative optimization of (8). Through comparing the
shape sensitivity produced via the trained DNN (28) and
the analytical shape sensitivity produced via IGFEM (29),
the performance of the DNN in an optimization context can
be evaluated. Simple geometry is used here for illustrative
purposes; homogenization of elliptical architecture may
be approximated using simpler methods (e.g., polynomial
models). For our purposes, the elliptical inclusion provides
sufficient complexity to evaluate the DNN.

The training dataset was generated from randomized sam-
ples of 20 x 20 IGFEM mesh with base material (E; = 1Pa,
v =0.3) and void material (E; = 107® Pa, v = 0.3). With
667 examples dedicated to training and 333 examples used
for testing, model training was performed using the Adam
optimizer (Kingma and Ba 2017) with an initial learning
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rate of 10~ over 10 iterations of full-batch gradient descent.
All layers except the final layer are activated by the sigmoid
logistic function. The results of (8), reported as an average
over the 333 test examples, are shown in Table 1 for different
model architectures. As expected, sufficiently large networks
(n > 32) were increasingly accurate, and deeper networks
(L > 1) generally outperformed shallower networks. As the
layer count increased beyond L = 4, the networks failed to
converge due to vanishing gradients. “Appendix 2” offers
more information of this phenomenon and presents more
practical considerations for training DNNs for concurrent
multiscale optimization. Based on these results, all subse-
quent analysis of DNN architecture will limit the number of
hidden layers to L < 3.

4.1 DNN shape sensitivity performance

A pedagogical compliance minimization problem is con-
sidered to illustrate the DNN’s performance in concurrent
multiscale optimization as an approximator of the homog-
enized constitutive properties C mlcroscale sensitivity
ot , and resulting macroscale sens1t1v1ty % Ttis important
to note that the DNN has been trained to appr0x1mate the
homogenized constitutive properties, and this approxima-
tion is independent of the particular objective (i.e., compli-
ance or prescribed deformation). The domain, illustrated in
Fig. 5a, features a unit load applied to the first free node
along X, = 1. The domain is defined by L =3, W = 1, and
m= i. A randomized selection of microarchitectures was
generated to demonstrate the DNN’s performance as a sur-
rogate model. For the 48 randomized microstructures in the
12 X 4 macroscale mesh Fig. 5a, RMSE [cf. (30)] was used
to compare the 1ndependent components of the DNN’s CH,
act an

RMSE “for CY is plotted for various DNN architec-
tures in Fig. 5b; the DNN’s performance in the pedagogi-
cal example affirms its evaluation by the test dataset (cf.
Table 1), with increasing layer size & and neuron count

Table 1 The Loss values of (8) are reported as £ x 103 for different
DNN frameworks

Layers L Neurons n
8 16 32 64 128

1 0.0622 0.0424 0.0418 0.0578 0.0646
2 0.0837 0.0579 0.0724 0.0647 0.0481
3 0.3078 0.2541 0.0323 0.0256 0.0230
4 0.2719 0.2899 0.0319 0.0270 0.0171
5 3.6462 0.2703 0.8665 0.0180 0.0313
6 3.6454 3.6111 0.0534 3.7668 3.9569
7 3.6420 3.6428 3.8530 3.9963 4.1985
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Fig.5 DNN performance is shown for a pedagogical compliance
minimization example. a A randomized collection of microarchitec-
tures is assembled into a 2D beam subjected to nodal force F. b The
root mean squared error is shown for the ML-predicted homogenized

n leading to increased accuracy. The plotted RMSE in
Fig. 5b demonstrates sufficient accuracy on the order of
1% relative to IGFEM. Figure 5c also shows the CPU time,
measured with a single PC with Intel Core i7 (6x 2.20
GHz) and 32 GB of DDR4RAM over 48 microarchitec-
tures, where the DNN model reduces computation time by
a factor of approximately 10*. These performance gains are
expected, as the DNN is executed as a sequence of matrix
multiplications.

The pedagogical compliance minimization problem in
Fig. 5a was also used to evaluate the DNN’s microscale
sensitivity performance. RMSE of the independent com-
ponents of % was calculated for different DNN architec-

tures and is illustrated in Fig. 6. Using normalized error

0 i 2 3
(b) Number of Hidden Layers

IGFEM

ML

—
o
~

constants compared to the IGFEM-evaluated homogenized constants.
¢ The CPU time for the analytical IGFEM method is compared to its
ML equivalent

norms, the DNN’s error in evaluating C" is strongly cor-

H

related to its resulting shape sensitivity % (Fig. 6b).
00, !

0x;

i

The macroscale sensitivity — was also evaluated using

different DNN architectures. Figure 7a compares the mac-
roscale sensitivity performance for IGFEM and DNN
models using RMSE. The DNN model was shown to
closely approximate shape sensitivity for many architec-
tures. The DNN’s RMSE in evaluating macroscale sensi-
tivity was consistently near or less than 10 for all param-

eters. Because ';% and ‘;? are significantly larger in

1 2
magnitude than a{)@e“ (Fig. 7b), the relative error induced by
the DNN surrogate model is shown to be larger for less-
sensitive parameters like 6. Regardless of this error, the

DNN surrogate model correctly indicates the direction of
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Fig.6 The DNN’s performance in shape optimization is illustrated.
a Shape sensitivity for the three elliptical parameters is compared
using RMSE of the ML approach compared to the analytical IGFEM

RMSE(C?)

RMSE (™)

approach. b Using normalized error metrics, the correlation between
training accuracy and the resulting approximation of shape sensitivity
is shown
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Fig.7 a For the microstructure defined by r,, r,, and 6, the three com-

ponents of ‘j:j“ are shown for different DNN configurations. Root

mean square error (RMSE) is used to compare the evaluation of

increasing performance for all microscale parameters and
successfully navigates the microscale design space.

For both the test dataset and pedagogical example, the
sufficiently parameterized DNNs achieved higher accuracy
in predicting C from geometric parameters. Instability was
also observed for over parameterized models including the
3 layer, 128 neuron model as shown in Fig. 6a, indicating an
upper limit to the model’s parameterization. Perhaps more
interesting is t{lg strong correlation between the accuracy
of the DNN’s C' and its predicted shape sensitivity evalu-
ated via (28). The strong correlations, illustrated in Fig. 6b,
indicate that a sufficiently accurate DNN also produces a
sufficiently accurate (but not analytical) approximation of
shape sensitivity, provided that the DNN was successfully
trained without vanishing/exploding gradients or overfit-
ting. Therefore, we theorize that if a DNN is successfully
trained via (8), then the model will still produce shape sen-
sitivity information capable of navigating the multiscale
design space. This implies that the DNN—trained under the
right conditions without over parameterization—can infer
a smooth approximation of physical properties without an
explicit representation of the shape geometry. A DNN sur-
rogate for homogenization and shape sensitivity would have
significant impact in multiscale design, as more complex
parameterized architectures may be introduced to the con-
current design space.

@ Springer

shape sensitivity via ML and via IGFEM. b The predicted sensitivity

”;’ for the DNN (% = 3, n = 32) is compared to its analytical IGFEM

eq'uivalent

4.2 FEM vs. IGFEM training data

The previous section demonstrated a strong correlation
between evaluation accuracy and the resulting shape sensi-
tivity for multiple DNN architectures trained using [IGFEM
training data. The DNN was shown to infer a smooth and
accurate approximation of parameterized homogeniza-
tion. This section examines the training data necessary
to achieve this smooth approximation. If imperfect train-
ing data (i.e., data without an analytical representation of
shape parameters) can inform a suitable DNN surrogate,
then the computational cost of dataset generation may be
reduced. We propose FEM training data with an approxi-
mate representation of material interface to inform the
DNN training. The FEM-trained DNN, IGFEM-trained
DNN, and IGFEM models for homogenization are subse-
quently compared in concurrent multiscale optimization.

From evidence in the previous section, we propose a 3
hidden layer, 32 neuron DNN with all layers except the final
activated by the sigmoid logistic function. The FEM-trained
DNN uses 1000 examples of 50 x 50 mesh to approximate
an elliptical microstructure, as in Fig. 4a, with linear, 4-node
elements. In contrast, the IGFEM-trained DNN uses 1000
examples of 20 X 20 IGFEM mesh to provide an better
approximation of the elliptical microstructure with linear,
3-node elements. The different discretization fidelities
(50 X 50 FEM and 20 x 20 IGFEM) were chosen as accept-
able resolutions to capture the material interface (Fig. 4)
while maintaining computational efficiency. The different
fidelities and element formulations will produce slightly
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varied homogenized parameters and thus slightly different
displacement fields. To ensure fair comparison, designs pro-
duced via IGFEM, IGFEM-trained DNN, and FEM-trained
DNN are all evaluated using IGFEM.

For both FEM and IGFEM training configurations, 667
instances of input (x, = {r,r,,0}) and output (Cy) pairs
were used during model training, while 333 examples were
used for testing and the subsequent model evaluations.
Model training was performed using the Adam optimizer
(Kingma and Ba 2017) with an initial learning rate of 10~
over 10 iterations of full-batch gradient descent. The FEM-
trained DNN converged to £ = 7.611 X 107>, and when
compared to the IGFEM performance shown in Table 1, was
considered sufficiently accurate to implement in multiscale
structural optimization.

Once trained, the FEM-trained DNN and IGFEM-trained
DNN were compared to analytical IGFEM in two concur-
rent multiscale structural optimizations. A 2D, plane-strain
structure was considered. Each microstructure was defined
by a base material (E; =1 Pa, v=0.3) and void mate-
rial (E, = 1079 Pa, v = 0.3) to apply elliptical inclusions.
The elliptical inclusion’s radii (r; and r,) were limited to
®min = 10% and ay,,, = 80% of the unit cell width, while
the volume constraint of the entire structure was defined as
V =V, =0.75. Both optimizations were performed using
the MMA algorithm for gradient-based optimization (Svan-
berg 1987). Although this macroscale mesh is too coarse
to adequately model a multiscale structure and the separa-
tion between scales is not adequate (cf. Sect. 2), the mesh
is appropriate for comparing our models for homogeniza-
tion, as we can still directly compare the optimization con-
vergence of an analytical IGFEM model against its DNN
alternatives.

max

F Initial Condition
ﬂmooooooooooo
XX XXXXXXEXY)
XX XX XXXXXXX)

000000000000
.I 3 A

(a)

s s s @ -----'..
C I I X XXX XX NAY )

IGFEM

Fig.8 a The boundary conditions for the compliance minimization
[cf. (11)] problem used to validate the DNN in multiscale structural
optimization. b The density-based topology optimization result is
included as a reference for the same problem. ¢ Convergence behavior

Reference Design le2

ML trained w/ IGFEM

(d) ()

4.2.1 Compliance minimization verification example

For the first optimization, the domain presented in Sect. 4
was optimized to minimize the compliance of a 12 X 4 2D
structure (Fig. 8a). Over 100 iterations, three methods were
compared for the microstructure sensitivity: (i) the IGFEM
method and (29), (ii) ML-based differentiation (28) with
an FEM-trained DNN, and (iii) ML-based differentiation
(28) with an IGFEM-trained DNN. The three methods are
compared in Fig. 8c with the optimization results shown
in Fig. 8d—f. Evaluated analytically using IGFEM, the con-
verged compliance values O, were 125.4, 124.6, and 125.0
for the IGFEM, IGFEM-trained DNN, and FEM-trained
DNN designs, respectively; the converged objective was 66%
of the original objective for all three designs. Furthermore,
the optimized designs all agree well with the density-based
topology optimization result (120 X 40 mesh, filtered with
radius r = 1.5, and penalized by p = 4). Shown in Fig. 8b
the density-based topology optimization result produced
similar material concentrations as the multiscale design
results. As a reference, on a single PC with Intel Core i7 (6x
2.20 GHz) and 32 GB of DDR4RAM, the optimization in
Fig. 8d took roughly 8 h, while the ML optimizations each
took roughly 1 min with 47 min of data generation time and
11 min of model training. The data generation and model
training times are one-time costs for each training dataset
(training is only necessary once for each microstructure
geometry), so the same model can be reused for multiple
macroscale structures; the model must be trained just once
for a given microstructure parameterization and may be
reused as a model for homogenization in any context.

[ e o ot S e e e e e
/
/

—— IGFEM
d % ML trained with IGFEM 4
' + ML trained with FEM  [0.73

0 20 40 60 80 100
Iteration

ML trained w/ FEM

(f)

of the IGFEM optimization, ML trained with IGFEM data, and ML
trained with FEM data is illustrated over 100 iterations. d—f The opti-
mization results are shown for the three models of homogenization
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4.2.2 Prescribed deformation verification example

The second optimization example uses the parameterized
microstructures to achieve a prescribed deformation. For
a 12 X 6 2D structure compressed 20% of its length, a tar-
get displacement was assigned to the structure’s free edges
(Fig. 9a). The target displacement Uy is defined by cosine
waves for the X, component

Upn(X;,X,) = ¢ — ¢, cos(RX z /c,), .

X, =05vX,=-05 D
for an amplitude c¢; and period c,. For this example, c, is
2.5% of the beam width, and ¢, is 50% of the beam length.
A large prescribed strain is used here to sufficiently differ-
entiate optimization results. Over 100 iterations, the three
design paradigms—IGFEM, ML trained with IGFEM data,
and ML trained with FEM data—converged to similar meas-
ured performance (Fig. 9b). Evaluated analytically using
IGFEM, the converged objective values ©, were 1.46 X 1073,
2.44 x 107%, and 2.57 x 107 for the IGFEM, IGFEM-trained
DNN, and FEM-trained DNN designs, respectively; relative
to the initial objective of O, = 2.72 X 107*, the converged
objectives were 5.4%, 9.0%, and 9.4% of the objective for
the IGFEM, IGFEM-trained DNN, and FEM-trained DNN
designs, respectively. Additionally, converged designs were
geometrically similar for all three paradigms (Fig. 9c—e). We
do not address buckling at either macro- or microscales, but
we do observe design patterns that align with the diagonal,
shear buckling behavior observed in Vilardell et al. (2019).

For both compliance and prescribed displacement exam-
ples, the FEM-trained DNN, IGFEM-trained DNN, and
analytical IGFEM models produced homogenized properties
and shape sensitivities for concurrent multiscale structural
optimization. All three approaches produced nearly identical
designs in both performance and topology. In these applied
examples, we note that the previously reported errors in
shape sensitivity (cf. Figs. 6, 7) resulted in no adverse effects
in the structural optimization process. Instead, we observed
computation time decrease by multiple orders of magnitude.
Furthermore, the IGFEM-trained and FEM-trained DNNs
were shown to produce practically identical optimized struc-
tures. This phenomenon, which leads to many local optima
that satisfy the design constraints, is further explored in
Sect. 5.1. The DNN was able to infer a smooth function
of material interface from the imperfect, discontinuous sur-
face representations of FEM, permitting extension to DNN-
driven optimization of highly parameterized, geometrically
complex microarchitectures represented by computationally
efficient FEM models.

5 Examples
5.1 Elliptical inclusion

With increased computational efficiency afforded by the ML
model for homogenization, the number of unique micro-
architectures in each structure can be increased. The fol-
lowing examples present some key findings of this increased
design space using the ML model trained with FEM data.

I 9 | le—4 —— Target Displacement -~ ML trained with IGFEM: 100
T R R R )0.65 0.607-- 16FEM: 100 --- ML trained without IGFEM: 100,
5 e 2517
» * 0.64 0.55 ~ -
C 20/ \/ L
€ \ — IGFEM 0.50
X 1 1.5 | X ML trained with 16FEM | 063
-L 0, %+ MLinained with FEM V X,
> of 0]} ~0.50 oy
‘ T L o TS *
""" Initial 0.5 -0.55
— Target -
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1
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Fig. 9 a The initial displacement (red-dotted line) and target displace-
ment (black-solid line) are shown for the verification example formu-
lated as a prescribed displacement optimization [cf. (12)]. b The con-
vergence behavior is shown for the IGFEM optimization, ML trained
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with IGFEM data, and ML trained with FEM data. c—e The results for
the three methods of optimization are shown in their deformed condi-
tions. (Color figure online)
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Even with this rather simple geometry, there exists some
important properties of the concurrent microscale design
space: (i) a dependence on initial condition, (ii) a depend-
ence on the macroscale mesh, and (iii) the existence of mul-
tiple local optima. The elliptical inclusion of Fig. 4a is again
considered with three parameters per element x, = {r,, r,, 0}
with radii (r, and r,) limited to a,,;;, = 0% and a,,,,, = 99% of
the unit cell width.

The dependence on initial condition is evident in Fig. 10,
where an optimization for prescribed deformation was per-
formed using two sets of initial elliptical inclusions. The
prescribed deformation is defined similar to (31)

U (X, X,) = ¢ — ¢, cos(RX,z/c,),

X,=0 G2

for an amplitude ¢, set to 25% of the beam width and
period c, set to the beam length. In the first group, the ini-
tial condition was set to xi"Y = {0.1,0.1,0} for each unit
cell, while the second group’s initial condition was set to
xS““) = {0.35,0.35,0}. Both optimizations feature a pre-
scribed deformation problem for a elastic 2D structure
compressed 10% of its length and use the ML model trained
with FEM data for microscale analysis and sensitivity. The
target displacement is defined by (32) for ¢, equal to 25% of
beam width and ¢, = 10. Figure 10b shows the results of an
unconstrained optimization, where the initial conditions con-
verged to different passable designs with @f,l) =2.093x 1074
and (—);2) = 4.329 x 107* as evaluated by the FEM-trained
DNN. A volume constraint of V = 0.75 was then applied
to each initial condition (Fig. 10c), and the multiscale
optimization converged to nearly identical designs with
0l = 1380 x 10~ and @) = 1.360 x 10~* as evaluated

X, Initial Condition
- -

— Target

0 2

Unconstrained

4X16 8 10

by the FEM-trained DNN. For both cases of constrained
and unconstrained optimization, the ML model for micro-
scale sensitivity performed as expected and remained stable
during multiscale optimization.

Concurrent multiscale design is also mesh-dependent.
To illustrate this phenomenon, a prescribed deformation
problem was considered for a beam compressed 10% of its
length with the ML model trained with FEM data applied
for microscale analysis and sensitivity. Two mesh fidelities
are introduced in Fig. 11 with identical initial conditions and
volume constraints; an additional example is provided that
enforces symmetry along the beam’s length via a fixed dis-
placement boundary condition in X,. Over 100 iterations, O,
converged to 1.556 x 107>, 4.604 x 107, and 1.941 x 107°
for the 12 X 6, 48 X 24, and 48 X 12 macroscale meshes as
evaluated by the FEM-trained DNN. Despite the varying
objective values, the three designs follow similar trends with
inclusions orienting in similar orientations and locations.

There also are multiple functionally equivalent designs
in the multiscale design space. The ML-based model for
microscale analysis captures this phenomenon as illustrated
in Fig. 12. A reference design was considered as a baseline
within the parameter space. As in the previous example, the
design was compressed 10% of its length with the FEM-
trained DNN applied for microscale analysis and sensitivity.
For the multiple initial conditions outlined in Fig. 12, the
multiscale structural optimization process produced mul-
tiple unique and functionally equivalent designs. For the
five scenarios in Fig. 12, ©, converged to 4.687 x 10710,
4.258 x 107°,1.282 x 1078,1.1404 x 107, and 1.999 x 10~'°
as evaluated by the FEM-trained DNN.

Various applications of multiscale design for compli-
ance minimization are shown in Fig. 13 for the 2D domain

Optimized Designs
V =0.75

X

[—— Target Displacement __ --<- Beam 1

1
- Beam 2]

Fig. 10 a An optimization for prescribed deformation is formulated
for an initial displacement (red-dotted line) and target displacement
(black-solid line). Two initial conditions are considered to explore the
multiscale design space using a ML model for microarchitecture. b

Unconstrained optimization produces different designs with similar
performance, while ¢ constrained optimization produces nearly iden-
tical designs and performance. (Color figure online)
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For illustrative purposes, the 48 X 12 uses a symmetry condition
along X, = 0. ¢ The optimized designs for the three cases are com-

Fig. 11 a Three macroscale domains are considered marked by their
12x 6, 48 x24, and 48 X 12 macroscale meshes. b A prescribed
deformation optimization problem is considered for an initial dis-
placement (red-dotted line) and target displacement (black-solid line).

pared after 100 iterations. (Color figure online)
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Fig. 12 Given a reference design and a prescribed deformation, the five different initial conditions for multiscale optimization with ML micro-

structure analysis produce five unique optimized designs with nearly identical structural performance
The density-based result (Fig. 13a) was used as a benchmark
for O, and different optimization formulations were with the

presented in Sect. 4. Depending on the selection of volume
ML model trained with FEM data applied for microscale

constraints (V(p, V., V), filter radius r, and penalization
parameter p, a variety of optimized designs were achieved.
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Fig. 13 Compliance minimiza- Obtimized Desi
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analysis and sensitivity (Fig. 13b—f). Figure 13b presents
the formulation with a macroscale distribution variable
(i.e., @ = 1) and constrained microscale volume fraction
V.. As expected, this formulation performed worse than
those with more design freedom and did not improve com-
pliance over the density-based result. Figure 13c initializes
both @ and x as design variable, but only constrains the net
volume fraction V. The converged result produces a mac-
roscale volume fraction of V, = 0.92 and microscale vol-
ume fraction V, = 0.65 and improved performance over the
restricted design space of Fig. 13b. Figure 13d—f introduces
strict constraints for both macro- and microscale volumes
with filtering of ¢ (Fig. 13d) or both ¢ and x (Fig. 13e—f).
Design variable filtering via (14) did not drastically change
the microarchitecture design, but did improve the objective
calculation in Fig. 13e. Lastly, as the macroscale volume
fraction approached the density-based formulation Fig. 13f,
structural compliance converged to the density-based result
(Fig. 13a). The relative importance of the macroscale and
microscale design variables depends on the objective (Wu
et al. 2021a); in this compliance optimization problem, the
macroscale distribution of material dominates the micro-
scale effects.

The concurrent multiscale design space is character-
ized by extensive dependence on initial condition, mesh
fidelity, and constraints leading to many local optima. Any
error inherent in the ML-based approximation of numerical
homogenization is quickly overshadowed by these obstacles
in multiscale design. Within this context, the FEM-trained
DNN inferred a smooth approximation of a parameterized
microstructure from imperfect training data and was inte-
grated unobtrusively into multiscale optimization.

5.2 BioTruss

The previous sections introduced a microscale geometry
parameterized by a simple elliptical inclusion. The DNN can
also interpret highly parameterized geometry, accurately pre-
dicting both the homogenized elastic parameters and shape
sensitivities. To illustrate this flexibility, we introduce the
BioTruss, a microstructure geometry inspired by the twisted
structures in trabecular bone. The BioTruss is defined using
quadratic Bézier curves to represent material interfaces. In
parametric form, the Bézier curve is defined as

0 _ 2 (i) (i) 2 ()
Bt = (1 - 0’fV + 211 —p? +7f,).

(33)
0<r<1

for the 2D control points f,, f,, and p. For a fixed starting
point f, and end point f;, the two components of f are
tuned to achieve gradual variation in the curve (Fig. 14a). If
f,and f, are defined in terms of the unit cell edge width a
and b, the parameters {a, b, B, 2, B2, B} define the 2D
BioTruss architecture (Fig. 14b). In the following examples,
we set a = b = 0.5 to ensure smooth connectivity between
unit cells.

Expansion into 3D is achieved by defining twelve Bézier
curves for each edge of a unit cube then revolving the curves
around each edge (Fig. 15a, b). To ensure uniform connec-
tivity between cells, the term ¢ is introduced with six compo-
nents (one component for each cube face). The components
of ¢ define a face-thinning parameter that removes material
within a cone with base diameter 1.1 and height {;. Once
material is removed at each face, the connections between
each BioTruss cell are made invariant to changes of f, so
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Fig. 14 a A quadratic Bézier

curve is shown to demonstrate 1o L0 B2=2.0

sufficient geometric freedom, 0.8 " " 0.8

where two control points (i) g, s 3 2%z B=15

and (ii) f, control the curve. b 0.6 oo 0.6

Four Bézier curves applied to S8 s

a 2D microstructure produce 04 Ba=1.01 4 B2=1.0

unique geometry with 10
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Fig. 15 a Twelve unique Bézier curves are revolved around the edges of a unit cube. b The twelve Bézier curves are shown as projections onto
each of the cube’s six faces. ¢ The 3D BioTruss shown parameterized by 12 Bézier curves and 6 face-thinning parameters ¢

connectivity is ensured. Given twelve Bézier curves (24
parameters) for each edge and 6 face-thinning parameters,
the BioTruss is fully defined in 3D by 30 unique parameters
(BL, ..., g2, ¢® . ¢©) (Fig. 15¢).

The DNN (4 = 3, n = 32, all layers except the final layer
activated by the sigmoid logistic function) was imple-
mented to homogenize the BioTruss geometry. Training
was performed as in Sect. 3.2. In 2D, a DNN trained with
667 examples of FEM data (50 X 50 mesh, linear 4-node
elements in plane strain) achieved £ = 8.23x 107 on a
333 example validation dataset. Another DNN trained
with 3D data (24 X 24 X 24 mesh, linear 8 node elements)
achieved £ = 8.38 x 107 on a 333 example validation
dataset. Because both the 2D and 3D DNNs were suffi-
ciently accurate compared to the validation examples (cf.
Sect. 3.2), both models were considered appropriate for
implementation into multiscale structural optimization.

The results of both 2D and 3D applications of the
BioTruss in compliance-based optimizations (Fig. 16)
agree with previous designs. The 2D example (Fig. 16) was
characterized in the macroscale by V(p <0.8,r=1.5, and
p = 3 and in the microscale by V, < 0.75and r = 1.5. After
100 iterations of multiscale optimization, the resulting

@ Springer

compliance was 13% higher than the density-based result
(Fig. 13a), likely because filtering effects limited spa-
tial variation of microarchitectures. In 3D (Fig. 16b—d),
the DNN-based design of each BioTruss in a 36 X 6 X 12
mesh produced spatially varying architecture that emu-
late the previously observed behavior in 2D. Although the
BioTruss is a sub-optimal parameterization for compliance
minimization (Sigmund 1994), the DNN surrogate model
was still able to produce sufficiently varying multiscale
features within the geometric limits imposed by its param-
eterization (Fig. 17). This characteristic implies that the
DNN can interpret shape sensitivity from highly param-
eterized microarchitectures.

The BioTruss was also implemented into a prescribed
displacement problem in 2D and 3D (Fig. 18). Foran 18 X 6
mesh in 2D, the prescribed displacement was defined using
(31) for ¢, set to 2.5% of the beam width, and ¢, set to 50%
of the beam length. After 100 iterations of concurrent mul-
tiscale optimization, the DNN-based model reduced @p from
2.61 X 107*t08.78 x 10~° (evaluated via the DNN model for
homogenization). The 3D prescribed displacement problem
defined the target displacement as
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Fig. 16 A compliance optimization is shown for the a 2D BioTruss and b 3D BioTruss. The DNN surrogate model for homogenization produced
spatially varying architecture from the parameterized cell geometry (c, d)

Fig. 17 The distribution of 3 out of 30 microscale parameters is shown for the compliance minimization problem of Fig. 16b

Fig. 18 A prescribed displacement optimization is shown for the a 2D BioTruss and b 3D BioTruss. ¢ and d The variance in 3D microarchitec-
ture agrees with previous designs, producing increasingly intricate geometries
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[UTz(Xl,Xz) = Cl - C] COS(2X17[/C2),
X, =0.5VX, = 0.5
U (X, X3) = ¢; — ¢, cos(2X 7/ c,),
X3 = 0.5 VX3 = —0.5

(34)

for ¢, set to 5% of the beam width and ¢, set to 50% of
the beam length. The DNN-based model reduced ©, from
4.98 x 1072t01.26 x 1072 (evaluated via the DNN model for
homogenization) after 100 iterations of multiscale optimiza-
tion. The optimized result is approximately 25% of the initial
condition; as shown in Fig. 19, this optimization reached
the geometric limits of the microarchitecture. As with the
compliance minimization application, the prescribed dis-
placement optimization of the 3D BioTruss produced sig-
nificant variations in microscale geometry for the 30 design
parameters (Fig. 19).

6 Conclusion

In this paper, the DNN was used as a surrogate model for
numerical homogenization in the context of concurrent mul-
tiscale design optimization. Using a parameterized unit cell,
we compared the shape sensitivities produced through back
propagation of the DNN with the analytical sensitivities pro-
duced via IGFEM. These results indicated a clear positive
correlation between the DNN’s evaluation accuracy and its
accuracy in producing shape sensitivities through back prop-
agation. Therefore, the DNN offers an appropriately smooth
approximation of parameterized homogenization provided it
is successfully trained.

Through numerous optimization examples, we compared
IGFEM with a IGFEM-trained DNN and FEM-trained
DNN. Although the FEM material interface is discontinu-
ous, the continuous DNN approximation of the geometry
provided reliable shape sensitivities in concurrent multiscale
optimization. This affirms our conclusion that a sufficiently
accurate DNN also provides sufficiently accurate shape
sensitivity for navigating the design space. Because FEM
training data were sufficient to train an accurate DNN sur-
rogate model, the resulting DNN was effective in providing

sensitivity information during design optimization. With this
revelation, we extended the DNN into 3D with the highly
parameterized BioTruss. With numerous design optimi-
zations and an experimental validation, we illustrated the
DNN’s effectiveness in exploring the microscale design
space. The DNN surrogate model extends the multiscale
design space, allowing more geometric freedom in param-
eterizing the microarchitecture in spatially varying struc-
tures. Future work in parameterized concurrent multiscale
optimization may explore the imposition of manufacturing
constraints on the parameterization.

We implemented the DNN as a tool for exploring the
multiscale design space, which is distinctly different than a
tool for multiscale analysis. Accurate analysis of multiscale
structures will require a larger computational investment
including high-fidelity microscale data and analysis of local,
nonlinear structural deformation. Furthermore, the designs
presented in this work (particularly the BioTruss) demon-
strate the increased geometric freedom afforded by the DNN,
but are not necessarily optimal representations. Future work
should couple results from material optimization to define
the microarchitecture parameterization.

Appendix 1: IGFEM shape sensitivity
of the homogenized elasticity tensor

This section introduces the relevant IGFEM sensitivity
analysis for the homogenized elasticity tensor in relation to
material shape parameters. We begin with the energy-based
expression of the homogenized elasticity tensor:

N,
oot LN (00 _ 40\ % (400 g0
=)= 2 () —ud) ke () ) 39)
e,=1

N,

1 b _ o)\ ) _
= 2 () e =) o

e, =1

If we simplify the expression to a single component of the
homogenized tensor and omit the subscripts used to indicate

ax
27

27>

2252

e S e e

TR

R e e

2R

Xmin

Fig. 19 The distribution of 3 out of 30 microscale geometries is shown for the prescribed displacement problem in Fig. 18b
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microscale element quantities, we can write an element’s
contribution to the homogenized tensor as

c= / (e - S)Tce“ (€” —€)de. (37)
?

3

We remark that in this expression, only the strain € is a func-
tion of the shape parameters. The strain £ is prescribed, the
element-wise constitute relation Ceﬂ is not a function of the
design variables in the IGFEM shape optimization
formulation.

The strain € can be represented as the function
(X (x),x) = B(X(x),x)U(X(x),x) for the shape parameters
x. Hereafter, we consider a single shape parameter x;. We
introduce the simple notation % as the expression for the

shape derivative of B. The defining feature of IGFEM is
B(X(x),x), where the strain—displacement is a function of
the shape parameters; for more information on the IGFEM
implementation of g, see Najafi et al. (2015, 2017, 2021)

and Brandyberry et al. (2020). The shape material derivative
of U is introduced as U. Following these definitions, the
shape derivative of € is expressed element-wise as

de

oB N
™ = aiue + [EB[Uel., (38)

1 i

while the shape derivative U is evaluated through the fol-

lowing pseudo-problem:

o _ 0K _dF
KU _Pw__a_x,.U o (39)

The pseudo-problem is assembled from the element quanti-

i

zero, so the element stiffness derivative follows:

oK T
< =/ o8 C, [EB+[EBTC +BTC Bdiv(V) |de,
ox; ax 6

(40)
where we note that gTC% B is symmetric and div(V,) fol-

lows from the shape velocity term (Najafi et al. 2015). For
the homogenization case where l{ﬂ = 0, the element force

i

derivative is

oF, BT T 0
= C,e" +B'C, ediv(V,
ox; /_Q <dx 6 W€ iv(Vy) Jd 1)
where
€0 = BUY. 42)

Recalling that only € is a function of the design param-
eter with its shape sensitivity in (38), then the sensitivity

expression of the homogenized elasticity tensor can be
defined similar to (40):

T
dc oB "
ai = —/QB [(T)@Me-'_BU”) Ceh(eo—e)

+ (EO—S)TCM<3BU +[EB[U“> 43)

+(—e)'C, (£ - e)div(\/i)] dQ.

Next we target the term %[Ue + BU’.. If we combine the

expression for the pseudo-element with the relation
K, = BTC, B, the pseudo-element can be used to eliminate
U

BU?. in (43) using the element-wise pseudo-force of (39):

B'C,, (@[U + [B[U*)

ox;
T a i
=B C [U +P
0K oF
=B'C, ()B - —U+—
Cu ax ox; 0x;
-B'C, 2
€ ax

e

T
- <5B C, [EB+IBTC
ox

IHSTCe” Bdiv(M)) U

L

T
+ <3B C,e "+ BTC, sodlv(\/)>

xl
T T
-2 ¢, Bl -2 ¢, BU,
6x,- dxi
+B'C, Bdiv(\/l-)U_JS - [EBTCEM Bdiv(V,)U,

oBT T . 0
= {35, C.,B+B'C,Bdiv(V) (W -u,).

(44)
Applying the symmetry of gTC% B in (44), we conclude

B'C,, <@[U + B[U*)

ox;

B
=(B'C, —
< u ox;

= BTCeu <3B + [EBdlv(\/)) (W -u,)

l

+B'C, [Bdiv(\/i)> (W -u,)
(45)

= By, 1 BUr = <@ + Bdiv(\/,.)> (L0 -u,).
ox; “ 0x; ¢

Using (45) in the expression for constitutive sensitivity (43),
we produce
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T
g - / [-((% + Bdiv(\/i)> (L0 - lU,_,)) c, (e —¢)
i 2, i
- (- g)Tce“ ((g + Bdiv(\/,)) (w0 - er)>

+(£0 - e)TCe“ (EO - e)div(\/,-)] ds2

=_/Qe [_(ug_u)Tgﬂ c.B(U-U,)

-u,)'B'c, Bdlv(\/)( u,)
-U,)'w'C, ( -U.)
(46)
- (W0 -u,)"BC, [EBle(\/)(fUO u,)
(8 —e) C, (6 —e)dlv(\/)]d_Q

-/ [([ug_[u)TgLB ¢, B -U,)

+ (12 - 1,)'B"C, Bdiv(v) (L) - U,)
+uf-u)BC, 2 1 Ue)]dg

10K
ox,

= (MS_UE) e([Ug_[Ue)'

i

Using this element contribution to the shape sensitivity of
the constitutive parameters, we recover the form in (29).

Appendix 2: Practical considerations

The appropriate DNN architecture and training procedure
heavily depend on the application (that is, it depends on the
function space to be emulated). For multiscale optimization
problems employing homogenization, including applications
in structural, thermal, and acoustic simulations that employ
parameterized microstructures, this section may be used
to generally guide the DNN training process. This section
reviews some of the key issues associated with DNN train-
ing including vanishing/exploding gradients, batch size, and
training dataset generation.

Gradient propagation

As the DNN trains, its weights are iteratively updated to
improve some objective function. The back propagation pro-
cedure [cf. (9)] is used to update the weights and biases of
the DNN. The convergence of these model parameters is not
guaranteed; some combinations of model initialization and
training procedures will produce unstable gradients, often
referred to as vanishing or exploding gradients (Glorot and
Bengio 2010; Goodfellow et al. 2016).

In this work, vanishing gradients were observed and are
reported in Table 1 as the number of DNN hidden layers was
increased past L = 3. Figure 20 illustrates the propagation of
the DNN’s Jacobian for a collection of architectures all trained
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3 12.5
8 | .
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1 ) o [ Layer 1
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3 [ Layer1 | & Layer 1 g 75 " Layer 2
g g 4 e s | S [ Layer 3
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i
ob— — = 0 ' BT e, 0.0 ~ y .
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(a) (b) ()
300
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Fig.20 The gradient produced through back propagation is represented as a histogram for a DNN of size n =32 and L =1,2,3,4,5 or 6 for
(a—f), respectively. Each DNN was trained to homogenize the IGFEM ellipse microstructure using full-batch training
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with 667 IGFEM elliptical training examples with an initial
learning rate of 10™* over 10° iterations of full-batch gradi-
ent descent. As the number of hidden layers increases, as in
Fig. 20e, f, the Jacobian tends toward zero and caused the train-
ing failures reported in Table 1. In all examples, the vanishing
gradient phenomena manifested during training and resulted in
blatantly poor models. For the relatively small models in this
work, if the training process was stable, then the DNN’s Jaco-
bian was adequate for applications in multiscale optimization.

Batch size

The batch size in a DNN training procedure refers to the
number of training examples used to calculate the model’s
sensitivity for a given training iteration (Goodfellow et al.
2016). Full-batch training was implemented in this work
because the training datasets are relatively small (100s to
1000s of examples) and an efficient training procedure was

Table2 The Loss values of (8) are reported as £ x 103 for different
DNN frameworks to compare a full-batch and small-batch training
strategies

Layers L  Neurons n
8 16 32 64 128
1 0.0480 0.0367 0.0311 0.0297 0.0330
(0.0622)  (0.0424) (0.0418) (0.0578)  (0.0646)
2 0.0451 0.0318 0.0210 0.0159 0.0160
(0.0837)  (0.0579) (0.0724) (0.0647)  (0.0481)
3 3.0948 0.0330 0.0149 0.0122 0.0135
(0.3078)  (0.2541)  (0.0323)  (0.0256)  (0.0230)
4 3.6491 0.0538 0.0256 0.0163 0.0163
(0.2719)  (0.2899)  (0.0319)  (0.0270)  (0.0171)

Full-batch training results are denoted by parenthesis

cH
/arz

desirable. Training in mini batches, generally samples of
4-32 training examples may improve generalization and
robustness (Nikolakakis et al. 2022; Novak et al. 2018).
Table 2 compares the objective values for two identical DNN
architectures trained via full-batch gradient descent and
small-batch gradient descent (batch size = 32). Small-batch
training did improve the DNN’s performance as parame-
terization increased. The sensitivity, shown in Fig. 21, was
inconsistently improved. Based on this evidence, the gains
achieved through small-batch training do not significantly
outweigh the additional training cost. For more complicated
systems that require highly parameterized models, however,
small-batch training may be necessary to build accurate sur-
rogate models Fig. 22.

Training dataset size

A training dataset is necessary to construct a viable DNN
surrogate model for engineering applications. The ideal
training dataset captures the depth and complexity of the
target function so that the DNN may learn a general and
robust map within the function space. Whether due to exces-
sively costly data generation or incalculable complexity, the
ideal training dataset is not always feasible.

Parameterized homogenization is apt for building effec-
tive training datasets. Input parameters are bounded by geo-
metric limits, and output parameters are bounded by the con-
stitutive limits of the material. Given these conditions, it is
possible to create a representative dataset with 100s to 1000s
of examples that may be used to create a relatively small
yet general surrogate model for homogenization. Figure 23
illustrates correlation between accurate execution and train-
ing dataset size for a DNN of L = 3 and n = 32. For more
complicated geometric parameterizations and/or nonlinear
physics, it is likely that more data are needed to capture the
complexity of the feature space.
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Fig. 21 The shape sensitivities are compared for full-batch and batch size 32 DNNs trained to homogenized the IGFEM ellipse microstructure.

RMSE error is reported using Eq. (30)
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Fig.22 The gradient produced 15
through back propagation is
represented as a histogram 3
for a DNN of size n = 32 and 2 2 10
L=1,2,3,or4 for (a-d), g 2 g [ Layer 1
respectively. Each DNN was =2 [ Layer1 = Layer 2
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Fig.23 The Ellipse microstructure (3 parameters per cell), the 2D
BioTruss (8 parameters per cell), and the 3D BioTruss (30 parameters
per cell) illustrate the correlation between number of training data
and the accuracy of a trained DNN (n = 32, L = 3)

Homogenization in multiscale optimization

Homogenization assumes a significant separation of
scales, approximating the local effects of a periodically
varying microstructure (cf. Sect. 2). The examples pre-
sented in this work have largely focused on the numerical
behavior of DNN surrogate models for homogenization
in a selection of optimization exercises. Continued work
through full-scale simulation and physical experimenta-
tion is necessary to judge the effects of homogenization
on multiscale structures. This “Appendix” is presented as
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zation-based multiscale design.
The test case for experimental validation is derived from
a prescribed deformation problem characterized by

Up =Up=Up =0 47

which targets the displacement of a zero Poisson’s ratio
structure given the boundary conditions shown in Fig. 24a.
Design optimization was performed using the FEM-
informed DNN model for the 3D BioTruss, producing the
10 x 10 x 1 structure shown in Fig. 24a after 100 iterations.
Designs are compared using measured Poisson’s ratio of the
macroscale structure

v= ﬂ’ (48)

glong

where the strains ¢, and €,,,, are the lateral and longitu-
dinal strains measured along the specimen’s centroidal
axes. The initial uniform specimen [ = {0.5,0.5},_;.15;
¢®W =0.5,_,.¢] has a Poisson’s ratio of 0.33 as evaluated by
FEM-based homogenization. After 200 iterations of design
optimization (V, = 0.2), the BioTruss design converged to a
Poisson’s ratio of 0.00 (as evaluated by FEM-based homog-
enization). Because the design space reached the parameter
limits imposed by the BioTruss geometry (Fig. 25), this
specific microarchitecture formulation is likely unable to
produce a negative Poisson’s ratio.
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Fig.24 a The boundary conditions and optimization result are shown for the test specimen with spatially varying microstructures (b). ¢ The
manufactured specimen is shown in its undeformed condition

The design produced via DNN-driven multiscale opti-
mization was manufactured using 3D printing of TPU 95a
filament (E; = 49 MPa, v = 0.32 Lee et al. 2022) via fused
deposition modeling (Fig. 24b, c). The properties of TPU
95a differ from the simulated fictitious material (E; = 1Pa,
v = 0.30), but because the structural deformation is displace-
ment controlled, the deformation of both materials are suf-
ficiently similar for comparison. Indeed both the fictitious
material and TPU 95a produce an initial Poisson’s ratio of
0.33 for the uniform specimen and 0.00 for the optimized
structure, as evaluated by FEM-based homogenization.

The optimized design of TPU 95a microarchitectures
was analyzed in the displacement controlled compres-
sion fixture shown in in Fig. 26. The Poisson’s ratio
was measured experimentally using ¢, and ¢,,, meas-
ured along the specimen’s respective centroidal axes. At
€long = —0.10, the calculated Poisson’s ratio was —0.06,
and at ,,, = —0.20, the measured Poisson’s ratio was
—0.02. The variation between modeled (v = 0.00) and
experimental Poisson’s ratios is attributed to localized
buckling near the compression plates. A full exploration of
the observed nonlinear behavior is well outside the scope
of this work; we simply conclude that the optimized design
did indeed approach the targeted displacement within the

Elong = —-0.2
. Buckling
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(TPU 95a)
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]
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=
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Vrga = 0.33

Target
Vrea = 0.00

Exp. Results
Vexp = —0.02

Fig.26 The compression fixture (buckling guides and compression
plates) used to reproduce the boundary conditions for the auxetic
design is shown at 20% longitudinal compression

limits of its parameterized geometry provided the DNN’s
evaluations and shape sensitivities. Beyond navigating the
design space, a thorough validation of the final analysis
would require full-scale simulation and experimentation
as in Cheng et al. (2019).
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