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Graphical Abstract

Abstract

Machine learning techniques have emerged as potential alternatives to traditional physics-based modeling and partial
differential equation solvers. Among these machine learning techniques, Graph Neural Networks (GNNs) simulate physics
via graph models; GNNs embed relevant physical features into graph data structures, perform message passing within the
graphs, and produce new attributes based on the system’s relationships. Like many machine learning frameworks, GNNs
are limited by excessive data generation costs and limited generalizability outside of a narrow training domain. To address
these limitations, we introduce the Multi-Fidelity Graph Neural Network (MFGNN), a supervised machine learning framework
that uses low-fidelity projections to inform high-fidelity modeling across arbitrary subdomains represented by subgraphs. We
implement the MFGNN for two-dimensional elastostatic problems with finite element training data. The MFGNN is trained
to produce accurate analysis given low-fidelity evaluations and emulate the convergence behavior of traditional finite element
analysis (FEA). Through subdomain abstraction, we also extend the MFGNN as a general model for new boundary conditions
and material domains outside of the training domain.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Engineering models often represent physical systems with partial differential equations (PDEs) that are solved
with numerical methods like finite element analysis (FEA). With increasing scale and complexity of physical models,
traditional numerical methods become computationally prohibitive [1–3]. To overcome this computational burden,
machine learning has been proposed as a new modeling paradigm to replace PDE solvers or to emulate FEA [4,5].

Machine learning models extrapolate a problem structure into a discrete framework by inferring underlying
system behavior [4]. Recent applications of machine learning in computational mechanics have derived process–
structure–property relations [6], designed advanced materials [7,8], and built optimized structures [9,10]. Neural
Networks (NNs), trained through the iterative optimization of a loss function L(✓ ) for some model parameters ✓ ,
often drive these machine learning applications. This optimization incurs significant computational cost [4,5], and
the resulting model often fails to meet the stringent accuracy, reliability, and stability requirements of physics-based
simulation [4]. Therefore, a successful application of machine learning for physics-based simulations must meet
rigorous accuracy metrics with limited training resources.

To meet the demands of physics-based simulations, physics-constrained machine learning may supplement
L(✓ ) with additional objectives for PDE residual, boundary, or conservation terms [11–14]. Such soft constraints
have been implemented to solve traditional diffusion and flow problems [5,15,16]; physics-informed machine
learning models have also derived PDE forms from noisy data [5]. These applications indicate the NN’s utility
in supplementing or replacing numerical solvers, but physics-constrained NNs fail to generalize outside of a narrow
problem domain [17].

General stability among a variety of PDE formulations or finite element domains is necessary for a generalized
surrogate model [17,18]. Once trained, a generalized surrogate must accommodate a range of boundary conditions
and material domains to approximate a system’s physical response from a single execution of the model. Multi-
fidelity modeling [19] has been proposed to address generalizability, and multi-fidelity physics-informed neural
networks have been trained using low-fidelity data to evaluate high-fidelity physics [20–25]. Low-fidelity training
data addresses the computational cost tradeoff of data pre-generation and model training. By applying multi-fidelity
approaches to learning within a subdomain, some physics-based machine learning models have also generalized
across multiple physical domains [26]. Training using multi-fidelity data can also improve the information gain of
the machine learning model, allowing for increased accuracy and generality [21,27,28].

Graph data structures have been implemented in machine learning surrogates for PDE-driven physics models,
incorporating domain knowledge with the graph’s inherent structure. The Graph-informed Neural Network (GINN)
encodes domain-specific information in graphs to generate physically sound distributions that drive physics-based
surrogates [29]. Graphs can also encode unstructured data and when combined with PDE-informed objective
functions, have modeled physics in irregular domains [30,31]. Parameterized graph calculus has also been used
to generate low-fidelity surrogate models that strictly enforce physical behavior [32]. These approaches use graph
structures to enrich training data and model architecture while directly incorporating knowledge of governing
differential equations.

To further extend the generalizability of machine learning models, Graph Neural Networks (GNNs) use neural
networks to learn relations between data in graph structures [33,34]. This relation-based reasoning has had success
in physics-based rigid body dynamic modeling by representing mass objects as graph nodes and learning inter-
mass relations [35–38]. GNNs have recently been implemented in the finite element domain, incorporating meshed
domains into graph data structures [30,39,40] or performing element-wise operations [41]. GNNs have also been
shown to generalize to conditions outside of the training domain [39–41]. The generalizability of GNNs is
particularly appealing for learning physical simulation, as a single model may be trained in one domain then
generalized to solve systems of varying size and complexity. This idea was explored in [42], where graph operators
were used as mappings of a PDE input and their solutions at different resolutions.

This work seeks to expand the accuracy, reliability, and generalizability of machine learning models for physics
simulation while exploring methods for increasing the utility of synthetic datasets. We introduce Multi-fidelity
Graph Neural Networks (MFGNNs), a multi-fidelity approach to machine learning physics simulation. The MFGNN
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uses a system of NNs to learn physics relations across a collection of subdomains. Without directly enforcing
specific differential behavior, the MFGNN targets an underlying mapping from the pre-convergence solutions to
the converged result. By training this model with the right selection of FEA examples, the MFGNN framework
improves the accuracy of machine learning analysis. Additionally, MFGNN performance is shown to conform to
traditional finite element convergence behavior. MFGNNs improve the scalability and generalizability of machine
learning based physical simulation through a multi-fidelity subdivision of the problem domain, strict imposition of
boundary conditions via graph-edge analysis, and implementation of low-fidelity projections to perform high-fidelity
analysis.

The MFGNN framework is introduced in Section 2, illustrative examples are presented in Section 3 based on
two dimensional (2D) solid mechanics problems, and MFGNNs are extended in Section 4 as a generalized surrogate
model.

2. Multi-fidelity Graph Neural Networks (MFGNNs)

Graph Neural Networks (GNNs) operate over graph data structures to learn relationships between features [34].
In a domain ⌦ , relevant data are embedded in a graph G. For this work, G is defined as a set of Nn nodes {ni }

Nn

i=1
connected by a set of Ne directed edges {e j }

Ne

j=1. Each edge e j connects a pair of nodes (n( j)
s , n

( j)
r ) defined as senders

and receivers respectively. Graph nodes and edges are both assigned unique attribute vectors that represent features.
In this work, a feature is defined as a specific quantity of interest (e.g., temperature at a point, displacement of a
beam). When features are compiled to a graph node ni or edge e j , they are referred to as the graph’s nodal attribute
ni or edge attribute e j . The graph G is fully defined by its set of attributes ({n}, {e}) and node–node connections.
As illustrated in Fig. 1, G may include any number of node–node relationships defined by edge connections.

A given attribute neighborhood N in G is established by a sequence of message-passing steps in which a node
receives information from its connected neighbors. Shown in Fig. 1, the message-passing step is defined by three
stages: (i) edge attribute updates by a function f

e
, (ii) aggregation by a function ⇢, and (iii) node attribute updates by

a function f
n

[34]. The GNN performs attribute updates using Deep Neural Networks (DNNs). The message-passing
step begins with an edge attribute update: given an edge attribute vector e j ,

f
e
(e j , ns, nr ) := DN N(e)(e j , n( j)

s
, n( j)

r
) = e0

j
(1)

where an edge attribute e j is updated to e0

j
based on its assigned edge attribute and associated nodal attributes

n( j)
s , n( j)

r . Fig. 1, stage (i) shows the edge update process for a single edge in the input graph G. Edge updates are
performed for each edge in the graph, producing an intermediate graph representation G

⇤ = ({n}, {e0}). Next, the
updated edge attribute is aggregated at each of its local nodes ni , so

⇢(i)(e0

j
) =

X

j |r j =i

e0

j
= e⇤

j
, (2)

where the aggregated edge attribute e⇤

j
represents the incoming edge information at each node. An aggregation step

is illustrated in Fig. 1, stage (ii), where incoming edge information is limited to edges with receivers defined by ni

(i.e., r j = i). Using the aggregation e⇤

j
and a given node attribute ni , nodal attributes are updated to n0

i
with

f
n
(ni , e⇤

j
) := DN N(n)(ni , e⇤

j
) = n0

i
. (3)

Fig. 1, stage (iii) shows a single node attribute update which – along with an edge aggregation step – is repeated
for each node in the graph to produce the message-passing step’s output G

0 = ({n0}, {e0}).
A single message-passing step like that of Fig. 1 preserves the structure of the input graph while collecting

relational information in each edge and node. Through sequential attribute updates and aggregations, DN N
(e)

and DN N
(n) accrue new information based on the graph’s connectivity. As the number of message-passing steps

increases, so too does the size of the learned neighborhood N .
Multi-fidelity Graph Neural Networks (MFGNNs) represent the domain ⌦ with a low-fidelity graph G̃ and

high-fidelity graph G. As shown in Fig. 2(a), G̃ is a condensed representation of G. Given a low-fidelity feature ũ
assigned to attributes in G̃, a projection function p produces an approximation ū which may be applied to attributes
in the high-fidelity graph G. The MFGNN uses the projected attributes to infer high-fidelity analysis u, as in

p(ũ) = ū ⇡ u. (4)
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Algorithm 1 MFGNN
Input High-fidelity Graph G = ({n}, {e}), with unassigned attributes; Low-fidelity Graph G̃ = ({ñ}, {ẽ}) representing the

feature ũ
1: Project low-fidelity feature ũ into high-fidelity feature ū (4).
2: Assign ū to attributes in G

3: Perform subdivision of G to {Ss}
Ns

s=1 (cf. Fig. 2(b))

4: for each Subgraph Ss := ({ň}, {ě}) 2 {Ss}
Ns

s=1,
5: for m rounds of message-passing,
6: for each edge := ě j 2 {ě j }

Ne

j=1,

7: Update attribute, ě0
j
, = DN N

m

(e)(ň
( j)
r , ň( j)

s , ě j ) (1)

8: for each node := ňi 2 {ňi }
Nn

i=1,
9: Aggregate local attribute, ě⇤

j
=
P

j |r j =i
ě0

j
(2)

10: Update attribute, ň0
i
= DN N

m

(n)(ňi , ě⇤
j
) (3)

If applicable, perform edge recovery of features (6).
11: Recover G

0 from {S
0
s}

Ns

s=1 (cf. Fig. 2(b))
Output Graph, G

0 = ({n0}, {e0})

Fig. 1. The message-passing step drives relationship-based learning in three stages: (i) looping through edges to update each edge attribute
through DN N

(e), (ii) aggregating attributes, and (iii) looping through nodes to update each node through DN N
(n).

The projection function (4) is widely interpretable. For example, projection may be performed through averaging
of a nodal neighborhood N or distance-based projection based on the properties of ⌦ .

Following this projection, operations proceed exclusively in the high-fidelity Graph G. Subsequently G is
subdivided into Ns subgraphs {Ss}

Ns

s=1 2 G as illustrated in Fig. 2(b). Attributes are copied as subsets {ň} and {ě}
to a subgraph Si based on the corresponding nodes or edges in G, so Ss is defined by nodes {ň} ⇢ {n} and edges
{ě} ⇢ {e}. Message-passing steps are performed as in Fig. 1, and each subgraph is independently updated using a
single MFGNN such that MFGNN(Ss) = S

0
s
. For example, the three subgraphs {Ss}

3
s=1 illustrated in Fig. 2(b) are

each passed to the same MFGNN model and evaluated independently for relevant attributes. Because the original
domain ⌦ is represented by the graph G, the collection of output subgraphs {S

0
s
}

3
s=1 must be reconstructed as G

0

to recover interpretable metrics. Reconstruction follows the formation of subgraphs, so the attributes in {S
0
s
}

3
s=1 are

copied back to their corresponding nodes and edges to form G
0. If a node or edge is common to multiple subgraphs

(as with S2 and S3), the common attributes are simply averaged.
Algorithm 1 summarizes the order of operations for the MFGNN framework. Within these operations, key design

decisions influence the optimization of the MFGNN model, including the subgraph subdivision, normalization
schemes, and feature recovery. Fig. 2(b) shows just three possible subdivisions of a graph G, but additional
possibilities exist. With more unique subdivisions and shared attributes between subdivisions, the MFGNN will
learn more localized analysis. Conversely, execution time over an entire domain is proportional to the number of
subdivisions. As such, the arbitrary subdivision is a design decision that depends on the application’s accuracy
requirements and resource restrictions.

The MFGNN architecture allows for practical implementation of localized normalization (e.g., z-score standard-
ization, min–max normalization, etc.) that normalizes features based on statistics of the projected feature ū within
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Fig. 2. (a) The domain ⌦ is modeled by a low-fidelity representation G̃ (shown in bold) and a high-fidelity representation G (shown in
gray). The MFGNN is informed via a projection from G̃ to G. (b) Subdivision of G into a variety of subgraphs {Ss}

3
s=1 2 G ensures

accuracy and scalability of the analysis.

each subgraph Ss . Because this standardization framework operates independently for any given Ss , the MFGNN
may be reused for each Ss regardless of the feature’s units or magnitude.

Graph-edge analysis (edge learning) assembles nodal features based on a relative feature embedded in graph
edges. The generic relative feature is defined at edge j by

�(·) j = (·)( j)
r

� (·)( j)
s

(5)

for the edge’s receiver node r and sender node s. As the MFGNN produces �(·)0
j

for each edge, a nodal feature
(·)

0( j)
r for node nr is recovered using

(·)
0( j)
r

=
1
Nr

NrX

j |r j =r

⇣
�(·)0

j
+ (·)

0( j)
s

⌘
, (6)

where Nr is the number of incoming edges, �(·)0
j

is the relative feature as an edge attribute, and (·)
0( j)
s is the sender’s

associated feature for that edge. Edge-based recovery using (6) averages the edge-based approximation of a nodal
feature (·)

0( j)
r for Nr incoming edges. Incoming edges are defined as the edges j with a receiver r j defined at the

node r , so (6) averages the nodal feature for all j where j |r j =r . Naturally, the sender features at (·)
0( j)
s must be

known, so it is convenient to evaluate each nodal feature using the MFGNN prior to edge recovery. Alternatively,
(·)

0( j)
s may be substituted with a prescribed condition. Because the MFGNN operates over subgraphs, the number

of edge features – which may drastically outnumber nodal features – remains tenable. Therefore, observable nodal
features in G

0 (reconstructed via the subgraphs {S
0
s
}

Ns

s=1) may be recovered directly from graph nodes, assembled
from edge-based features, or a combination thereof.

Graph-based machine learning operates over sets of attributes, so a single model may accommodate graphs with
different numbers of nodes and edges. Additionally, relational information is learned through iterative optimization
of the DNN-driven attribute updates. Message passing establishes a neighborhood of information in which nodes and
edges send, receive, and process their neighboring attributes. The MFGNN leverages these properties for physical
simulation by (i) problem abstraction through an arbitrarily flexible domain subdivision, (ii) leveraging low-fidelity
data to perform high-fidelity analysis, (iii) locally normalizing target data within each subgraph to improve relative
accuracy, and (iv) enforcing boundary conditions through edge-based learning.

3. Applications of MFGNNs

This section applies the MFGNN framework to elastostatic solid mechanics problems. First, we briefly introduce
the elastostatic formulation and associated finite element discretization. We then implement various training regimes
to evaluate MFGNNs for structural analysis. Consider the domain ⌦ illustrated in Fig. 3 defined by the surface @⌦
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Fig. 3. The general elastostatic boundary value problem is defined in ⌦ and discretized to ⌦h for numerical analysis.

and subjected to the body force bi . The relevant elastostatic boundary value problem is stated as follows: for the
displacement field u,

� i j, j � bi = 0, x 2 ⌦ (7)
ui (x) = up

i
, x 2 @⌦D

� i j n j = t p

i
, x 2 @⌦N ,

for the constitutive relation � i j = C i jkl"kl , kinematic condition "kl =
1
2

⇣
@uk

@xl

+
@ul

@xk

⌘
, Dirichlet boundary condition

up

i
on @⌦D , and Neumann boundary condition on @⌦N characterized by the traction t p

i
and normal ni . With weights

w 2 W = {w 2 H
1(⌦ )|w = 0 on @⌦D} and kinematically admissible values u0 2 K = {u0 2 H

1(⌦ )|u0 =

up

i
on @⌦D}, the associated weak form may be expressed as: find u 2 V = u0 + W such that
Z

⌦
wi, j� i j dv =

Z

⌦
wi bi dv +

Z

@⌦N

wi t p

i
da, 8w 2 W . (8)

For a discretized domain ⌦h
⇠= ⌦ (as in Fig. 3), the finite element solution uh may be expressed as the combination

of shape functions N (x) and the field u such that

uh =

NkX

k=1

Nk(x)uk (9)

for Nk shape functions per element.
FEA yields an approximate solution to (8); through refinement of the finite element mesh ⌦h and polynomial

approximation of uh , the FEA approximation converges to an analytical solution of (7) or (8) that satisfies
measurable kinematic, static, and constitutive conditions of the system [3]. Following this convergence behavior,
FEA approximations have inspired NN architecture and training datasets. Finite element polynomial approximations
have been embedded in NN architecture, so the optimization of L(✓ ) parallels the convergence of traditional
FEA [43,44]. Element-wise stiffness matrices have also been approximated using NNs to increase computational
efficiency of traditional FEA [45].

MFGNNs naturally accommodate mesh-based analysis, as mesh nodes may transfer information to graph nodes,
and mesh connections may transfer to graph edges. Furthermore, as MFGNNs operate over sets of nodal and edge
attributes, a single model can evaluate different mesh fidelities. Fig. 4 illustrates the translation of finite element
meshes to graph data structures. An L ⇥ W domain is considered, which naturally produces an L ⇥ W graph
representation G (Fig. 4(a)). Alternatively, multiple subgraphs S (Fig. 4(b)) can be defined by a coarse mesh and
parent nodes (shown in red in Fig. 4) of the low-fidelity graph G̃. Each l ⇥ w subgraph is then evaluated by the
MFGNN to recover relevant features. For fair comparison between GNN and MFGNN, we set the mesh resolution
of each subgraph S identically to the high-fidelity mesh represented by G. Also note the local standardization used
in the MFGNN representation (indicated by the red–blue gradient in Fig. 4) illustrates the abstraction of localized
physics in each subdomain.
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Fig. 4. (a) GNNs encode the entire finite-element representation ⌦h into one L ⇥W graph G; (b) MFGNNs operate over smaller subdivisions
where individual subdomains are standardized using µs and �s and analyzed independently. Parent nodes of the low-fidelity graph G̃, shown
in red, are derived from low-fidelity FEA and used to project low-fidelity analysis onto a high-fidelity graph G that is then subdivided into
the subgraphs Ss . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Graph learning approaches like the Multi-fidelity Graph Neural Network operate on the same discretized domain as traditional finite
element analysis but instead use pre-generated data to train a system of Deep Neural Networks. Once trained, these models can rapidly
reproduce the finite element results.

Dirichlet boundary conditions are enforced using (6) where (·)0
s

= up on @⌦D . Low-fidelity finite element
evaluations also inform high-fidelity graphs through simple distance-based projections as shown in Fig. 4(b). The
MFGNN’s parent nodes (shown in red) are directly transcribed from the coarse finite element evaluation ũ. The
distance from each parent node to a given child node (the transparent nodes in Fig. 4(b)) is represented by a 4 ⇥ 1
vector d. The projected value at each node in ⌦h is then calculated as

p(ũ) =
1 � d̂

sum
⇣

1 � d̂
⌘ · ũ = ūi 2 ⌦h, (10)

where d̂ represents the normalized distance vector d. Eq. (10) is applied for each node in the subgraph, producing an
approximation of the high-fidelity response based on the low-fidelity analysis. This weighted averaging projection
produces similar approximations as (9) but may be applied to any graph attribute, so the projection is not necessarily
confined to strict element representations. In other words, although Fig. 4(b) illustrates each l ⇥w subgraph aligned
directly with a coarse mesh, this may not always be the case; the MFGNN is designed to accommodate overlapping,
irregular, or disjoint subgraphs (Fig. 2(b)).

The following applications use finite element mesh and analysis to inform MFGNNs. Training data is generated
for a range of mesh fidelities to explore the necessary computational cost in training MFGNNs. Section 3.1 compares
the MFGNN’s subgraph analysis with its single graph GNN counterpart to evaluate the mesh-dependence of these
FEA surrogates. Section 3.2 evaluates the convergence behavior of MFGNNs under different training regimes. The
graph learning process, illustrated in Fig. 5, is evaluated based on data generation costs, model training requirements,
and accuracy.
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Fig. 6. (a) The cantilever beam problem is used to evaluate the mesh-dependence of MFGNNs for structural mechanics problems; (b)
noise generation strategies are used to develop unique training datasets (shown with a 20 ⇥ 10 element mesh), including (i) noise-free, (ii)
coordinate x noise, (iii) element size noise, and (iv) combination of (ii) and (iii).

3.1. MFGNNs as FEA surrogate models

In the application of MFGNNs as FEA surrogate models, various high-fidelity meshes ⌦h are generated; a
selection of these meshes are illustrated in Fig. 6. A cantilever beam problem is considered, and various training
strategies are developed to illustrate the MFGNN’s accuracy as a FEA surrogate. The domain ⌦ , illustrated in
Fig. 6(a), considers a single set of boundary conditions for an elastic material with Young’s modulus of 200 GPa
and Poisson’s ratio of 0.3 under isotropic, 2D, linear-elastic plane-strain conditions. The beam (L = 2 m, W = 1
m) is subjected to a constant nodal force F = 10 MN distributed uniformly across 3 nodes symmetric to the x2
axis. FEA is performed with linear 4-node quadrilateral elements.

Each mesh discretization is characterized by a number of elements m1 ⇥ m2 corresponding to the x1 and x2
directions. Unique training examples are generated using FEA mesh randomization techniques shown in Fig. 6(b).
Random meshes are generated by selecting a variety of discretization fidelities (i.e., random m1, m2) and applying
noise to the mesh discretization. Nodal position noise (Fig. 6(b)(ii)) is achieved through

x(noise)
i

= xi + �h (11)

where � is random uniform noise limited by 0.2 and h is the element size. Additional noise is achieved through
varying element size by shifting an entire group of nodes (Fig. 6(b)(iii)) or a combination of strategies (Fig. 6(b)(iv)).
Training strategies are compared using a global mesh evaluated with a GNN and the same mesh subdivided and
evaluated with a MFGNN. For these examples, subdivision is performed over a regular grid, so each subgraph mesh
is discretized to the same fidelity as the global mesh (Fig. 4).

Table 1 summarizes the attributes embedded into graph nodes and edges. Nodal attributes are defined by
ūi evaluated at each node, and one-hot identifiers indicate a displacement (1u) or forced (1F ) condition at the
appropriate nodal locations. Edge attributes encode �ū j , geometric information �x1 j ,�x2 j , and edge length kx jk.
The target graph’s attributes are the high-fidelity finite element evaluation ui at each node and relative evaluation
�u j for each edge. As in [38], attributes exclude absolute nodal coordinates to improve generality. Because input
geometric features are strictly relational, we impose a focus on node–node relationships.

To ensure equivalency in GNN and MFGNN models, geometric attributes are z-standardized using training
dataset statistics, while both input and target displacement attributes are z-standardized using statistics collected
from the projection ū. Z-standardization uses the mean µ and standard deviation � from a collection of data z to
produce zero-mean, unit standard deviation data through

zµ=0,�=1 =
z � µ

�
. (12)

Z-standardization via (12) is used in machine learning as data regularization to improve training convergence [46].
In the GNN approach, input attributes are standardized using statistics (µ and � ) collected from the entire training
dataset. As an example, the feature �x1 is compiled across all training data, its average and standard deviation are

8
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Table 1

Attributes embedded into the graph data structure are used for learning FEA.

Graph Node Attributes ni=1:Nn
Graph Edge Attributes e j=1:Ne

Input Graph [ū, 1u , 1F ]i [�ū,�x1,�x2, kxk] j

Output Graph [u]i [�u] j

Fig. 7. The encode–process–decode modeling structure [34] uses an MLP to encode graph attributes to a high-dimensional latent space, a
sequence of message-passing steps to learn relations within the graph, and a decoder to produce observable outputs.

calculated, and Z-standardization is applied to regularize the GNN input. The GNN then predicts a standardized
output regularized using statistics collected from the pre-computed evaluations of u. In contrast, the MFGNN collects
statistics only within each subgraph and standardizes both inputs (ū) and outputs (û) using statistics collected
from the low-fidelity projection. Because the MFGNN standardization process is localized within each subgraph
and entirely dependent on low-fidelity data, the MFGNN is tasked with advancing the model from low-fidelity to
high-fidelity evaluation.

As indicated by the red–blue gradient of Fig. 4(a), statistics are collected in the graph G to standardize all
attributes in the domain. Local standardization of the MFGNN attributes is achieved within each cell of an 8 ⇥ 4
grid illustrated by the red parent nodes in Fig. 4(b). The local mean µs and local standard deviation �s produce
z-scored displacement attributes within each of these cells.

The message passing and graph analysis implemented here uses the GraphNets library [34] and the encode–
process–decode structure presented by Sanchez-Gonzales et al. (Fig. 7) [38]. In this structure, an encoder builds
a latent graph for node and edge attributes using a multilayer perceptron (MLP), a class of fully-connected feed-
forward DNN. The processor updates the latent graph through a sequence of message-passing steps as in Fig. 1.
The decoder reduces the latent space to the target space with another MLP. All MLPs are constructed with 2 hidden
layers of size 128 activated by Rectified Linear Unit (ReLU) functions and followed by layer normalization [47].
The GNNs implemented here use 10 message-passing steps, while the MFGNNs use 5 message-passing steps.
Because each message-passing step uses two DNNs to update edge and node attributes, the total number of model
parameters ✓ is a function of the weights and biases in each MLP and the number of message-passing steps.

Table 2 summarizes the models and training strategies used to emulate FEA with both GNNs and MFGNNs.
The GNN0.x models were trained on graphs generated from noisy finite element nodes, as illustrated in Fig. 6(b)(ii).
With increasing training data from n = 500, n = 5, 000, n = 50,000 for GNN0.1, GNN0.2, GNN0.3 respectively, each
successive model must learn more general physical information. Generating 50,000 training examples represents a
significant time investment (⇠ 1 day data generation time), so subsequent models aim to improve model performance
with smaller training datasets.

The GNN1.x models expand the range of mesh fidelities used during training to evaluate the reliance on
computationally expensive datasets (Table 2). We limit the training examples to n = 5, 000 for GNN1.0, which
uses higher-fidelity training data than GNN0.x . GNN1.1 is limited further by just n = 2, 500 training examples with
mesh generated from randomized nodal coordinates and element sizes, as illustrated in Fig. 6(b)(iv). All GNNs are
informed by a low-fidelity 8 ⇥ 4 finite element evaluation ũ.

Each MFGNN was trained using 100 finite element evaluations performed on global meshes ⌦h divided to 8 ⇥ 4
regular subdomains (Fig. 4(b)). Each subgraph S, representing a mesh ranging from 8 ⇥ 8 to 16 ⇥ 16, is evaluated
to infer the high-fidelity finite element solution from its low-fidelity counterpart. To that end, each MFGNN was
trained using a variety of low-fidelity meshes and high-fidelity targets (Table 2). Despite the greater variety in
training data, only 100 unique FEA evaluations were required to produce 3,200 training examples. MFGNN1.0
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Table 2

Models and their corresponding training datasets are presented.

Name Training
Examples,
Iterations

Mesh Noise Projection:
Low-Fidelity
Mesh

Subgraph Mesh Target:
High-Fidelity
Mesh

GNN0.1 500, 106 Nodal x 8 ⇥ 4 – 32 ⇥ 16 -
48 ⇥ 24

GNN0.2 5,000, 106 Nodal x 8 ⇥ 4 – 32 ⇥ 16 -
48 ⇥ 24

GNN0.3 50,000, 2 · 106 Nodal x 8 ⇥ 4 – 32 ⇥ 16 -
48 ⇥ 24

GNN1.0 5,000, 106 Nodal x 8 ⇥ 4 – 32 ⇥ 16 -
64 ⇥ 32

GNN1.1 2,500, 106 Nodal x, element
size

8 ⇥ 4 – 32 ⇥ 16 -
64 ⇥ 32

MFGNN1.0 3,200, 2 · 106 None 16 ⇥ 8 -
30 ⇥ 16

8 ⇥ 8 - 18 ⇥ 18 64 ⇥ 32 -
180 ⇥ 90

MFGNN2.0 3,200, 2 · 106 Nodal x, element
size

16 ⇥ 8 -
30 ⇥ 16

8 ⇥ 8 - 18 ⇥ 18 64 ⇥ 32 -
180 ⇥ 90

implements the MFGNN framework without any mesh noise (Fig. 6(b)(i)), while MFGNN2.0 implements full noise
in nodal position and element size (Fig. 6(b)(iv)).

Each model was trained using the Adam optimizer [48] with an exponentially decaying learning rate from 10�4

to 10�5 over 106 iterations on a single NVIDIA v100 GPU. Training was executed until overfitting was observed,
resulting in models trained for 106 or 2 · 106 iterations. Models were trained using mean-squared-error (MSE) loss
for randomized mini-batches of 2 training examples. MSE loss may be expressed as

LMSE(✓ , y, ŷ) =
1
N

( y � ŷ)T ( y � ŷ) (13)

for model parameters ✓ , standardized target attributes y, model output attributes ŷ, and N total attributes. LMSE is
averaged for each target attribute across the output’s nodes and edges.

We also experiment with physics-informed objective functions to improve model accuracy and stability. In
the spirit of physics-informed neural networks [5] and other energy-based objectives [14,49,50], we introduce an
additional objective term in the form of internal potential energy U . Using the same model framework as GNN1.1,
model GNNU

1.1 utilizes this new objective term U evaluated as the internal potential energy of a linear elastic system,

U (K , u) =
1
2

uT K u (14)

for a global finite element stiffness matrix K assembled from the high-fidelity mesh and a finite element nodal
displacement u. Because the total potential energy of the system E is determined from internal 1

2 uT K u and external
uT f contributions,

E =
1
2

uT K u � uT f = �
1
2

uT K u = �U , (15)

for the equilibrium condition K u = f . The finite element solution’s equilibrium is characterized by a minimization
of the potential energy of the system [3], so the finite element solution u is a minimum of (15). We incorporate this
physical characteristic through a new objective term. The new term uses the internal potential energy approximated
by the GNN (U (K , ûnodal)) compared to the minimum internal potential energy guaranteed by FEA (U (K , u)) in

L = LM SE + ↵

 
U � Û
U

!2

(16)

where ↵ is an arbitrary scaling factor we set to 1/U . The additional energy-based objective term is designed to
enforce an accurate prediction of the system’s internal potential energy which is directly correlated to an accurate
displacement analysis (cf. (15)).
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Fig. 8. Relative absolute error ⌘ in the predicted displacement is shown for a 80 ⇥ 40 evaluation mesh compared to the converged 960 ⇥ 480
result. Despite generating training data nearly 10 times more efficiently and training in half the time, MFGNNs improve performance for
high-fidelity analysis.

Models were evaluated based on their conformity to (13). Additionally, the model output displacement û was
compared to the converged finite element evaluation u using relative absolute error at each finite element node,

⌘ =

����
u � û

u

���� , (17)

where u was assumed from FEA of a super high-fidelity, uniform 960 ⇥ 480 mesh that is hereafter referred to as
the converged solution.

Fig. 8 compares nodal error in the predicted displacement û for an 80 ⇥ 40 regular mesh; û is evaluated using
FEA, GNN1.1, and MFGNN1.0. Fig. 8’s node model extracts û directly from graph nodes and achieved ⌘

avg
of

0.242%, 0.749%, and 0.251% for the FEA, GNN, and MFGNN respectively. When the nodal displacement is instead
recovered from the model’s edge evaluations �u j using (6) and the prescribed boundary condition û = 0 at x1 = 0,
the average error ⌘

avg
is 0.242%, 0.239%, and 0.236% for the FEA, GNN, and MFGNN respectively. The MFGNN

achieves comparable performance to FEA despite having fewer model parameters than the GNN equivalent. As
shown in Fig. 8 at x1 = 0, the MFGNN’s subgraph analysis has significantly improved relative accuracy near
the boundary condition, and the model converges to a local error tolerance for each subdomain. Alternatively, the
GNN’s global graph analysis does not resolve the model’s prediction accurately; Fig. 8’s GNN Node Model shows
striations of error that overlap with the low-fidelity mesh, indicating the global graph’s inability to resolve local node
analysis. Additionally, edge-based solutions via (6) were inherently more stable. As each nodal value is compiled
as an average based on its incoming edges, the edge model solution becomes more error resistant.

Table 3 presents error analysis of the GNN’s edge model evaluation across a wide range of test cases. The
improvement in LMSE from 7.36 · 10�6 with GNN0.1 and 500 training examples to 1.93 · 10�6 with GNN0.3 and
50,000 training examples establishes a correlation between model performance and training dataset size. Relative
error performance, however, is more correlated to variety – not quantity – of training data; GNN1.x , trained on
fewer than 5,000 training examples with more mesh noise and a broader range of mesh fidelities, achieved the best
⌘

Avg. among all GNNs despite the relatively small amount of training data invested (⇠ 2h data generation time for
2,500 examples) (Table 3). GNNU

1.1 implemented a physics-based objective term for potential energy in the GNN’s
optimization. In practice, this new objective did improve LMSE from 19.51 · 10�6 to 6.53 · 10�6, however ⌘

Avg.

increased; the additional loss term induced some localized overfitting that deterred model generalizability.
The MFGNN’s ⌘ performance within the training domain was consistently similar to FEA and improved over

every iteration of GNN (cf. Tables 3 and 4). MFGNN1.0 achieved the best results with ⌘
Avg. within 1% of FEA’s ⌘

Avg.

for the high-fidelity test cases. The magnitude of training loss LMSE increased for MFGNNs compared to GNNs.
This increase may be attributed to the local standardization within each subgraph and is not indicative of decreased
accuracy in the predicted displacement, as supported by the MFGNN’s improved ⌘ performance (Table 4). Mesh
randomization of nodal position and element size improved performance in GNN1.1, but decreased performance in
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Table 3

GNN performance, including training loss, across different mesh fidelities compared to the converged (960 ⇥ 480 element) solution.

Model Name Training Loss
LMSE(✓ ) · 10�6

⌘Avg., ⌘Max .(·103): r
2
(h)

24 ⇥ 12 40 ⇥ 20 48 ⇥ 24 80 ⇥ 40 120 ⇥ 60

FEA – 13.23, 76.39 6.49, 70.70 5.02, 69.64 2.42, 67.59 1.33, 65.99 1.00

GNN0.1 7.36 20.38, 160.94 5.96, 71.33 4.31, 68.79 22.35, 1634.88 40.07, 2907.91 0.542
GNN0.2 7.32 18.81, 108.64 6.56, 70.62 5.01, 69.39 16.89, 507.10 110.94, 2451.84 0.620
GNN0.3 1.93 14.50, 90.50 6.76, 71.08 5.23, 69.89 13.08, 573.82 107.34, 1909.39 0.621
GNN1.0 12.37 15.64, 97.27 5.79, 69.94 4.38, 68.66 4.20, 182.53 37.93, 619.07 0.396
GNN1.1 19.51 10.32, 81.85 6.10, 71.46 4.56, 69.16 2.39, 74.28 12.57, 686.50 0.303
GNNU

1.1 6.53 19.35, 148.36 5.29, 69.38 1.87, 67.73 6.39, 67.99 17.42, 472.56 0.344

Table 4

MFGNN performance, including training loss, across different mesh fidelities compared to the converged (960 ⇥ 480 element) solution.

Model Name Training Loss LMSE(✓ ) · 10�6 ⌘Avg., ⌘Max .(·103): r
2
(h)

24 ⇥ 12 40 ⇥ 20 48 ⇥ 24 80 ⇥ 40 120 ⇥ 60

FEA – 13.23, 76.39 6.49, 70.70 5.02, 69.64 2.42, 67.59 1.33, 65.99 1.00

MFGNN1.0 55.62 43.22, 280.11 4.03, 65.87 2.93, 47.25 2.36, 65.62 1.23, 66.61 0.947
MFGNN2.0 141.25 87.55, 227.37 3.17, 59.54 2.96, 57.45 2.81, 82.02 1.86, 70.04 0.896
MFGNN(BC)

1.0
a 2140.07 90.67, 876.54 61.76, 693.70 80.00, 873.42 119.43, 2613.59 45.45, 3113.11 0.403

a MFGNN(BC)
1.0 is shown here for completeness but is not directly comparable to MFGNN1.0 or MFGNN2.0 (cf. Section 4.)

MFGNN2.0. The global graph used in GNNs generally captures mesh randomization effectively, while the subgraph
representations used in MFGNNs are more susceptible to local irregularities caused by the randomization process.

3.2. MFGNNs to learn finite element convergence

This section explores the performance of both GNNs and MFGNNs in learning to emulate finite element
convergence using low-fidelity training data. Although the physics simulations evaluated here and shown in Fig. 6
are relatively simple, learning finite element convergence requires the model to generalize away from its training
domain to solve systems with over 10 times more degrees of freedom. Section 3.1 indicates that the success of
this generalization is largely dependent on the quality and diversity of training data. The subsequent application
illustrates how training data may be manipulated to improve model performance and ultimately increase utility for
engineering applications.

Error in the FEA approximation is largely induced by idealized material models, discretization of a continuous
domain, and numerical integration in space [3,51]. This work considers h-convergence, which refers to the mesh
refinement strategy for reducing error. Consider the nodal displacement’s exact solution u and approximate solution
û. The convergence of the finite element space may then be characterized using

��u � û
��

2  ch
k

=
c

N k
(18)

for the independent constant c, element size h, and degrees of freedom N [2,3].
To evaluate each model’s performance in learning finite element convergence, (17) and (18) are evaluated for a

range of target meshes. Conformity to (18) is evaluated using linear regression and measured using the r-squared
linear correlation in log space r

2
(h). Convergence behavior is evaluated using regular meshes across a range of

fidelities. The results, summarized in Tables 3 and 4, indicate improved accuracy and stability of the MFGNN.
The r

2
(h) correlation generally improves with the MFGNNs, indicating convergence behavior similar to FEA.

Fig. 9 illustrates the GNN’s clear dependence on training data. Despite training on 50,000 unique meshes with
GNN0.3, the mesh-dependent behavior of FEA was not accurately predicted beyond 2 to 3 times the mesh fidelities
in the training range (Fig. 9(a)). Within this training range, however, the GNN learned the mesh dependence of
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Fig. 9. Log-space h-convergence is shown for GNN models trained on different datasets. (a) The GNN0.x models, trained on varying amounts
of training data, are compared to GNN1.0, trained on less data but with an extended training range (cf. Table 2); (b) the GNN1.x models
are shown, comparing the training strategies used to improve performance under training dataset restrictions (cf. Table 2).

FEA for this domain, producing stable and increasingly accurate displacement fields û. By extending the training
range and applying a more varied mesh noise scheme in GNN1.1, we achieved comparable convergence behavior
to GNN0.3 with 5% of the training examples (Fig. 9(b)).

MFGNNs expand the range of stable analysis with a more efficient training regime. Because multiple subgraphs
can be derived from a single high-fidelity finite element evaluation, the MFGNN’s training examples can be
generated orders of magnitude faster. Fig. 10(a) demonstrates the MFGNN’s improved data generation efficiency
by comparing the computational performance for the test examples in Tables 3 and 4. Because MFGNNs require
execution of each subdomain and post-processing to reassemble the global mesh, the MFGNN sacrifices execution
efficiency. This compromise allows for the inclusion of a more varied, higher-fidelity, training dataset that was
generated orders of magnitude faster than the equivalent dataset required to train GNNs. The higher-fidelity training
dataset (Table 2) spans the range of test examples without directly including the test meshes. The MFGNN models
trained using this dataset must abstract the analysis in each subdomain to emulate finite-element convergence
behavior.

The resulting MFGNN model can emulate FEA convergence across a range of mesh fidelities (Fig. 10(b)).
MFGNN1.0, the best performing MFGNN, achieved an r

2
(h) convergence correlation of 0.947. With just 100 high-

fidelity training examples, the MFGNN accurately emulates the h-convergence behavior of FEA, producing stable
analysis across domains spanning multiple orders of magnitude. The MFGNN’s improved performance is due to the
extended training dataset and accurate analysis in each subdomain. The comparison in Fig. 10(b) demonstrates the
practicality of subdomain-level training, as the efficient MFGNN training strategy captured h-convergence behavior.
Because both the GNN and MFGNN did not learn a governing convergence behavior beyond their respective training
ranges, the MFGNN framework is necessary for practical implementation of FEA training data for generalized
surrogate models.

The convergence behavior of the FEA training data is intimately connected to the performance of both MFGNN
and GNN models. Relative to the converged 960 ⇥ 480 FEA solution, the models GNN1.0, GNN1.1, and GNNU

1.1
all produced more accurate solutions compared to the equivalent FEA at 40 ⇥ 20 and 48 ⇥ 24 mesh fidelities
(Fig. 9(b)). Because we also observed error increase at very low (24 ⇥ 12) and very high (120 ⇥ 60) fidelities, there
is evidence that the GNNs converge to some general representation of the entire training range that is independent
of the graph fidelity. In contrast, the MFGNN models MFGNN1.0 and MFGNN2.0 conform more precisely to the
convergence behavior defined by (18). The localized analysis combined with efficient subgraph representation of
the training data allowed the MFGNNs to match their predictions more precisely to each mesh fidelity, resulting
in finite-element-like convergence behavior Fig. 10(b). The error metrics presented in Table 4 for MFGNN1.0 also
indicate that the MFGNN can extended the improved accuracy of the high-fidelity training data to lower fidelity
meshes (e.g., ⌘

avg
improved at 40 ⇥ 20 and 48 ⇥ 24 mesh fidelities). Unlike the GNN, this improved accuracy

continued throughout the training domain, emulating FEA convergence behavior as the mesh was refined. Because
both the GNN and MFGNN models were so directly impacted by the training data formulation, other components
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Fig. 10. Efficient training data generation and model training increase the MFGNN’s utility for simulating physics. (a) Computational times
are compared for the time to generate a single training example (i.e., mesh generation, finite element evaluation, and graph embeddings)
and the model execution time for evaluating convergence behavior. (b) Convergence behavior is compared for GNN and MFGNN models.

of the FEA training data may also affect performance. These components, including element type, shape function
formulation, and mesh quality, must be considered when generating a FEA training dataset.

4. Extending MFGNNs to generalized physics

The aforementioned applications of MFGNNs focused on the mesh-dependence of FEA training data. The
MFGNN’s subdomain analysis and local standardization improved training efficiency and model accuracy. An
additional effect of this subdomain analysis is the abstraction of a specific boundary-value problem to a generalized
representation. To examine the universality of this representation, an extended problem domain is considered. While
still governed by (7), a variety of prescribed conditions are used to develop a diverse set of structural responses
(Fig. 11(a)).

Training data for the generalized model consists of cantilever-style beams. The beam (L = 2 m, W = 1 m) may
be constrained at one or both ends. Uniform loads of magnitude F = 10 MN are applied randomly at a free surface
of the beam. Each load may be uniformly distributed across an entire surface or otherwise concentrated to 3 nodes at
beginning, middle, or end of the surface. The angle of the load is randomized in 45� intervals. The material is kept
constant and isotropic with E = 200 GPa and µ = 0.3. Loads and boundary conditions are uniformly randomized
within the training dataset to create sufficiently diverse training data; Fig. 11(a) illustrates three unique load cases
within the training domain. With this new dataset, the model MFGNN(BC)

1.0 was trained to examine the MFGNN’s
ability to transfer information from a few simple load cases to a general physics model.

Using the same MFGNN properties of MFGNN1.0 as shown in Table 2, MFGNN(BC)
1.0 was trained to learn

generalized 2D solid elastomechanics using 100 finite element evaluations (resulting in 3,200 subgraphs for training
data) from this new dataset with randomized boundary conditions (BCs). As expected, performance in both accuracy
and convergence behavior decreases relative to MFGNN1.0 when evaluated on a single set of BCs (Table 4). Due to
the variable training dataset, however, MFGNN(BC)

1.0 is stable across a variety of domains not present in the training
data. This generalization is possible because of the subdomain abstraction and low-fidelity projections used to inform
MFGNNs.

Fig. 11(b) demonstrates an example of this generalizability, in which a circular inclusion is introduced to the
domain. This inclusion – marked by its conforming mesh – is defined by a soft material (E = 200 kPa, µ = 0.3).
The low-fidelity projection ũ is calculated using a 24 ⇥ 12 mesh, while the MFGNN evaluates a 48 ⇥ 24 mesh.
The input projection generated from FEA on a 24 ⇥ 12 mesh has a relative accuracy of ⌘

Avg. = 10.0% compared
to 48 ⇥ 24 FEA; with this subgraph projection as an input, the MFGNN improves the relative accuracy relative
to ⌘

Avg. = 6.7% evaluated on the 48 ⇥ 24 mesh (Fig. 11(b)). Fig. 11(c) presents another generalization in which
an L-bracket problem was evaluated. Using a 144 element low-fidelity analysis with ⌘

Avg. = 6.3% relative to 2304
element FEA, the MFGNN evaluated the 2304 element L-bracket with ⌘

Avg. = 4.6%.
Just as convolutions work as feature extractors in convolutional neural networks [52], the subgraph representations

of MFGNNs extract an abstract representation of the underlying physics. The abstraction has helped to improve
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Fig. 11. Model generalizability is improved with MFGNNs, as the abstraction into subdomains allows for a more generalized representation
of the underlying physics. (a) A few samples of the varied dataset used to train MFGNN(BC)

1.0 are shown. (b) MFGNN(BC)
1.0 is generalized

to a conforming mesh with a circular inclusion defined by a weak (E = 200 kPa) material. (c) MFGNN(BC)
1.0 is extended to an L-bracket

geometry.

the generalizability of the MFGNN to new physics, but the MFGNN is still not an independent general solver. The
input graph for the MFGNN relies on some low-fidelity FEA to remain stable. Convergence is not guaranteed with
this model, only emulated. Finally, relative accuracy may suffer when the target feature spans multiple orders of
magnitude, as LMSE tends to produce a global tolerance.

Fig. 12 illustrates another pair of generalization tests. For a beam (L = 4, W = 1), a pair of prescribed
displacements (u p = 0.2) are applied to produce a shear load (Fig. 12(a)). Random uniform noise (�  0.2) was also
applied to nodal coordinates. Using an input projection evaluated on a 16 ⇥ 8 mesh, MFGNN(BC)

1.0 was implemented
to predict nodal displacements on a 80 ⇥ 40 mesh. The 16 ⇥ 8 input projection has an error ⌘

Avg. = 36.5% compared
to the 80 ⇥ 40 FEA; MFGNN(BC)

1.0 modeled a displacement with ⌘
Avg. = 2.54% compared to the 80 ⇥ 40 FEA.

Fig. 12(b) presents another generalization case for a beam (L = 2, W = 1) subjected to prescribed displacement
(u p = 0.2) and nodal force (F = 10 MN). An input projection from a 16 ⇥ 8 mesh is used to inform MFGNN(BC)

1.0
analysis of a 80 ⇥ 40 mesh. The low-fidelity input projection (⌘

Avg. = 6.29% relative to 80 ⇥ 40 FEA), was used
to produce a modeled displacement with ⌘

Avg. = 2.43% relative to 80 ⇥ 40 FEA.
These generalization tests introduced new conditions that differed significantly from the training domain,

including void-like inclusions, geometric changes, modified boundary conditions, and mixed loading conditions.
Where the GNN is less-suited towards general applications, the MFGNN’s subgraph operations remain stable across
the edge cases in Figs. 11 and 12. The simplified training strategy (Fig. 11(a)), unfortunately, is not enough for a
complete surrogate model for 2D structural mechanics. As discussed in Appendix A.1, MFGNN(BC)

1.0 is not yet an
adequate replacement for more general interpolation schemes. Future work is necessary to develop the MFGNN
as a general physics solver. Changes in the training dataset including irregular geometries, conforming mesh, and
mixed loading will likely improve the MFGNN as a general solver. We view the MFGNN’s emulation of FEA and
efficient domain abstraction as necessary first steps towards a more general – yet still computationally viable –
alternative to traditional physics-based approaches.
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Fig. 12. The MFGNN was examined for loading conditions sufficiently different than the examples used during training. (a) A beam subjected
to prescribed nodal displacements u p is evaluated on the 80 ⇥ 40 mesh ⌦h using the low-fidelity input projection ũ to produce the accurate
approximation û; similarly, (b) a beam subjected to nodal force F and prescribed displacements u p is evaluated on an 80 ⇥ 40 mesh ⌦h .

5. Conclusions

Graph-based machine learning is particularly appealing for modeling physical systems, as the graph readily
accommodates domain discretization at multiple fidelities. The ability to learn relationships between points in
this discretization through message passing is a promising approach towards performing like traditional numerical
solvers. In this paper, Graph Neural Network modeling techniques are employed to learn FEA convergence behavior.
The MFGNN model was proposed as a new framework for graph-based machine learning. In this formulation, a
low-fidelity projection informs the model’s input, then the MFGNN operates across arbitrary subdomains in the
form of subgraphs. Each subgraph is a local representation of the physical system, so the model is able to create
an abstract representation of the modeled physics. This technique improved generalizability over traditional GNNs
and was able to accurately analyze previously-unseen boundary conditions.

To study the relationship between MFGNN and FEA convergence, a combination of experimental sampling of
the domain and randomized data generation was used to understand convergence behavior. Generalization from
low-fidelity projections to high-fidelity analysis remained stable across a range of test examples. MFGNN models
emulated FEA h-convergence within their training domains but do not offer guaranteed convergence behavior. We
have found that generation of training data through sampling of high-fidelity subdomains is the most efficient means
to develop a generalized solver.

Although the MFGNN has demonstrated progress towards a generalized physical solver, more work is necessary
to compete with traditional numerical methods. To further evaluate the MFGNN, more diverse physics should be
explored. Multiphysics and multiscale modeling are potential candidates for implementing the MFGNN and could
be used to further evaluate the model’s generalizability. Furthermore, model training objectives may need to be
re-evaluated to emphasize criteria important for physical simulation such as relative error and smoothness. Finally,
to improve the usefulness of machine learning for physical simulation, it is crucial to maximize the information
gain from each training example. We have shown that creating arbitrary subdomains may improve this information
gain, but this action should be investigated further.
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Fig. A.13. Convergence behavior is shown for the smooth-bivariate-spline interpolation, subgraph interpolation, and MFGNN1.0 compared
to FEA.
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Appendix. Comparison with interpolation schemes

The MFGNN framework links an interpolation of some low-fidelity input (in our case, projected values of the
displacement, cf. (10)) to a high-fidelity analysis. As a baseline for comparison, the MFGNN may be compared
to traditional interpolation schemes. In this section, a nearest neighbor, linear, cubic, and smooth-bivariate-spline
interpolation are compared to high-fidelity FEA, the MFGNN, and the subgraph interpolation (i.e., the MFGNN’s
input). The nearest neighbor, linear, cubic, and smooth-bivariate-spline interpolation were implemented using the
SciPy interpolation API [53] and the appropriate grid coordinates for the low- and high-fidelity mesh.

Table A.5 shares the ⌘ performance for the interpolation schemes across a range of fidelities. Relative to the
converged 960 ⇥ 480 solution, the MFGNN1.0 is the only scheme to approach FEA-like accuracy. Furthermore, the
convergence behavior illustrated in Fig. A.13 shows the MFGNN’s conformance to FEA mesh-dependence.

A.1. Interpolation schemes across different boundary conditions

Table A.6 compares the interpolation schemes for the extension examples. For the circular inclusion, L-bracket,
beam in shear, and mixed loading case, ⌘avg · 103 is compared. We also include the models MFGNN1.0 and GNN1.1
which were trained on a single set of boundary conditions. Although these models are not appropriate for general
modeling, their comparison distinguishes the superiority of the MFGNN framework under general conditions. Unlike
the GNN, the subgraph-informed analysis in the MFGNN allows for general application to a range of problems.
While MFGNN(BC)

1.0 often outperforms simpler interpolation schemes it is clear that the simple training approach
shown in Fig. 11(a) cannot cover all linear elastic structural mechanics problems in 2D.

17

https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs
https://github.com/MCMB-Lab/MFGNNs


N. Black and A.R. Najafi Computer Methods in Applied Mechanics and Engineering 397 (2022) 115120

Table A.5

Performance for various interpolations schemes across different mesh fidelities is compared to the converged (960⇥ 480 element) solution.

Model Name ⌘Avg., ⌘Max .(·103): r
2
(h)

24 ⇥ 12 40 ⇥ 20 48 ⇥ 24 80 ⇥ 40 120 ⇥ 60

FEA 13.23, 76.39 6.49, 70.70 5.02, 69.64 2.42, 67.59 1.33, 65.99 1.00

MFGNN1.0 43.22, 280.11 4.03, 65.87 2.93, 47.25 2.36, 65.62 1.23, 66.61 0.947

Nearest Neighbor 139.63, 1000.00 92.31, 1510.28 82.37, 2345.05 101.97, 1472.61 73.45, 1423.14 0.709
Linear 38.04, 519.43 19.84, 703.69 15.00, 502.53 29.91, 1695.83 16.49, 1448.02 0.358
Cubic 35.25, 148.64 17.90, 186.96 14.03, 211.34 26.86, 780.06 15.12, 840.27 0.359
Spline 32.35, 215.16 21.01, 969.76 18.10, 538.12 28.97, 2015.43 29.94, 8049.48 0.429
Subgraph Projection 73.12, 797.66 50.20, 814.35 43.52, 809.87 73.92, 4691.58 50.51, 4061.27 0.679

Table A.6

Relative error, reported as ⌘avg · 103 for the target finite element mesh fidelity, is shown for various interpolation schemes; the mean error
relative error per DOF is then reported for the given examples.

Example ⌘avg · 103 (DOF) Mean per DOF

Circular inclusion
(2450)

L-bracket (4900) Beam in Shear
(6642)

Mixed Loading
(6642)

MFGNN(BC)
1.0 67.4 45.8 25.4 24.3 0.0111

MFGNN1.0 50.0 42.1 40.7 279 0.0193
GNN1.1 67.2 428 1014 992 0.104
Subgraph
Projection

100 63.3 365 62.9 0.0295

Nearest Neighbor 138 95.8 95.1 79.7 0.0255
Linear 55.7 31.2 138 10.3 0.0129
Cubic 53.1 27.9 139 9.90 0.0124
Spline 63.0 58.9 145 41.0 0.0164
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