
SIAM J. APPLIED DYNAMICAL SYSTEMS © 2022 Society for Industrial and Applied Mathematics
Vol. 21, No. 4, pp. 2535--2578

Bifurcations of a Neural Network Model with Symmetry*

Ross Parker\dagger and Andrea K. Barreiro\dagger 

Abstract. We analyze a family of clustered excitatory-inhibitory neural networks and the underlying bifurcation
structures that arise because of permutation symmetries in the network as the global coupling
strength g is varied. We primarily consider two network topologies: an all-to-all connected network
which excludes self-connections, and a network in which the excitatory cells are broken into clusters
of equal size. Although in both cases the bifurcation structure is determined by symmetries in the
system, the behavior of the two systems is qualitatively different. In the all-to-all connected network,
the system undergoes Hopf bifurcations leading to periodic orbit solutions; notably, for large g, there
is a single, stable periodic orbit solution and no stable fixed points. By contrast, in the clustered
network, there are no Hopf bifurcations, and there is a family of stable fixed points for large g.
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1. Introduction. Today experimental techniques allow an increasingly detailed view of
the physical architecture of biological neural networks. However, drawing a clear line from
physical connectivity to dynamic neural activity is still a challenge. The networks in question
are massive in scale and high dimensional (with billions of neurons and possibly trillions
of synapses). Neural networks also show great diversity in structure at every level, from the
morphology and excitability properties of a single cell to large scale connections between brain
regions.

One common experimental finding is that neural dynamics are surprisingly low-dimensional
when compared to the overall dimensionality of the neural system [17, 8, 19, 42, 30] (see Fig-
ure 1 of [21] for a summary of earlier studies). The low-dimensional manifold may even shift
slowly over time, as the underlying components of the network (cells and synapses) die and are
replaced [20]. Thus, a major challenge for modern mathematical neuroscience is to understand
how low-dimensional dynamics emerges from the observed connectivity of the brain.

Real neural networks are partially structured but also partially random. Intuitively, it's
clear that not every connection in the brain must be tuned precisely (after all, every person
reading this sentence will respond to these black markings in the same way, despite significant
differences between our individual brains). This has motivated the use of analytical tools of
random network theory, in which one seeks to draw conclusions about an ensemble of networks.
An early example is the work by Sompolinsky, Crisanti, and Sommers [40] which applies
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2536 ROSS PARKER AND ANDREA K. BARREIRO

dynamic mean field theory to single-population firing-rate networks in which connections are
chosen from a mean-zero Gaussian distribution: in the limit of large network size, the authors
find that the network transitions from quiescence to chaos as a global coupling parameter
passes a bifurcation value. This value coincides with the point at which the spectrum of
the connectivity matrix exits the unit circle [23, 3] thus making the connection to random
matrix theory very concrete. Later authors have sought to extend these results to correlated
or block-structured matrices [31, 2], and many others have studied the spectral characteristics
of partially structured connection matrices [43, 1, 35] with neural networks as a primary
motivation.

However, the results of spectral theory and nonlinear dynamics have not always neatly
aligned. One network setting that has caused persistent difficulty is excitatory-inhibitory
networks with strong average connections [36]. The predictions of random matrix theory
suggest chaotic, asynchronous fluctuations, whereas large-scale coherent fluctuations have
been observed instead. Why? The answer may be found in the nature of the deterministic
perturbation. Several authors have examined how low-rank, asymmetric perturbations create
an effectively feed-forward structure that allows coherent dynamics to coexist with random
fluctuations in an orthogonal subspace [14, 13, 33, 32]; the dimensionality of the dynamical
subspace can be related to the dimension of the low-rank perturbation in the connectivity
matrix [39, 5].

In an earlier work, we found an alternative possibility [4]. In examining balanced excitatory-
inhibitory networks without self-coupling, we persistently observed periodic solutions which
could not be explained by random matrix theory. Instead, they arose as a consequence of un-
derlying symmetries in the connection matrix and could be predicted through the machinery
of equivariant bifurcation theory. However, some pieces of our analysis remained uncompleted:
we were unable at that time to give a complete stability analysis. This is important because
the stable solution is what one can expect to observe in a perturbed (random) network.

Here, we complete this analysis for all-to-all excitatory-inhibitory networks. We then
extend this analysis to a biologically significant block-structured case, in which the excitatory
cells are clustered, but inhibition is global. We find that the dynamics are strikingly different:
instead of limit cycles, we predict fixed points. In both cases, the structures can be understood
by considering the symmetries of the deterministic connection matrix.

2. Mathematical model. We consider a network in which each node represents the firing
rate of a single neuron. The individual neurons are connected by sigmoidal activation functions
through a connectivity matrix, which specifies both the network of neuronal connections and
the weight of each connection, including whether a given neuron is excitatory (E) or inhibitory
(I). With noise in the connectivity matrix, this is an idealized model in neuroscience [22, 36,
31]. Here, we will consider the system without noise, but where the connection weights have
important symmetries. Specifically, we study

\.\bfx = F (\bfx , g) :=  - \bfx +
1\surd 
N

H tanh(g\bfx )(2.1)

for \bfx \in RN , where the global coupling strength, g, is used as a bifurcation parameter. The
network comprises a total of N neurons, of which nE are excitatory and nI are inhibitory. H is
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2537

the N\times N connectivity matrix; the diagonal entries of H are all 0 to exclude self-interactions of
neurons (see [4, sect. 2.1] for a discussion on why self-coupling of neurons is removed). We will
use the parameter f = nE/N to identify the fraction of neurons that are excitatory: for the
remainder of this paper we will use f = 0.8 for a 4-to-1 excitatory-to-inhibitory ratio, which is
typical for cortical networks [7]. We note that F is an odd function of \bfx , i.e., F ( - \bfx ) =  - F (\bfx ).
This implies that if \bfx (t) is a solution to (2.1), so is  - \bfx (t), and that \bfx = \bfzero is a fixed point of
(2.1) for all g.

We consider here networks in which the excitatory neurons are grouped into nC clusters,
each containing p neurons, and the inhibitory neurons are grouped into nCI

clusters, each
containing pI neurons. For simplicity, we only consider the case where the excitatory clusters
are the same size, and the inhibitory clusters are the same size. This restriction introduces
additional symmetries into the model, which are explained below. In addition, all connections
of any given type (e.g., E \rightarrow E or E \rightarrow I) will have the same strength. The matrix H then
takes the general form

H =

\left[              

\mu EE\bfK p 0 . . . 0 \mu EI\bfone nE\times nI

0 \mu EE\bfK p . . . 0
...

...
. . . 0

0 0 . . . \mu EE\bfK p

\mu IE\bfone nI\times nE
\mu II\bfK pI

0 . . . 0
0 \mu II\bfK pI

. . . 0
...

...
. . . 0

0 0 . . . \mu II\bfK pI

\right]              
,(2.2)

where \bfone m\times n is the m \times n matrix of ones, and \bfK n is the n \times n matrix with all ones off the
diagonal, i.e., \bfK n = \bfone n\times 1 (\bfone n\times 1)

T  - \bfI n with \bfI n the n \times n identity matrix. The connection
weights \mu are defined ``matrix-style,"" e.g., \mu EI will denote the connection from I to E, while
\mu IE will denote the connection from E to I. The weights are also signed, so that \mu EE , \mu IE > 0
and \mu EI , \mu II < 0: this reflects the neurobiological heuristic of Dale's law , which states that
each neuron makes excitatory or inhibitory connections onto its postsynaptic targets.

The model (2.1), (2.2) is equivariant under the subgroup \Gamma H of SN , defined by

\Gamma H = Sp \times \cdot \cdot \cdot \times Sp\underbrace{}  \underbrace{}  
nC

\times SpI
\times \cdot \cdot \cdot \times SpI\underbrace{}  \underbrace{}  

nCI

,

where Sn is the group of permutations on n objects (see section 3 for the definition of equi-
variance). Essentially, this says that labels of the neurons within each cluster can be freely
permuted. Since the clusters are of equal sizes, there are two additional symmetries in the
model. The labels of the excitatory clusters and the labels of the inhibitory clusters can be
freely permuted, yielding symmetry groups isomorphic to SnC

and SnCI
, respectively.

The linearization of (2.1) about \bfx = 0 is the matrix

DF (0) =
g\surd 
N

H  - IN ,(2.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/3

0/
23

 to
 7

6.
11

3.
44

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



2538 ROSS PARKER AND ANDREA K. BARREIRO

where IN is the N \times N identity matrix. The eigenvalues of DF (0) are then given by \lambda \ast (g) =
g\surd 
N
\lambda  - 1 for all eigenvalues \lambda of H. As a consequence, the dynamics of the system can be

understood in terms of the eigenvalues of H. For an eigenvalue \lambda of H with negative real part,
the corresponding eigenvalue \lambda \ast (g) of DF (0) will always have negative real part, irrespective
of g. On the other hand, for an eigenvalue \lambda of H with positive real part, the sign of the real
part of the corresponding eigenvalue \lambda \ast (g) of DF (0) will depend on the bifurcation parameter
g. Thus, the only bifurcations of \bfx = 0 involve the eigenvalues of H which have positive real
part. Furthermore, the multiplicities of the eigenvalues of H are determined by symmetries
in the underlying model (2.1) and the matrix H. These lead to symmetric bifurcations as g
is varied; we address this in section 3.

The dynamics near a nonzero fixed point \bfx \ast = (x\ast 1, . . . , x
\ast 
N )T of (2.1) also depend on the

matrix H. The linearization of (2.1) about \bfx \ast is the matrix

DF (\bfx \ast ) =
g\surd 
N

H(\bfx \ast ) - IN ,(2.4)

where

H(\bfx \ast ) := Hdiag(sech2(g\bfx \ast ))(2.5)

is obtained from the matrix H by multiplying column j of H by sech2(gx\ast j ). We note that
the diagonal entries of H(\bfx \ast ) are 0, thus Trace H(\bfx \ast ) = 0. This implies that the eigenvalues
of H(\bfx \ast ) sum to 0.

We first studied this system in [4], where we analyzed all-to-all connected, balanced
excitatory-inhibitory networks (nC = 1 and nCI

= 1). In this paper, we first flesh out
some details about that system: we derive leading order expressions for bifurcation points in
the system, for the equilibria near those bifurcation points, and for the Hopf bifurcations that
spawn the clustered limit cycles we observed in [4] (section 5). We then extend the analysis
to networks in which the excitatory population is split up into clusters (nC > 1 and nCI

= 1;
section 6). We briefly compare our network with networks in which the inhibitory neurons
are clustered instead (nC = 1, nCI

> 1; section 7).

3. The role of symmetries and the equivariant bifurcation lemma. In this section, we
outline the tools of equivariant bifurcation theory, and explain how they apply to the model in
question. Our main tool for analyzing the solutions to (2.1), (2.2) which arise at bifurcation
points when symmetries are present is the equivariant branching lemma [24, 10, 25, 28]. Before
stating the result, we introduce some terminology.

Let \Gamma be a finite group acting on RN ; then we say that a mapping F : RN \rightarrow RN is \Gamma -
equivariant if F (\gamma \bfx ) = \gamma F (\bfx ) for all \bfx \in RN and \gamma \in \Gamma . A one-parameter family of mappings
F : RN \times R \rightarrow RN is \Gamma -equivariant, if it is \Gamma -equivariant for each value of its second argument.
We say that V , a subspace of RN , is \Gamma -invariant if \gamma \bfv \in V for any \bfv \in V and \gamma \in \Gamma . We
furthermore say that the action of \Gamma on V is irreducible if V has no proper invariant subspaces,
i.e., the only \Gamma -invariant subspaces of V are \{ 0\} and V itself.

For a group \Gamma and a vector space V , we define the fixed-point subspace for \Gamma , denoted
FixV (\Gamma ), to be all points in V that are unchanged under any of the members of \Gamma , i.e.,
FixV (\Gamma ) = \{ \bfx \in V : \gamma \bfx = \bfx , \forall \gamma \in \Gamma \} . The isotropy subgroup of \bfx \in V , denoted \Sigma x, is the set

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2539

of all members of \Gamma under which \bfx is fixed, i.e., \Sigma x = \{ \gamma \in \Gamma : \gamma \bfx = \bfx \} . We then say that a
subgroup \Sigma is an isotropy subgroup of \Gamma , if it is the isotropy subgroup, \Sigma x, for some \bfx \in V .

Suppose we have a one-parameter family of mappings, F (\bfx , g), and we wish to solve
F (\bfx , g) = 0. For any (\bfx , g) \in Rn \times R, let (DF )\bfx ,g denote the N \times N Jacobian matrix\biggl[ 

\partial Fj

\partial xk
(\bfx , g)

\biggr] 
j,k=1...N

.

A bifurcation will occur when the Jacobian ceases to be invertible, i.e., when (DF )\bfx ,g has a
nontrivial kernel. For a \Gamma -equivariant mapping---i.e., F (\bfx , g) is \Gamma -equivariant for any value
of the parameter g---we may have multiple eigenvalues go through zero at once, because of
symmetries; however, some of the structural changes that occur are qualitatively the same as
those that occur in a nonsymmetric system in which a single eigenvalue crosses through zero.
But there is a catch: we will have multiple such solution branches, each corresponding to a
subgroup of the original symmetries. This is formalized in the following theorem.

Theorem 3.1 (equivariant branching lemma: paraphrased from [25], Theorem 3.3 on p. 82,
see also pp. 67--69). Let F : RN \times R \rightarrow RN be a one-parameter family of \Gamma -equivariant
mappings with F (\bfx 0, g0) = \bfzero . Suppose that (\bfx 0, g0) is a bifurcation point and that, defining
V = ker(DF )\bfx 0,g0 , \Gamma acts absolutely irreducibly on V . Let \Sigma be an isotropy subgroup of \Gamma 
satisfying

dim FixV (\Sigma ) = 1,(3.1)

where FixV (\Sigma ) is the fixed-point subspace of \Sigma with respect to V , that is, FixV (\Sigma ) \equiv \{ x \in V | 
\sigma x = x for all \sigma \in \Sigma \} . Then there exists a unique smooth solution branch to F = 0 such that
the isotropy subgroup of each solution is \Sigma .

As we have noted, (2.1), (2.2) is \Gamma H -equivariant, where

\Gamma H = Sp \times \cdot \cdot \cdot \times Sp\underbrace{}  \underbrace{}  
nC

\times SpI
\times \cdot \cdot \cdot \times SpI\underbrace{}  \underbrace{}  

nCI

,

and Sn is the group of permutations on n objects. Essentially, this says that labels of the
neurons within each cluster can be freely permuted. In addition, the labels of the excitatory
clusters and the labels of the inhibitory clusters can be freely permuted, yielding symmetry
groups isomorphic to SnC

and SnCI
, respectively.

The origin, \bfx = \bfzero is a fixed point for all values of g. As we increase g from 0, we will
encounter a sequence of bifurcation points, i.e., points (\bfx 0, g0) for which DF has a nontrivial
kernel. At each such point, we will identify the kernel V and the subgroups \Sigma for which a
solution is guaranteed by the equivariant branching lemma.

4. Model simplification. We can simplify the model using the fact that all cells within
each excitatory cluster must be synchronized at a fixed point or periodic orbit. In the case
where there is a single excitatory cluster (nC = 1), if x1 and x2 are the activities of two
excitatory cells, then a straightforward calculation (see Lemma 3 from [4]) shows that

d

dt
| x1  - x2| 2 \leq  - 2| x1  - x2| 2.(4.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2540 ROSS PARKER AND ANDREA K. BARREIRO

The only way this can be true for a fixed point (for which d
dt | x1  - x2| 2 = 0) or for a periodic

orbit (for which x1(t) - x2(t) = x1(t+T ) - x2(t+T ) for some period T ) is if x1(t) = x2(t) for
all t. If nC > 1, and x1 and x2 are the activities of two cells in the same excitatory cluster,
(4.1) holds by the same argument as in [4], since both neurons receive the same incoming
connections with the same weights.

We are primarily interested in the case where there is a single cluster of inhibitory cells,
i.e., nCI

= 1. (We will briefly consider the case of multiple inhibitory clusters in section
7.) If there are nC excitatory clusters containing p cells each, and nI inhibitory cells (for
N = pnC + nI total cells), (2.1) reduces to the system of nC + nI equations

\.xEj
=  - xEj

+
(p - 1)\surd 

N
\mu EE tanh(gxEj

) +
1\surd 
N

\mu EI

\sum 
k

tanh(gxIk), j = 1, . . . , nC ,

\.xIj =  - xIj +
p\surd 
N

\mu IE

\sum 
k

tanh(gxEk
) +

1\surd 
N

\mu II

\sum 
k \not =j

tanh(gxIk), j = 1, . . . , nI ,
(4.2)

where xEj
is the activity for the jth excitatory cluster, and xIj is the activity for the jth

inhibitory cell. In matrix form, (4.2) can be written

\.\bfx = \~F (\bfx , g) :=  - \bfx +
1\surd 
N

\~H tanh(g\bfx ),(4.3)

where \bfx = (xE1
, . . . , xEnC

, xI1 , . . . , xInI
)T , and \~H is the (nC +nI)\times (nC +nI) reduced matrix

\~H =

\left[        
(p - 1)\mu EEInC

\mu EI\bfone nC\times nI

p\mu IE\bfone nI\times nC
\mu II\bfK nI

\right]        .(4.4)

The system of equations (4.3), (4.4) is the restriction of the original system (2.1), (2.2) with
nCI

= 1 to the fixed-point subspace Fix(\Gamma C) corresponding to the subgroup

\Gamma C = Sp \times \cdot \cdot \cdot \times Sp\underbrace{}  \underbrace{}  
nC

\times EnI

of \Gamma H , where EnI
is the trivial subgroup of SnI

consisting only of the identity permutation.
The reduced model (4.3), (4.4) is then equivariant under the subgroup

\Gamma = SnC
\times SnI

(4.5)

of SnC+nI
. The special case of nC = 1 (a single excitatory cluster), for which \Gamma = S1 \times SnI

,
is considered in section 5. We note that in this case, one of the symmetries is effectively lost,
since the activity of the lone excitatory cluster is represented by a single variable. The general
case (nC > 1) is considered in section 6. We will only consider the reduced system (4.3), (4.4)
in sections 5 and 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2541

Next, we show that no stability information is lost by only studying the reduced system.
Suppose \bfx \ast = (x\ast E1

, . . . , x\ast EnC
, x\ast I1 , . . . , x

\ast 
InI

)T is a fixed point of (4.3). (We will discuss the

existence of such fixed points in sections 5 and 6). The linearization of (4.3) about \bfx \ast is the
matrix

D \~F (\bfx \ast ) =
g\surd 
N

\~H(\bfx \ast ) - InC+nI
,(4.6)

where

\~H(\bfx \ast ) := \~Hdiag(sech2(g\bfx \ast )).(4.7)

The original system (2.1) has a corresponding fixed point \bfx \ast 
0 in which each x\ast Ej

in \bfx \ast is repeated
p times. The following proposition shows that to analyze the stability of the fixed point \bfx \ast 

0

in the full system (2.1), it suffices to determine the eigenvalues of the reduced matrix \~H(\bfx \ast ),
since the additional eigenvalues of H(\bfx \ast 

0) are negative, and thus will not affect stability.

Proposition 4.1. Let \bfx \ast be a fixed point of (4.3) and \bfx \ast 
0 the corresponding fixed point of

(2.1), and let H(\bfx \ast 
0) and

\~H(\bfx \ast ) be defined by (2.5) and (4.7). Then

(i) every eigenvalue of \~H(\bfx \ast ) is an eigenvalue of H(\bfx \ast 
0);

(i) H(\bfx \ast 
0) has nC additional real, negative eigenvalues, each with multiplicity p - 1.

Proof. Part (i) follows immediately from the fact that (4.3) is a restriction of (2.1).
For part (ii), it can be verified directly that for j = 1, . . . , nC , H(\bfx \ast 

0) has an eigenvalue at
\lambda =  - \mu EEsech

2(xEj
) with multiplicity p  - 1. For j = 1, for example, the p  - 1 eigenvectors

are \bfv 1, . . . ,\bfv p - 1, where vk1 =  - 1, vkk+1 = 1, and all other components are 0. Since \mu EE > 0,
these eigenvalues are always negative.

The dynamics of the full system can therefore be explained by the dynamics of the reduced
system, and, in particular, in terms of the eigenvalues of the reduced matrix \~H (Figure 4.1).
Although these patterns will be explained in detail in the corresponding sections below, we
point out two crucial differences between the model with a single excitatory cluster (Figure 4.1,
left) and the model with multiple excitatory clusters (Figure 4.1, right). For the model
with multiple excitatory clusters, there is an additional positive, real eigenvalue \lambda C , and the
complex pair \lambda 0 + i\omega 0 has negative real part.

5. Single excitatory and inhibitory cluster. The simplest case (considered in [4]) involves
a single excitatory cluster (nC = 1 and p = nE) and a single inhibitory cluster, in which case
the matrix \~H in (4.3) reduces to the (1 + nI)\times (1 + nI) matrix

\~H =

\left[        
(nE  - 1)\mu EE \mu EI\bfone 1\times nI

nE\mu IE\bfone nI\times 1 \mu II\bfK nI

\right]        .(5.1)

We choose the connection weights so that the network is balanced ; that is, the excitatory and
inhibitory currents coming into each cell should approximately cancel [36]. To achieve this

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2542 ROSS PARKER AND ANDREA K. BARREIRO

Figure 4.1. Eigenvalue pattern of the matrix \~H for a single excitatory and a single inhibitory cluster (left,
section 5), and multiple excitatory clusters and a single inhibitory cluster (right, section 6). The notation for
the eigenvalues in each network model is explained in the corresponding section below.

balance, we set \mu EI =  - \alpha \mu EE and \mu II =  - \alpha \mu IE , where \alpha = f
1 - f . For simplicity, we also take

\mu IE = \mu EE . The spectrum of \~H is now easy to compute (see [4], noting that the full matrix
H is considered in that work). The eigenvalues of \~H (left panel of Figure 4.1) are

\bullet \lambda I := \alpha \mu EE > 0 with multiplicity nI  - 1;
\bullet one complex pair of eigenvalues \lambda 0 \pm i\omega 0 with

\lambda 0 := \mu EE
\alpha  - 1

2
, \omega 0 := \mu EE

\surd 
\alpha + 1

\sqrt{} 
nE  - \alpha + 1

4
.

It is straightforward to check that 0 < \lambda 0 < \lambda I . Since both of these are positive, there will be
a bifurcation of \bfx = 0 involving each of these eigenvalues.

In the following sections, we will determine the bifurcations which occur as g is increased,
together with the structures which emerge at these bifurcation points. First, the origin loses
stability in a symmetric pitchfork bifurcation, after which point there is a branch of equilibria
for every possible division of the inhibitory cells into two groups. We will derive leading order
formulas for these branches, as well as show which of them are initially stable. As g is further
increased, there is a Hopf bifurcation on each of these branches, which gives rise to a limit
cycle with the same grouping pattern as the corresponding branch. Finally, at a critical value
of g, these limit cycles coalesce in a symmetric pitchfork bifurcation of limit cycles. After this
point, there is a single stable limit cycle in which there is one group of inhibitory cells and
one group of excitatory cells.

5.1. Bifurcations of the origin. As the bifurcation parameter g is increased from 0, the
eigenvalues \lambda \ast 

I(g) of DF (0) corresponding to \lambda I cross the imaginary axis at

g = g0 :=

\surd 
N

\alpha \mu EE
.(5.2)

The origin \bfx = 0 is a stable equilibrium for g < g0. At g = g0, the origin loses stability in a
symmetric pitchfork bifurcation, where nI  - 1 eigenvalues cross the imaginary axis simulta-
neously (see subsection 5.2 below). As g is further increased, the complex pair of eigenvalues
\lambda \ast 
0(g)\pm i\omega \ast 

0(g) of DF (0) crosses the imaginary axis at
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2543

g = gH :=
2
\surd 
N

(\alpha  - 1)\mu EE
,(5.3)

at which point a Hopf bifurcation occurs, giving rise to a limit cycle (see subsection 5.6 below).
The frequency of this limit cycle is given by the imaginary part \omega \ast 

0(g) at g = gH , which is

\omega \ast 
0(gH) =

2

\alpha  - 1

\surd 
\alpha + 1

\sqrt{} 
fN  - \alpha + 1

4
,(5.4)

where we used nE = fN . We note that since \omega \ast 
0(gH) = \scrO (

\surd 
N), \omega \ast 

0(gH) \rightarrow \infty as N \rightarrow \infty .

5.2. Solutions after symmetric pitchfork bifurcation. The reader can readily check that
the right-hand side of (4.3), section 5 is \Gamma -equivariant, for \Gamma = S1 \times SnI

. That is, we can
permute the labels on inhibitory cells without changing the equations. (The activity of the
excitatory cells have been collapsed into a single variable.) At g = g0, nI  - 1 eigenvalues pass
through zero; the corresponding eigenspace is the set of all zero-sum vectors with support in
the inhibitory cells only, i.e.,

V \equiv ker(dF )\bfzero ,g\ast = span \{ [0 \bfv I ]\} , \bfv I \bot \bfone nI
,

which has dimension nI  - 1. To check that \Gamma acts irreducibly on V , it is sufficient to show
that the subspace spanned by the orbit of a single vector \bfv (defined as the set of all values
\gamma \bfv , for \gamma \in \Gamma ) is full rank; this can be readily confirmed for \bfv I =

\bigl[ 
1  - 1 0 \cdot \cdot \cdot 0

\bigr] 
, for

example.
To determine what occurs at this pitchfork bifurcation point, we next find subgroups \Sigma of

\Gamma which satisfy the hypothesis of the equivariant branching lemma. To do this, we break the
inhibitory cells up into precisely two clusters I1 and I2 of sizes nI1 and nI2 , where nI1+nI2 = nI ,
and retain only permutations within each cluster. For each such decomposition, this describes
a subgroup

\Sigma I = S1 \times SnI1
\times SnI2

(5.5)

of \Gamma . Assuming that (without loss of generality) the I1 neurons have the indices 2, . . . , nI1 +1,
\Sigma I has the fixed-point subspace

FixV (\Sigma I) = span

\left\{     
\left[   0 1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  

nI1

 - nI1

nI2

\cdot \cdot \cdot  - nI1

nI2\underbrace{}  \underbrace{}  
nI2

\right]   
\right\}     .(5.6)

Furthermore dimFixV (\Sigma I) = 1, because it can be described as the span of a single vector.
It follows from the equivariant branching lemma that there is a branch of equilibria emerg-

ing at the symmetric pitchfork bifurcation point g = g0 for all such subgroups \Sigma I , i.e., for
every possible division of the inhibitory cells into exactly two clusters of size nI1 and nI2 , where
nI1 + nI2 = nI . We refer to these as I1/I2 branches. Each such branch may be characterized
by the number

\beta =
nI1

nI2

,(5.7)
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2544 ROSS PARKER AND ANDREA K. BARREIRO

which gives the ratio of the cluster sizes. Without loss of generality, we may take nI1 \geq nI2 ,
so that \beta \geq 1. The inhibitory cells within each of the two clusters are synchronized. The
solution on each I1/I2 branch is then given as (xE , xI1 , xI2), where we recall from section
4 that all excitatory cells are synchronized. Due to the odd symmetry of (2.1), there is a
corresponding I1/I2 branch for each \beta with solution ( - xE , - xI1 , - xI2). We will ignore this
other branch for simplicity, although we note that it is this odd symmetry which permits a
pitchfork bifurcation to occur.

We briefly comment on divisions of the inhibitory cells into more than two clusters. As
a specific example, suppose the inhibitory cells are divided into three clusters of size nI1 ,
nI2 , and nI3 , where nI1 + nI2 + nI3 = nI . This decomposition describes a subgroup \Sigma 3 =
S1 \times SnI1

\times SnI2
\times SnI3

of \Gamma . The fixed-point subspace of \Sigma 3 with respect to V is given by

span

\left\{     
\left[   0 1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  

nI1

 - nI1

nI2

\cdot \cdot \cdot  - nI1

nI2\underbrace{}  \underbrace{}  
nI2

0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  
nI3

\right]   ,

\left[   0 1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
nI1

0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  
nI2

 - nI1

nI3

\cdot \cdot \cdot  - nI1

nI3\underbrace{}  \underbrace{}  
nI3

\right]   
\right\}     ,

which has dimension 2. Since dimFixV (\Sigma 3) > 1, the equivariant branching lemma does
not guarantee the existence of a branch of fixed points with this symmetry. In general, if the
inhibitory cells are divided into m > 2 clusters, the fixed-point subspace for the corresponding
symmetry group will have dimension m - 1 > 1. It is important to note that the equivariant
branching lemma does not preclude the existence of such fixed points (see the discussion in
[4, section 4]). Numerical experiments, however, suggest that all fixed points which are not
on the primary I1/I2 branches are unstable (see subsection 5.5).

5.3. Solutions along \bfitI \bfone /\bfitI \bftwo branches. First, we derive leading order expressions for the
equilibria along the I1/I2 branches for g close to the bifurcation point g0. Fix \beta \geq 1. To
find (xE , xI1 , xI2) along the I1/I2 branch corresponding to \beta , we reduce (4.2) to the three-
dimensional system

\left[  xExI1
xI2

\right]  =
\mu EE\surd 
N

\left[    
(\alpha nI  - 1)  - \alpha \beta 

\beta +1nI  - \alpha 1
\beta +1nI

\alpha nI  - \alpha 
\Bigl( 

\beta 
\beta +1nI  - 1

\Bigr) 
 - \alpha 1

\beta +1nI

\alpha nI  - \alpha \beta 
\beta +1nI  - \alpha 

\Bigl( 
1

\beta +1nI  - 1
\Bigr) 
\right]    
\left[  tanh(gxE)tanh(gxI1)
tanh(gxI2)

\right]  ,(5.8)

where xE is the activity of the synchronized excitatory cells, xI1 and xI2 are the activities
of the two synchronized inhibitory clusters, and we used nE = \alpha nI . The system (5.8) is the
restriction of (4.3) to the fixed-point subspace for the subgroup S1\times SnI1

\times SnI2
of \Gamma . For any

solution (xE , xI1 , xI2)
T to (5.8), \bfx = (xE , xI1 , . . . , xI1 , xI2 , . . . , xI2)

T is an equilibrium solution
to (4.2), where xI1 and xI2 are repeated nI1 and nI2 times, respectively. We note that any
solution (xE , xI1 , xI2) to (5.8) is bounded for all g, since the matrix in (5.8) is constant, and
| tanh y| \leq 1 for all y.
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2545

The simplest case occurs when nI is even and \beta = 1, in which case nI1 = nI2 . On this
branch, xE = 0, and xI2 =  - xI1 , i.e., there are two equally sized inhibitory populations with
equal and opposite activities, and there is no excitatory cell activity. Beginning with the single
remaining equation for xI1 , and utilizing the Taylor expansion for the tanh function, we show
(see detailed calculations in Appendix A) that the nonzero solution for xI is given, to leading
order, by

xI =

\sqrt{} 
3(g  - g0)

g3
, g \geq g0.(5.9)

By keeping up to fifth-order terms in the Taylor expansion (see detailed calculations in Ap-
pendix A), we can obtain the higher order approximation

xI =
1

2

\sqrt{} 
5

g2
 - 

\sqrt{} 
5g5(24g0  - 19g)

g5
g \geq g0.(5.10)

Comparison between the third-order approximation (5.9), the fifth-order approximation (5.10),
and the numerical solution obtained by parameter continuation is shown in the left panel of
Figure 5.1.

For \beta > 1, it is no longer true that xI2 =  - xI1 . However, by making an appropriate ansatz
and proceeding as described in Appendix A, we obtain the following approximations for xE ,
xI1 , and xI2 in terms of g, for g close to g0:

xE = \scrO 
\biggl( 

1

N2

\biggr) 
, xI1 =

\sqrt{} 
3(g  - g0)

(1 - \beta + \beta 2)g3
+\scrO 

\biggl( 
1

N2

\biggr) 
, xI2 =  - \beta xI1 +\scrO 

\biggl( 
1

N2

\biggr) 
, g \geq g0.

(5.11)

Note that this reduces to (5.9) when \beta = 1. In addition, we note that xI1 and xI2 have opposite
signs. This is, in fact, true for all g > g0, as shown in Appendix A. Comparison between this
approximation and the numerical solution obtained by numerical parameter continuation is
shown in the right panel of Figure 5.1.

Figure 5.1. Approximations to the location of xI on I1/I2 fixed point branches. Left: Third-order (5.9)
and fifth-order (5.10) approximations to xI = xI1 on the \beta = 1 (i.e., nI1 = nI2) branch. Right: Third-order
approximation (5.11) to xI1 on the \beta = 3 branch. Other parameters are N = 20, \alpha = 4, \mu EE = 0.7.
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2546 ROSS PARKER AND ANDREA K. BARREIRO

5.4. Stability and bifurcations along \bfitI \bfone /\bfitI \bftwo branches. Now that we have obtained a
leading order formula for the fixed points on the I1/I2 branches for all valid inhibitory cell
ratios \beta , we will analyze their stability for g close to the bifurcation point g0. Choose any \beta \geq 1,
so that nI1 =

\beta 
\beta +1nI and nI2 =

1
\beta +1nI , and let \bfx = (xE , xI1 , xI2) be a solution to (5.8) for g >

g0. To examine the stability and bifurcations which occur along the I1/I2 branches, we look at
the linearization D \~F (\bfx \ast ), which is given by (4.6), where \bfx \ast = (xE , xI1 , . . . , xI1 , xI2 , . . . , xI2)

T ,
and xI1 and xI2 are repeated nI1 and nI2 times, respectively. As discussed above in section
4, stability will depend on the eigenvalues of \~H(\bfx \ast ). A cartoon showing the location of
these eigenvalues is given in Figure 5.2. In the process of our analysis, we will show that a
Hopf bifurcation occurs along each I1/I2 branch, and will find a leading order formula for its
location.

To locate the eigenvalues of \~H(\bfx \ast ), we first linearize the three-dimensional system (5.8)
about the fixed point \bfx = (xE , xI1 , xI2) to get the Jacobian

J3(\bfx ) =
g\surd 
N

H3(\bfx ) - I3,(5.12)

where

H3(\bfx )=\mu EE

\left[    
(\alpha nI  - 1)sech2(gxE)  - \alpha \beta 

\beta +1nIsech
2(gxI1)  - \alpha 1

\beta +1nIsech
2(gxI2)

\alpha nIsech
2(gxE)  - \alpha 

\Bigl( 
\beta 

\beta +1nI  - 1
\Bigr) 
sech2(gxI1)  - \alpha 1

\beta +1nIsech
2(gxI2)

\alpha nIsech
2(gxE)  - \alpha \beta 

\beta +1nIsech
2(gxI1)  - \alpha 

\Bigl( 
1

\beta +1nI  - 1
\Bigr) 
sech2(gxI2)

\right]    
(5.13)

and I3 is the 3\times 3 identity matrix. We have the following proposition relating the eigenvalues
of H3(\bfx ) and \~H(\bfx \ast ).

Proposition 5.1. Let \bfx = (xE , xI1 , xI2) be a solution of (5.8) and \bfx \ast the corresponding fixed
point of (4.3), and let H3(\bfx ) and \~H(\bfx \ast ) be defined by (5.13) and (4.7). Then

(i) every eigenvalue of H3(\bfx ) is an eigenvalue of \~H(\bfx \ast );
(ii) \~H(\bfx \ast ) has the following additional eigenvalues:

\bullet \lambda I1 := \mu EE\alpha sech
2(gxI1) with multiplicity nI1  - 1.

\bullet \lambda I2 := \mu EE\alpha sech
2(gxI2) with multiplicity nI2  - 1.

Figure 5.2. Eigenvalue pattern of the connectivity matrix H(\bfx \ast ) for fixed point \bfx \ast on I1/I2 branch with
\beta > 1. The notation for the eigenvalues is explained in subsection 5.4.
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2547

Proof. Part (i) follows immediately from the fact that (5.8) is a restriction of (4.3).
For part (ii), if nI1 > 1, then it can be verified directly that \~H(\bfx \ast ) has an eigenvalue \lambda I1 =
\mu EE\alpha sech

2(gxI1) with multiplicity nI1  - 1. The corresponding eigenvectors are \bfv 1, . . . ,\bfv nI1
 - 1,

where vk2 =  - 1, vkk+2 = 1, and all other components are 0. If nI2 > 1, the eigenvalue \lambda I2 can
be similarly obtained.

We note that the eigenvalues \lambda I1 and \lambda I2 split off from \lambda I at the pitchfork bifurcation
point g = g0; if \bfx \ast = 0, then \lambda I1 = \lambda I2 = \lambda I . To determine the stability of \bfx \ast for g
close to g0, we must compute the eigenvalues \lambda \ast 

I1
(g) and \lambda \ast 

I2
(g) of D \~F (\bfx \ast ) corresponding to

\lambda I1 and \lambda I2 . We will find (see Appendix B) that \lambda \ast 
I2
(g) is always negative, while \lambda \ast 

I1
(g) is

negative for \beta < 2 and positive otherwise. Therefore the fixed point is unstable for \beta \geq 2 (see
Figure 5.3).

Figure 5.3. Bifurcation diagram of all possible I1/I2 branches of equilibria for small N networks. Top row:
N = 20. Top left: xE versus g. Top right: xI1 (above horizontal axis) and xI2 (below horizontal axis) versus
g. Bottom row: N = 50. Bottom left: xE versus g. Bottom right: xI2 only versus g. Line format indicates
stable (solid) versus unstable (dashed) fixed points. The symmetric pitchfork bifurcation at g = g0 is indicated
with a filled circle. Hopf bifurcations are indicated with filled squares. Further bifurcations along branches are
not shown to avoid clutter. Other parameters are \alpha = 4, \mu EE = 0.7.
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2548 ROSS PARKER AND ANDREA K. BARREIRO

Figure 5.4. Locations of important bifurcations as a function of N . Left: Log-log plot of the absolute error
of (5.14) versus N for \beta = 1, 3, and 4. The slope of each line is approximately  - 1.5, validating the error
term \scrO (N - 3/2). Right: location of the symmetric pitchfork bifurcation g0 (dashed line), Hopf bifurcation at the
origin gH (dash-dotted line), and Hopf bifurcations on I1/I2 branches (5.14) for select \beta (solid lines, arranged
from bottom to top in order of increasing \beta ) as a function of N . Other parameters are \alpha = 4, \mu EE = 0.7.

The remaining eigenvalues of D \~F (\bfx \ast ) are the eigenvalues of J3(\bfx ), given by (5.12). These
include one real eigenvalue and a complex pair (see Appendix B for computations). The real
eigenvalue is always negative, and the complex pair crosses the real axis at a Hopf bifurcation
when g = gH(\beta ), where

gH(\beta ) =

\surd 
N

\mu EE

2 - 5\beta + 2\beta 2 + 3\beta nI

\alpha (1 - 4\beta + \beta 2) - (1 - \beta + \beta 2) + 3\alpha \beta nI
+\scrO 

\biggl( 
1

N3/2

\biggr) 
.(5.14)

A plot of gH(\beta ) versus N for various \beta is given in Figure 5.4. We note that a Hopf bifurcation
for a particular value of \beta will only occur in a real network if the ratio of inhibitory cells is
valid for that particular value of N (e.g., for \beta = 3, the total number of inhibitory cells must
be a multiple of 4). The leading order term of (5.14), as well as the order of the remainder
term, agrees with results from numerical parameter continuation (Figure 5.4). As N \rightarrow \infty ,
which implies nI = fN \rightarrow \infty , the first terms in the numerator and denominator of (5.14)
dominate, thus gH(\beta ) \rightarrow g0 as N \rightarrow \infty for all \beta (see Figure 5.4). Differentiating the leading
order term in (5.14) with respect to \beta and simplifying,

\partial 

\partial \beta 
gH(\beta ) =

\surd 
N

\mu EE

3(\alpha + 1)(\beta 2  - 1)(nI  - 1)

[\alpha (1 - 4\beta + \beta 2) - (1 - \beta + \beta 2) + 3\alpha \beta nI ]
2 ,(5.15)

which is 0 at \beta = 1 and positive for \beta > 1. As a consequence, gH(\beta ) increases with \beta for
\beta \geq 1 (see Figure 5.4 for this ordering in \beta , as well as Figure 5.3).

5.5. Other branches of equilibria. The equilibria on the I1/I2 branches, whose exis-
tence is guaranteed by the equivariant bifurcation theorem and which were characterized in
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2549

Figure 5.5. Further branches of equilibria from the I1/I2 branch with \beta = 1 for N = 20, showing excitatory
cell (left) and inhibitory cell (right) activity. Line format indicates stable (solid) versus unstable (dashed or
dotted) fixed points. Branch points are indicated with a filled circle. Hopf bifurcations are ndicated with filled
squares. Other parameters are \alpha = 4, \mu EE = 0.7.

subsection 5.3, are not the only branches of equilibria. As one example, we consider what
occurs on the \beta = 1 branch for N = 20 (see top panel of Figure 5.3). As g is increased past
the Hopf bifurcation, the complex pair of eigenvalues \lambda 0 \pm i\omega 0 collides on the positive real
axis and becomes a real pair of eigenvalues \{ \lambda L

0 , \lambda 
R
0 \} with \lambda L

0 < \lambda R
0 . As g is further increased,

\lambda L
0 moves to the left, and \lambda R

0 moves to the right. When \lambda L
0 passes through the origin (from

right to left), a symmetry-breaking bifurcation occurs (left branch point in Figure 5.5). On
the secondary branch, which we will call the asymmetric 2-2 branch, the excitatory activity
xE \not = 0, and the inhibitory pair xI1 and xI2 no longer have equal and opposite activities.
As g increases along this secondary branch, there is another bifurcation (right branch point
in Figure 5.5), which produces a branch of equilibria in which the inhibitory cells are clus-
tered in a 2-1-1 pattern. As N is increased, more complicated secondary branching patters
occur, and it is unlikely that these can be systematically located and classified. That be-
ing said, numerical experiments performed on networks of varying N strongly suggest that
none of these secondary branches contain stable fixed points. Specifically, the only stable
fixed points which have been found by numerical spectral computation are those on the
primary I1/I2 branches; all other branches consist entirely of unstable equilibria. In addi-
tion, all numerical timestepping experiments starting from random initial conditions have
converged to either fixed points on the primary I1/I2 branches or to periodic orbits (see
subsection 5.6 below).

5.6. Periodic solutions. Limit cycles arise as the bifurcation parameter g passes through
each Hopf bifurcation point. First, we discuss the limit cycle which bifurcates from the origin
at g = gH . At g = gH , the complex pair of eigenvalues corresponding to \lambda 0 \pm i\omega 0 crosses the
imaginary axis. The corresponding two-dimensional eigenspace is given by
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2550 ROSS PARKER AND ANDREA K. BARREIRO

V \equiv ker(DF )\bfzero ,gH = span

\left\{     
\left[   1 0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  

nI

\right]   ,

\left[   0 1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
nI

\right]   
\right\}     ,

which is fixed by \Gamma = S1 \times SnI
itself. Since dimFixV (\Gamma ) = dimV = 2, it follows from the

equivariant Hopf theorem [25, Theorem 4.1] that there is a branch of small-amplitude, periodic
solutions emanating from this Hopf bifurcation point for which the isotropy subgroup is \Gamma ,
i.e., the inhibitory neurons are all synchronized (see also [4, section 3.2]). We recall that the
excitatory neurons are always synchronized in the reduced model (4.3) with nC = 1.

Numerical computation with AUTO [15] validates this result, and shows that this limit
cycle exists for all g > gH , suggesting that the Hopf bifurcation is supercritical. Within this
limit cycle, all inhibitory cells are synchronized. Since nI1 = nI and nI2 = 0, we will call this
the \beta = \infty limit cycle (see Figure 5.6). The \beta = \infty limit cycle is a periodic solution to the
two-dimensional system

\.x1 = f1(x1, x2) :=  - x1 +
\mu EE\surd 
N

((nE  - 1) tanh(gx1) - \alpha nI tanh(gx2)) ,

\.x2 = f2(x1, x2) :=  - x2 +
\mu EE\surd 
N

(nE tanh(gx1) - \alpha (nI  - 1) tanh(gx2)) ,
(5.16)

where x1 represents the synchronized excitatory cell activity, and x2 represents the synchro-
nized inhibitory cell activity. In this two-dimensional system, the origin loses stability in a
Hopf bifurcation at g = gH (see Appendix C for details). We note that (5.16) is qualitatively
similar to the Wilson--Cowan model for an excitatory-inhibitory pair (see section 11.3.3 of [18])
in its ``short-term memory"" formulation [9]; both equations exhibit Hopf bifurcations and limit
cycle solutions. The key difference is the use of input currents as bifurcation parameters in
the Wilson--Cowan model as opposed to global coupling strength.

Figure 5.6. The \beta = \infty limit cycle arising from a Hopf bifurcation at g = gH . There is a single excitatory
cluster with activity xE(t) and a single inhibitory cluster with activity xI(t). Parameters are N = 20, g = 15,
\alpha = 4, \mu EE = 0.7. The period of the limit cycle is 1.62.
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2551

In the following proposition, we prove that the \beta = \infty limit cycle exists for g > gH ,
which also proves that the Hopf bifurcation is supercritical. The proof uses the Poincar\'e--
Bendixson theorem, and is deferred to Appendix C. We note that the proposition does not
address stability of the limit cycle.

Proposition 5.2. For g > gH , the system (2.1) has a limit cycle in which all excitatory cells
are synchronized, and all inhibitory cells are synchronized.

In addition to the \beta = \infty limit cycle, periodic orbits arise on each I1/I2 branch as g
increases through the Hopf bifurcation point gH(\beta ), which is given by (5.14). Once again, a
complex pair of eigenvalues crosses the imaginary axis. The corresponding two-dimensional
eigenspace is given by

V \equiv ker(DF )\bfx ,gH = span

\left\{     
\left[   a1 0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  

nI1

1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
nI2

\right]   ,

\left[   a2 1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
nI1

0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  
nI2

\right]   
\right\}     

for some constants a1 and a2. When \beta = 1, this can be simplified to

V \equiv ker(DF )\bfx ,gH = span

\left\{     
\left[   1 0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  

nI

\right]   ,

\left[   0 1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
nI

\right]   
\right\}     .

This is a vector space of dimension 2, and it is fixed by the subgroup \Sigma = S1 \times SnI1
\times SnI2

of \Gamma (see [4, section 3.3]). Since dimFixV (\Sigma ) = dimV = 2, it follows from the equivariant
Hopf theorem [25, Theorem 4.1] that there is a branch of small-amplitude, periodic solutions
emanating from this Hopf bifurcation point for which the isotropy subgroup is \Sigma , i.e., the
inhibitory cells are split into two clusters of sizes nI1 and nI2 . This is the exact same symmetry
as the I1/I2 branch from which these limit cycles bifurcate. For that reason, we can classify
these periodic orbits in terms of the ratio \beta = nI1/nI2 . Results from numerical parameter
continuation (Figures 5.7 and 5.8) indicate that this Hopf bifurcation is supercritical, and the
limit cycles exist for g > gH(\beta ).

A plot of the period of these limit cycles with increasing g is shown in Figure 5.7 for
N = 20 (see also [4, Figure 2]) and Figure 5.8 for N = 50. There is a critical value g = g\ast 

where all of the limit cycle branches meet (see dark band in bottom panel of Figure 5.7). For
g > g\ast , the only remaining limit cycle is the \beta = \infty limit cycle, which has become stable.
The point g = g\ast is a symmetric pitchfork bifurcation of limit cycles, which we can see by
examining the Floquet multipliers of the linearization about the \beta = \infty limit cycle branch
(see right panel of Figure 5.7). These Floquet multipliers are computed using AUTO, and
are all real. In addition to a single Floquet multiplier at 1 which is always present, there is
a Floquet multiplier \rho E with multiplicity nE  - 1, a Floquet multiplier \rho I with multiplicity
nI  - 1, and Floquet multiplier \rho 1 with multiplicity 1. At g = g\ast , the Floquet multiplier \rho I
with multiplicity nI  - 1 passes through 1. As g decreases though g\ast , the \beta = \infty limit cycle
loses stability and gives rise to limit cycles with symmetry corresponding to each I1/I2 branch.
This is analogous to the pitchfork bifurcation of the fixed point \bfx = 0 at g = g0, which loses
stability when the eigenvalue \lambda I with multiplicity nI  - 1 passes through the origin.
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2552 ROSS PARKER AND ANDREA K. BARREIRO

Figure 5.7. Each I1/I2 Hopf bifurcation spawns a branch of limit cycles which connects to the \beta = \infty cycle
at g = g\ast . Top left: period of the limit cycle versus g. Stable limit cycles are indicated with solid lines. The
symmetric pitchfork of limit cycles is indicated with a filled circle. Hopf bifurcations are indicated with filled
squares, which correspond to the Hopf bifurcation points in Figure 5.3. Top right: Schematic of the Floquet
eigenvalue pattern along the \beta = \infty branch. The numbers 1, 2, and 3 identify three representative points along
the \beta = \infty curve in the top left panel. Bottom: ( xE , xI1) versus g for three branches of fixed points (thick
lines) and limit cycles (thin lines): \beta = 1 (gray), \beta = 3 (red), and \beta = \infty (blue). Other symbols are pitchfork
bifurcation at g0 (filled circle), Hopf bifurcations for \beta = 1, \beta = 3, and \beta = \infty (filled squares), and pitchfork
bifurcation of limit cycles (dark band) at g = g\ast . Parameters are N = 20, \alpha = 4, \mu EE = 0.7.

5.7. Behavior of the \bfitI \bfone /\bfitI \bftwo branch for large \bfitg . We have characterized the three-cluster
fixed point solutions on the I1/I2 branches near the symmetric pitchfork bifurcation point
at g = g0. Next, we will show that these branches are unstable for sufficiently large g. Fix
\beta = nI1/nI2 , and let \bfx = (xE , xI1 , xI2) be a solution to (5.8) for g > g0; this solution depends
on g. Recall from subsection 5.3 that \bfx is bounded for all g. Let \bfx \ast be the corresponding fixed
point of (4.3). To determine the stability of \bfx \ast , we will look at the eigenvalues of D \~F (\bfx \ast ) for
large g. The sum of these eigenvalues is

Trace D \~F (\bfx \ast ) =
(nE  - 1)\mu EE\surd 

N
gsech2(gxE) - (nI + 1).
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2553

Figure 5.8. Period of limit cycle and max xI2 versus g for periodic solutions arising from Hopf bifurcations.
Stable limit cycles are indicated with solid lines. The symmetric pitchfork of limit cycles is indicated with a
filled circle. Hopf bifurcations are indicated with filled squares. Parameters are N = 50, \alpha = 4, \mu EE = 0.7.

We will show that for sufficiently large g, Trace D \~F (\bfx \ast ) > 0, and thus at least one eigenvalue
has a positive real part. To do this, we analyze the behavior of xE and sech(gxE) as g \rightarrow \infty .
First, we consider the case when xE \rightarrow 0. There are three possibilities for the behavior of
sech(gxE), only two of which can occur.

(i) xE \rightarrow 0, and gxE \rightarrow 0 (e.g., x \sim g - \beta for \beta > 1): then sech2(gxE) \rightarrow 1, and so
gsech2(gxE) \rightarrow \infty .
(ii) xE \rightarrow 0 but gxE \rightarrow C for C > 0 (e.g., x \sim g - 1): then gsech2(gxE) \sim gsech2(C) \rightarrow 
\infty .
(iii) xE \rightarrow 0 but gxE \rightarrow \infty (e.g., x \sim g - \beta for 0 < \beta < 1). If xE \sim g - \beta , then
gsech2(gxE) \rightarrow 0; this would seem to result in a negative trace as g \rightarrow \infty . However, we
will show this cannot happen. Because sech2(gxE) \rightarrow 0, it follows that tanh2(gxE) \rightarrow 
1, which implies tanh(gxE) \rightarrow 1. We use the first line from (5.8) to obtain a lower
bound for xE as follows. Since xI1 and xI2 have opposite signs for g > g0 (see the end
of Appendix A), we can state that tanh(gxI1) \leq 1 and tanh(gxI2) \leq 0, and therefore
that

xE =
\mu EE\surd 
N

\biggl[ 
(\alpha n1  - 1) tanh(gxE) - \alpha 

\beta 

\beta + 1
nI tanh(gxI1) - \alpha 

1

\beta + 1
nI tanh(gxI2)

\biggr] 
\geq \mu EE\surd 

N

\biggl[ 
(\alpha n1  - 1) - \alpha 

\beta 

\beta + 1
nI

\biggr] 
=

\mu EE\surd 
N

[\alpha (nI  - nI1) - 1] \geq \mu EE\surd 
N

(\alpha  - 1) ,

since nI1 \leq nI  - 1. As long as we take \alpha > 1 (which is typically the case), xE is
bounded away from 0 for all g > g0, thus contradicting our original assumption that
xE \rightarrow 0.
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2554 ROSS PARKER AND ANDREA K. BARREIRO

We have shown that if xE \rightarrow 0, Trace D \~F (\bfx \ast ) > 0 for sufficiently large g, which implies
that D \~F (\bfx \ast ) always has an eigenvalue with positive real part.

The remaining possibility is that xE \rightarrow \^xE \not = 0. In Appendix D, we show that this cannot
occur. Therefore, all (xE , xI1 , xI2) satisfy xE \rightarrow 0 as g \rightarrow \infty , and so all equilibria on the
I1/I2 branches are unstable for sufficiently large g. We note that this does not say anything
about the stability of equilibria on any branches which may bifurcate from the I1/I2 branches.
However, the results of extensive numerical timestepping simulations suggest that there are
no stable equilibria for sufficiently large g.

6. Excitatory clusters, weight parameters balanced. We now allow the excitatory cells
to be grouped into nC clusters of size p, where p = \lfloor Nf/nC\rfloor . We will take p > 1 to ensure
that each excitatory cluster contains more than one cell, and we will also assume nC \geq \alpha 
(e.g., nC \geq 4 for the standard value of \alpha = 4). Since we are interested in the behavior of
the system for large N and for a large number of clusters (e.g., nC scales with

\surd 
N), this is

not a significant restriction. Cells will be connected within, but not between, clusters. For
simplicity, and relying on Proposition 4.1, we will focus only on the reduced system (4.3). The
right-hand side of (4.3) is now \Gamma -equivariant for \Gamma = SnC

\times SnI
, where nC > 1. That is, we

can permute the labels of the excitatory clusters and the labels of the inhibitory cells without
changing the equation. We choose the weights so that the network is balanced:

\mu EE = nC\mu , \mu IE = \mu ,

\mu EI =  - \alpha \mu , \mu II =  - \alpha .

The expression for \mu EE compensates for the fact that each excitatory cell has fewer exci-
tatory connections. The eigenvalues of \~H (right panel of Figure 4.1) are

\bullet \lambda I := \alpha \mu > 0 with multiplicity nI  - 1;
\bullet \lambda C := (p - 1)nC\mu > 0 with multiplicity nC  - 1;
\bullet a complex conjugate pair of eigenvalues \lambda 0 \pm i\omega 0 with

\lambda 0 :=
1

2
\mu (\alpha  - nC), \omega 0 :=

1

2
\mu 
\surd 
\alpha + nC

\sqrt{} 
nC(4p - 1) - \alpha ,

where we used the fact that \alpha nI = nE = pnC .
Since \lambda E < 0 and \lambda 0 \leq 0 (as a consequence of taking nC \geq \alpha ), the corresponding

eigenvalues of DF (0) will always be negative, and thus will not affect the stability of the fixed
point at 0. The eigenvalues which determine stability of the origin are \lambda I and \lambda C . We note
that since p > 1, 0 < \lambda I < \lambda C .

As in section 5, we will determine the bifurcations which occur as g is increased, together
with the structures which emerge at these bifurcation points. First, the origin loses stability
in a symmetric pitchfork bifurcation, after which point there is a branch of equilibria for every
possible division of the excitatory clusters into two groups. This is similar to what occurs
in the unclustered case, except the bifurcation involves the excitatory clusters instead of the
inhibitory cells. As before, we derive leading order formulas for these branches, and show
which of them are initially stable. As g is further increased, instead of a Hopf bifurcation,
there is another symmetric pitchfork bifurcation on each of these branches, in which the
inhibitory cells split into two groups. For large g, there is a collection of stable fixed points,
which we can locate using the limiting behavior of the system.
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2555

6.1. Bifurcations of the origin. As the bifurcation parameter g increases from 0, the first
bifurcation occurs when the set of nC  - 1 eigenvalues \lambda \ast 

C(g) of D \~F (0) corresponding to \lambda C

crosses the imaginary axis at

g = gC :=

\surd 
N

(p - 1)nC\mu 
.(6.1)

The corresponding eigenspace is the set of all zero-sum vectors with support in the excitatory
clusters only, i.e.,

V \equiv ker(D \~F )\bfzero ,gC = span

\left\{     
\left[   \bfv C 0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  

nI

\right]   
\right\}     , \bfv C \bot \bfone nC

,

which has dimension nC - 1. We can check that \Gamma acts irreducibly on V , similarly to subsection
5.2. We then find subgroups \Sigma of \Gamma which satisfy the hypothesis of the equivariant branching
lemma by breaking the excitatory clusters up into two clusters C1 and C2 of sizes nC1

and
nC2

, where nC1
+ nC2

= nC . For each such decomposition, this describes a subgroup

\Sigma C = SnC1
\times SnC2

\times SnI
(6.2)

of \Gamma . The subgroup \Sigma C has the fixed-point subspace

FixV (\Sigma C) = span

\left\{     
\left[   1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  

nC1

 - nC1

nC2

\cdot \cdot \cdot  - nC1

nC2\underbrace{}  \underbrace{}  
nC2

0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  
nI

\right]   
\right\}     ,(6.3)

which has dimension 1. It follows from the equivariant branching lemma that there is a
branch of equilibria emerging at the symmetric pitchfork bifurcation point g = gC for all
such subgroups \Sigma C , i.e., for every possible division of the excitatory clusters into exactly two
groups of size nC1

and nC2
. All cells are synchronized within each excitatory cluster. Each

such branch may be characterized by the number

\beta C =
nC1

nC2

,(6.4)

which gives the ratio of the sizes of the two groups of excitatory clusters. Without loss of
generality, we may take nC1

\geq nC2
, so that \beta C \geq 1. At the start of each C1/C2 branch, the

inhibitory cells are synchronized. This is the case since, near g = gC , no other eigenvalues have
crossed through the origin, thus no bifurcations involving the inhibitory cells have occurred.
The solution on each C1/C2 branch is then given as (xE1

, xE2
, xI). Due to the odd symmetry

of (2.1), there is a corresponding C1/C2 branch for each \beta C with solution ( - xE1
, - xE2

, - xI),
which we will ignore for simplicity. Similarly to what is discussed in subsection 5.2, a division
of the excitatory clusters into more than two groups will lead to a fixed-point subspace of
dimension 2 or greater, thus a branch with this symmetry is not guaranteed to exist by the
equivariant branching lemma. Such branches may occur but, as with the unclustered case,
numerical evidence strongly suggests that all of them are unstable.
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2556 ROSS PARKER AND ANDREA K. BARREIRO

As g is further increased, the eigenvalue \lambda \ast 
I(g) with multiplicity nI - 1 crosses the imaginary

axis at g = g0, where g0 is defined by (5.2). A second symmetric pitchfork bifurcation occurs
at this point, this time involving the inhibitory cells. This is almost identical to what occurs
in the unclustered case (subsection 5.2). Briefly, the corresponding eigenspace is the set of all
zero-sum vectors with support in the inhibitory cells only, i.e.,

V \equiv ker(D \~F )\bfzero ,g\ast = span

\left\{     
\left[   0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  

nC

\bfv I

\right]   
\right\}     , \bfv I \bot \bfone nI

,

which has dimension nI  - 1. We then break the inhibitory cells up into two groups I1 and I2
of sizes nI1 and nI2 , where nI1 +nI2 = nI , which describes a subgroup \Sigma I = SnC

\times SnI1
\times SnI2

of \Gamma . The fixed-point subspace of \Sigma I is then given by

FixV (\Sigma I) = span

\left\{     
\left[   0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  

nC

1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
nI1

 - nI1

nI2

\cdot \cdot \cdot  - nI1

nI2\underbrace{}  \underbrace{}  
nI2

\right]   
\right\}     ,(6.5)

which has dimension 1. As in (5.2), it follows from the equivariant branching lemma that there
is an I1/I2 branch of equilibria emerging at the symmetric pitchfork bifurcation point g = g0
for every possible division of the inhibitory cells into exactly two groups of size nI1 and nI2 .
An important distinction from the previous section is that there will be no Hopf bifurcation
of the origin, since the complex conjugate pair of eigenvalues cannot cross the imaginary axis.

6.2. Solutions on the \bfitC \bfone /\bfitC \bftwo branch. First, we derive leading order expressions for the
solutions along the C1/C2 branches for g close to gC . The simplest case occurs when nC is
even and \beta C = 1, in which case nC1

= nC2
. On this branch, xE2

=  - xE1
, i.e., there are

two equally sized groups of excitatory clusters with equal and opposite activity, and all the
inhibitory cells have synchronized activity xI = 0. Taking xE1

= xE , xE2
=  - xE , and xI = 0

in (4.2) and simplifying, we obtain the single equation tanh(gxE) = gCxE . As in section 5,
xE is given, to leading order, by

xE =

\sqrt{} 
3(g  - gC)

g3
, g \geq gC ,(6.6)

for g close to gC . For \beta C > 1, we find the solution along each C1/C2 branch by reducing (2.1)
to the three-dimensional system\left[  xE1

xE2

xI

\right]  =
\mu \surd 
N

\left[  (p - 1)nC 0  - pnC

0 (p - 1)nC  - pnC

pnC
\beta C

\beta C+1 pnC
1

\beta C+1  - (pnC  - \alpha )

\right]  \left[  tanh(gxE1
)

tanh(gxE2
)

tanh(gxI)

\right]  ,(6.7)

where we used \alpha nI = nE = pnC . The variables xE1
and xE2

are the activities of the two groups
of excitatory clusters, and xI is the activity of the inhibitory cells, which are synchronized
since g is close to gC . The system (6.7) is the restriction of (4.3) to the fixed-point subspace
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2557

corresponding to the subgroup SnC1
\times SnC2

\times SnI
of \Gamma . Following the same procedure as in

section 5, we obtain the following approximations for xE1
, xE2

, and xI ,

xE1
=\pm 

\sqrt{} 
3(g  - gC)

(1 - \beta C + \beta 2
C)g

3
+\scrO 

\biggl( 
1

N2

\biggr) 
, xE2

= - \beta CxE1
+\scrO 

\biggl( 
1

N2

\biggr) 
, xI=\scrO 

\biggl( 
1

N2

\biggr) 
, g \geq gC ,

(6.8)

for g close to gC , which reduces to (6.6) when \beta = 1.

6.3. Stability and bifurcations along the \bfitC \bfone /\bfitC \bftwo branch. We now analyze the stability
of the C1/C2 branches for g close to gC . Choose any \beta C \geq 1 so that nC1

= \beta C

\beta C+1nC and nC2
=

1
\beta C+1nC . Let \bfx = (xE1

, xE2
, xI) be a solution to (6.7). We look at the linearization D \~F (\bfx \ast ),

where \bfx \ast = (xE1
, . . . , xE1

, xE2
, . . . , xE2

, xI , . . . , xI)
T , where xE1

and xE2
are repeated nC1

and
nC2

times, respectively, and xI is repeated nI times. Stability will depend on the eigenvalues
of \~H(\bfx \ast ). A cartoon showing the location of these eigenvalues is given in Figure 6.1.

We follow the same procedure as in subsection 5.4. First, we linearize the reduced system
(6.7) about (xE1

, xE2
, xI) to get the Jacobian

J3(\bfx ) =
g\surd 
N

H3(\bfx ) - I3,(6.9)

where

H3(\bfx ) = \mu 

\left[  (p - 1)nCsech
2(gxE1

) 0  - pnCsech
2(gxI)

0 (p - 1)nCsech
2(gxE2

)  - pnCsech
2(gxI)

pnC
\beta C

\beta C+1sech
2(gxE1

) pnC
1

\beta C+1sech
2(gxE2

)  - (pnC  - \alpha )sech2(gxI)

\right]  (6.10)

and I3 is the 3 \times 3 identity matrix. We have the following proposition concerning the eigen-
values of H3(\bfx ) and \~H(\bfx \ast ). The proof is omitted since it is similar to that of Proposition
5.1.

Proposition 6.1. Let \bfx = (xE1
, xE2

, xI) be a solution to (6.7) and \bfx \ast the corresponding
fixed point of (4.3), and let H3(\bfx ) and \~H(\bfx \ast ) be defined by (6.10) and (4.7). Then

(i) every eigenvalue of H3(\bfx ) is an eigenvalue of \~H(\bfx \ast );
(ii) \~H(\bfx \ast ) has the following additional eigenvalues:

\bullet \lambda C1
:= (p - 1)nC\mu sech

2(gxE1
) with multiplicity nC1

 - 1.
\bullet \lambda C2

:= (p - 1)nC\mu sech
2(gxE2

) with multiplicity nC2
 - 1.

\bullet \lambda I := \alpha \mu sech2(gxI) with multiplicity nI  - 1.

We note that the eigenvalues \lambda C1
and \lambda C2

split off from \lambda C at the pitchfork bifurcation
point g = gC ; if \bfx 

\ast = 0, then \lambda C1
= \lambda C2

= \lambda C . To determine the stability of \bfx \ast for g close to
gC , we first compute the eigenvalues of D \~F (\bfx \ast ) corresponding to \lambda C1

, \lambda C2
, and \lambda I . We find

(see Appendix E) that the cluster-associated eigenvalue \lambda \ast 
C1
(g) is negative for 1 \leq \beta C < 2

and positive for \beta C > 2; \lambda \ast 
C2
(g) is negative for \beta C > 1/2; and \lambda \ast 

I(g) is negative for all \beta C
for N sufficiently large. The behavior of \lambda \ast 

C1
(g) implies that the C1/C2 branches are initially

unstable for \beta C > 2 (see Figures 6.2 and 6.3).
The remaining eigenvalues of D \~F (\bfx \ast ) are the eigenvalues of J3(\bfx ). Following the same

procedure as in subsection 5.4 (see Appendix E for details), we find that, since we are taking
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2558 ROSS PARKER AND ANDREA K. BARREIRO

Figure 6.1. The eigenvalue pattern of the connectivity matrix H(\bfx \ast ) for fixed points \bfx \ast on a C1/C2 branch
with \beta C > 1. The notation for the eigenvalues is explained below Proposition 6.1.

Figure 6.2. When the excitatory cells are clustered (nC > 1), the first nontrivial fixed points are those for
which the excitatory cells, rather than inhibitory cells, separate into two groups. Left: excitatory cell activity
xE1 and xE2 on C1/C2 branches of equilibria of (2.1) with excitatory clustering for all possible values of \beta C .
The symmetric pitchfork bifurcations at g = gC and along the C1/C2 branches are indicated with filled circles.
(To avoid clutter, the I1/I2 branches after the symmetric pitchfork bifurcation on the C1/C2 branch are not
shown). Right: I1/I2 branches bifurcate from the C1/C2 branches ( to avoid clutter only xE1 is shown). Stable
fixed points are indicated with solid lines. Parameters are N = 20, nC = 4, p = 4, nI = 4, \alpha = 4, \mu EE = 0.7.

nC \geq \alpha , the eigenvalues of J3(\bfx ) all have negative real part for g close to gC . Thus the
C1/C2 branches are initially stable for 1 \leq \beta C \leq 2 (see the top panel of Figure 6.2 as well as
Figure 6.3).

As g is further increased from gC , there is a second symmetric pitchfork bifurcation on
each C1/C2 branch as the eigenvalue \lambda \ast 

I(g) of D
\~F (\bfx \ast ) with multiplicity nI  - 1 crosses through

the origin (see bifurcation diagram in Figures 6.2 and 6.3). The behavior at this bifurcation
is exactly the same as for the second symmetric pitchfork bifurcation at the origin. The
corresponding eigenspace V is the set of all zero-sum vectors with support in the inhibitory
cells only, which has dimension nI  - 1. As above, we break the inhibitory cells up into two
groups I1 and I2 of sizes nI1 and nI2 , where nI1 + nI2 = nI . This describes a subgroup
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2559

Figure 6.3. Bifurcation diagram of all possible C1/C2 branches, and selected C1/C2/I1/I2 branches, for
a moderate value of N . Top: C1/C2 branches of equilibria of (2.1) with excitatory clustering for all possible
values of \beta C . Top left: xE1 versus g. Top right: xI versus g, zoomed into a narrower range of g to show
stability of C1/C2 branches near g = gC . Symmetric pitchfork bifurcations at g = gC and along the C1/C2

branches are indicated with filled circle. To avoid clutter, the C1/C2/I1/I2 branches are not shown. Bottom:
xI and xE1 versus g, for C1/C2/I1/I2 branches bifurcating from the C1/C2 branches. The only I1/I2 branches
shown here are the ones which are eventually stable, which in this case are those with \beta = \beta C (see Table 6.1).
Stable fixed points are indicated with solid lines, unstable fixed points with dashed line. Unstable C1/C2 branches
for \beta C = 4 and \beta C = 9 become stable at the points indicated with the diamond. Parameters are N = 100,
nC = 10, p = 8, nI = 20, \alpha = 4, \mu EE = 0.7.
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2560 ROSS PARKER AND ANDREA K. BARREIRO

Figure 6.4. The saturation ( g \gg 1) behavior of fixed points on a C1/C2 branch depends on the clustering
parameter \beta C . Left: xE1 , xE2 , and xI versus g on C1/C2 branches for 1 < \beta C < \beta \ast 

C . Right: \beta C > \beta \ast 
C .

Parameters are N = 50, nC = 10, p = 4, nI = 10, \alpha = 4, \mu = 0.7. Given these parameters \beta \ast 
C = 5.15385; here

we illustrate \beta C = 7/3 (left) and \beta C = 9 (right).

\Sigma I = SnC1
\times SnC2

\times SnI1
\times SnI2

of \Gamma , where we recall that nC1
and nC2

are fixed on this C1/C2

branch. The fixed-point subspace of \Sigma I is then given by

FixV (\Sigma I) = span

\left\{     
\left[   0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  

nC1

0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  
nC2

1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
nI1

 - nI1

nI2

\cdot \cdot \cdot  - nI1

nI2\underbrace{}  \underbrace{}  
nI2

\right]   
\right\}     ,(6.11)

which has dimension 1. It follows from the equivariant branching lemma that, on every C1/C2

branch, there is an I1/I2 branch of solutions for every possible division of the inhibitory cells
into exactly two clusters.

We can characterize these branches using the parameter \beta = nI1/nI2 , as we did in the
previous section. When \beta C = 1, xI = 0, and this bifurcation takes place at

gI =

\surd 
N

\alpha \mu 
.(6.12)

For \beta C > 1, this bifurcation takes place at g much greater than gC , thus the approximation
(6.8) no longer holds. To locate these bifurcations, we will examine the behavior of the
system as g becomes large. We note here that evidence from numerical parameter continuation
suggests that there are no Hopf bifurcations along the C1/C2 branches; furthermore, numerical
timestepping experiments suggest that there are no stable periodic orbits for any value of g.
In addition, numerical experiments strongly suggest that there are no stable equilibria on any
secondary branches.

6.4. \bfitC \bfone /\bfitC \bftwo branches for large \bfitg . We look at the behavior of solutions on the C1/C2

branches as g becomes large. This will depend on the ratio \beta C = nC1
/nC2

. When \beta C = 1,
xE2

=  - xE1
:= xE , and xI = 0 for all g \geq gC . Numerical parameter continuation suggests
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2561

Table 6.1
Valid pairs (\beta , \beta C) which satisfy (6.17), for selected values of N , nC , and nI . (Note that \alpha = 4 in all

cases, which determines nI and pnC .)

N nI nC p (\beta , \beta C)

20 4 4 4 (1, 1), (3, 3)
25 5 5 4 (3/2, 3/2), (4, 4)
25 5 4 5 (4, 3)
35 7 7 4 (4/3, 4/3), (5/2, 5/2), (6, 6)
35 7 4 7 (5/2, 3)
50 10 10 4 (1, 1), (3/2, 3/2), (7/3, 7/3), (4, 4)
100 20 10 8 (1, 1), (3/2, 3/2), (7/3, 7/3), (4, 4), (9, 9)

that xE \rightarrow \^xE > 0 as g \rightarrow \infty , which implies that tanh(gxE) \rightarrow 1. It follows from the first
row of (6.7) that

\^xE =
\mu \surd 
N

(p - 1)nC .(6.13)

For \beta C > 1, numerical parameter continuation suggests xI \rightarrow 0 as g \rightarrow \infty , but tanh(gxI) \rightarrow 
\^yI \not = 0. There are two patterns for the limiting behavior on the C1/C2 branches, which depend
on whether \beta C < \beta \ast 

C or \beta C > \beta \ast 
C , for a critical value

\beta \ast 
C =

(nCp - \alpha )(2p - 1) + \alpha p

nCp+ \alpha (p - 1)
.(6.14)

(See Appendix F for a derivation of \beta \ast 
C). These are illustrated in Figure 6.4.

\bullet Case 1: (1 < \beta C < \beta \ast 
C) xE1

\rightarrow \^xE1
> 0 and xE2

\rightarrow \^xE2
< 0.

\bullet Case 2: (\beta C > \beta \ast 
C) xE1

\rightarrow 0 with tanh(gxE1
) \rightarrow \^yE1

\not = 0 and xE2
\rightarrow \^xE2

< 0.
As N \rightarrow \infty , nCp = fN \rightarrow \infty as well. If both p and nC scale as

\surd 
N , then the only

significant terms in the numerator and denominator of (6.14) are of order N or larger, in
which case \beta \ast 

C \rightarrow 2p - 1 as N \rightarrow \infty .
In Appendix F, we derive formulas for xE1

, xE2
, and xI for both of these cases. We then

use these formulas to find the location of the symmetric pitchfork bifurcation points on the
C1/C2 branches when \beta C > 1 and N is large. If we take both p and nC to scale as

\surd 
N , we can

assume \beta C < \beta \ast 
C , as discussed above. At this bifurcation, the eigenvalue \lambda \ast 

I(g) of D
\~F (\bfx \ast ) with

multiplicity nI  - 1 crosses through 0. Using the identity sech2(gxI) = 1 - tanh2(gxI) \rightarrow 1 - \^y2I
as g \rightarrow \infty together with (F.1), the symmetric pitchfork bifurcation on the C1/C2 branch is
located, to leading order, at

gI(\beta C) =

\surd 
N

4\alpha \mu 

(1 + \beta C)
2

\beta C
(6.15)

for N large. When \beta C = 1, this reduces to (6.12). See Figure 6.3 and the left panel of
Figure 6.5 for the location of the symmetric pitchfork bifurcations on the C1/C2 branches.
Numerical simulation validates this formula, and suggests that the error term in (6.15) has
order \scrO (N - 1/2) (Figure 6.5, right panel). We note that for N large, gI(\beta C) is quadratic in
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2562 ROSS PARKER AND ANDREA K. BARREIRO

Figure 6.5. Location of the symmetric pitchfork bifurcation points on C1/C2 branches. Left: gI(\beta C) versus
N for various \beta C . Right: semilog plot of the absolute error of approximation (6.15) versus N for various \beta C .
The slope of each line is approximately  - 0.5 (validating the error term \scrO (N - 1/2)). Parameters are nC = 10,
\alpha = 4, \mu = 0.7.

\beta C , has a local minimum at \beta C = 1, and is increasing for \beta C > 1. We can see in Figures 6.3
and 6.5 that the location of the symmetric bifurcation points gI(\beta C) increases with \beta C .

For sufficiently large N , each C1/C2 branch will be stable immediately preceding the
pitchfork bifurcation at gI(\beta C). To see this, we evaluate the remaining eigenvalues of D \~F (\bfx \ast )
when g = gI(\beta C). As N \rightarrow \infty , gI(\beta C) \rightarrow \infty , thus sech(gI(\beta C)xEj

) \rightarrow 0 for j = 1, 2. It
follows that for g = gI(\beta C), \lambda Cj

\rightarrow 0, thus \lambda \ast 
Cj
(g) \rightarrow  - 1 for j = 1, 2. By the same argument,

taking N \rightarrow \infty will zero out the first two columns of (6.10) when g = gI(\beta C). Thus, in the
limit N \rightarrow \infty , H3(\bfx 

\ast ) will have a pair of eigenvalues at 0 and an additional eigenvalue at
 - (pnC  - \alpha )sech2gxI \leq 0. The corresponding eigenvalues of D \~F (\bfx \ast ) will be negative.

As a example, consider the N = 100 system shown in Figure 6.3. The C1/C2 branches
for \beta C = 7/3, 4, and 9 start unstable, but regain stability before the symmetric pitchfork
bifurcation points. This does not necessarily occur for small values of N (see Figure 6.2 for
N = 20, where this does not happen).

6.5. Stability of \bfitC \bfone /\bfitC \bftwo /\bfitI \bfone /\bfitI \bftwo solutions for large \bfitg . After the symmetric pitchfork
bifurcation point on the C1/C2 branches, both the excitatory clusters and inhibitory cells
have split into two populations. We are interested in stable fixed points when g is large.
In particular, we seek fixed-point branches in which the excitatory clusters are split into
two populations with ratio \beta C = nC1

/nC2
, and the inhibitory cells are also split into two

populations with ratio \beta = nI1/nI2 . This reduces (2.1) to the system of equations

\left[    
xE1

xE2

xI1
xI2

\right]    =
\mu \surd 
N

\left[       
(p - 1)nC 0  - \alpha \beta 

\beta +1nI  - \alpha 1
\beta +1nI

0 (p - 1)nC  - \alpha \beta 
\beta +1nI  - \alpha 1

\beta +1nI

pnC
\beta C

\beta C+1 pnC
1

\beta C+1  - \alpha 
\Bigl( 

\beta 
\beta +1nI  - 1

\Bigr) 
 - \alpha 1

\beta +1nI

pnC
\beta C

\beta C+1 pnC
1

\beta C+1  - \alpha \beta 
\beta +1nI  - \alpha 

\Bigl( 
1

\beta +1nI  - 1
\Bigr) 

\right]       
\left[    
tanh(gxE1

)
tanh(gxE2

)
tanh(gxI1)
tanh(gxI2)

\right]    ,

(6.16)
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2563

which is the restriction of (4.3) to the fixed-point subspace corresponding to the subgroup
SnC1

\times SnC2
\times SnI1

\times SnI2
of \Gamma . Parameter continuation suggests that as g \rightarrow \infty ,

(xE1
, xE2

, xI1 , xI1) \rightarrow (\^xE1
, \^xE2

, \^xI1 , \^xI2), where \^xE1
, \^xI1 > 0 and \^xE2

, \^xI2 < 0. Such solu-
tions exist for

2\beta nI  - \beta  - 1

2nI + \beta + 1
< \beta C <

2\beta nI + \beta + 1

2nI  - \beta  - 1
(6.17)

for all valid \beta satisfying 1 \leq \beta < 2p - 1. See Appendix G for detailed calculations.
For some small values of N , a list of all valid pairs of (\beta , \beta C) which satisfy (6.17) is given

in Table 6.1. (A value of \beta or \beta C is valid for a particular N only if the ratio of inhibitory cells
or excitatory clusters is possible for that value of N). In the specific case where nC = nI , it
follows from (6.17) that

nI1  - 
1

2
< nC1

< nI1 +
1

2
.

Since nC1
must be an integer, nC1

= nI1 , which implies \beta C = \beta .
The fixed point \bfx \ast corresponding to each of these (\beta , \beta C) is eventually stable for sufficiently

large g, since as g \rightarrow \infty , H(\bfx \ast ) approaches the \bfzero matrix, thus the JacobianDF (\bfx \ast ) approaches
 - I, which has a single eigenvalue of  - 1 with multiplicity N . The solutions corresponding to
the top row of Table 6.1 are shown in the bottom panel of Figure 6.2, and the solutions
corresponding to the bottom row are shown in the bottom panel of Figure 6.3; we can see
from the figures that the corresponding fixed points are all stable for sufficiently large g.
Numerical experiments strongly suggest that there are no stable equilibria for large g other
than these.

6.6. Excitatory clusters with weight parameters unchanged. We briefly consider a
system with excitatory clusters, but in which we have not adjusted the excitatory weight
strengths, i.e., \mu EI =  - \alpha \mu EE , \mu II =  - \alpha \mu EE , and \mu IE = \mu EE . In this case, the two eigenval-
ues of \~H with positive real parts are \lambda I = \alpha \mu EE and \lambda C = (p  - 1)\mu EE . If \lambda C > \lambda I , which
occurs when nC < fN

\alpha +1 , the behavior is qualitatively the same as for the case balanced weight

parameters discussed above. If \lambda C < \lambda I , which occurs when nC > fN
\alpha +1 , the order of the two

symmetric pitchfork bifurcations is reversed. As g is increased, the inhibitory cells bifurcate
from the origin first, followed by the excitatory clusters.

6.7. Restored self-coupling. We can restore self-coupling of neurons with each excitatory
cluster by replacing the matrix (p - 1)\mu EEInC

in the upper left block of (4.4) with p\mu EEInC
.

The eigenvalues of \~H are then given by
\bullet \lambda I := \alpha \mu > 0 with multiplicity nI  - 1;
\bullet \lambda C := pnC\mu > 0, with multiplicity nC  - 1;
\bullet a complex conjugate pair of eigenvalues \lambda 0 \pm i\omega 0 with

\lambda 0 :=
1

2
\mu \alpha , \omega 0 :=

1

2
\mu 
\sqrt{} 

\alpha (4nCp - \alpha ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/3

0/
23

 to
 7

6.
11

3.
44

.1
7 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



2564 ROSS PARKER AND ANDREA K. BARREIRO

The eigenvalue pattern is similar to that in the right panel of Figure 4.1, except the complex
conjugate pair \lambda 0 \pm i\omega 0 has a positive real part. As a consequence, there will be a Hopf
bifurcation at the origin at gH =

\surd 
N/\alpha \mu . Parameter continuation with AUTO indicates

that the resulting limit cycle has all excitatory clusters synchronized and all inhibitory cells
synchronized, and is unstable for g > gH . In addition, timestepping simulations suggest
that there are no stable limit cycles for any value of g. The pattern of symmetric pitchfork
bifurcations, first at the origin and then on each C1/C2 branch, is the same as for the case
with no self-coupling.

7. Inhibitory clusters. We will briefly consider the case where the inhibitory cells are
clustered, while the excitatory cells remain unclustered. Suppose the inhibitory cells are
grouped into nCI

inhibitory clusters of size pI , so that nI = nCI
pI . We perform the same

reduction as in section 4 to obtain the matrix \~H. Since there is a single cluster of excitatory
cells, they will always be synchronized. For the choice of weights \mu EI =  - \alpha \mu EE , \mu II =
 - \alpha \mu EE , and \mu IE = \mu EE , the eigenvalues of \~H are

\bullet \lambda I := \alpha \mu EE > 0 with multiplicity (pI  - 1)\times nCI
= nI  - nCI

;
\bullet \lambda CI

:=  - (pI  - 1)\alpha \mu EE < 0 with multiplicity nCI
 - 1;

\bullet a complex conjugate pair of eigenvalues \lambda 0 \pm i\omega 0, with

\lambda 0 :=
1

2
\mu EE [\alpha (1 + pI(nCI

 - 1)) - 1] ,

\omega 0 :=
\sqrt{} 

a2
\bigl( \bigl( 
 - 3n2

CI
+ 2nCI

+ 1
\bigr) 
p2I  - 2(nCI

+ 1)pI + 1
\bigr) 
 - 2a(nCI

pI + pI  - 1) + 1,

where we used the fact that nE = \alpha nCI
pI .

This eigenvalue pattern is shown in Figure 7.1. The two eigenvalues with positive real
part are \lambda I and \lambda 0 + i\omega 0, so these are the only eigenvalues which will cause bifurcations as g
is varied. We note that \lambda 0 > \lambda I , thus the first bifurcation which will occur at the origin is a
Hopf bifurcation at

gH =
2
\surd 
N

\mu EE [\alpha (1 + pI(nCI
 - 1)) - 1]

when the complex pair \lambda 0 + i\omega 0 crosses the real axis. The behavior at this bifurcation is
identical to that at the Hopf bifurcation at the origin in the unclustered case (subsection 5.6).
Briefly, the corresponding eigenspace to \lambda 0 + i\omega 0 is

V \equiv ker(DF )\bfzero ,gH = span

\left\{     
\left[   1 0 \cdot \cdot \cdot 0\underbrace{}  \underbrace{}  

nI

\right]   ,

\left[   0 1 \cdot \cdot \cdot 1\underbrace{}  \underbrace{}  
nI

\right]   
\right\}     ,

which is fixed by \Gamma = S1\times SnI
. Since dimFixV (\Gamma ) = dimV = 2, it follows from the equivariant

Hopf theorem [25, Theorem 4.1] that there is a branch of limit cycles emanating from this
Hopf bifurcation point for which the isotropy subgroup is \Gamma , which implies that the inhibitory
neurons are all synchronized (we recall that the excitatory neurons are always synchronized).

We are interested in what occurs for large N and large nCI
. As an example, let nCI

scale
with

\surd 
N by taking nCI

= pI =
\surd 
nI =

\sqrt{} 
(1 - f)N . For this scaling, as N increases, the Hopf
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2565

Figure 7.1. Eigenvalue pattern of the matrix \~H for a single excitatory cluster and multiple inhibitory clusters.

Figure 7.2. Limit cycle arising from the Hopf bifurcation at origin for (2.1) with inhibitory cell clustering
and \mu II =  - \alpha \mu EE . Both the excitatory cell activity xE and inhibitory cell activity xI are synchronized.
Notably, the period does not increase with N . Left: xE and xI versus t. Right: xI versus xE . Parameters are
N = 1600, NCI = 20, pI = 20, \alpha = 4, \mu EE = 0.7, g = 1.02gH . The period of the limit cycle is 1.792.

bifurcation takes place at gH \approx 2
f\mu EE

\surd 
N
, and we also have \omega 0 \approx 

\surd 
3
2 fN\mu EE . This implies

that at g = gH , DF (0) has a complex conjugate pair of eigenvalues with a real part of 0
and imaginary part of approximately

\surd 
3. See Figure 7.2 for an illustration of this limit cycle

when N = 1600, nCI
= 20, and g is slightly larger than gH . The frequency of the limit cycle

is 1.792, which is less than 5\% away from
\surd 
3. Thus, for large N , the frequency of the limit

cycle emerging at the Hopf bifurcation of the origin is asymptotically constant as N increases.
This contrasts to the case where the inhibitory and excitatory cells are unclustered, where the
frequency of the limit cycle scales as

\surd 
N . Numerical timestepping experiments suggest that

this limit cycle is stable for g > gH .

8. Discussion. In this paper, we analyze a family of clustered excitatory-inhibitory neural
networks, and, in particular, the underlying bifurcation structures that arise because of per-
mutation symmetries in the network. For the simplest case, an all-to-all connected network
which excludes self-connections, we extend the results in [4] to provide a more complete pic-
ture of the bifurcations in the system, as well as estimates for the locations of the bifurcation
points and the corresponding branches of equilibria which emanate from these bifurcations.
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2566 ROSS PARKER AND ANDREA K. BARREIRO

For g close to 0, the origin is a stable equilibrium. As g is increased, the origin becomes
unstable in a symmetric pitchfork bifurcation at g = g0, at which point a new branch of equi-
libria emerges for each possible division of the inhibitory cells into two synchronized clusters
of sizes nI1 and nI2 (the I1/I2 branches). We characterize each I1/I2 branch by the ratio
\beta = nI1/nI2 . We then derive a leading-order estimate for the equilibria on each I1/I2 branch
for g close to g0 and show that, for large N , these branches are stable for 1 \leq \beta < 2, but
unstable otherwise (\beta \geq 2). Furthermore, we show that the equilibria on the I1/I2 branches
are all unstable for sufficiently large g. Along each I1/I2 branch, a Hopf bifurcation creates
a branch of periodic orbits, wherein the inhibitory cells maintain their division into the same
two synchronized clusters; the frequency of these limit cycles increases with N . We use our
estimates for the I1/I2 branches to locate these Hopf bifurcations, to leading order, and show
that they approach g0 for large N . All these periodic orbit branches merge at a symmetric
pitchfork bifurcation of limit cycles, at some large value of the bifurcation parameter g = g\ast ;
for g > g\ast , there is a single stable limit cycle for which the excitatory population and inhibitory
population are each synchronized. See the top figure in Figure 8.1 for a cartoon summary.

We next consider the case where the excitatory cells are broken into clusters of equal size.
The connection weights between excitation cells in the same cluster are normalized so that
the network is still approximately balanced. In this case, as g is increased from 0, the origin
becomes unstable in a symmetric pitchfork bifurcation point at g = gC . In contrast with
the previous case, this bifurcation involves the excitatory clusters instead of the inhibitory
cells. For g > gC , there is a branch of solutions corresponding to each possible division of the
excitatory clusters into synchronized groups of sizes nC1

and nC2
(the C1/C2 branches). We

Figure 8.1. Cartoon summary of fixed points, limit cycles, and bifurcations as g increases from 0 for
all-to-all connected network (top) and network with excitatory clustering (bottom).
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2567

characterize each branch by the ratio \beta C = nC1
/nC2

. Near g = gC , each solution branch is
stable for 1 \leq \beta C < 2, and is otherwise unstable. Along each C1/C2 branch, there is a further
symmetric pitchfork bifurcation, in which the inhibitory cells split into two clusters of sizes nI1

and nI2 (with ratio \beta = nI1/nI2), yielding equilibria in which both the excitatory clusters and
the inhibitory cells are split into two groups (the C1/C2/I1/I2 branches). Unlike the previous
case, there are no Hopf bifurcations along these branches. For large g, the only branches that
remain stable are those for which \beta C is close to \beta , in the precise sense we describe in subsection
6.5; in other words, the excitatory clusters and the inhibitory cells must break up in a similar
way. See the bottom figure in Figure 8.1 for a cartoon summary. Finally, we briefly consider
a network in which the inhibitory cells are clustered, rather than the excitatory cells. Here we
find that, as in the case with all-to-all coupling, the origin loses stability in a Hopf bifurcation;
however, in contrast to the all-to-all case, the frequency of the resulting limit cycle does not
increase with N .

8.1. Relationship to other work. The population-clustered systems we consider in sec-
tion 5 are similar to a simple version of the Wilson--Cowan equations (reviewed in [18, 9]),
which can likewise be interpreted in terms of coupled neural populations. Other authors have
derived and analyzed similar systems for balanced networks as a mean-field limit from large
networks; however, recent examples differ from the current work because of the scaling of
the deterministic part of the connectivity matrix. We retain ``strong"" coupling as a func-
tion of system size (1/

\surd 
N) as in [36], versus ``weak"" scaling (1/N ) [26, 31, 39]. In [26], for

example, connectivity matrices are chosen with entries Jij \sim N(J/N, \sigma 2/N). As N \rightarrow \infty ,
the mean connectivity (1/N) goes to zero faster than the typical random deviation from the
mean (1/

\surd 
N); thus outgoing synaptic weights will no longer be single-signed, in violation of

Dale's law. One consequence of weak scaling seems to be that oscillations are observed at the
population but not necessarily the cell level [22, 6]; in contrast, the limit cycles we describe
in subsection 5.6 are observed at both the cell and the population level.

In works that do use strong scaling, the coherent fluctuations that are observed require a
perfect orthogonality condition [14, 33] or an external forcing [32] to balance. Furthermore,
the nonrandom part of the connectivity matrix is low rank; this is not the case in the current
work, in which some examples are low rank but most are not. Contrasting the excitatory
clustering with and without self-coupling (section 6 and subsection 6.7), for example, we
observe the same pattern of stable fixed points although one is low rank and the other is not.

Other recent studies of balanced neural network models do not include a deterministic
mean connectivity matrix, but instead regulate correlations through the probability of small
network motifs, such as reciprocal connections [34] or common input/diverging motifs [29,
37, 12]. The frequency of motifs can be shown to regulate cross-correlations [29], time scales
[34], and dimensionality of the network response [37, 12]. This last observation is particularly
interesting in light of the many experimental studies documenting low-dimensional neural ac-
tivity (reviewed in the introduction). A natural next question is to investigate networks which
are partly structured (having highly connected clusters as in the current studies) but partially
random. A promising avenue is to apply Hu et al.'s resumming theory to multipopulation
networks, to investigate whether the low-dimensional structures we find in the current work
manifest in a network of coupled Gaussian processes, and as the network connections them-
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2568 ROSS PARKER AND ANDREA K. BARREIRO

selves becomes more random [29]. Another related work [41] studies the clustered architecture
we considered in section 6, but without structured inhibition, and studies the persistence of
fixed points as randomness is added to the connection matrix.

9. Future directions. Future directions include better characterizing the periodic orbits
which arise from the Hopf bifurcations in the network with the all-to-all coupling case. It may
be possible to determine their stability pattern, as well as to locate the bifurcation point at
g = g\ast . Some assumptions about our network can be relaxed; for example the use of the tanh
function is not essential to any calculations that do not explicitly invoke odd symmetry, and
could be replaced by another saturating nonlinearity. Another direction includes exploring
other network topologies, such as unequal cluster sizes, spatial connectivity, or hierarchical
clustering [38, 16].

Finally, the ultimate goal of these investigations must be to apply these insights to real
networks, which will not be perfectly symmetric and which may be modeled by allowing a
random perturbation to the connection matrix (i.e., H \rightarrow H+\epsilon A). The right-hand side of (2.1)
is locally Lipschitz continuous in RN ; therefore hyperbolic fixed points and periodic orbits will
remain when the connectivity matrix is perturbed by a random matrix, i.e., G = H + \epsilon A for
small \epsilon . However, the range of \epsilon for which a hyperbolic structure persists is not known a priori.
We conjecture that the perturbed system will continue to exhibit fixed points and periodic
orbits that are found in the unperturbed system, even when the perturbations are large
enough that the spectrum of the connectivity matrix ``masks"" the underlying symmetry. In our
previous study, we found that stable trajectories in the unperturbed all-to-all clustered system
accurately predicted which solutions would be observed in the perturbed system [4]. This
highlights the importance of determining not only existence but stability in the unperturbed
system. We look forward to exploring this question in future work.

Appendix A. Solutions along \bfitI \bfone /\bfitI \bftwo branches: Detailed calculations. Here we derive
leading order expressions for the equilibria along the I1/I2 branches for g close to g0. We begin
with the simplest case, which is when nI is even and \beta = 1. Taking xI1 = xI , xI2 =  - xI , and
xE = 0 in (5.8) and simplifying, we obtain the single equation ([4, eq. 16])

 - xI +
\alpha \mu EE\surd 

N
tanh(gxI) = 0,

which simplifies to

tanh(gxI) - g0xI = 0.(A.1)

Defining f(xI) := tanh(gxI) - g0xI , we note that f(0) = 0, f \prime (0) = g  - g0, and f(xI) \rightarrow  - \infty 
as xI \rightarrow \infty . When g > g0, f(xI) is initially increasing, thus it follows from the continuity of
f and the intermediate value theorem that (A.1) has a solution with xI > 0 for all g > g0.
Furthermore, xI \rightarrow 1/g0 as g \rightarrow \infty .

To obtain an approximation of this solution for g close to g0, we expand the LHS of (A.1)
in a Taylor series about xI = 0 and g = g0 and simplify to get

(g  - g0)xI  - 
(gxI)

3

3
+

2(gxI)
5

15
+\scrO 

\bigl( 
x7I

\bigr) 
= 0.(A.2)
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2569

We note that the remainder term in (g  - g0) is transcendentally small in the sense of [27].
Keeping up to cubic terms in xI , equation (A.2) simplifies to

xI

\biggl( 
(g  - g0) - 

g3

3
x2I

\biggr) 
= 0.

Solving the nonzero solution for xI results in the expression (5.9). We can obtain a higher-
order approximation by keeping up to fifth-order terms in (A.2) to get

xI

\biggl( 
(g  - g0) - 

g3

3
x2I +

2g5

15
x4I

\biggr) 
= 0,

which is xI multiplied by a quadratic in x2I . To find the nonzero solution for xI , we solve this
quadratic for x2I and take square roots, yielding (5.10).

For \beta > 1, as N \rightarrow \infty , numerical continuation with the parameter continuation software
package AUTO [15] suggests that (5.8) has a solution of the form

xI2 =  - \beta xI1 +\scrO 
\biggl( 

1

N2

\biggr) 
, xI1 = \scrO 

\biggl( 
1

N

\biggr) 
, xE = \scrO 

\biggl( 
1

N2

\biggr) 
(A.3)

for g close to g0. Subtracting the second and third equations in (5.8), we get

xI1  - xI2 =
\alpha 

\mu EE

\surd 
N

(tanh(gxI1) - tanh(gxI2)) .

Substituting (A.3) as an ansatz, expanding the tanh terms in a Taylor series about xI1 = 0 to
cubic order, and simplifying, we obtain the formula given in (5.11).

Finally, we show that xI1 and xI2 have opposite signs for all g > g0. Since (5.8) is smooth
in (xE , xI1 , xI2) and g, the solutions xI1 and xI2 are smooth in g. For g close to g0, xI1 and xI2
have opposite signs; if this is not the case for some g > g0, either xI1 or xI2 must pass through
0. We will show that this cannot happen. Suppose xI1 = 0 for some g\ast > g0. Substituting
this into (5.8) and subtracting the second row from the first, we have xE =  - \mu EE\surd 

N
tanh(g\ast xE),

which is impossible unless xE = 0. If xE = 0, then xI2 =  - \mu EE\surd 
N
\alpha (nI2  - 1) tanh(g\ast xI2), which

is again impossible unless xI2 = 0. Thus xI1 = 0 implies (xE , xI1 , xI2) = 0. This would mean
that the I1/I2 branch would intersect the zero solution in another bifurcation point at g\ast > g0,
which we know does not occur, since we have found all bifurcation points of the origin. The
case where xI2 = 0 for some g\ast > g0 is similar.

Appendix B. Stability and bifurcations along \bfitI \bfone /\bfitI \bftwo branches: Detailed calculations.
To determine the stability of \bfx \ast for g close to g0, we start by computing the eigenvalues
of D \~F (\bfx \ast ) corresponding to \lambda I1 and \lambda I2 . Substituting (5.11) for xI1 , using the Taylor series
expansion sech2x = 1 - x2+\scrO (x4), and simplifying, the eigenvalue \lambda \ast 

I1
(g) of D \~F (\bfx \ast ) is located

at

\lambda \ast 
I1(g) =

g  - g0
g

\biggl( 
1 - 3

1 - \beta + \beta 2

\biggr) 
+\scrO 

\biggl( 
1

N2

\biggr) 
, g > g0,
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2570 ROSS PARKER AND ANDREA K. BARREIRO

which is negative for 1 \leq \beta < 2 and positive for \beta > 2. Similarly, the eigenvalue \lambda \ast 
I2
(g) of

D \~F (\bfx \ast ) corresponding to \lambda I2 is located at

\lambda \ast 
I2(g) =

g  - g0
g

\biggl( 
1 - 3\beta 2

1 - \beta + \beta 2

\biggr) 
+\scrO 

\biggl( 
1

N2

\biggr) 
, g > g0,

which is negative for \beta > 1/2 and thus does not affect stability.
It remains to find leading order expressions for the eigenvalues of H3(\bfx ). When \bfx = 0,

the matrix H3(0) has a single eigenvalue at \lambda I and a complex conjugate pair of eigenvalues
\lambda 0\pm \omega 0, where these are defined at the beginning of section 5. These do not depend on \beta . For
\bfx small but nonzero, we use a perturbation method to approximate the eigenvalues of H3(\bfx ).
We substitute the expressions (A.3) into a characteristic polynomial for H3(\bfx ), keeping only
terms of up to order 1/N , so that the leading order expression only involves xI1 . We then use
the Taylor expansion sech2(gxI1) = 1 - (gxI1)

2 +\scrO (x4I1), keeping only terms up to quadratic
order. For each eigenvalue \lambda of H3(\bfx ), we use a power series ansatz

\lambda + \epsilon x2I1 +\scrO (xI1)
4.(B.1)

We substitute this ansatz into the characteristic polynomial for H3(\bfx ) and solve for \epsilon by
matching the coefficients of x2I1 . (This computation, and the remaining computations in this
section, were performed with the aid of Wolfram Mathematica.) Using this method for \lambda = \lambda I ,
H3(\bfx 

\ast ) has a real eigenvalue located at

\lambda I = \alpha \mu EE

\bigl( 
1 - (1 - \beta + \beta 2)g2x2I1

\bigr) 
+\scrO 

\biggl( 
1

N2

\biggr) 
.

Substituting the estimate (5.11) for xI1 and simplifying, the eigenvalue \lambda \ast 
I(g) of J3(\bfx ) corre-

sponding to \lambda I is located at

\lambda \ast 
I(g) =

\alpha \mu EEg\surd 
N

\biggl( 
1 - 3(g  - g0)

g

\biggr) 
 - 1 =  - 2

\biggl( 
g  - g0
g0

\biggr) 
+\scrO 

\biggl( 
1

N2

\biggr) 
, g \geq g0,

which is always negative, and thus does not affect stability.
Finally, we use this method to locate the eigenvalue of H3(\bfx ) corresponding to \lambda 0\pm \omega 0. In

doing so, we will find a Hopf bifurcation on each I1/I2 branch. H3(\bfx ) has a complex conjugate
pair of eigenvalues, where the real part is given by

\lambda 0(g, \beta ) =
\mu EE

2

\bigl( 
\alpha  - 1 + \alpha \beta g2(nI  - 1)x2I1

\bigr) 
+\scrO 

\biggl( 
1

N

\biggr) 
.(B.2)

We can get more accurate approximations for \lambda (g, \beta ) by taking higher powers of xI1 in our
power series ansatz (B.1). For example, when \beta = 1, we can obtain the fourth-order approxi-
mation

\lambda 0(g, 1) =
\mu EE

2

\biggl( 
\alpha  - 1 + \alpha g2(nI  - 1)x2I1  - 

2

3
\alpha g4(nI  - 1)x4I1

\biggr) 
+\scrO 

\biggl( 
1

N2

\biggr) 
.
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2571

Similar fourth-order approximations can be obtained when \beta > 1, but the resulting coefficient
of x4I1 is significantly more complicated. Substituting (5.11) for xI1 and simplifying, J3(\bfx ) has
a complex conjugate pair of eigenvalues \lambda \ast 

0(g)\pm i\omega \ast 
0(g), where

\lambda \ast 
0(g, \beta ) =

\mu EEg

2
\surd 
N

\biggl[ 
\alpha  - 1 + \alpha \beta (nI  - 1)

3(g  - g0)

(1 - \beta + \beta 2)g

\biggr] 
 - 1 +\scrO 

\biggl( 
1

N

\biggr) 
.(B.3)

To locate the Hopf bifurcation on each I1/I2 branch, which occurs when the complex pair of
eigenvalues crosses the imaginary axis, we solve \lambda \ast 

0(g, \beta ) = 0 for g, substitute g0 =
\surd 
N/\alpha \mu EE ,

and simplify to obtain the expression in (5.14).

Appendix C. Proof of Proposition 5.2. First, we show that that (5.16) has no fixed points
other than the origin. To do this, we make the change of variables (y1, y2) = (tanh(gx1),
tanh(gx2)), and note that it is equivalent to show that the system of equations

g1(y1, y2) :=  - 1

g
tanh - 1(y1) +

\mu EE\surd 
N

((nE  - 1)y1  - \alpha nIy2) = 0,

g2(y1, y2) :=  - 1

g
tanh - 1(y2) +

\mu EE\surd 
N

(nEy1  - \alpha (nI  - 1)y2) = 0
(C.1)

has no solution other than (y1, y2) = (0, 0). The first equation g1(y1, y2) = 0 is satisfied when

y2 = y\ast 2(y1) :=
g\mu EE(nE  - 1)y1  - 

\surd 
N tanh - 1(y1)

\alpha g\mu EEnI
.(C.2)

To show that (C.1) has no solutions other than the origin, we substitute (C.2) into g2(y1, y2)
to get

g2(y1, y
\ast 
2(y1)) =

\mu EE(nE + nI  - 1)y1

nI

\surd 
N

+
nI  - 1

gnI
tanh - 1(y1)

+
1

g
tanh - 1

\Biggl( \surd 
N tanh - 1(y1) - g\mu EE(nE  - 1)y1

\alpha g\mu EEnI

\Biggr) 
.

(C.3)

We will show that g2(y1, y
\ast 
2(y1)) > 0 for y1 > 0. Since g2(y1, y

\ast 
2(y1)) is an odd function in y1,

this will imply that g2(y1, y
\ast 
2(y1)) < 0 for y1 < 0, from which the desired result will follow.

Since tanh - 1 y1 \geq y1 for y1 \geq 0, it suffices to show that

h(y1) :=
\mu EE(nE + nI  - 1)y1

nI

\surd 
N

+
nI  - 1

gnI
tanh - 1(y1)

+
1

g
tanh - 1

\Biggl( \surd 
N tanh - 1(y1) - g\mu EE(nE  - 1)y1

\alpha g\mu EEnI

\Biggr) 
> 0

(C.4)

for y1 > 0. Since h(0) = 0, we will show that h\prime (0) > 0 for y1 > 0. Computing the derivative
with the assistance of Mathematica,
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2572 ROSS PARKER AND ANDREA K. BARREIRO

h\prime (y1) =
(N  - 1)\mu EE

(1 - f)N3/2
+

1

g(1 - y21)
 - f\mu EEN(g\mu EE(fN  - 1) - 

\surd 
N

f2g2\mu 2
EEN

2  - (
\surd 
N + g\mu EE(1 - fN))2y21

\geq (N  - 1)\mu EE

(1 - f)N3/2
+

1

g(1 - y21)
 - 1

g

\biggl( 
1 - 

\Bigl( 
fN - 1
fN

\Bigr) 2
y21

\biggr) 
\geq (N  - 1)\mu EE

(1 - f)N3/2
> 0.

We have therefore shown that (5.16) has no fixed points other than the origin.
The linearization of (5.16) about the origin is the 2 \times 2 matrix

J =
g\mu EE\surd 

N

\biggl[ 
nE  - 1  - \alpha nI

nE  - \alpha (nI  - 1)

\biggr] 
 - I2,

which has a complex conjugate pair of eigenvalues g\surd 
N
(\lambda 0 \pm i\omega 0)  - 1, where \lambda 0 and \omega 0 are

defined in section 5. This pair crosses through the imaginary axis at g = gH , where gH is
defined by (5.3), leading to a Hopf bifurcation in the reduced system (5.16), and the origin
is repelling for g > gH . To show there is a limit cycle for all g > gH , we use the Poincar\'e--
Bendixson theorem [11, Chapter 16]. For a trapping region, we draw a square around the
origin with corners ( - a, - a) and (a, a). On the line x = a, for a large,

\.x \leq  - a+
2nE\surd 
N

=  - a+ 2f
\surd 
N,

which can be made negative by taking a sufficiently large. Similarly, we can take a sufficiently
large so that the vector field defined by (5.16) points inward at all points on the square
(Figure C.1). Since the origin is repelling for g > gH and is the only fixed point of the system, it
follows from the Poincar\'e--Bendixson theorem that there is a limit cycle surrounding the origin
for g > gH . We note that although the limit cycle from Proposition 5.2 is stable in the two-
dimensional system (5.16), the theorem says nothing about its stability in the full system (2.1).

Figure C.1. Slope fields for (5.16), with a small limit cycle visible in the center. Slope field points inward
on the black box, which is the trapping region for the Poincar\'e--Bendixson theorem. Parameters N = 20, g = 5,
\alpha = 4, and \mu EE = 0.7.
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Appendix D. Stability of the \bfitI \bfone /\bfitI \bftwo branch for large \bfitg : Detailed calculations. Here we
prove our assertion, made in subsection 5.7, that xE \rightarrow 0 as g \rightarrow \infty along any I1/I2 solution
branch. Suppose, instead, that xE \rightarrow \^xE \not = 0 as g \rightarrow \infty . Without loss of generality, we can
take \^xE > 0, since by the odd symmetry of (2.1), there will be a corresponding solution with
\^xE < 0. This implies that tanh xE \rightarrow 1. There are four cases to consider:

\bullet Case 1: xI1 \rightarrow \^xI1 \not = 0 and xI2 \rightarrow \^xI2 \not = 0.
\bullet Case 2: xI1 \rightarrow \^xI1 \not = 0 and xI2 \rightarrow 0.
\bullet Case 3: xI1 \rightarrow 0 and xI2 \rightarrow \^xI2 \not = 0.
\bullet Case 4: xI1 \rightarrow 0 and xI2 \rightarrow 0.

The computations to follow were done with the assistance of Wolfram Mathematica.
For Case 1, tanh(gxI1) \rightarrow \pm 1 and tanh(gxI2) \rightarrow \pm 1. We can then use (5.8) to solve for
(\^xE , \^xI1 , \^xI2). The signs of these solutions are all inconsistent, as we can see in Table D.1.

For Case 2, if tanh(g\^xI2) \rightarrow 0, the solution (\^xE , \^xI1 , \^xI2) from (5.8) is inconsistent using
the same argument as in Case 1. The only remaining possibility is tanh(g\^xI2) \rightarrow \^yI2 , where
0 < | \^yI2 | < 1. In the limit g \rightarrow \infty , (5.8) becomes

\left[  \^xE
\^xI1
0

\right]  =
\mu EE\surd 
N

\left[    
(\alpha nI  - 1)  - \alpha \beta 

\beta +1nI  - \alpha 1
\beta +1nI

\alpha nI  - \alpha 
\Bigl( 

\beta 
\beta +1nI  - 1

\Bigr) 
 - \alpha 1

\beta +1nI

\alpha nI  - \alpha \beta 
\beta +1nI  - \alpha 

\Bigl( 
1

\beta +1nI  - 1
\Bigr) 
\right]    
\left[  1
\pm 1
\^yI2

\right]  .

The consistency condition (from the third row) can only be satisfied if \^yI2 =
nI

nI - (\beta +1) > 1 (for

\^xI1 > 0) or \^yI2 =
nI(1+2\beta )
nI - (\beta +1) > 1 (for \^xI1 < 0), both of which are impossible. Case 3 is similar.

For Case 4, if tanh(g\^xI1) \rightarrow 0 or tanh(g\^xI2) \rightarrow 0, the solution (\^xE , \^xI1 , \^xI2) from (5.8) is
inconsistent using the same argument as in Case 1. The remaining possibility is tanh(g\^xI1) \rightarrow 
\^yI1 and tanh(g\^xI2) \rightarrow \^yI2 , where 0 < | \^yI1 | , | \^yI2 | < 1. In the limit g \rightarrow \infty , (5.8) becomes

\left[  \^xE0
0

\right]  =
\mu EE\surd 
N

\left[    
(\alpha nI  - 1)  - \alpha \beta 

\beta +1nI  - \alpha 1
\beta +1nI

\alpha nI  - \alpha 
\Bigl( 

\beta 
\beta +1nI  - 1

\Bigr) 
 - \alpha 1

\beta +1nI

\alpha nI  - \alpha \beta 
\beta +1nI  - \alpha 

\Bigl( 
1

\beta +1nI  - 1
\Bigr) 
\right]    
\left[  1
\^yI1
\^yI2

\right]  .

The consistency conditions (from the second and third rows) can only be satisfied if \^yI1 =
\^yI2 =

nI

nI - 1 > 1, which is impossible.

Table D1
Sign table showing that all solutions for nonzero (\^xE , \^xI1 , \^xI2) are inconsistent.

sgn (\^xE , \^xI1 , \^xI2)
\surd 
N

\mu EE
\^xE

\surd 
N

\mu EE
\^xI1

\surd 
N

\mu EE
\^xI2

(1, 1, 1)  - 1 < 0 \alpha \alpha 

(1, - 1, - 1) 2\alpha nI  - 1 \alpha (2nI  - 1) > 0 \alpha (2nI  - 1) > 0

(1, 1, - 1) 2\alpha nI2  - 1 \alpha (2nI2 + 1) \alpha (2nI2  - 1) > 0

(1, - 1, 1) 2\alpha nI1  - 1 \alpha (2nI1  - 1) > 0 \alpha (2nI1 + 1)
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2574 ROSS PARKER AND ANDREA K. BARREIRO

Appendix E. Stability and bifurcations along the \bfitC \bfone /\bfitC \bftwo branch: Detailed calculations.
Following the procedure in subsection 5.4 and Appendix B, we substitute the expressions from
(6.8) into the formulas for the eigenvalues in Proposition 6.1 and simplify to obtain leading
order expressions for the corresponding eigenvalues of D \~F (\bfx \ast ):

\lambda \ast 
C1
(g) =

g  - gC
g

\biggl( 
1 - 3

1 - \beta C + \beta 2
C

\biggr) 
,

\lambda \ast 
C2
(g) =

g  - gC
g

\biggl( 
1 - 

3\beta 3
C

1 - \beta C + \beta 2
C

\biggr) 
,

\lambda \ast 
I(g) =

\alpha \mu g\surd 
N

 - 1.

(E.1)

The eigenvalue \lambda \ast 
C1
(g) is negative for 1 \leq \beta C < 2 and positive for \beta C > 2; the eigenvalue

\lambda \ast 
C2
(g) is negative for \beta C > 1/2; and the eigenvalue \lambda \ast 

I(g) is negative for all \beta C forN sufficiently
large.

It remains to find leading order expressions for the eigenvalues of H3(\bfx ), given by (6.10).
When \bfx = 0, the matrix H3(0) has a single eigenvalue at \lambda C and a complex conjugate pair
of eigenvalues \lambda 0 \pm i\omega 0, where these are defined at the beginning of Appendix 6. Using the
same asymptotic procedure as in subsection 5.4 and Appendix B, H3(\bfx 

\ast ) has a real eigenvalue
corresponding to \lambda C located at

\lambda C(\bfx 
\ast ) = (p - 1)nC\mu 

\bigl( 
1 - (1 - \beta C + \beta 2

C)g
2x2E1

\bigr) 
+\scrO 

\biggl( 
1

N2

\biggr) 
.

Substituting the estimate (6.8) for xE1
and simplifying, the eigenvalue \lambda \ast 

C(g) of J3(\bfx 
\ast ) corre-

sponding to \lambda C is located, to leading order, at

\lambda \ast 
C(g) =  - 2

\biggl( 
g  - gC
gC

\biggr) 
for g close to gC . Since this eigenvalue is always negative, it will not affect stability. Similarly,
H3(\bfx ) has a complex conjugate pair of eigenvalues \lambda 0 + i\omega 0, where the real part is given by

\lambda 0(g, \beta C) =
\mu 

2

\bigl[ 
(\alpha  - nC) - \beta Cg

2nC(p - 1)x2E1

\bigr] 
to leading order, for g close to gC . Since we are taking nC \geq \alpha , this is always negative for g
close to gC .

Appendix F. \bfitC \bfone /\bfitC \bftwo branches for large \bfitg : Detailed calculations. Here we provide
details of the behavior of solutions on the C1/C2 branch as g becomes large. We claim there
are two patterns for the limiting behavior on the C1/C2 branches, which depend on whether
\beta C < \beta \ast 

C or \beta C > \beta \ast 
C for some critical value \beta \ast 

C , which we will determine below. These were
illustrated in Figure 6.4.

\bullet Case 1: (1 < \beta C < \beta \ast 
C) xE1

\rightarrow \^xE1
> 0 and xE2

\rightarrow \^xE2
< 0.

\bullet Case 2: (\beta C > \beta \ast 
C) xE1

\rightarrow 0 with tanh(gxE1
) \rightarrow \^yE1

\not = 0 and xE2
\rightarrow \^xE2

< 0.
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SYMMETRIC NEURAL NETWORK BIFURCATIONS 2575

For Case 1, since tanh(gxE1
) \rightarrow 1 and tanh(gxE2

) \rightarrow  - 1, we can solve for \^yI using row 3
of (6.7) to get

\^yI =
\beta C  - 1

\beta C + 1

pnC

pnC  - \alpha 
,(F.1)

from which it follows that

xI \rightarrow 1

g
tanh - 1

\biggl( 
\beta C  - 1

\beta C + 1

pnC

pnC  - \alpha 

\biggr) 
as g \rightarrow \infty .(F.2)

Using (F.1) with rows 1 and 2 of (6.7),

\^xE1
=

\mu \surd 
N

\biggl( 
(p - 1)nC  - \beta C  - 1

\beta C + 1

p2n2
C

pnC  - \alpha 

\biggr) 
,

\^xE2
=

\mu \surd 
N

\biggl( 
 - (p - 1)nC  - \beta C  - 1

\beta C + 1

p2n2
C

pnC  - \alpha 

\biggr) 
,

(F.3)

which reduce to (6.13) when \beta C = 1. Since nCp = fN \rightarrow \infty as N \rightarrow \infty , this simplifies to

xE1
\rightarrow \mu \surd 

N

\biggl( 
(p - 1)nC  - \beta C  - 1

\beta C + 1
pnC

\biggr) 
,

xE2
\rightarrow \mu \surd 

N

\biggl( 
 - (p - 1)nC  - \beta C  - 1

\beta C + 1
pnC

\biggr) 
,

xI \rightarrow 1

g
tanh - 1

\biggl( 
\beta C  - 1

\beta C + 1

\biggr) (F.4)

as g,N \rightarrow \infty . For (F.3) to be valid, the consistency conditions \^xE1
> 0 and \^xE2

< 0 must be
satisfied. Since \^xE2

< 0 always holds, (F.3) is consistent as long as

(p - 1)nC  - \beta C  - 1

\beta C + 1

p2n2
C

pnC  - \alpha 
> 0.(F.5)

Solving for \beta C , this results in the condition \beta C < \beta \ast 
C , where \beta \ast 

C is defined in 6.14.
For Case 2, we can solve for \^yE1

and \^yI using rows 2 and 3 of (6.7) to get

\^yE1
=

nCp
2

\alpha (1 + \beta C)(p - 1) + nCp(1 + \beta C  - p)
,

\^yI =
nCp(p - 1)

\alpha (1 + \beta C)(p - 1) + nCp(1 + \beta C  - p)

(F.6)

from which it follows that

xE1
\rightarrow 1

g
tanh - 1

\biggl( 
nCp

2

\alpha (1 + \beta C)(p - 1) + nCp(1 + \beta C  - p)

\biggr) 
,

xE2
\rightarrow \mu \surd 

N

\biggl( 
 - (p - 1)nC  - 

n2
Cp

2(p - 1)

\alpha (1 + \beta C)(p - 1) + nCp(1 + \beta C  - p)

\biggr) 
,

xI \rightarrow 1

g
tanh - 1

\biggl( 
nCp(p - 1)

\alpha (1 + \beta C)(p - 1) + nCp(1 + \beta C  - p)

\biggr) (F.7)

as g \rightarrow \infty . We note that for \beta C > \beta \ast 
C , we cannot take N \rightarrow \infty with nC held fixed, since for

sufficiently large N we will always have \beta C < \beta \ast 
C .
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2576 ROSS PARKER AND ANDREA K. BARREIRO

Appendix G. Stable excitatory clusters for large \bfitg : Detailed calculations. We begin
with the ansatz (suggested by numerical continuation) that as g \rightarrow \infty ,(xE1

, xE2
, xI1 , xI1) \rightarrow 

(\^xE1
, \^xE2

, \^xI1 , \^xI2), where \^xE1
, \^xI1 > 0 and \^xE2

, \^xI2 < 0. With these assumptions, (6.16)
reduces to

\^xE1
=

\mu \surd 
N

\biggl[ 
(p - 1)nC  - \alpha 

\beta  - 1

\beta + 1
nI

\biggr] 
,

\^xE2
=

\mu \surd 
N

\biggl[ 
 - (p - 1)nC  - \alpha 

\beta  - 1

\beta + 1
nI

\biggr] 
,

\^xI1 =
\mu \surd 
N

\biggl[ 
\beta C  - 1

\beta C + 1
pnC  - \alpha 

\biggl( 
\beta  - 1

\beta + 1
nI  - 1

\biggr) \biggr] 
,

\^xI2 =
\mu \surd 
N

\biggl[ 
\beta C  - 1

\beta C + 1
pnC  - \alpha 

\biggl( 
\beta  - 1

\beta + 1
nI + 1

\biggr) \biggr] 
,

(G.1)

since tanh(gxE1
), tanh(gxI1) \rightarrow 1 and tanh(gxE2

), tanh(gxI2) \rightarrow  - 1 as g \rightarrow \infty . Equation
(G.1) gives the limiting solutions (\^xE1

, \^xE2
, \^xI1 , \^xI1) as long as the consistency conditions

\^xE1
, \^xI1 > 0 and \^xE2

, \^xI2 < 0 are satisfied. Since \mu > 0, the consistency conditions reduce to

(p - 1)nC  - \alpha 
\beta  - 1

\beta + 1
nI > 0,

 - (p - 1)nC  - \alpha 
\beta  - 1

\beta + 1
nI < 0,

\beta C  - 1

\beta C + 1
pnC  - \alpha 

\biggl( 
\beta  - 1

\beta + 1
nI  - 1

\biggr) 
> 0,

\beta C  - 1

\beta C + 1
pnC  - \alpha 

\biggl( 
\beta  - 1

\beta + 1
nI + 1

\biggr) 
< 0.

(G.2)

The first pair of inequalities in (G.2) is satisfied if and only if\bigm| \bigm| \bigm| \bigm| \beta  - 1

\beta + 1

\bigm| \bigm| \bigm| \bigm| < (p - 1)nC

\alpha nI
= 1 - 1

p
,

where we used the fact that nCp = nE = \alpha nI . Since we are taking \beta \geq 1, this simplifies to
1 \leq \beta < 2p. Similarly, the second pair of inequalities in (G.2) is satisfied if and only if

\alpha 

\biggl( 
\beta  - 1

\beta + 1
nI  - 1

\biggr) 
<

\beta C  - 1

\beta C + 1
pnC < \alpha 

\biggl( 
\beta  - 1

\beta + 1
nI + 1

\biggr) 
,

which simplifies to (6.17).
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