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Bifurcations of a Neural Network Model with Symmetry”
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Abstract. We analyze a family of clustered excitatory-inhibitory neural networks and the underlying bifurcation
structures that arise because of permutation symmetries in the network as the global coupling
strength g is varied. We primarily consider two network topologies: an all-to-all connected network
which excludes self-connections, and a network in which the excitatory cells are broken into clusters
of equal size. Although in both cases the bifurcation structure is determined by symmetries in the
system, the behavior of the two systems is qualitatively different. In the all-to-all connected network,
the system undergoes Hopf bifurcations leading to periodic orbit solutions; notably, for large g, there
is a single, stable periodic orbit solution and no stable fixed points. By contrast, in the clustered
network, there are no Hopf bifurcations, and there is a family of stable fixed points for large g.
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1. Introduction. Today experimental techniques allow an increasingly detailed view of
the physical architecture of biological neural networks. However, drawing a clear line from
physical connectivity to dynamic neural activity is still a challenge. The networks in question
are massive in scale and high dimensional (with billions of neurons and possibly trillions
of synapses). Neural networks also show great diversity in structure at every level, from the
morphology and excitability properties of a single cell to large scale connections between brain
regions.

One common experimental finding is that neural dynamics are surprisingly low-dimensional
when compared to the overall dimensionality of the neural system [17, 8, 19, 42, 30] (see Fig-
ure 1 of [21] for a summary of earlier studies). The low-dimensional manifold may even shift
slowly over time, as the underlying components of the network (cells and synapses) die and are
replaced [20]. Thus, a major challenge for modern mathematical neuroscience is to understand
how low-dimensional dynamics emerges from the observed connectivity of the brain.

Real neural networks are partially structured but also partially random. Intuitively, it’s
clear that not every connection in the brain must be tuned precisely (after all, every person
reading this sentence will respond to these black markings in the same way, despite significant
differences between our individual brains). This has motivated the use of analytical tools of
random network theory, in which one seeks to draw conclusions about an ensemble of networks.
An early example is the work by Sompolinsky, Crisanti, and Sommers [40] which applies
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dynamic mean field theory to single-population firing-rate networks in which connections are
chosen from a mean-zero Gaussian distribution: in the limit of large network size, the authors
find that the network transitions from quiescence to chaos as a global coupling parameter
passes a bifurcation value. This value coincides with the point at which the spectrum of
the connectivity matrix exits the unit circle [23, 3] thus making the connection to random
matrix theory very concrete. Later authors have sought to extend these results to correlated
or block-structured matrices [31, 2], and many others have studied the spectral characteristics
of partially structured connection matrices [43, 1, 35] with neural networks as a primary
motivation.

However, the results of spectral theory and nonlinear dynamics have not always neatly
aligned. One network setting that has caused persistent difficulty is excitatory-inhibitory
networks with strong average connections [36]. The predictions of random matrix theory
suggest chaotic, asynchronous fluctuations, whereas large-scale coherent fluctuations have
been observed instead. Why? The answer may be found in the nature of the deterministic
perturbation. Several authors have examined how low-rank, asymmetric perturbations create
an effectively feed-forward structure that allows coherent dynamics to coexist with random
fluctuations in an orthogonal subspace [14, 13, 33, 32]; the dimensionality of the dynamical
subspace can be related to the dimension of the low-rank perturbation in the connectivity
matrix [39, 5].

In an earlier work, we found an alternative possibility [4]. In examining balanced excitatory-
inhibitory networks without self-coupling, we persistently observed periodic solutions which
could not be explained by random matrix theory. Instead, they arose as a consequence of un-
derlying symmetries in the connection matrix and could be predicted through the machinery
of equivariant bifurcation theory. However, some pieces of our analysis remained uncompleted:
we were unable at that time to give a complete stability analysis. This is important because
the stable solution is what one can expect to observe in a perturbed (random) network.

Here, we complete this analysis for all-to-all excitatory-inhibitory networks. We then
extend this analysis to a biologically significant block-structured case, in which the excitatory
cells are clustered, but inhibition is global. We find that the dynamics are strikingly different:
instead of limit cycles, we predict fixed points. In both cases, the structures can be understood
by considering the symmetries of the deterministic connection matrix.

2. Mathematical model. We consider a network in which each node represents the firing
rate of a single neuron. The individual neurons are connected by sigmoidal activation functions
through a connectivity matrix, which specifies both the network of neuronal connections and
the weight of each connection, including whether a given neuron is excitatory (E) or inhibitory
(I). With noise in the connectivity matrix, this is an idealized model in neuroscience [22, 36,
31]. Here, we will consider the system without noise, but where the connection weights have
important symmetries. Specifically, we study

1
(2.1) x=F(x,9) = —x+ —NH tanh(gx)

VN

for x € RN, where the global coupling strength, g, is used as a bifurcation parameter. The
network comprises a total of N neurons, of which ng are excitatory and ny are inhibitory. H is
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the N X N connectivity matrix; the diagonal entries of H are all 0 to exclude self-interactions of
neurons (see [4, sect. 2.1] for a discussion on why self-coupling of neurons is removed). We will
use the parameter f = ng/N to identify the fraction of neurons that are excitatory: for the
remainder of this paper we will use f = 0.8 for a 4-to-1 excitatory-to-inhibitory ratio, which is
typical for cortical networks [7]. We note that F' is an odd function of x, i.e., F/(—x) = —F(x).
This implies that if x(¢) is a solution to (2.1), so is —x(¢), and that x = 0 is a fixed point of
(2.1) for all g.

We consider here networks in which the excitatory neurons are grouped into n¢ clusters,
each containing p neurons, and the inhibitory neurons are grouped into nc, clusters, each
containing p; neurons. For simplicity, we only consider the case where the excitatory clusters
are the same size, and the inhibitory clusters are the same size. This restriction introduces
additional symmetries into the model, which are explained below. In addition, all connections
of any given type (e.g., E — E or E — I) will have the same strength. The matrix H then
takes the general form

NE'EKp 0 e O ,LLE]]_nEXnI i
: : 0
(22) H= 0 0 rerKy
,U/IE]-nIXnE M[[Kpl 0 .. 0
0 prrKy, ... 0
: : - 0
L 0 0 e MIIKPI

where 1,,xn is the m X n matrix of ones, and K,, is the n x n matrix with all ones off the
diagonal, i.e., K, = 1,x1 (lnxl)T — I, with I, the n X n identity matrix. The connection
weights p are defined “matrix-style,” e.g., pgr will denote the connection from I to E, while
prg will denote the connection from E to I. The weights are also signed, so that pgg, prg > 0
and pugr, prr < 0: this reflects the neurobiological heuristic of Dale’s law, which states that
each neuron makes excitatory or inhibitory connections onto its postsynaptic targets.

The model (2.1), (2.2) is equivariant under the subgroup I'yy of Sy, defined by

L =25, x-- xS, x 8, X x5,

TV
nc nc;

where S, is the group of permutations on n objects (see section 3 for the definition of equi-
variance). Essentially, this says that labels of the neurons within each cluster can be freely
permuted. Since the clusters are of equal sizes, there are two additional symmetries in the
model. The labels of the excitatory clusters and the labels of the inhibitory clusters can be
freely permuted, yielding symmetry groups isomorphic to Sy, and Sy, , respectively.

The linearization of (2.1) about x = 0 is the matrix

(2.3) DF(0) = —2_H — Iy,

VN
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where Iy is the N x N identity matrix. The eigenvalues of DF'(0) are then given by \*(g) =
\/Lﬁ/\ — 1 for all eigenvalues A of H. As a consequence, the dynamics of the system can be
understood in terms of the eigenvalues of H. For an eigenvalue A of H with negative real part,
the corresponding eigenvalue A*(g) of DF'(0) will always have negative real part, irrespective
of g. On the other hand, for an eigenvalue A of H with positive real part, the sign of the real
part of the corresponding eigenvalue A\*(g) of DF(0) will depend on the bifurcation parameter
g. Thus, the only bifurcations of x = 0 involve the eigenvalues of H which have positive real
part. Furthermore, the multiplicities of the eigenvalues of H are determined by symmetries
in the underlying model (2.1) and the matrix H. These lead to symmetric bifurcations as g
is varied; we address this in section 3.

The dynamics near a nonzero fixed point x* = (z%,...,2%)7 of (2.1) also depend on the
matrix H. The linearization of (2.1) about x* is the matrix

(2.4) DF(x*) = \/’;NH(X*) ~ Iy,
where
(2.5) H(x*) := Hdiag(sech?(gx*))

is obtained from the matrix H by multiplying column j of H by sech2(gx;). We note that
the diagonal entries of H(x*) are 0, thus Trace H(x*) = 0. This implies that the eigenvalues
of H(x*) sum to 0.

We first studied this system in [4], where we analyzed all-to-all connected, balanced
excitatory-inhibitory networks (nc = 1 and ng, = 1). In this paper, we first flesh out
some details about that system: we derive leading order expressions for bifurcation points in
the system, for the equilibria near those bifurcation points, and for the Hopf bifurcations that
spawn the clustered limit cycles we observed in [4] (section 5). We then extend the analysis
to networks in which the excitatory population is split up into clusters (n¢ > 1 and ng, = 1;
section 6). We briefly compare our network with networks in which the inhibitory neurons
are clustered instead (n¢ = 1,n¢, > 1; section 7).

3. The role of symmetries and the equivariant bifurcation lemma. In this section, we
outline the tools of equivariant bifurcation theory, and explain how they apply to the model in
question. Our main tool for analyzing the solutions to (2.1), (2.2) which arise at bifurcation
points when symmetries are present is the equivariant branching lemma [24, 10, 25, 28]. Before
stating the result, we introduce some terminology.

Let T be a finite group acting on RY: then we say that a mapping F : RV — RV is I'-
equivariant if F(yx) = yF(x) for all x € RY and v € T'. A one-parameter family of mappings
F: RN xR — RY is I'-equivariant, if it is T-equivariant for each value of its second argument.
We say that V, a subspace of RY, is I'-invariant if yv € V for any v € V and v € I'. We
furthermore say that the action of I' on V' is érreducible if V has no proper invariant subspaces,
i.e., the only I'-invariant subspaces of V' are {0} and V itself.

For a group I' and a vector space V, we define the fized-point subspace for I, denoted
Fixy (T'), to be all points in V' that are unchanged under any of the members of T, i.e.,
Fixy(T') = {x € V : vx = x,Vy € T'}. The isotropy subgroup of x € V , denoted ¥, is the set
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of all members of I under which x is fixed, i.e., ¥, = {y € I" : yx = x}. We then say that a

subgroup X is an isotropy subgroup of I, if it is the isotropy subgroup, ¥, for some x € V.
Suppose we have a one-parameter family of mappings, F(x,g), and we wish to solve

F(x,g9) = 0. For any (x,9) € R" xR, let (DF')x,4 denote the N x N Jacobian matrix

[aFj(X’ 9)}

Oy, jk=1..N

A bifurcation will occur when the Jacobian ceases to be invertible, i.e., when (DF')yx 4 has a
nontrivial kernel. For a I'-equivariant mapping—i.e., F'(x,g) is '-equivariant for any value
of the parameter g—we may have multiple eigenvalues go through zero at once, because of
symmetries; however, some of the structural changes that occur are qualitatively the same as
those that occur in a nonsymmetric system in which a single eigenvalue crosses through zero.
But there is a catch: we will have multiple such solution branches, each corresponding to a
subgroup of the original symmetries. This is formalized in the following theorem.

Theorem 3.1 (equivariant branching lemma: paraphrased from [25], Theorem 3.3 on p. 82,
see also pp. 67-69). Let F : RV x R — RN be a one-parameter family of T-equivariant
mappings with F(xg,go) = 0. Suppose that (Xo,g0) is a bifurcation point and that, defining
V = ker(DF)x, g,, I acts absolutely irreducibly on V. Let 3 be an isotropy subgroup of I’
satisfying

(3.1) dim Fixy () = 1,

where Fixy (X) is the fized-point subspace of 3 with respect to V', that is, Fixy (X)) ={z € V|
ox = x for all 0 € ¥}. Then there exists a unique smooth solution branch to F =0 such that
the isotropy subgroup of each solution is 3.

As we have noted, (2.1), (2.2) is I'g-equivariant, where

FH:pr---xSQX SpIx---xSplj,

nc nc;

and S, is the group of permutations on n objects. Essentially, this says that labels of the
neurons within each cluster can be freely permuted. In addition, the labels of the excitatory
clusters and the labels of the inhibitory clusters can be freely permuted, yielding symmetry
groups isomorphic to Sy, and Sy , respectively.

The origin, x = 0 is a fixed point for all values of g. As we increase g from 0, we will
encounter a sequence of bifurcation points, i.e., points (xg, go) for which DF has a nontrivial
kernel. At each such point, we will identify the kernel V' and the subgroups ¥ for which a
solution is guaranteed by the equivariant branching lemma.

4. Model simplification. We can simplify the model using the fact that all cells within
each excitatory cluster must be synchronized at a fixed point or periodic orbit. In the case
where there is a single excitatory cluster (nc = 1), if #; and x9 are the activities of two
excitatory cells, then a straightforward calculation (see Lemma 3 from [4]) shows that

d
(4.1) £]x1 — xQ\Q < —2‘1‘1 - 1‘2|2.
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The only way this can be true for a fixed point (for which %|l’1 — x3|2 = 0) or for a periodic
orbit (for which 1 (t) —z2(t) = x1(t +T) — x2(t + T') for some period T') is if x1(t) = x2(t) for
all t. If nc > 1, and 1 and x5 are the activities of two cells in the same excitatory cluster,
(4.1) holds by the same argument as in [4], since both neurons receive the same incoming
connections with the same weights.

We are primarily interested in the case where there is a single cluster of inhibitory cells,
ie, no, = 1. (We will briefly consider the case of multiple inhibitory clusters in section
7.) If there are ng excitatory clusters containing p cells each, and n; inhibitory cells (for
N = pnc + ny total cells), (2.1) reduces to the system of n¢ + ny equations

. (r—1) 1 ,
Tp, = —xg, + tanh(grg. ) + — tanh(gzy, ), =1,...,n¢,
- E, E, Wici UEE (97E,) \/N,U«EI %ﬂ (9x1.), 7 c
4.2
. D 1 .
&1, = =1, + ——=UNIE tanh(gzp, ) + —=pur tanh(gzr, ), j=1,...,n,
L b Ly S bt

where zp, is the activity for the jth excitatory cluster, and wxj, is the activity for the jth
inhibitory cell. In matrix form, (4.2) can be written

. 1 -
4.3 x = F(x,9) := —x + ——H tanh(gx),
(4.3) (x,9) Wi (9%)
where x = (zg,,...,7g,_, %1, - - ,xlnI)T, and H is the (n¢ 4 nj) X (n¢ 4+ ng) reduced matrix

(p—Dppele | tErLng xn;

o]
I

(4.4)

PUIELD, xne nrrKy,

The system of equations (4.3), (4.4) is the restriction of the original system (2.1), (2.2) with
nc, = 1 to the fixed-point subspace Fix(I'¢) corresponding to the subgroup

o =5 x- xS, xEy,
| —
nc

of 'y, where E,, is the trivial subgroup of S,,, consisting only of the identity permutation.
The reduced model (4.3), (4.4) is then equivariant under the subgroup

(45) I'= Snc X Snz

of Syo+n,- The special case of nc = 1 (a single excitatory cluster), for which I' = 57 x Sy,
is considered in section 5. We note that in this case, one of the symmetries is effectively lost,
since the activity of the lone excitatory cluster is represented by a single variable. The general
case (n¢ > 1) is considered in section 6. We will only consider the reduced system (4.3), (4.4)
in sections 5 and 6.
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Next, we show that no stability information is lost by only studying the reduced system.
Suppose X* = (T, T T] - ,:ﬁn[)T is a fixed point of (4.3). (We will discuss the
existence of such fixed points in sections 5 and 6). The linearization of (4.3) about x* is the
matrix

(4.6) DF(x") = jéﬁmx*) — Inectns

where
(4.7) H(x*) := Hdiag(sech?(gx*)).

The original system (2.1) has a corresponding fixed point x{ in which each z7 B, 0 x* is repeated
p times. The following proposition shows that to analyze the stability of the fixed point xg
in the full system (2.1), it suffices to determine the eigenvalues of the reduced matrix H(x*),
since the additional eigenvalues of H(x{) are negative, and thus will not affect stability.

Proposition 4.1. Let x* be a fized point of (4.3) and x{; the corresponding fized point of
(2.1), and let H(x{) and H(x*) be defined by (2.5) and (4.7). Then
(i) every eigenvalue of H(x*) is an eigenvalue of H(x});
(i) H(x{) has no additional real, negative eigenvalues, each with multiplicity p — 1.

|

Proof. Part (i) follows immediately from the fact that (4.3) is a restriction of (2.1).
For part (ii), it can be verified directly that for j = 1,...,n¢, H(x{) has an eigenvalue at
A = —ppgsech?(x g;) with multiplicity p — 1. For j = 1, for example, the p — 1 eigenvectors
are vl,...,vP~1 where v’f = —1, v,’jﬂ = 1, and all other components are 0. Since ugg > 0,
these eigenvalues are always negative. |

The dynamics of the full system can therefore be explained by the dynamics of the reduced
system, and, in particular, in terms of the eigenvalues of the reduced matrix H (Figure 4.1).
Although these patterns will be explained in detail in the corresponding sections below, we
point out two crucial differences between the model with a single excitatory cluster (Figure 4.1,
left) and the model with multiple excitatory clusters (Figure 4.1, right). For the model
with multiple excitatory clusters, there is an additional positive, real eigenvalue A¢, and the
complex pair A\g + iwp has negative real part.

5. Single excitatory and inhibitory cluster. The simplest case (considered in [4]) involves
a single excitatory cluster (nc = 1 and p = ng) and a single inhibitory cluster, in which case
the matrix H in (4.3) reduces to the (1 + ny) x (1 + ny) matrix

(ng — Vpee | kErl1xn,

e
I

(5.1)

nepreln, x1 | prrkKy,

We choose the connection weights so that the network is balanced; that is, the excitatory and
inhibitory currents coming into each cell should approximately cancel [36]. To achieve this
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Figure 4.1. Eigenvalue pattern of the matriz H for a single excitatory and a single inhibitory cluster (left,
section 5), and multiple excitatory clusters and a single inhibitory cluster (right, section 6). The notation for
the eigenvalues in each network model is explained in the corresponding section below.

~

balance, we set pgpr = —aupp and prr = —aurg, where a = . For simplicity, we also take

=

pre = pee. The spectrum of H is now easy to compute (see [4], noting that the full matrix
H is considered in that work). The eigenvalues of H (left panel of Figure 4.1) are

e )\ := aqugg > 0 with multiplicity n; — 1;

e one complex pair of eigenvalues \g + iwg with

a—1 a+1
Ao = UEE 5 wo = ppeva+ 14/ ng — 1

It is straightforward to check that 0 < Ag < A;. Since both of these are positive, there will be
a bifurcation of x = 0 involving each of these eigenvalues.

In the following sections, we will determine the bifurcations which occur as g is increased,
together with the structures which emerge at these bifurcation points. First, the origin loses
stability in a symmetric pitchfork bifurcation, after which point there is a branch of equilibria
for every possible division of the inhibitory cells into two groups. We will derive leading order
formulas for these branches, as well as show which of them are initially stable. As g is further
increased, there is a Hopf bifurcation on each of these branches, which gives rise to a limit
cycle with the same grouping pattern as the corresponding branch. Finally, at a critical value
of g, these limit cycles coalesce in a symmetric pitchfork bifurcation of limit cycles. After this
point, there is a single stable limit cycle in which there is one group of inhibitory cells and
one group of excitatory cells.

5.1. Bifurcations of the origin. As the bifurcation parameter g is increased from 0, the
eigenvalues Aj(g) of DF(0) corresponding to A; cross the imaginary axis at

VN

QUEE

(5.2) g=90:=

The origin x = 0 is a stable equilibrium for g < gg. At g = go, the origin loses stability in a
symmetric pitchfork bifurcation, where n; — 1 eigenvalues cross the imaginary axis simulta-
neously (see subsection 5.2 below). As g is further increased, the complex pair of eigenvalues
A (g) £iwg(g) of DF(0) crosses the imaginary axis at
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2V N

(5.3) 9=9H = m;

at which point a Hopf bifurcation occurs, giving rise to a limit cycle (see subsection 5.6 below).
The frequency of this limit cycle is given by the imaginary part wg(g) at g = gp, which is

(5.4 ablom) = —VaF T\ N = S,

where we used ng = fN. We note that since wjj(9m) = O(VN), wi(g9m) — o0 as N — oo.

5.2. Solutions after symmetric pitchfork bifurcation. The reader can readily check that
the right-hand side of (4.3), section 5 is I'-equivariant, for I' = S; x S,,. That is, we can
permute the labels on inhibitory cells without changing the equations. (The activity of the
excitatory cells have been collapsed into a single variable.) At g = go, n; — 1 eigenvalues pass
through zero; the corresponding eigenspace is the set of all zero-sum vectors with support in
the inhibitory cells only, i.e.,

V = ker(dF)o,4- = span {[0 v/]}, vy 1L 1,,

which has dimension n; — 1. To check that I' acts irreducibly on V, it is sufficient to show
that the subspace spanned by the orbit of a single vector v (defined as the set of all values
v, for v € T') is full rank; this can be readily confirmed for v; = [ 1 -1 0 --- 0 ], for
example.

To determine what occurs at this pitchfork bifurcation point, we next find subgroups ¥ of
I' which satisfy the hypothesis of the equivariant branching lemma. To do this, we break the
inhibitory cells up into precisely two clusters I} and I of sizes ny, and ny,, where ny, +njy, = ny,
and retain only permutations within each cluster. For each such decomposition, this describes
a subgroup

(5.5) Y1 =51 X Sp;, X Sny,

of I'. Assuming that (without loss of generality) the I; neurons have the indices 2, ... ,ny, +1,
>1 has the fixed-point subspace

(5.6) Fixy(£7) = spanq [01 -+ 1 =g oo =78
w_/ J/
nry N,

Furthermore dim Fixy (X7) = 1, because it can be described as the span of a single vector.

It follows from the equivariant branching lemma that there is a branch of equilibria emerg-
ing at the symmetric pitchfork bifurcation point g = go for all such subgroups >y, i.e., for
every possible division of the inhibitory cells into exactly two clusters of size ny, and ny,, where
ny, +ng, = ny. We refer to these as I; /I branches. Each such branch may be characterized
by the number

(5.7) g="h

nr,
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which gives the ratio of the cluster sizes. Without loss of generality, we may take ny, > ny,,
so that 8 > 1. The inhibitory cells within each of the two clusters are synchronized. The
solution on each I/Is branch is then given as (zg,x,,x1,), where we recall from section
4 that all excitatory cells are synchronized. Due to the odd symmetry of (2.1), there is a
corresponding I /I» branch for each § with solution (—xg, —zr,, —x1,). We will ignore this
other branch for simplicity, although we note that it is this odd symmetry which permits a
pitchfork bifurcation to occur.

We briefly comment on divisions of the inhibitory cells into more than two clusters. As
a specific example, suppose the inhibitory cells are divided into three clusters of size ny,,
nr,, and nr,, where ny, + ny, +ny, = ny. This decomposition describes a subgroup 3 =
S1 X Sp;, X Spy, X Sy, of I'. The fixed-point subspace of X3 with respect to V' is given by

T 51
span 01 Ny nr, U of,
~—— -~ ———
n, nr, Mg
L. Do
01 -+ 10 --- 0—32 o ’
——
nry Niy Nig

which has dimension 2. Since dim Fixy(¥3) > 1, the equivariant branching lemma does
not guarantee the existence of a branch of fixed points with this symmetry. In general, if the
inhibitory cells are divided into m > 2 clusters, the fixed-point subspace for the corresponding
symmetry group will have dimension m — 1 > 1. It is important to note that the equivariant
branching lemma does not preclude the existence of such fixed points (see the discussion in
[4, section 4]). Numerical experiments, however, suggest that all fixed points which are not
on the primary I;/I> branches are unstable (see subsection 5.5).

5.3. Solutions along I /I branches. First, we derive leading order expressions for the
equilibria along the I; /I branches for g close to the bifurcation point go. Fix g > 1. To
find (zg,xr,,21,) along the I /I branch corresponding to 3, we reduce (4.2) to the three-
dimensional system

any — 1 —alon —a-t-n
x e (any —1) 5B+1 1 541r1 I tanh(gzg)
(5.8) x| = N enr o (ﬁ”l B 1) T tanh(gzr,) | ,
X, ang —a%nl — (ﬁnl — 1> tanh(.gxfz)

where xg is the activity of the synchronized excitatory cells, x;, and xj, are the activities
of the two synchronized inhibitory clusters, and we used ng = an;. The system (5.8) is the
restriction of (4.3) to the fixed-point subspace for the subgroup S1 x Sy, x Sy, of I'. For any
solution (xg, s, 77,)T to (5.8), x = (zg,21,,...,21,,T1L,,---,27,)" is an equilibrium solution
to (4.2), where zj, and x, are repeated n;, and nj, times, respectively. We note that any
solution (xg,xy,,7,) to (5.8) is bounded for all g, since the matrix in (5.8) is constant, and
|tanhy| <1 for all y.
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The simplest case occurs when nj is even and 5 = 1, in which case n;, = ny,. On this
branch, zg = 0, and x5, = —xy,, i.e., there are two equally sized inhibitory populations with
equal and opposite activities, and there is no excitatory cell activity. Beginning with the single
remaining equation for xy,, and utilizing the Taylor expansion for the tanh function, we show
(see detailed calculations in Appendix A) that the nonzero solution for zy is given, to leading
order, by

3(9 — 90)

(5.9) Ty = g g Z go-

By keeping up to fifth-order terms in the Taylor expansion (see detailed calculations in Ap-
pendix A), we can obtain the higher order approximation

5 _
(5.10) Ty = ;\/952 _ \/59 (24;%0 199) g> go.
Comparison between the third-order approximation (5.9), the fifth-order approximation (5.10),
and the numerical solution obtained by parameter continuation is shown in the left panel of
Figure 5.1.

For > 1, it is no longer true that x;, = —zj,. However, by making an appropriate ansatz
and proceeding as described in Appendix A, we obtain the following approximations for z g,
x1,, and zj, in terms of g, for g close to go:

(5.11)

1 3(g — 90) 1 1
$E20<Ng)a Ty = mﬂLO N2) =P +O0l ) 92 9.

Note that this reduces to (5.9) when 8 = 1. In addition, we note that z;, and =, have opposite
signs. This is, in fact, true for all g > gg, as shown in Appendix A. Comparison between this
approximation and the numerical solution obtained by numerical parameter continuation is
shown in the right panel of Figure 5.1.

0.6 ; ; 0.2 ; :
—numerical solution —numerical solution
0.5 /= -3rd order approximation — -3rd order approximation
5th order approximation 0.15
0.4+
5 0.3 g'H 0.1
;‘/
rd
0.2+ /./
/ 0.05 ¢
0.1
0 I i ‘ ; 0 L ] ‘ ‘
1.5 1.6 1.7 1.8 1.9 2 1.5 1.6 1.7 1.8 1.9 2
g g

Figure 5.1. Approzimations to the location of xr on I1/I2 fized point branches. Left: Third-order (5.9)
and fifth-order (5.10) approzimations to x; = xy, on the § =1 (i.e., n;, = n1,) branch. Right: Third-order
approzimation (5.11) to x1, on the 8 = 3 branch. Other parameters are N =20, a =4, pge = 0.7.
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5.4. Stability and bifurcations along I; /I, branches. Now that we have obtained a
leading order formula for the fixed points on the I /Iy branches for all valid inhibitory cell
ratios 8, we will analyze their stability for g close to the bifurcation point gg. Choose any 5 > 1,
so that n;, = %m and ny, = ﬁnj, and let x = (xg, xy,,x,) be a solution to (5.8) for g >
go- To examine the stability and bifurcations which occur along the I /Is branches, we look at
the linearization DF(x*), which is given by (4.6), where X* = (zg, &1, ..., &1, 21, ..., 21,)"
and xj, and zj, are repeated nj, and nj, times, respectively. As discussed above in section
4, stability will depend on the eigenvalues of H(x*). A cartoon showing the location of
these eigenvalues is given in Figure 5.2. In the process of our analysis, we will show that a
Hopf bifurcation occurs along each I3 /I, branch, and will find a leading order formula for its
location.

To locate the eigenvalues of H(x*), we first linearize the three-dimensional system (5.8)
about the fixed point x = (zg, z1,,271,) to get the Jacobian

9

(5.12) J5(x) = \/“LNHS(X) — I,
where
(5.13)
(any — 1)sech?(gxg) —a%msechQ(gxh) —aﬁmsechQ(gxb)
H3(X)=ppg omjsechQ(ng) —« (%nl — 1) sechQ(gxh) —aﬁnjsechQ(ngz)
angsech?(gz ) —a%nfsech%gxh) —« ﬁnl - 1) sech?(gzr,)

and I3 is the 3 X 3 identity matrix. We have the following proposition relating the eigenvalues
of H3(x) and H (x*).

Proposition 5.1. Let x = (zg, 1,,71,) be a solution of (5.8) and X* the corresponding fired
point of (4.3), and let H3(x) and H(x*) be defined by (5.13) and (4.7). Then

) a
(i) every eigenvalue of Hsz(x) is an eigenvalue of H(x*)
(ii) H(x*) has the following additional eigenvalues:
o \;, := pppasech?(gxy,) with multiplicity ny, — 1.
e \j, := pgpasech?(gxy,) with multiplicity ny, — 1.

Im A
. .
Ao + twy
Re A
AL A A
. .
/\() — Wy

Figure 5.2. Eigenvalue pattern of the connectivity matriz H(x") for fized point x* on I1/I> branch with
B > 1. The notation for the eigenvalues is explained in subsection 5.4.
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Proof. Part (i) follows immediately from the fact that (5.8) is a restriction of (4.3).
For part (ii), if n;, > 1, then it can be verified directly that H(x*) has an eigenvalue A\;, =

(e Easech? (gz1,) with multiplicity n;, —1. The corresponding eigenvectors are v!, ... v 1
where 05 = —1, v,’j 4o = 1, and all other components are 0. If ny, > 1, the eigenvalue \;, can
be similarly obtained. |

We note that the eigenvalues A;, and Ay, split off from A; at the pitchfork bifurcation
point g = go; if x* = 0, then A\;, = A\;, = A;. To determine the stability of x* for g
close to go, we must compute the eigenvalues A7 (g) and A7 (g) of DF(x*) corresponding to
Ar, and A7,. We will find (see Appendix B) that A} (g) is always negative, while A} (g) is
negative for 5 < 2 and positive otherwise. Therefore the fixed point is unstable for 5 > 2 (see
Figure 5.3).

o8 — — = — — — — R
=1 p=1_ __
001 0.5} g T
001! .
| ﬁ:3
g -0-02f 5 o -------=- W
& n
xr.
-0.03 05| s.__ B=1 ?
B=3
-0.04}
B = -1
0 1 2 3 5 0 | 2 3 4 5
g g
0.03
0@ — — = = = = = = = = = = - — — =
8 =3/2 T — -
0.025 005 WI~---w--FZ2____
3=1/3. \.___ﬁ_=_4 _______
0.02} .- 0.1} . =13
! -7 5-0.15:}
2240.015 L’ B=4 _ ey \\5_3/2
0.01 .7 - 0.9t N
' ad -7 B= R
0.005 ot ol F=9 026y RN
PP i
Ol et@ =T ____ B=1___ =05 il T
2.5 3 3.5 2.5 3 3.5

Figure 5.3. Bifurcation diagram of all possible I1 /I branches of equilibria for small N networks. Top row:
N = 20. Top left: xg versus g. Top right: xr, (above horizontal axis) and xr, (below horizontal azis) versus
g. Bottom row: N = 50. Bottom left: ©g versus g. Bottom right: x1, only versus g. Line format indicates
stable (solid) versus unstable (dashed) fized points. The symmetric pitchfork bifurcation at g = go is indicated
with a filled circle. Hopf bifurcations are indicated with filled squares. Further bifurcations along branches are
not shown to avoid clutter. Other parameters are o = 4, ugrg = 0.7.
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- - Pitchfork g

log absolute error
S

—
o

0 L
10! 102 103
log N N

Figure 5.4. Locations of important bifurcations as a function of N. Left: Log-log plot of the absolute error
of (5.14) versus N for 8 =1, 3, and 4. The slope of each line is approzimately —1.5, validating the error
term O(N~3/2). Right: location of the symmetric pitchfork bifurcation go (dashed line), Hopf bifurcation at the
origin gu (dash-dotted line), and Hopf bifurcations on I /I2 branches (5.14) for select B (solid lines, arranged
from bottom to top in order of increasing ) as a function of N. Other parameters are « =4, upgp = 0.7.

The remaining eigenvalues of DF (x*) are the eigenvalues of J3(x), given by (5.12). These
include one real eigenvalue and a complex pair (see Appendix B for computations). The real
eigenvalue is always negative, and the complex pair crosses the real axis at a Hopf bifurcation
when g = gg (), where

_ 2 n
61 gud) = YN 258+ 25" + 3pm ( ! )

:,uEEa(l—46+52)—(1—5—1—52)—1—3045711+O N3/2

A plot of g (B) versus N for various § is given in Figure 5.4. We note that a Hopf bifurcation
for a particular value of 8 will only occur in a real network if the ratio of inhibitory cells is
valid for that particular value of N (e.g., for 8 = 3, the total number of inhibitory cells must
be a multiple of 4). The leading order term of (5.14), as well as the order of the remainder
term, agrees with results from numerical parameter continuation (Figure 5.4). As N — oo,
which implies n; = fN — oo, the first terms in the numerator and denominator of (5.14)
dominate, thus g (8) — go as N — oo for all 5 (see Figure 5.4). Differentiating the leading
order term in (5.14) with respect to 5 and simplifying,

0 YN 3(a+1)(8% = 1)(ns — 1)
08" ™ g [a(1 — 48+ 8%) — (1 — B+ %) + 3apn ]

(5.15)

which is 0 at § = 1 and positive for 5 > 1. As a consequence, gg () increases with  for
B > 1 (see Figure 5.4 for this ordering in 3, as well as Figure 5.3).

5.5. Other branches of equilibria. The equilibria on the I;/Is branches, whose exis-
tence is guaranteed by the equivariant bifurcation theorem and which were characterized in
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OOF: e e = e
0.5 e

.

Figure 5.5. Further branches of equilibria from the I1/I2 branch with 8 = 1 for N = 20, showing excitatory
cell (left) and inhibitory cell (right) activity. Line format indicates stable (solid) versus unstable (dashed or
dotted) fized points. Branch points are indicated with a filled circle. Hopf bifurcations are ndicated with filled
squares. Other parameters are « = 4, ugg = 0.7.

subsection 5.3, are not the only branches of equilibria. As one example, we consider what
occurs on the § =1 branch for N = 20 (see top panel of Figure 5.3). As g is increased past
the Hopf bifurcation, the complex pair of eigenvalues A\g + iwp collides on the positive real
axis and becomes a real pair of eigenvalues {\§, A} with Al < A\E. As g is further increased,
Ay moves to the left, and A\ moves to the right. When A} passes through the origin (from
right to left), a symmetry-breaking bifurcation occurs (left branch point in Figure 5.5). On
the secondary branch, which we will call the asymmetric 2-2 branch, the excitatory activity
xp # 0, and the inhibitory pair x;, and zj, no longer have equal and opposite activities.
As g increases along this secondary branch, there is another bifurcation (right branch point
in Figure 5.5), which produces a branch of equilibria in which the inhibitory cells are clus-
tered in a 2-1-1 pattern. As N is increased, more complicated secondary branching patters
occur, and it is unlikely that these can be systematically located and classified. That be-
ing said, numerical experiments performed on networks of varying N strongly suggest that
none of these secondary branches contain stable fixed points. Specifically, the only stable
fixed points which have been found by numerical spectral computation are those on the
primary I;/Is branches; all other branches consist entirely of unstable equilibria. In addi-
tion, all numerical timestepping experiments starting from random initial conditions have
converged to either fixed points on the primary I;/I5 branches or to periodic orbits (see
subsection 5.6 below).

5.6. Periodic solutions. Limit cycles arise as the bifurcation parameter g passes through
each Hopf bifurcation point. First, we discuss the limit cycle which bifurcates from the origin
at g = gg. At g = gy, the complex pair of eigenvalues corresponding to Ag % iwg crosses the
imaginary axis. The corresponding two-dimensional eigenspace is given by
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V = ker(DF)g,q4, = span 10 --- 0|,|01 --- 1],
nr nr

which is fixed by I' = S1 x Sy, itself. Since dim Fixy (I') = dimV = 2, it follows from the
equivariant Hopf theorem [25, Theorem 4.1] that there is a branch of small-amplitude, periodic
solutions emanating from this Hopf bifurcation point for which the isotropy subgroup is I,
i.e., the inhibitory neurons are all synchronized (see also [4, section 3.2]). We recall that the
excitatory neurons are always synchronized in the reduced model (4.3) with n¢c = 1.

Numerical computation with AUTO [15] validates this result, and shows that this limit
cycle exists for all g > gp, suggesting that the Hopf bifurcation is supercritical. Within this
limit cycle, all inhibitory cells are synchronized. Since ny, = ny and ny, = 0, we will call this
the 8 = oo limit cycle (see Figure 5.6). The 8 = oo limit cycle is a periodic solution to the
two-dimensional system

1 = fi(xy,22) := —x1 + % ((ng — 1) tanh(gx1) — ans tanh(gzs)),

t9 = fo(x1,29) := —x9 + % (ngtanh(gz1) — a(n; — 1) tanh(gzs)) ,

(5.16)
where x; represents the synchronized excitatory cell activity, and xo represents the synchro-
nized inhibitory cell activity. In this two-dimensional system, the origin loses stability in a
Hopf bifurcation at g = gy (see Appendix C for details). We note that (5.16) is qualitatively
similar to the Wilson-Cowan model for an excitatory-inhibitory pair (see section 11.3.3 of [18])
in its “short-term memory” formulation [9]; both equations exhibit Hopf bifurcations and limit
cycle solutions. The key difference is the use of input currents as bifurcation parameters in
the Wilson—Cowan model as opposed to global coupling strength.

0.3, 0.3
0.2 0.2+
0.1¢ 0.1t
g Of g Of
0.1 0.1
0.2 -0.2+
0 044 0.2 0 0.2 0.4
t TE

Figure 5.6. The § = oo limit cycle arising from a Hopf bifurcation at g = gu. There is a single excitatory
cluster with activity xg(t) and a single inhibitory cluster with activity x1(t). Parameters are N = 20,9 = 15,
a =4, ugr = 0.7. The period of the limit cycle is 1.62.
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In the following proposition, we prove that the 8 = oo limit cycle exists for ¢ > gy,
which also proves that the Hopf bifurcation is supercritical. The proof uses the Poincaré—
Bendixson theorem, and is deferred to Appendix C. We note that the proposition does not
address stability of the limit cycle.

Proposition 5.2. For g > gm, the system (2.1) has a limit cycle in which all excitatory cells
are synchronized, and all inhibitory cells are synchronized.

In addition to the S = oo limit cycle, periodic orbits arise on each I;/Iy branch as g
increases through the Hopf bifurcation point g (8), which is given by (5.14). Once again, a
complex pair of eigenvalues crosses the imaginary axis. The corresponding two-dimensional
eigenspace is given by

V =ker(DF)xg4, =span q (a1 0 --- 01 --- 1|,lag 1l --- 10 --- 0
~— —

nry nr, nry ni,

for some constants a1 and as. When 8 = 1, this can be simplified to

V =ker(DF)xg4, =span ¢ |10 --- 0,01 --- 1
— —
ny nr

This is a vector space of dimension 2, and it is fixed by the subgroup ¥ = Sy X Sp,, X Sy,
of T' (see [4, section 3.3]). Since dim Fixy (X)) = dimV = 2, it follows from the equivariant
Hopf theorem [25, Theorem 4.1] that there is a branch of small-amplitude, periodic solutions
emanating from this Hopf bifurcation point for which the isotropy subgroup is ¥, i.e., the
inhibitory cells are split into two clusters of sizes ny, and ny,. This is the exact same symmetry
as the I /Iy branch from which these limit cycles bifurcate. For that reason, we can classify
these periodic orbits in terms of the ratio § = ny,/ns,. Results from numerical parameter
continuation (Figures 5.7 and 5.8) indicate that this Hopf bifurcation is supercritical, and the
limit cycles exist for g > g (5).

A plot of the period of these limit cycles with increasing ¢ is shown in Figure 5.7 for
N = 20 (see also [4, Figure 2|) and Figure 5.8 for N = 50. There is a critical value g = g*
where all of the limit cycle branches meet (see dark band in bottom panel of Figure 5.7). For
g > g%, the only remaining limit cycle is the 8 = oo limit cycle, which has become stable.
The point g = ¢* is a symmetric pitchfork bifurcation of limit cycles, which we can see by
examining the Floquet multipliers of the linearization about the § = oo limit cycle branch
(see right panel of Figure 5.7). These Floquet multipliers are computed using AUTO, and
are all real. In addition to a single Floquet multiplier at 1 which is always present, there is
a Floquet multiplier pg with multiplicity ng — 1, a Floquet multiplier p; with multiplicity
ny — 1, and Floquet multiplier p; with multiplicity 1. At g = g¢*, the Floquet multiplier pr
with multiplicity n; — 1 passes through 1. As g decreases though ¢*, the § = oo limit cycle
loses stability and gives rise to limit cycles with symmetry corresponding to each I; /I3 branch.
This is analogous to the pitchfork bifurcation of the fixed point x = 0 at g = gg, which loses
stability when the eigenvalue A\; with multiplicity n; — 1 passes through the origin.
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Figure 5.7. Each I, /I, Hopf bifurcation spawns a branch of limit cycles which connects to the 8 = oo cycle
at g = g*. Top left: period of the limit cycle versus g. Stable limit cycles are indicated with solid lines. The
symmetric pitchfork of limit cycles is indicated with a filled circle. Hopf bifurcations are indicated with filled
squares, which correspond to the Hopf bifurcation points in Figure 5.3. Top right: Schematic of the Floquet
eigenvalue pattern along the B = oo branch. The numbers 1, 2, and 3 identify three representative points along
the B = oo curve in the top left panel. Bottom: (zg, xr,) versus g for three branches of fized points (thick
lines) and limit cycles (thin lines): B =1 (gray), B = 3 (red), and B = oo (blue). Other symbols are pitchfork
bifurcation at go (filled circle), Hopf bifurcations for f =1, 8 = 3, and 8 = oo (filled squares), and pitchfork
bifurcation of limit cycles (dark band) at g = g*. Parameters are N =20, a =4, ppg = 0.7.

5.7. Behavior of the I /I branch for large g . We have characterized the three-cluster
fixed point solutions on the I;/I» branches near the symmetric pitchfork bifurcation point
at ¢ = go. Next, we will show that these branches are unstable for sufficiently large ¢g. Fix
B =mny, /ng,, and let x = (g, 1, x1,) be a solution to (5.8) for g > go; this solution depends
on g. Recall from subsection 5.3 that x is bounded for all g. Let x* be the corresponding fixed
point of (4.3). To determine the stability of x*, we will look at the eigenvalues of DF(x*) for
large g. The sum of these eigenvalues is

~ 1
Trace DF(x*) = Mgsech2(g:pE) —(nr+1).

VN
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Figure 5.8. Period of limit cycle and max xr, versus g for periodic solutions arising from Hopf bifurcations.
Stable limit cycles are indicated with solid lines. The symmetric pitchfork of limit cycles is indicated with a
filled circle. Hopf bifurcations are indicated with filled squares. Parameters are N =50, a =4, ugg = 0.7.

We will show that for sufficiently large g, Trace DF (x*) > 0, and thus at least one eigenvalue
has a positive real part. To do this, we analyze the behavior of zx and sech(gzg) as g — oo.
First, we consider the case when zp — 0. There are three possibilities for the behavior of
sech(gxg), only two of which can occur.

(i) g — 0, and gzp — 0 (e.g., x ~ g~ for B > 1): then sech?(gzrg) — 1, and so
gsech?(gz ) — oco.

(ii) g — 0 but grg — C for C > 0 (e.g., x ~ g~1): then gsech?(gzg) ~ gsech?(C) —
00.

(iii) zg — 0 but grgp — oo (e.g, 2 ~ g ¥ for 0 < B < 1). If zg ~ g~ ?, then
gsech?(gz ) — 0; this would seem to result in a negative trace as g — oo. However, we
will show this cannot happen. Because sech?(gzg) — 0, it follows that tanh?(gzg) —
1, which implies tanh(gxg) — 1. We use the first line from (5.8) to obtain a lower
bound for xg as follows. Since x;, and z, have opposite signs for g > go (see the end
of Appendix A), we can state that tanh(gx;,) < 1 and tanh(gxs,) < 0, and therefore

that
vp = LEE (any — 1) tanh(g9rp) — a P nytanh(gzy,) — ! ny tanh(gzr, )
JN B+1 p+1
HEE s HEE BEE
_\/]V[( 1—1) e ﬁN[(I n) ]_m( )

since n;, < ny — 1. As long as we take o > 1 (which is typically the case), xp is
bounded away from 0 for all g > gg, thus contradicting our original assumption that
zgp — 0.
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We have shown that if zp — 0, Trace DF(X*) > 0 for sufficiently large g, which implies
that DF(x*) always has an eigenvalue with positive real part.

The remaining possibility is that xg — g # 0. In Appendix D, we show that this cannot
occur. Therefore, all (zg,zr,,xr,) satisfy xp — 0 as g — oo, and so all equilibria on the
I, /I, branches are unstable for sufficiently large g. We note that this does not say anything
about the stability of equilibria on any branches which may bifurcate from the I; /I, branches.
However, the results of extensive numerical timestepping simulations suggest that there are
no stable equilibria for sufficiently large g.

6. Excitatory clusters, weight parameters balanced. We now allow the excitatory cells
to be grouped into n¢ clusters of size p, where p = | N f/n¢]. We will take p > 1 to ensure
that each excitatory cluster contains more than one cell, and we will also assume ng > «
(e.g., nc > 4 for the standard value of @ = 4). Since we are interested in the behavior of
the system for large N and for a large number of clusters (e.g., n¢ scales with VN ), this is
not a significant restriction. Cells will be connected within, but not between, clusters. For
simplicity, and relying on Proposition 4.1, we will focus only on the reduced system (4.3). The
right-hand side of (4.3) is now I'-equivariant for I' = S,,, X S, where nc > 1. That is, we
can permute the labels of the excitatory clusters and the labels of the inhibitory cells without
changing the equation. We choose the weights so that the network is balanced:

REE = NC W, LI = W,
KEI = —OH, wrr = —a.

The expression for upgr compensates for the fact that each excitatory cell has fewer exci-
tatory connections. The eigenvalues of H (right panel of Figure 4.1) are
e )\;:= au > 0 with multiplicity n; — 1;
e \c:=(p— 1)ncu > 0 with multiplicity nc — 1;
e a complex conjugate pair of eigenvalues \g + iwg with

1

1
Noi= shla —no), woi= spvaTacy/nc(ip—1) - a,

where we used the fact that an; = ng = pnc.

Since A\g < 0 and )\g < 0 (as a consequence of taking nc > «), the corresponding
eigenvalues of DF'(0) will always be negative, and thus will not affect the stability of the fixed
point at 0. The eigenvalues which determine stability of the origin are A; and A¢c. We note
that since p > 1, 0 < A7 < Ac.

As in section 5, we will determine the bifurcations which occur as g is increased, together
with the structures which emerge at these bifurcation points. First, the origin loses stability
in a symmetric pitchfork bifurcation, after which point there is a branch of equilibria for every
possible division of the excitatory clusters into two groups. This is similar to what occurs
in the unclustered case, except the bifurcation involves the excitatory clusters instead of the
inhibitory cells. As before, we derive leading order formulas for these branches, and show
which of them are initially stable. As g is further increased, instead of a Hopf bifurcation,
there is another symmetric pitchfork bifurcation on each of these branches, in which the
inhibitory cells split into two groups. For large g, there is a collection of stable fixed points,
which we can locate using the limiting behavior of the system.
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6.1. Bifurcations of the origin. As the bifurcation parameter g increases from 0, the first
bifurcation occurs when the set of nc — 1 eigenvalues A5(g) of DF(0) corresponding to A¢
crosses the imaginary axis at

VN

(6.1) 9g=9c = m

The corresponding eigenspace is the set of all zero-sum vectors with support in the excitatory
clusters only, i.e.,

V =ker(DF)g 4, =span { |vo 0 -+ 0 ¢, ve L1,
—_——

nr
which has dimension ng—1. We can check that I' acts irreducibly on V', similarly to subsection
5.2. We then find subgroups Y of I" which satisfy the hypothesis of the equivariant branching
lemma by breaking the excitatory clusters up into two clusters C'; and Cy of sizes n¢, and
nc,, where nc, + ng, = nc. For each such decomposition, this describes a subgroup

(6.2) Y¢ = Sne, X Sne, X Sn,

of I'. The subgroup ¢ has the fixed-point subspace

(6.3) Fixy(Z¢) = span { |1 .-+ 1 —2ct oo =290 ... (f 5,

—_——— "cs NC2 ———

neq ncy, nr

which has dimension 1. It follows from the equivariant branching lemma that there is a
branch of equilibria emerging at the symmetric pitchfork bifurcation point g = g¢ for all
such subgroups ¢, i.e., for every possible division of the excitatory clusters into exactly two
groups of size nc, and ne,. All cells are synchronized within each excitatory cluster. Each
such branch may be characterized by the number

(6.4) fo =<,
ng,

which gives the ratio of the sizes of the two groups of excitatory clusters. Without loss of
generality, we may take ng, > ng,, so that o > 1. At the start of each C;/Cy branch, the
inhibitory cells are synchronized. This is the case since, near g = g¢, no other eigenvalues have
crossed through the origin, thus no bifurcations involving the inhibitory cells have occurred.
The solution on each C7/Cy branch is then given as (zg,, g,,z7). Due to the odd symmetry
of (2.1), there is a corresponding C7/Cs branch for each B¢ with solution (—zg,, —xg,, —x7),
which we will ignore for simplicity. Similarly to what is discussed in subsection 5.2, a division
of the excitatory clusters into more than two groups will lead to a fixed-point subspace of
dimension 2 or greater, thus a branch with this symmetry is not guaranteed to exist by the
equivariant branching lemma. Such branches may occur but, as with the unclustered case,
numerical evidence strongly suggests that all of them are unstable.
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As g is further increased, the eigenvalue A7(g) with multiplicity n;—1 crosses the imaginary
axis at g = go, where go is defined by (5.2). A second symmetric pitchfork bifurcation occurs
at this point, this time involving the inhibitory cells. This is almost identical to what occurs
in the unclustered case (subsection 5.2). Briefly, the corresponding eigenspace is the set of all
zero-sum vectors with support in the inhibitory cells only, i.e.,

V= ker(Dﬁ‘)g,g* = span 0 -+ 0vy| g, vi1l1,,
——

nc
which has dimension n; — 1. We then break the inhibitory cells up into two groups I; and I
of sizes ny, and ny,, where ny, +njy, = ny, which describes a subgroup ¥X; = S5, X Sm1 X SnIQ
of I'. The fixed-point subspace of X is then given by

(65) FiXV(ZI) = span o --~- 01 ... 1 —7"*~+ ... ——2 ,
—— ———

nc ni NI,

which has dimension 1. Asin (5.2), it follows from the equivariant branching lemma that there
is an I /I branch of equilibria emerging at the symmetric pitchfork bifurcation point g = g
for every possible division of the inhibitory cells into exactly two groups of size ny, and ny,.
An important distinction from the previous section is that there will be no Hopf bifurcation
of the origin, since the complex conjugate pair of eigenvalues cannot cross the imaginary axis.

6.2. Solutions on the C;/C5 branch. First, we derive leading order expressions for the
solutions along the Cy/Cy branches for g close to go. The simplest case occurs when ng is

even and S¢c = 1, in which case nc, = ng,. On this branch, xp, = —xp,, i.e., there are
two equally sized groups of excitatory clusters with equal and opposite activity, and all the
inhibitory cells have synchronized activity x; = 0. Taking 2g, = g, 2, = —2g, and 27 =0

in (4.2) and simplifying, we obtain the single equation tanh(gzg) = gocxg. As in section 5,
xp is given, to leading order, by

3(9 — gc
(6.6) Tp = (ggg)g), 9> 9o,
for g close to gco. For Sc > 1, we find the solution along each C/Cy branch by reducing (2.1)
to the three-dimensional system

TE, (p—1nc 0 —pnc tanh(gzp, )
(6.7) TE, | = I 0 (p—1)nc —pnc tanh(gzpg,)| ,
VN 2o i —(pne - tanh
Ty peg. g PCgoi1 (pnC a) an (g:r])

where we used any = ng = pnc. The variables g, and x g, are the activities of the two groups
of excitatory clusters, and x is the activity of the inhibitory cells, which are synchronized
since g is close to go. The system (6.7) is the restriction of (4.3) to the fixed-point subspace
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corresponding to the subgroup Sy, X Sp., X Sp, of I'. Following the same procedure as in
section 5, we obtain the following approximations for xg,, xg,, and xy,

(6.8)

TE, \/(1 IBC IB%) 3 + O N2 y, TE, CTE, O N2 , XJ (@) N2 , 9~ 49gc,

for g close to g¢, which reduces to (6.6) when = 1.

6.3. Stability and bifurcations along the C7/C5 branch. We now analyze the stability
of the C/Cs branches for g close to gc. Choose any B¢ > 1 so that ng, = %nc and ng, =
ﬁnc. Let x = (zp,, g, z7) be a solution to (6.7). We look at the linearization DF(x*),
where x* = (zp,,...,2g,,%E,, .-, TE,, TI,...,21)] , Where xg, and xp, are repeated nc, and
nc, times, respectively, and xj is repeated n; times. Stability will depend on the eigenvalues
of H (x*). A cartoon showing the location of these eigenvalues is given in Figure 6.1.

We follow the same procedure as in subsection 5.4. First, we linearize the reduced system

(6.7) about (zg,,xg,,xr) to get the Jacobian

(6.9) Ja() = T Hs(x) ~ I,
where
(p — 1)ngsech?(gzp,) 0 —pnesech®(gzr)
(6.10) Hs(x) = p , 0 (p — 1)nesech?(gzp,) —pngsech?(gxy)
c 1

pne 6C+lsech2(ngl) P 3o sech?(gzp,) —(pnc — a)sech?(gxr)

and I3 is the 3 x 3 identity matrix. We have the following proposition concerning the eigen-
values of H3(x) and H(x*). The proof is omitted since it is similar to that of Proposition
5.1.

Proposition 6.1. Let x = (¥g,,7g,, 1) be a solution to (6.7) and x* the corresponding
fized point of (4.3), and let H3(x) and H(x*) be defined by (6.10) and (4.7). Then

(i) every eigenvalue of Hs(x) is an eigenvalue of H(x*);

(ii) H(x*) has the following additional eigenvalues:
o \c, := (p— )ngusech?(gzp,) with multiplicity no, — 1.
o Ao, := (p — )ncusech?(gxp,) with multiplicity nc, — 1.
o \; := apusech?®(gzy) with multiplicity ny — 1.

We note that the eigenvalues A¢, and A¢, split off from A¢ at the pitchfork bifurcation
point g = g¢; if x* =0, then A\¢, = A, = A¢. To determine the stability of x* for g close to
gc, we first compute the eigenvalues of DE(x*) corresponding to A¢,, Ac,, and A;. We find
(see Appendix E) that the cluster-associated eigenvalue A7, (g) is negative for 1 < o < 2
and positive for B¢ > 2; A5, (g) is negative for Sc > 1/2; and A\j(g) is negative for all Sc
for V sufficiently large. The behavior of A\, (g) implies that the C7/Cy branches are initially
unstable for o > 2 (see Figures 6.2 and 6.3).

The remaining eigenvalues of DF(x*) are the eigenvalues of Js(x). Following the same
procedure as in subsection 5.4 (see Appendix E for details), we find that, since we are taking
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Figure 6.1. The eigenvalue pattern of the connectivity matriz H(x") for fized points x* on a C1/C> branch
with Bc > 1. The notation for the eigenvalues is explained below Proposition 6.1.

20 °
TE 1
1 Bc =3 .
0
1] R S 5 ™
\ 1
S -1 =
Bc=1 2
2 °
3l o
TE
-4 ’ 1
0 1 2 3 4 TE 0 g

Figure 6.2. When the ezcitatory cells are clustered (nc > 1), the first nontrivial fized points are those for
which the excitatory cells, rather than inhibitory cells, separate into two groups. Left: excitatory cell activity
zp, and g, on C1/C2 branches of equilibria of (2.1) with excitatory clustering for all possible values of Bc.
The symmetric pitchfork bifurcations at g = gc and along the C1/C> branches are indicated with filled circles.
(To avoid clutter, the I, /I> branches after the symmetric pitchfork bifurcation on the Ci/Ca branch are not
shown). Right: I/I> branches bifurcate from the C1/C2 branches ( to avoid clutter only xg, is shown). Stable
fized points are indicated with solid lines. Parameters are N =20, nc =4, p=4,nr =4, a =4, ugg = 0.7.

nc > a, the eigenvalues of J3(x) all have negative real part for g close to go. Thus the
C4/C4 branches are initially stable for 1 < S < 2 (see the top panel of Figure 6.2 as well as
Figure 6.3).

As g is further increased from g, there is a second symmetric pitchfork bifurcation on
each C}/Cy branch as the eigenvalue \%(g) of DF(x*) with multiplicity n; — 1 crosses through
the origin (see bifurcation diagram in Figures 6.2 and 6.3). The behavior at this bifurcation
is exactly the same as for the second symmetric pitchfork bifurcation at the origin. The
corresponding eigenspace V is the set of all zero-sum vectors with support in the inhibitory
cells only, which has dimension n; — 1. As above, we break the inhibitory cells up into two
groups I; and Iy of sizes ny, and nj,, where ny, + ny, = ny. This describes a subgroup

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/30/23 to 76.113.44.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SYMMETRIC NEURAL NETWORK BIFURCATIONS 2559

Figure 6.3. Bifurcation diagram of all possible C1/C2 branches, and selected C1/C2/I1 /12 branches, for
a moderate value of N. Top: C1/Cs branches of equilibria of (2.1) with excitatory clustering for all possible
values of Bc. Top left: xg, versus g. Top right: x1 versus g, zoomed into a narrower range of g to show
stability of C1/C2 branches near g = gc. Symmetric pitchfork bifurcations at g = go and along the C1/Ca
branches are indicated with filled circle. To avoid clutter, the C1/Ca/I1/I> branches are not shown. Bottom:
z and xg, versus g, for C1/C2 /11 /12 branches bifurcating from the C1/Cy branches. The only I, /Is branches
shown here are the ones which are eventually stable, which in this case are those with B = B¢ (see Table 6.1).
Stable fized points are indicated with solid lines, unstable fized points with dashed line. Unstable C1/C3 branches
for Bc = 4 and Bc = 9 become stable at the points indicated with the diamond. Parameters are N = 100,
nc =10, p =8, ny =20, a =4, ugrg = 0.7.
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Figure 6.4. The saturation (g > 1) behavior of fized points on a C1/Ca branch depends on the clustering
parameter Bc. Left: zg,, Tg,, and x1 versus g on C1/C> branches for 1 < Bc < B¢. Right: Be > Bé.
Parameters are N =50, nc =10, p=4, n; =10, a =4, p = 0.7. Given these parameters B¢ = 5.15385; here
we illustrate Bc = T/3 (left) and Bc =9 (right).

Y1 = Sne, X Sne, X Sny, X Sp,, of T', where we recall that ng, and ng, are fixed on this C1/Cy
branch. The fixed-point subspace of X7 is then given by

(6.11)  Fixy(S7) = span{ [0 -+ 00 o 01 - 1 =52 ..o —Zo| R
—_— —

ncy ncy nr ni,

which has dimension 1. It follows from the equivariant branching lemma that, on every C7/Co
branch, there is an I; /I branch of solutions for every possible division of the inhibitory cells
into exactly two clusters.

We can characterize these branches using the parameter 5 = ny, /ng,, as we did in the
previous section. When S¢c = 1, 1 = 0, and this bifurcation takes place at

(6.12) gr = \/—N
o

For 8o > 1, this bifurcation takes place at g much greater than g¢, thus the approximation
(6.8) no longer holds. To locate these bifurcations, we will examine the behavior of the
system as g becomes large. We note here that evidence from numerical parameter continuation
suggests that there are no Hopf bifurcations along the C/C5 branches; furthermore, numerical
timestepping experiments suggest that there are no stable periodic orbits for any value of g.
In addition, numerical experiments strongly suggest that there are no stable equilibria on any
secondary branches.

6.4. C1/C5 branches for large g. We look at the behavior of solutions on the Cy/Cy
branches as g becomes large. This will depend on the ratio ¢ = ne, /nc,. When o = 1,
zp, = —xp, = xp, and x;7 = 0 for all ¢ > go. Numerical parameter continuation suggests
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Table 6.1
Valid pairs (B8, Bc) which satisfy (6.17), for selected values of N, nc, and ny. (Note that o« = 4 in all
cases, which determines ny and pnc.)

N nr nc p (B, Bc)

20 4 4 4 (1, 1), (3, 3)

25 5 5 4 (3/2, 3/2), (4, 4)

25 5 1 5 (4, 3)

35 7 7 1 (4/3, 4/3), (5/2, 5/2), (6, 6)

35 7 4 7 (5/2, 3)

50 10 10 1 (1, 1), (3/2, 3/2), (7/3, 7/3), (4, 4)
100 20 10 8 (1, 1), (3/2, 3/2), (7/3, 7/3), (4, 4), (9, 9)

that zg — g > 0 as g — oo, which implies that tanh(gzg) — 1. It follows from the first
row of (6.7) that

6.13 Tp = —(p—1)nc.

(6.13) -1

For B¢ > 1, numerical parameter continuation suggests x; — 0 as g — oo, but tanh(gzy) —
g1 # 0. There are two patterns for the limiting behavior on the C/C5 branches, which depend
on whether Sc < B or Bo > Bf, for a critical value

B*__(ncp—-aﬂ2p—-0-%ap

(6.14) 7 neptalp-1)

(See Appendix F for a derivation of 37). These are illustrated in Figure 6.4.
e Case 1: (1< fc <pB¢) xp, — &g, > 0and 2p, — g, <O0.
o Case 2: (Bc > f¢) g, — 0 with tanh(gzg,) — yg, # 0 and 2g, — &g, <O.

As N — oo, ngp = fN — oo as well. If both p and nc scale as VN, then the only
significant terms in the numerator and denominator of (6.14) are of order N or larger, in
which case 35, — 2p —1 as N — oo.

In Appendix F, we derive formulas for zg,, zg,, and zy for both of these cases. We then
use these formulas to find the location of the symmetric pitchfork bifurcation points on the
C}/Cs branches when B¢ > 1 and N is large. If we take both p and n¢ to scale as v/ N, we can
assume B¢ < (%, as discussed above. At this bifurcation, the eigenvalue X% (g) of DF(x*) with
multiplicity n; — 1 crosses through 0. Using the identity sech?(gx;) = 1 —tanh?(gz;) — 1—9?
as g — oo together with (F.1), the symmetric pitchfork bifurcation on the Cy/Cy branch is
located, to leading order, at

VN (1+ Be)?
(6.15) (B0) = Jo e
for N large. When o = 1, this reduces to (6.12). See Figure 6.3 and the left panel of
Figure 6.5 for the location of the symmetric pitchfork bifurcations on the C7/Cy branches.
Numerical simulation validates this formula, and suggests that the error term in (6.15) has
order O(N~1/2) (Figure 6.5, right panel). We note that for N large, gr(fc) is quadratic in
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Figure 6.5. Location of the symmetric pitchfork bifurcation points on C1/C2 branches. Left: gr(Bc) versus
N for various Bc. Right: semilog plot of the absolute error of approzimation (6.15) versus N for various Bc.
The slope of each line is approzimately —0.5 (validating the error term (’)(Nflﬂ)). Parameters are nc = 10,
a=4,1=0.7.

Bc, has a local minimum at 5S¢ = 1, and is increasing for Sc > 1. We can see in Figures 6.3
and 6.5 that the location of the symmetric bifurcation points gr(8¢) increases with Sc.

For sufficiently large N, each Cj/Cy branch will be stable immediately preceding the
pitchfork bifurcation at g;(B¢c). To see this, we evaluate the remaining eigenvalues of DF(x*)
when g = gr(Bc). As N — o0, gr(Bc) — oo, thus sech(gr(fc)zg,) — 0 for j = 1,2. It
follows that for g = gr(8c), Ac, — 0, thus A;, (g) = —1 for j = 1,2. By the same argument,
taking N — oo will zero out the first two columns of (6.10) when g = gr(B¢c). Thus, in the
limit N — oo, H3(x*) will have a pair of eigenvalues at 0 and an additional eigenvalue at
—(pne — a)sech?gz; < 0. The corresponding eigenvalues of DF(x*) will be negative.

As a example, consider the N = 100 system shown in Figure 6.3. The Cy/Cy branches
for po = 7/3, 4, and 9 start unstable, but regain stability before the symmetric pitchfork
bifurcation points. This does not necessarily occur for small values of N (see Figure 6.2 for
N = 20, where this does not happen).

6.5. Stability of Cy/C2/I1/I> solutions for large g . After the symmetric pitchfork
bifurcation point on the Cy/Cy branches, both the excitatory clusters and inhibitory cells
have split into two populations. We are interested in stable fixed points when g is large.
In particular, we seek fixed-point branches in which the excitatory clusters are split into
two populations with ratio ¢ = n¢,/nc,, and the inhibitory cells are also split into two
populations with ratio § = ny, /ny,. This reduces (2.1) to the system of equations

(6.16)
_ p ) -
p—1)ng 0 —az—=ng —Qz =Ny

TE, ( 0) ) B‘gl Arl tanh(gz g, )
TE,| _ M (p—Dnc TaB TABM tanh(gzpg,)
Tr VN Pn05fi1 p”0501+1 —a (%nl - 1) *Oéﬁnl tanh(gzr,) |’
zy, B 1 B 1 tanh(gzy,

|PReBesT PR O O (shamr - 1)_ (gor)
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which is the restriction of (4.3) to the fixed-point subspace corresponding to the subgroup
Sne, X Sne, X Sp; X Sp,, of T Parameter continuation suggests that as g — oo,
(zg,,xE,,x1,,21,) = (ZE,,TE,, Z1,,%1,), where Zg,, &7, > 0 and Zg,,Z7, < 0. Such solu-
tions exist for

28n;—B—1
2nr + B +1

2ﬁn1+ﬁ+1

(6.17) o

< fBc <
for all valid § satisfying 1 < 8 < 2p — 1. See Appendix G for detailed calculations.

For some small values of N, a list of all valid pairs of (3, 5¢) which satisfy (6.17) is given
in Table 6.1. (A value of 8 or B¢ is valid for a particular N only if the ratio of inhibitory cells

or excitatory clusters is possible for that value of N). In the specific case where ng = ny, it
follows from (6.17) that

77,[1—%<7’IC'1 <n11+%.
Since nc, must be an integer, nc, = ny,, which implies o = .

The fixed point x* corresponding to each of these (8, S¢) is eventually stable for sufficiently
large g, since as g — oo, H(x*) approaches the 0 matrix, thus the Jacobian D F(x*) approaches
—1I, which has a single eigenvalue of —1 with multiplicity IN. The solutions corresponding to
the top row of Table 6.1 are shown in the bottom panel of Figure 6.2, and the solutions
corresponding to the bottom row are shown in the bottom panel of Figure 6.3; we can see
from the figures that the corresponding fixed points are all stable for sufficiently large g.
Numerical experiments strongly suggest that there are no stable equilibria for large g other
than these.

6.6. Excitatory clusters with weight parameters unchanged. We briefly consider a
system with excitatory clusters, but in which we have not adjusted the excitatory weight
strengths, i.e., upr = —aupE, prr = —aupe, and prp = ppge. In this case, the two eigenval-
ues of H with positive real parts are \; = augg and Ao = (p — Dpgr. If Ao > A7, which

occurs when ng < SN the behavior is qualitatively the same as for the case balanced weight

a+1’
parameters discussed above. If Ao < A7, which occurs when ngo > J—fl, the order of the two
symmetric pitchfork bifurcations is reversed. As g is increased, the inhibitory cells bifurcate

from the origin first, followed by the excitatory clusters.

6.7. Restored self-coupling. We can restore self-coupling of neurons with each excitatory
cluster by replacing the matrix (p — 1)ugpl,. in the upper left block of (4.4) with pugpgl,..
The eigenvalues of H are then given by

e \; := au > 0 with multiplicity n; — 1;
e Ao :=pncp > 0, with multiplicity ng — 1;
e a complex conjugate pair of eigenvalues \g £ iwg with

1 1
Ao = JHa, Wy = 5#\/01(471019 —a).
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The eigenvalue pattern is similar to that in the right panel of Figure 4.1, except the complex
conjugate pair A\g & iwg has a positive real part. As a consequence, there will be a Hopf
bifurcation at the origin at gy = v/ N/au. Parameter continuation with AUTO indicates
that the resulting limit cycle has all excitatory clusters synchronized and all inhibitory cells
synchronized, and is unstable for ¢ > gy. In addition, timestepping simulations suggest
that there are no stable limit cycles for any value of g. The pattern of symmetric pitchfork
bifurcations, first at the origin and then on each C;/Cy branch, is the same as for the case
with no self-coupling.

7. Inhibitory clusters. We will briefly consider the case where the inhibitory cells are
clustered, while the excitatory cells remain unclustered. Suppose the inhibitory cells are
grouped into n¢, inhibitory clusters of size pr, so that ny = nc,pr. We perform the same
reduction as in section 4 to obtain the matrix H. Since there is a single cluster of excitatory
cells, they will always be synchronized. For the choice of weights ugr = —augg, wir =
—aupg, and purp = pupg, the eigenvalues of H are

e )\ := aupgp > 0 with multiplicity (p; — 1) X ng, = nyr — ney,;
e \c, := —(pr — Dapge < 0 with multiplicity ne, — 1;
e a complex conjugate pair of eigenvalues \g £ iwg, with

1
Ao = SHEE [a(1 +pir(ne, = 1)) = 1],

wp 1= \/a2 ((—37’%1 +2ng, + 1) p? —2(ne, + V)pr + 1) —2a(ne,pr+pr—1)+1,

where we used the fact that ng = anc,pr.

This eigenvalue pattern is shown in Figure 7.1. The two eigenvalues with positive real
part are A\; and A\g + iwq, so these are the only eigenvalues which will cause bifurcations as g
is varied. We note that Ag > Aj, thus the first bifurcation which will occur at the origin is a
Hopf bifurcation at

B 2V N
~ pee a1+ pr(ne, — 1)) — 1]

9gH

when the complex pair Ay + iwg crosses the real axis. The behavior at this bifurcation is
identical to that at the Hopf bifurcation at the origin in the unclustered case (subsection 5.6).
Briefly, the corresponding eigenspace to Ao + iwg is

V = ker(DF)o,q4, = span 10 --- 0f,[|01 --- 1] p,
—— N——
nr nr
which is fixed by I' = S1 xSy, . Since dim Fixy (I') = dim V' = 2, it follows from the equivariant
Hopf theorem [25, Theorem 4.1] that there is a branch of limit cycles emanating from this
Hopf bifurcation point for which the isotropy subgroup is I', which implies that the inhibitory
neurons are all synchronized (we recall that the excitatory neurons are always synchronized).
We are interested in what occurs for large N and large nc,. As an example, let n¢o, scale

with v/ N by taking ne, = pr = +/nr = /(1 — f)N. For this scaling, as N increases, the Hopf

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/30/23 to 76.113.44.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SYMMETRIC NEURAL NETWORK BIFURCATIONS 2565

Im A

. .

Ao + twy
Re A
@ T @
Ac, A1

. .

/\0 — Wy

Figure 7.1. Figenvalue pattern of the matriz H for a single excitatory cluster and multiple inhibitory clusters.

3

t R

Figure 7.2. Limit cycle arising from the Hopf bifurcation at origin for (2.1) with inhibitory cell clustering
and prr = —appe. Both the excitatory cell activity xr and inhibitory cell activity xr are synchronized.
Notably, the period does not increase with N. Left: xg and x; versus t. Right: x; versus rg. Parameters are
N = 1600, N¢, =20, pr =20, o« =4, ppe = 0.7, g = 1.02gu. The period of the limit cycle is 1.792.

bifurcation takes place at gy ~ m, and we also have wg ~ @ fNupgg. This implies
that at ¢ = gy, DF(0) has a complex conjugate pair of eigenvalues with a real part of 0
and imaginary part of approximately v/3. See Figure 7.2 for an illustration of this limit cycle
when N = 1600, ng, = 20, and g is slightly larger than gg. The frequency of the limit cycle
is 1.792, which is less than 5% away from /3. Thus, for large N, the frequency of the limit
cycle emerging at the Hopf bifurcation of the origin is asymptotically constant as NV increases.
This contrasts to the case where the inhibitory and excitatory cells are unclustered, where the
frequency of the limit cycle scales as v/N. Numerical timestepping experiments suggest that

this limit cycle is stable for g > gp.

8. Discussion. In this paper, we analyze a family of clustered excitatory-inhibitory neural
networks, and, in particular, the underlying bifurcation structures that arise because of per-
mutation symmetries in the network. For the simplest case, an all-to-all connected network
which excludes self-connections, we extend the results in [4] to provide a more complete pic-
ture of the bifurcations in the system, as well as estimates for the locations of the bifurcation
points and the corresponding branches of equilibria which emanate from these bifurcations.
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For g close to 0, the origin is a stable equilibrium. As g is increased, the origin becomes
unstable in a symmetric pitchfork bifurcation at g = gg, at which point a new branch of equi-
libria emerges for each possible division of the inhibitory cells into two synchronized clusters
of sizes nj, and nj, (the I;/Iy branches). We characterize each I/l branch by the ratio
B =mny, /nr,. We then derive a leading-order estimate for the equilibria on each I /I branch
for g close to gg and show that, for large N, these branches are stable for 1 < 8 < 2, but
unstable otherwise (5 > 2). Furthermore, we show that the equilibria on the I;/Is branches
are all unstable for sufficiently large g. Along each I /Iy branch, a Hopf bifurcation creates
a branch of periodic orbits, wherein the inhibitory cells maintain their division into the same
two synchronized clusters; the frequency of these limit cycles increases with N. We use our
estimates for the I /Is branches to locate these Hopf bifurcations, to leading order, and show
that they approach gy for large V. All these periodic orbit branches merge at a symmetric
pitchfork bifurcation of limit cycles, at some large value of the bifurcation parameter g = g*;
for g > g*, there is a single stable limit cycle for which the excitatory population and inhibitory
population are each synchronized. See the top figure in Figure 8.1 for a cartoon summary.
We next consider the case where the excitatory cells are broken into clusters of equal size.
The connection weights between excitation cells in the same cluster are normalized so that
the network is still approximately balanced. In this case, as g is increased from 0, the origin
becomes unstable in a symmetric pitchfork bifurcation point at ¢ = go. In contrast with
the previous case, this bifurcation involves the excitatory clusters instead of the inhibitory
cells. For g > gc, there is a branch of solutions corresponding to each possible division of the
excitatory clusters into synchronized groups of sizes nc, and ne, (the C;/Cy branches). We

Hopf
AII—to—aII bifurcations
single stable 1,/1, fixed 1,/1, limit single stable
fixed point ploir%t cly/dze m limit cycle
| 2tergn  branches branches (B =)
| I ! * g
0 9o g
symmetric sytmhnfﬁetkric
itchfork pitchfor
Bifurcation bifurcation of
of inhibitory limit cycles
cells
Excitatory Symmetric
pitchforl
Cl usters bifurcations
single stable /\ éa}‘ge/g:/stable
4 - C,/C, fixed C,/C,/14/1 I,/
fixed point point fixed point fixed points
I at origin | branches branches
I I )g
0 dc
symmetric
pitchfork
bifurcation
of excitatory
clusters

Figure 8.1. Cartoon summary of fized points, limit cycles, and bifurcations as g increases from 0 for
all-to-all connected network (top) and network with excitatory clustering (bottom).
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characterize each branch by the ratio B¢ = n¢, /nc,. Near g = g¢, each solution branch is
stable for 1 < S¢ < 2, and is otherwise unstable. Along each C;/C5 branch, there is a further
symmetric pitchfork bifurcation, in which the inhibitory cells split into two clusters of sizes n,
and nj, (with ratio 5 = ny, /nr,), yielding equilibria in which both the excitatory clusters and
the inhibitory cells are split into two groups (the C1/Cy/1; /12 branches). Unlike the previous
case, there are no Hopf bifurcations along these branches. For large g, the only branches that
remain stable are those for which B¢ is close to 3, in the precise sense we describe in subsection
6.5; in other words, the excitatory clusters and the inhibitory cells must break up in a similar
way. See the bottom figure in Figure 8.1 for a cartoon summary. Finally, we briefly consider
a network in which the inhibitory cells are clustered, rather than the excitatory cells. Here we
find that, as in the case with all-to-all coupling, the origin loses stability in a Hopf bifurcation;
however, in contrast to the all-to-all case, the frequency of the resulting limit cycle does not
increase with N.

8.1. Relationship to other work. The population-clustered systems we consider in sec-
tion 5 are similar to a simple version of the Wilson-Cowan equations (reviewed in [18, 9]),
which can likewise be interpreted in terms of coupled neural populations. Other authors have
derived and analyzed similar systems for balanced networks as a mean-field limit from large
networks; however, recent examples differ from the current work because of the scaling of
the deterministic part of the connectivity matrix. We retain “strong” coupling as a func-
tion of system size (1/v/N) as in [36], versus “weak” scaling (1/N) [26, 31, 39]. In [26], for
example, connectivity matrices are chosen with entries J;; ~ N(J/N,0?/N). As N — oo,
the mean connectivity (1/N) goes to zero faster than the typical random deviation from the
mean (1/ VN ); thus outgoing synaptic weights will no longer be single-signed, in violation of
Dale’s law. One consequence of weak scaling seems to be that oscillations are observed at the
population but not necessarily the cell level [22, 6]; in contrast, the limit cycles we describe
in subsection 5.6 are observed at both the cell and the population level.

In works that do use strong scaling, the coherent fluctuations that are observed require a
perfect orthogonality condition [14, 33] or an external forcing [32] to balance. Furthermore,
the nonrandom part of the connectivity matrix is low rank; this is not the case in the current
work, in which some examples are low rank but most are not. Contrasting the excitatory
clustering with and without self-coupling (section 6 and subsection 6.7), for example, we
observe the same pattern of stable fixed points although one is low rank and the other is not.

Other recent studies of balanced neural network models do not include a deterministic
mean connectivity matrix, but instead regulate correlations through the probability of small
network motifs, such as reciprocal connections [34] or common input/diverging motifs [29,
37, 12]. The frequency of motifs can be shown to regulate cross-correlations [29], time scales
[34], and dimensionality of the network response [37, 12]. This last observation is particularly
interesting in light of the many experimental studies documenting low-dimensional neural ac-
tivity (reviewed in the introduction). A natural next question is to investigate networks which
are partly structured (having highly connected clusters as in the current studies) but partially
random. A promising avenue is to apply Hu et al.’s resumming theory to multipopulation
networks, to investigate whether the low-dimensional structures we find in the current work
manifest in a network of coupled Gaussian processes, and as the network connections them-
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selves becomes more random [29]. Another related work [41] studies the clustered architecture
we considered in section 6, but without structured inhibition, and studies the persistence of
fixed points as randomness is added to the connection matrix.

9. Future directions. Future directions include better characterizing the periodic orbits
which arise from the Hopf bifurcations in the network with the all-to-all coupling case. It may
be possible to determine their stability pattern, as well as to locate the bifurcation point at
g = g*. Some assumptions about our network can be relaxed; for example the use of the tanh
function is not essential to any calculations that do not explicitly invoke odd symmetry, and
could be replaced by another saturating nonlinearity. Another direction includes exploring
other network topologies, such as unequal cluster sizes, spatial connectivity, or hierarchical
clustering [38, 16].

Finally, the ultimate goal of these investigations must be to apply these insights to real
networks, which will not be perfectly symmetric and which may be modeled by allowing a
random perturbation to the connection matrix (i.e., H — H+e€A). The right-hand side of (2.1)
is locally Lipschitz continuous in RY; therefore hyperbolic fixed points and periodic orbits will
remain when the connectivity matrix is perturbed by a random matrix, i.e., G = H + €A for
small e. However, the range of € for which a hyperbolic structure persists is not known a priori.
We conjecture that the perturbed system will continue to exhibit fixed points and periodic
orbits that are found in the unperturbed system, even when the perturbations are large
enough that the spectrum of the connectivity matrix “masks” the underlying symmetry. In our
previous study, we found that stable trajectories in the unperturbed all-to-all clustered system
accurately predicted which solutions would be observed in the perturbed system [4]. This
highlights the importance of determining not only existence but stability in the unperturbed
system. We look forward to exploring this question in future work.

Appendix A. Solutions along I; /I branches: Detailed calculations. Here we derive
leading order expressions for the equilibria along the I; /I branches for g close to gg. We begin
with the simplest case, which is when ny is even and 8 = 1. Taking x5, = zj, 1, = —271, and
zg = 0 in (5.8) and simplifying, we obtain the single equation ([4, eq. 16])

QUEE

VN

—x7 +

tanh(gzr) =0,

which simplifies to
(A.1) tanh(gxr) — goxr = 0.

Defining f(xr) := tanh(gzr) — goxr, we note that f(0) =0, f/(0) =g — go, and f(z;) - —0
as x7 — oco. When g > go, f(z7) is initially increasing, thus it follows from the continuity of
f and the intermediate value theorem that (A.1) has a solution with z; > 0 for all g > go.
Furthermore, ;7 — 1/go as g — 0.

To obtain an approximation of this solution for g close to g, we expand the LHS of (A.1)
in a Taylor series about x; = 0 and g = gg and simplify to get

(gz1)° n 2(gx1)°

T _

(A.2) (9 —g0)rr —
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We note that the remainder term in (g — go) is transcendentally small in the sense of [27].
Keeping up to cubic terms in zy, equation (A.2) simplifies to

93 2
Ty <(9 —g90) — 3351> =0.

Solving the nonzero solution for x; results in the expression (5.9). We can obtain a higher-
order approximation by keeping up to fifth-order terms in (A.2) to get

3 5
9 2 297 4
x — — i+ ——x; | =0,
I <(9 9) 3T 5 1>
which is x; multiplied by a quadratic in x% To find the nonzero solution for xj, we solve this
quadratic for 2% and take square roots, yielding (5.10).
For g > 1, as N — oo, numerical continuation with the parameter continuation software
package AUTO [15] suggests that (5.8) has a solution of the form

1 1 1
(A3) Ty, :ﬁ$[1+0<]\72>, Ty, :O<N> , :EE':O(]VQ)

for g close to gg. Subtracting the second and third equations in (5.8), we get

Xy (tanh(gxy,) — tanh(gxy,)) .

a
Tl = T =
wEpVN

Substituting (A.3) as an ansatz, expanding the tanh terms in a Taylor series about x;, = 0 to
cubic order, and simplifying, we obtain the formula given in (5.11).

Finally, we show that x;, and z, have opposite signs for all g > gg. Since (5.8) is smooth
in (zg,zr,,x1,) and g, the solutions z7, and zz, are smooth in g. For g close to go, 1, and zy,
have opposite signs; if this is not the case for some g > gy, either x;, or zj, must pass through
0. We will show that this cannot happen. Suppose x;, = 0 for some g* > go. Substituting

this into (5.8) and subtracting the second row from the first, we have zp = —“ﬁ tanh(g*zp),
which is impossible unless xp = 0. If xp = 0, then zj, = —%a(nb — 1) tanh(g*xy,), which

is again impossible unless x7, = 0. Thus z;, = 0 implies (zg, 1, x5,) = 0. This would mean
that the I /I, branch would intersect the zero solution in another bifurcation point at g* > go,
which we know does not occur, since we have found all bifurcation points of the origin. The
case where zj, = 0 for some g* > g is similar.

Appendix B. Stability and bifurcations along I /I» branches: Detailed calculations.
To determine the stability of x* for g close to gg, we start by computing the eigenvalues
of DF(x*) corresponding to Az, and Az,. Substituting (5.11) for zj,, using the Taylor series
expansion sech’z = 1—22+0O(x%), and simplifying, the eigenvalue A7, (g) of DF(x*) is located

at
A7 (9) = J (1 1_ﬁ+52>+0<N2>, g > go,
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which is negative for 1 < 8 < 2 and positive for 3 > 2. Similarly, the eigenvalue A7 (g) of
DF(x*) corresponding to Ay, is located at

- 3532 1
/\Z(g)=gggo(l—l_ﬁﬂ+62>+0<m>, 9> 9o,

which is negative for 5 > 1/2 and thus does not affect stability.

It remains to find leading order expressions for the eigenvalues of Hs(x). When x = 0,
the matrix H3(0) has a single eigenvalue at A\; and a complex conjugate pair of eigenvalues
Ao £ wp, where these are defined at the beginning of section 5. These do not depend on (5. For
x small but nonzero, we use a perturbation method to approximate the eigenvalues of Hs(x).
We substitute the expressions (A.3) into a characteristic polynomial for H3(x), keeping only
terms of up to order 1/N, so that the leading order expression only involves x,. We then use
the Taylor expansion sech?(gxy,) =1 — (gz,)% + O(m}"l), keeping only terms up to quadratic
order. For each eigenvalue \ of H3(x), we use a power series ansatz

(B.1) A+ ex + O(xp)™.

We substitute this ansatz into the characteristic polynomial for Hs(x) and solve for € by
matching the coefficients of m%l. (This computation, and the remaining computations in this
section, were performed with the aid of Wolfram Mathematica.) Using this method for A = \p,
Hs(x*) has a real eigenvalue located at

1
A =appp (1—(1- 8+ B%)g¢°z}) + O <N2> :
Substituting the estimate (5.11) for x;, and simplifying, the eigenvalue Aj(g) of J3(x) corre-
sponding to Ay is located at

« QUEEY 3(9-90)) (9-90) ( 1 >
Xi(g) = 1- —1=—2(2"%) v o), > go,
I(g) TV ( q 9% _7\72 g go

which is always negative, and thus does not affect stability.

Finally, we use this method to locate the eigenvalue of Hs(x) corresponding to A\gtwg. In
doing so, we will find a Hopf bifurcation on each I; /I branch. Hs(x) has a complex conjugate
pair of eigenvalues, where the real part is given by

1

(B.2) Xo(g,B) = #% (a -1+ aﬁgQ(nI — 1):1:%1) + O <N> .

We can get more accurate approximations for A(g,3) by taking higher powers of x;, in our
power series ansatz (B.1). For example, when 8 = 1, we can obtain the fourth-order approxi-
mation

2 1
Xo(g,1) = ,u% (06 -1+ ag2(n1 — 1):6%1 — gag4(n1 — 1):6}11> +0 <N2> .
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Similar fourth-order approximations can be obtained when 5 > 1, but the resulting coefficient
of x%l is significantly more complicated. Substituting (5.11) for z, and simplifying, J3(x) has
a complex conjugate pair of eigenvalues A§(g) £ iwj(g), where

N HEEY 3(9 — 90) ] ( 1 >
B.3 Aolg, B) = a—1+afn—1)———"———-14+0(—= ).
To locate the Hopf bifurcation on each I; /I branch, which occurs when the complex pair of
eigenvalues crosses the imaginary axis, we solve A§(g, 5) = 0 for g, substitute go = VN /apgg,
and simplify to obtain the expression in (5.14).

Appendix C. Proof of Proposition 5.2. First, we show that that (5.16) has no fixed points
other than the origin. To do this, we make the change of variables (y1,y2) = (tanh(gz1),
tanh(gxz)), and note that it is equivalent to show that the system of equations

_ 1 -1 KEE _
g1(y1,y2) == ——tanh™ (y1) + —= ((ng — 1)y1 — anyy2) =0,

1 _
92(y1,y2) == —;tanh Yy2) + % (npy1 —a(ny —1)y2) =0

has no solution other than (y1,y2) = (0,0). The first equation g1 (y1,y2) = 0 is satisfied when

_ gpee(ne — 1y — VN tanh™ (y1)

C.2 =y :
( ) b2 yQ(yl) QgUEETT

To show that (C.1) has no solutions other than the origin, we substitute (C.2) into g2(y1,y2)
to get

. pee(ne+nr—1)yr nr—1 1
, = + tanh
o 92(y1,95 (1)) "~ g (1)
: 1 V/N tanh™! — -1
oL ( tanh™ (y1) — gupe(ne )y1> ‘
g QgUEET]

We will show that g2(y1,v5(y1)) > 0 for y; > 0. Since g2(y1,y5(y1)) is an odd function in ¥,
this will imply that g2(y1,y5(y1)) < 0 for y; < 0, from which the desired result will follow.
Since tanh™ y; > y; for y; > 0, it suffices to show that

pee(ng+nr—Dyr np—1 —1
h = + tanh
(C 4) (yl) ’I’L[\/N gn; (yl)
' 1 V/N tanh™!(y;) — -1
! ( anh™ (y1) — gupp(neg )y1> =0
QgUEETT

for 1 > 0. Since h(0) = 0, we will show that h’(0) > 0 for y; > 0. Computing the derivative
with the assistance of Mathematica,
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h’(y1) _ (N — 1)MEE n 1 B FueeN(gupe(FN — 1) B \/N
(L= N2 T gl =42 f22u2 . N? — (VN + gupp(l — fN))?42
(N_ 1)MEE 1 1
- (1— f)N3/2 * g(1—y2) Vo2
9 <1 o (ffN ) y%)
N —1)pee
> El—j’))NC”/? > 0.

We have therefore shown that (5.16) has no fixed points other than the origin.
The linearization of (5.16) about the origin is the 2 x 2 matrix

J

_ 9MHEE [nE -1 —ang ] _7

VN nEg —a(ny —1) >

which has a complex conjugate pair of eigenvalues \/LN()‘O + iwg) — 1, where \g and wq are
defined in section 5. This pair crosses through the imaginary axis at g = gy, where gy is
defined by (5.3), leading to a Hopf bifurcation in the reduced system (5.16), and the origin
is repelling for g > gp. To show there is a limit cycle for all g > gy, we use the Poincaré—
Bendixson theorem [11, Chapter 16]. For a trapping region, we draw a square around the
origin with corners (—a, —a) and (a,a). On the line z = a, for a large,

QnE
t<—a+—=—-a+2fVN,
o VN /

which can be made negative by taking a sufficiently large. Similarly, we can take a sufficiently
large so that the vector field defined by (5.16) points inward at all points on the square
(Figure C.1). Since the origin is repelling for g > g and is the only fixed point of the system, it
follows from the Poincaré—Bendixson theorem that there is a limit cycle surrounding the origin
for g > gg. We note that although the limit cycle from Proposition 5.2 is stable in the two-
dimensional system (5.16), the theorem says nothing about its stability in the full system (2.1).

Figure C.1. Slope fields for (5.16), with a small limit cycle visible in the center. Slope field points inward
on the black box, which is the trapping region for the Poincaré—Bendizson theorem. Parameters N =20, g =5,
a=4, and pgr = 0.7.
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Appendix D. Stability of the I /I5 branch for large g: Detailed calculations. Here we
prove our assertion, made in subsection 5.7, that xp — 0 as g — oo along any I /I, solution
branch. Suppose, instead, that zp — g # 0 as g — co. Without loss of generality, we can
take g > 0, since by the odd symmetry of (2.1), there will be a corresponding solution with
Zg < 0. This implies that tanh zg — 1. There are four cases to consider:

o Case 1: xy, = 25, # 0 and x1, — 21, # 0.
o Case 2: xy, — 21, # 0 and =y, — 0.
e Case 3: x5, — 0 and zj, — 27, # 0.
e Case 4: 7, —+ 0 and z7, — 0.
The computations to follow were done with the assistance of Wolfram Mathematica.
For Case 1, tanh(gzy,) — £1 and tanh(gz;,) — +1. We can then use (5.8) to solve for
(g, Z1,,21,). The signs of these solutions are all inconsistent, as we can see in Table D.1.

For Case 2, if tanh(g#r,) — 0, the solution (g, Z1,,&r,) from (5.8) is inconsistent using
the same argument as in Case 1. The only remaining possibility is tanh(gz,) — ¥1,, where
0 < |91,| < 1. In the limit g — oo, (5.8) becomes

- (any —1) —a%nl —aﬁm 1
b | = WEE
0 v IN

ang —Q (%nl — 1) faﬁnj +1

ang —a%n[ -« (ﬁn[ - 1) yr.

The consistency condition (from the third row) can only be satisfied if ¢, = % > 1 (for
zr, >0)oryr, = % > 1 (for &7, < 0), both of which are impossible. Case 3 is similar.

For Case 4, if tanh(gZ;,) — 0 or tanh(gZs,) — 0, the solution (Zg,Z1,,Zr,) from (5.8) is
inconsistent using the same argument as in Case 1. The remaining possibility is tanh(gZ,) —
g1, and tanh(gzr,) — 9r,, where 0 < |9z, |, |91,| < 1. In the limit g — oo, (5.8) becomes

. (any — 1) —a%m —aﬁnl 1
0l = HE]\E; any —o %nl -1 —aﬁnj U1,
0 v B o, — 91

ang QNI | g 1 2

The consistency conditions (from the second and third rows) can only be satisfied if §;, =

i1, = n:‘il > 1, which is impossible.

Table D1
Sign table showing that all solutions for nonzero (Zg,&r1,,21,) are inconsistent.

sgn (2g, &1, 21,) WopLE npg Th npp  Tl2
(1,1,1) -1<0 ! e

(1,-1,-1) 2an; — 1 a(2nr—1)>0 a2n;—1)>0
(1,1,-1) 2anp, — 1 a2ng, +1) a(2n, —1) >0
(1,-1,1) 2ang, —1 a2n;, —1) >0 a(2ng, +1)
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Appendix E. Stability and bifurcations along the C; /C2 branch: Detailed calculations.
Following the procedure in subsection 5.4 and Appendix B, we substitute the expressions from
(6.8) into the formulas for the eigenvalues in Proposition 6.1 and simplify to obtain leading
order expressions for the corresponding eigenvalues of DF (x*):

N g9—49gc 3
= [ —
al9) =" ( 1ﬁc+ﬁ%)’

E1 s ov_9—gc(, 3B >
= &l9) =" (11—%+%7
oy Qug

The eigenvalue \f; (g) is negative for 1 < B < 2 and positive for fc > 2; the eigenvalue
MG, (9) is negative for o > 1/2; and the eigenvalue A7 (g) is negative for all B¢ for N sufficiently
large.

It remains to find leading order expressions for the eigenvalues of H3(x), given by (6.10).
When x = 0, the matrix H3(0) has a single eigenvalue at A\c and a complex conjugate pair
of eigenvalues Ay £ iwgy, where these are defined at the beginning of Appendix 6. Using the
same asymptotic procedure as in subsection 5.4 and Appendix B, H3(x*) has a real eigenvalue
corresponding to A¢ located at

Ao (x*) = (p— Dnep (1 —(1- 8¢ +B%)92$2E1) ! <J\;> '

Substituting the estimate (6.8) for zg, and simplifying, the eigenvalue A\;(g) of J3(x*) corre-
sponding to A\¢ is located, to leading order, at

Mole) =2 (1-59)

gc

for g close to go. Since this eigenvalue is always negative, it will not affect stability. Similarly,
Hs(x) has a complex conjugate pair of eigenvalues A\ + iwg, where the real part is given by

Mg, Bc) = 5 (@ = ne) = Begino(p — Dok,

to leading order, for g close to g¢. Since we are taking nc > «, this is always negative for g
close to gc.

Appendix F. C1/C5 branches for large g: Detailed calculations. Here we provide
details of the behavior of solutions on the C7/Cs branch as g becomes large. We claim there
are two patterns for the limiting behavior on the C/Cy branches, which depend on whether
Bc < B¢ or Bo > B¢ for some critical value 7., which we will determine below. These were
illustrated in Figure 6.4.

e Case 1: (1 < f¢c <pB¢) xp, = &g, > 0and 2p, — g, <O.

e Case 2: (Bc > B¢) xg, — 0 with tanh(gzg,) = 9g, # 0 and 2g, — 25, <O0.
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For Case 1, since tanh(gxp,) — 1 and tanh(gzpg,) — —1, we can solve for ¢; using row 3
of (6.7) to get
. Bc—1 pnc

F.1 = )
(F.1) "7 Bo+1pne —a

from which it follows that
Bc—1 pnc
Bc +1pneg — «

1
(F.2) xr — —tanh™! (
9

Using (F.1) with rows 1 and 2 of (6.7),

X p Be—1 p*nd >
Tp, = —— —1ne — ,
(F.3) BTN <(p Jnc Bo +1pnc —«a

. ft Bo—1 p*ng
=2 (~(p-1ne - :
( (p=1jnc Be +1png — «
which reduce to (6.13) when S¢ = 1. Since ngp = fN — oo as N — oo, this simplifies to

Iz Bc—1
TE, — N <(p— ne — ot 1lmc> ;

(F.4) T, — \/LN (—(p — Dne — gg 1 1pnc> ,

1 _ Bo—1
T —>tanh1< >
™y Bo +1

as g, N — oo. For (F.3) to be valid, the consistency conditions g, > 0 and Zg, < 0 must be
satisfied. Since I, < 0 always holds, (F.3) is consistent as long as

> as g — 0o.

Bc—1 p’ng

Bc +1pne —«

Solving for fc, this results in the condition B¢ < 37, where 3. is defined in 6.14.
For Case 2, we can solve for §g, and ¢ using rows 2 and 3 of (6.7) to get

(F.5) (p—1)nc — > 0.

2

U, = nep
(F.6) "oa(l+8e)(p—1) +nep(l+Bc —p)’
g1 = nep(p — 1)

a(l+Bc)(p—1) +nep(1 + Bc —p)
from which it follows that

1 B nep? )
rp, — —tanh L ( ,
By a(l+ Bc)(p—1) +nep(l+ e —p)

Py - 1yme - nep*(p — 1)
(F.7) xE2—>\/N< (p = Dnc Q(HBC)@—1)+ncp(1+ﬁc—p)>’

1. nep(p —1) )
o g tanh (a(l + Bc)(p — 1) +nep(l + Be —p)

as g — oo. We note that for 8¢ > B, we cannot take N — oo with n¢ held fixed, since for
sufficiently large N we will always have B¢ < 3f.
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Appendix G. Stable excitatory clusters for large g: Detailed calculations. We begin
with the ansatz (suggested by numerical continuation) that as g — oo,(zg,, zg,, z1,,21,) —
(Zg,,%E,,21,,21,), where &g, &7, > 0 and &p,, 27, < 0. With these assumptions, (6.16)
reduces to

s, = I :<p—1>nc—a§jm],
(G.1) ‘%E2:\/MN:_( _1)nc_ag ]
@[ :L ﬁc*l ( 77,[—1)]
1 \/N /6 +1 Y
T = o - pnc—a< n1+1>]
* VN [Bc+1 p+1 ’

since tanh(gxp, ), tanh(gz;,) — 1 and tanh(gxp,),tanh(gzy,) — —1 as ¢ — oo. Equation
(G.1) gives the limiting solutions (Zg,,Zp,,2r,,%7,) as long as the consistency conditions
Zg,, 21, > 0and Tg,, 25, <0 are satisfied. Since p > 0, the consistency conditions reduce to

(p—l)nc—a§;1n1>0,
B—
- —(p—l)nc—a5+1n1<0,
’ c—1 -1
ﬁc—i—lp — (5+1n1—1>>0,
Bo—1 -1
,30+1p —a(6+1n[+><0

The first pair of inequalities in (G.2) is satisfied if and only if

5—1|<(P—1)nc 1

=1--,
B+1 ang p

where we used the fact that ncp = ng = any. Since we are taking S > 1, this simplifies to
1 < B < 2p. Similarly, the second pair of inequalities in (G.2) is satisfied if and only if

p—1 Be—1 p—1
a<ﬁ+1n1—l><BC+1pnc<a<B+1m+1>

which simplifies to (6.17).
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