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Abstract. In this paper, we first prove a Donaldson-Uhlenbeck-Yau
theorem over projective normal varieties smooth in codimension two.
As a consequence we deduce the polystability of (dual) tensor products
of stable reflexive sheaves, and we give a new proof of the Bogomolov-
Gieseker inequality, along with a precise characterization of the case of
equality. This also improves several previously known algebro-geometric
results on normalized tautological classes. We study the limiting behav-
ior of semistable bundles over a degenerating family of projective nor-
mal varieties. In the case of a family of stable vector bundles, we study
the degeneration of the corresponding HYM connections and these can
be characterized from the algebro-geometric perspective. In particular,
this proves another version of the singular Donaldson-Uhlenbeck-Yau
theorem for the normal projective varieties in the central fiber. As an
application, we apply the results to the degeneration of stable bundles
through the deformation to projective cones, and we explain how our
results are related to the Mehta-Ramanathan restriction theorem.
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1. Introduction

Two fundamental results in the study of stable bundles over compact
Kähler and projective algebraic manifolds are the Donaldson-Uhlenbeck-
Yau (DUY) theorem and the Mehta-Ramanathan (MR) restriction theorem.
The DUY theorem proves the existence of a Hermitian-Einstein (HE) metric
on any slope stable vector bundle E over a compact Kähler manifold (Y, ω)
[8, 32, 9]. The associated Chern connections are called Hermitian-Yang-Mills
(HYM) connections. The result was generalized by Bando and Siu to stable
reflexive sheaves via the introduction of admissible metrics [1]. Important
consequences include the polystability of tensor products of stable reflexive
sheaves, as well as the Bogomolov-Gieseker inequality and a characterization
of the case of equality in terms of projectively flat bundles. It moreover
gives equivalent characterizations of reflexive sheaves with nef normalized
tautological class. We refer to [24] for a more detailed discussion of this.

Suppose now that (Y, ω) is a Hodge manifold, i.e. [ω] = c1(L) for some
ample line bundle L → Y . Let F be a semistable (resp. stable) bundle
over Y . The MR restriction theorem states for k sufficiently large, F|V
is semistable (resp. stable) for generic V ∈ P(H0(Y, Lk)) [22, 10]. This
result was instrumental in Donaldson’s proof of the DUY theorem in higher
dimensions [9]. We refer to [17] for a discussion of some other important
consequences of the restriction theorem.

The first result of this paper is a version of the DUY and Bando-Siu
theorems for stable reflexive sheaves over projective normal varieties Y which
are smooth in codimension 2. A motivation for a generalization to the
singular case comes from the corresponding consequences mentioned above,
just as the smooth case.

Next we study the behavior of semistable bundles on degenerating fam-
ilies, which gives us another version of the DUY theorem. The motivation
here is to give a strategy for an analytic proof of the MR theorem. The idea
goes as follows. Suppose F is a stable bundle over a smooth projective man-
ifold (Y, ω, L), with V ⊂ Y as above. Deform Y to the projective normal
cone (see Section 5 for details). The naive guess is that the HYM connection
on Y deforms to a HYM connection on the cone, which by the symmetry of
the cone should have implications for the (semi)stability of the restriction.
There is price to pay here due to the fact that we have introduced singular-
ities on the base. Nevertheless, assuming the restriction theorem holds on
the cone, then by a continuity argument one can conclude that the restric-
tion F

∣∣
V

is semistable (resp. stable). Working backwards, in the case where
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the restriction theorem actually does hold, one can show that the sheaf de-
fined by the limiting HYM connection is indeed of cone type, in the obvious
sense. However, there are plenty of examples that tell us that this is not
always true, i.e. the limiting HYM connection does not have to be a cone
in general. Also, as in the singular DUY theorem, a technical difficulty is
that we introduced a singularity to the base, and the known analytic results
about admissible HYM connections on smooth manifolds are not known to
hold across the singular set in general.

Given the discussion above, a closely related question naturally arises:
what is the structure of the limiting HYM connection in general? This leads
to the study of the behavior of semistable bundles over a degenerating family
of smooth varieties with a normal central fiber. It turns out that an algebraic
geometric result can be constructed in this setting using known techniques,
and this can in turn be used to characterize the analytic degeneration. In
the special case of a deformation to the projective cone, this picture is closely
related to the MR restriction theorem. Indeed, we show that the limiting
HYM connection on the cone restricts to the HYM connection on F|V , if
the latter is assumed to be stable. Thus, the HYM connection on F|V is
obtained from the HYM connection on F by deforming the Kähler metric
on the base.

1.1. Main results. We now state more precisely the results sketched above.

1.1.1. Singular DUY theorem. In this section, we assume that (Y, ω) is a
normal projective variety smooth in codimension 2, with Y ⊂ PN and ω =
ωFS |Y reg . Slope stability of reflexive sheaves on Y with respect to ω can be
defined as in the nonsingular case, and this agrees with the algebro-geometric
notion of slope stability with respect to the hyperplane section D on Y (see
Section 2.2). With this understood, the first main result is the following.

Theorem 1.1 (Singular DUY). Let F be a stable reflexive sheaf over
(Y, ω). Then there exists an admissible HE metric on F that is unique up
to a constant scaling. Moreover, for any local holomorphic section s of F ,
log+ |s|2 ∈W 1,2

loc ∩ L
∞
loc.

As a corollary of Theorem 1.1, we have (see Corollary 2.17),

Corollary 1.2. Given F1 and F2 stable reflexive sheaves over (Y, ω), then
(Symk F1)

∗∗, (∧kF1)
∗∗, (F1 ⊗F2)

∗∗ are all polystable.

As in the case of smooth manifolds, Theorem 1.1 gives rise to an analytic
proof of the Bogomolov-Gieseker inequality of Miyaoka [23, Cor. 4.7], as well
as a characterization of the case of equality. For the definitions of Chern
classes and the pairing below, see Section 2.2.

Corollary 1.3 (Bogomolov-Gieseker inequality). Let [H] be the class
of a hyperplane in Y ⊂ PN . Suppose F → Y is a stable reflexive sheaf. Then

(2rc2(F)− (r − 1)c1(F)2) · [H]n−2 ≥ 0 .
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Moreover, the equality holds if and only if F is projectively flat outside
Sing(F).

Remark 1.4. We emphasize that the inequality in Corollary 1.3 is well
known. For projective varieties it can be reduced to the surface case by
using the MR restriction theorem [23]. More recently, it was extended to
Kähler spaces [33]. The novelty in the statement above is the characteriza-
tion of the case of equality.

In Section 3, we use Theorem 1.1 to improve results of Höring-Peternell
on normalized tautological classes.

1.1.2. Degeneration. Let p : X → P1 = C ∪ {∞} be a flat family of projec-
tive varieties so that Xt := p−1(t) is smooth for t 6= 0 and X0 is normal.
A family {Et}t6=0 of semistable torsion-free sheaves Et → Xt is called “al-
gebraic” if we can find a coherent sheaf E → X , such that E

∣∣
Xt
' Et. We

say E → X is a semistable degeneration of {Et}t6=0 if furthermore E is flat
over P1 (cf. [17, p. 34]), and E0 = E|X0 is torsion-free and semistable. Recall
that for a semistable sheaf, Gr(E0) and C(E0) denote the associated graded
sheaf of the Jordan-Hölder filtration of E0, and its associated codimension 2
cycle, respectively (see Definition 4.3). On the algebraic side, we prove the
following.

Theorem 1.5. A semistable degeneration always exists for any algebraic
family {Et} where Et are semistable bundles for all t 6= 0. Furthermore, for
any two semistable degenerations E and E ′, Gr(E0)∗∗ = Gr(E ′0)∗∗. If X0 is
smooth in codimension 2, then we also have C(E0) = C(E ′0).

Next, assume that {Et} are stable vector bundles for t 6= 0, and let At
be the corresponding admissible HYM connections. Known analytic results
tell us that we can take a gauge theoretical limit for sequences ti → 0.
The limiting data consists of two parts: a smooth HYM connection A∞
defined outside some analytic subvariety Σ of X0, and the so-called blow-
up locus Σb =

∑
km

an
k Σk, which is an integral linear combination of pure

codimension 2 subvarieties (see Section 4.2 for more details). Let E∞ be the
reflexive sheaf defined by A∞ over Xreg

0 .

Theorem 1.6. Fix E to be any degeneration of {Et}t where Et are stable
vector bundles for t 6= 0 and E0 is torsion-free semistable. Then:

(I) E∞ can be extended to be a semistable reflexive sheaf E∞ over X0.

Furthermore, for any local section s of E∞, log+ |s|2 ∈W 1,2
loc ∩ L

∞
loc;

(II) Gr(E∞)∗∗ = Gr(E0)∗∗. In particular, if X0 is smooth in codimension
2, then E∞ = Gr(E0)∗∗;

(III) If X0 is smooth in codimension 2, then C(E0) = Σb.

In particular, this gives the following version of DUY theorem
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Corollary 1.7 (Singular DUY for degenerations). Given E a semistable
degeneration of {Et}t where Et are stable vector bundles and E0 is torsion-free
stable. Then there exists an admissible HE metric on E∗∗0 .

1.1.3. Relation to the Mehta-Ramanathan restriction theorem. As another
application of the results above, in Section 5, we study the degeneration of
a semistable bundle through the deformation to projective cones of smooth
divisors, and we show how our results are related to the MR restriction the-
orem. In a sense, the result obtained here (see Theorem 5.7 and Corollaries
5.8) describes the general picture when the restriction theorem might fail,
i.e. the nongeneric setting. Even when the restriction theorem holds for a
given stable bundle, it does not, of course, apply to the restriction of HYM
connections in general. Corollary 5.10, however, can be viewed as an ana-
lytic version of the restriction theorem: the deformation to the projective
cone gives a way to interpolate to the HYM connection of the restriction.

Remark 1.8. Another interesting question is whether we can use the HYM
connections on the projective cones to recover the original HYM connection
on F via a limit as the degree increases. This is motivated by the observation
that high degree hypersurfaces can be chosen to cover the ambient variety
as the degree → ∞. If indeed this can be made rigorous it could lead to
an analytic proof of the Mehta-Ramananthan restriction theorem. We leave
this for future study.

1.2. Sketch of the proofs. We first need definitions of Chern classes. Since
we are working over singular varieties, Chern classes are naturally defined in
corresponding homology groups following [2]. The first Chern class can be
always defined, and the second Chern class is defined when the base variety
is smooth in codimension 2. Corresponding Chern numbers, e.g. slopes, can
be computed algebraically. The technical difficulty here is to show that
the curvature of the Chern connection for the admissible Hermitian metric
can indeed be used to compute Chern numbers as in the Chern-Weil theory
of the smooth case. This boils down to the fact that the corresponding
curvature terms indeed define closed currents across the singular set, as well
as an application of Poincaré duality in the ambient smooth manifold (see
Proposition 2.6). It is here where we need to work with normal complex
analytic subvarieties of smooth ones with induced metrics.

Given the above, the idea for the proof of the singular DUY theorem is
to use gauge theoretical methods going back to Donaldson [8], Uhlenbeck-
Yau [32] and Bando-Siu [1]. We use Hironaka’s theorem on resolution of
singularities to simultaneously resolve F and Y and obtain a holomorphic

vector bundle F̂ on a smooth resolution Ŷ → Y . Since Y is projective, it can

be shown quite easily that F̂ is stable with respect to a small perturbation
ωε of the pullback of ω. In particular, by the DUY theorem we have a family

of HYM connections Aε on F̂ . After passing to a subsequence we may find
an Uhlenbeck limit A∞ of Aε over the regular part Y reg of Y . Then one
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can show that A∞ defines a reflexive sheaf isomorphic to the original F , so
the conclusion follows. This is due to a theorem of Siu and a use of MR
restriction theorem.

The proof of the existence of a semistable degeneration of semistable
bundles is a slight generalization of Langton’s results ([19]) by following the
argument in [17]. Now we explain about the uniqueness. For two different
semistable degenerations, by restricting to a flat family of high degree curves,
one can get the uniqueness of Gr∗∗. For the blow-up locus, we need to
assume X0 is smooth in codimension 2 so that we can restrict our family
to a family of high degree smooth surfaces, and thus get uniqueness of the
algebraic blow-up locus C. This relies crucially on the known results for the
compactification of semistable torsion-free sheaves over smooth projective
surfaces.

Assume the family above consists of stable torsion-free sheaves Et. We
can take a gauge theoretical limit of the corresponding HYM connections At
and get an admissible HYM connection A∞ and the blow-up locus Σb which
is an integer linear combination of pure codimension 2 subvarieties of X0.
Since in this case, we deal with normal projective varieties in general, the
fact that A∞ defines a semistable reflexive sheaf over X0 is very technical.
Assuming this, since we are working in the projective case, we can realize
E∞ as the double dual of some sheaf represented by an element in a certain
Quot scheme which naturally carries the information of the blow-up locus.
This transforms our problem into a similar problem which can be dealt with
as the uniqueness properties of the semistable degenerations.

Let E∞ be the reflexive sheaf A∞ defines over Xreg
0 . Now we first explain

why E∞ can be extended to be a reflexive sheaf over X0. To solve these
technical issues, the projectivity plays a key role in that we can construct
a lot of sections of the twisted bundle E∞(k) for k fixed but large. Indeed,
twisting by the pullback of the positive line bundle on Y , we know that
the bundles Et(k) have many sections. We wish to take limits to produce
nontrivial sections of E∞(k). Using the HYM condition, the construction
proceeds once one proves that the Sobolev constant of (Xt, ωt) has a uniform
bound which follows from a result of Leon Simon.

Given the above, we want to show that E∞ can be extended as a coherent
reflexive sheaf over X0. This follows from an induction argument (cf. [25]).
We start with one limiting section s: it will generate a rank 1 saturated
subsheaf L of E∞. Furthermore, by the Remmert-Stein theorem it can be
extended to a rank 1 reflexive sheaf over Y . Now by increasing k, we can find
another section that generates a higher rank coherent subsheaf of E∞, since
by the Riemann-Roch theorem L(k) cannot contain all the limiting sections
for k large. This now gives us a rank 2 saturated coherent subsheaf of E∞
which can also be extended as a coherent sheaf over X0. Continuing in this
way, the result is obtained. Furthermore, one can show the limiting sections
generate E∞ outside some codimension 2 subvariety. Thus the extension
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follows, the fact that E∞ is semistable again follows from certain regularity
results, which enable us to do integration by parts.

Acknowledgments. The authors would like to thank Song Sun for helpful
comments and suggestions. They also thank an anonymous reader for point-
ing out an error in a previous version of this paper, as well as the referee for
making numerous suggestions that improved the exposition.

2. Singular DUY Theorem

2.1. Admissible HYM connections. Let (Y, ω) be a normal subvariety
of PN with ω = ΩFS |Y reg . Here we write Y = Y reg ∪ Y s, where Y reg (resp.
Y s) denotes the smooth (resp. singular) locus of Y . Following [1], we will
use the following definition.

Definition 2.1. Let F → Y reg \ Σ be a holomorphic vector bundle, where
Σ is a closed set of Y reg of Hausdorff real codimension ≥ 4. A Hermitian
metric h on F is called admissible if

•
√
−1ΛωFh is bounded;

•
∫
Y |Fh|

2 <∞, 1

where Fh denotes the curvature of the Chern connection of the pair (F , h)
defined on the smooth locus of F → Y reg. If furthermore,

(2.1)
√
−1ΛωFh = µ Id

for some constant µ, then h is called a HE metric and the connection A is
called an admissible HYM connection.

2.2. Chern classes. We need definitions of Chern classes of coherent sheaves
on singular varieties. It seems there is not a standard definition, but we are
only interested in ch1 and ch2, and for these different methods likely give
the same answer with our assumptions. Most importantly, we wish to com-
pare these Chern classes with the currents defined by admissible metrics. It
will be useful to use the approach of Baum-Fulton-MacPherson [2]. Recall
the notation of the previous section, although here we choose an arbitrary
embedding Y ⊂ M , where M is smooth and projective. As will be clear in
the following, we will define the first Chern class in general and the second
Chern class only when dimY s ≤ n− 3. (Co)homology groups will be taken
with complex coefficients. Let F → Y be a coherent analytic sheaf. Choose
a locally free resolution on M ⊃ Y :

0 −→ F` −→ · · · −→ F0 −→ ∗F −→ 0 ,

and denote the complex of Fi’s by F•. Let

ch∗(F•) :=
∑̀
i=0

(−1)i ch∗(Fi) ,

1The integration is understood to be taken over the smooth locus Y reg.
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where ch∗(Fi) ∈ H∗(M) is the Chern character. Since ∗F is supported on
Y , ch∗(F•) defines a class in H∗(M,M \ Y ) (cf. [30, p. 285]). We set:

chMY (F) := A(ch∗(F•)) ∈ H∗(Y ) .

Here, A : H∗(M,M \ Y )→ H∗(Y ) is Alexander duality. Define:

(2.2) τ(F) = Td(M) ∩ chMY (F) .

Then τ(F) is independent of the embedding Y ⊂M .
In the case where F is the restriction of a vector bundle on M , then

τ(F) = ch∗(F) ∩ τ(Y ), where τ(Y ) := τ(OY ) ([2, p. 116 (4)]). Note that
τn(Y ) = [Y ], the fundamental class of Y ([2, p. 129]). Motivated by this, we
make the following

Definition 2.2. Chern classes chi(F) ∈ H2n−2i(Y ), i = 0, 1, 2, are defined
by

ch0(F) = τn(F) = rk(F)[Y ] ,

ch1(F) = τn−1(F)− rk(F) · τn−1(Y ) .

ch2(F) = τn−2(F)− rk(F) · τn−2(Y )− ch1(F) · τn−1(Y ) .

(2.3)

Let us explain the last term on the right hand side of the expression for
ch2(F). Since codim(Y s) ≥ 3,

H2n−2i(Y ) ' HBM
2n−2i(Y

reg) , i = 0, 1, 2 ,

where HBM
∗ (Y reg) denotes the Borel-Moore, or locally finite, homology. Us-

ing Poincaré duality HBM
p (Y reg) ' H2n−p(Y reg) and the cap product:

Hk(Y reg)⊗HBM
p (Y reg) −→ HBM

p−k(Y
reg)

gives well-defined intersection pairings

ch1(F) · τn−1(Y ) , ch1(F) · ch1(F) ∈ H2n−4(Y ) .

Another consequence of the assumption codim(Y s) ≥ 3 means we have a
homomorphism

(2.4) H2n−2i(Y ) ' HBM
2n−2i(Y

reg) −→
[
H2n−2i
c (Y reg)

]∗
, i = 0, 1, 2 .

If h is an admissible metric on a reflexive coherent sheaf F in the sense
of Definition 2.1, then the Chern-Weil forms ch1(F , h) and ch2(F , h) for
the Chern connection of (F , h) also give elements of [H2n−2i

c (Y reg)]∗ via
integration. We wish to prove:

Proposition 2.3. For i = 0, 1, 2, the image of the classes chi(F) under the
map (2.4) coincide with the classes of chi(F , h).

Let M̂ ⊃ Ŷ
π−→ Y be an embedded resolution of singularities of Y ,

̂ : Ŷ ↪→ M̂ , and let F̂ = π∗F . We furthermore let F̃• = π!(F̂). Since:

0 −→ F −→ π∗(F̂) −→ T −→ 0 ,
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where supp(T ) ⊂ Y s, it follows that τi(F) = τi(F̃•) for i ≥ n − 2 if Y s has
codimension ≥ 3. Moreover, by the naturality of the homological Todd class

we have: τ(F̃•) = π∗τ(F̂). Hence,

(2.5) τi(F) = π∗τi(F̂) , i ≥ n− 2 .

Let F̂• be a locally free resolution of F̂ on the smooth variety Ŷ . Let

ρ̂ : Û → Ŷ be a holomorphic retraction of an open neighborhood Û ⊂ M̂ to

Ŷ .

Lemma 2.4. τ(F̂) = ch∗(ρ̂∗F̂•) ∩ τ(Ŷ ).

Proof. Since Ŷ is smooth, we have:

τ(F̂) = Td(M̂) ∩ chM̂
Ŷ

(F̂)

= Td(M̂) ∩A(ch∗(ρ̂∗(F̂•) ∪ ch∗(̂∗OŶ ))

= Td(M̂) ∩ ch∗(ρ̂∗(F̂•) ∩A(ch∗(̂∗OŶ ))

= ch∗(ρ̂∗(F̂•)) ∩ (Td(M̂) ∩ chM̂
Ŷ

(O
Ŷ

))

= ch∗(ρ̂∗(F̂•)) ∩ τ(Ŷ ) .

The first to second (resp. second to third) lines is in [30, p. 291 (resp. p.
288)]. �

Proof of Proposition 2.3. Let Ω be a smooth, compactly supported, closed
form on Y reg of degree 2n−2i, i = 0, 1, 2, representing a class inH2n−2i

c (Y reg).
We may assume that supp Ω is contained in the smooth locus of F . Choose

connections A• on the bundles in the resolution ρ̂∗(F̂•), and let ch∗(ρ̂∗F̂•, A•)
denote the alternating sums of Chern-Weil forms. Then on the support of

Ω (or π∗Ω), chn−i(ρ̂∗F̂•, A•) and chn−i(F , h) differ by a smooth exact form.
We will denote the images of classes by the map (2.4) with the same nota-
tion. Now, on the one hand, from (2.5), we have

τi(F)([Ω]) = π∗τi(F̂)([Ω]) = τi(F̂)(π∗[Ω]) = π∗[Ω] ∩ τi(F̂) .

On the other hand, from Lemma 2.4,

π∗[Ω] ∩ τi(F̂) = π∗[Ω] ∩
(

ch∗(ρ̂∗F̂•) ∩ τ(Ŷ )
)
i

=
n∑
j=i

(
π∗[Ω] ∪ chj−i(ρ̂∗F̂•)

)
∩ τj(Ŷ )

=

n∑
j=i

[
π∗Ω ∧ chj−i(ρ̂∗F̂•, A•)

]
∩ τj(Ŷ ) .

Since τn(Ŷ ) = [Ŷ ], we have for each case:

τn(F)([Ω]) = rk(F)

∫
Y

Ω
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τn−1(F)([Ω]) = rk(F)τn−1(Y )([Ω]) +

∫
Y

Ω ∧ ch1(F , h)

τn−2(F)([Ω]) = rk(F)τn−2(Y )([Ω]) + τn−1(Y )([Ω ∧ ch1(F , h)])

+

∫
Y

Ω ∧ ch2(F , h)

Comparing with Definition 2.2, this completes the proof. �

We also note the following.

Lemma 2.5. The forms ch1(F , h), ch2
1(F , h), and ch2(F , h) define closed

currents on Y as elements of the dual space of the restriction to Y of smooth
forms on M .

Proof. Since the curvature is in L2, the integrals are well defined. The fact
that the currents are closed follows exactly as in [28, Sec. 6.5.3]. �

To define (semi)stability of F we need a notion of degree. Using Lemma
2.5, this can be defined analytically in the usual way. In the projective
case, let [α] ∈ A1(Y ) be the cycle defined by intersecting hyperplanes in
M ⊂ PN . By choosing a representative in general position, [α] uniquely
defines a homology class in H2(Y

reg) ' H2n−2
c (Y reg). Via (2.4), we define:

(2.6) degα(F) := ch1(F) · [α] ∈ Q .

Similarly, we define the slope of F to be µα(F) = degα(F)/ rk(F). Then a
reflexive sheaf F is stable (resp. semistable) if µα(S) < µα(F) (resp. ≤) for
all coherent subsheaves S ⊂ F with 0 < rkS < rkF .

Proposition 2.6. Let ω = ωFS |Y reg . The following holds:

degα(F) =

∫
Y

ch1(F , h) ∧ ωn−1 .

Proof. It follows from Proposition 2.3 that for general representatives α,

degα(F) =

∫
α

ch1(F , h) .

We write α = H1 ∩ · · · ∩ Hn−1 ∩ Y , where Hi are generic smooth divisors
in the class of OM (1) on M , and α is in the smooth locus of F . Choose a
Poincaré dual PD(H1) supported in a small neighborhood of the H1. Write:
ω − PD(H1) = dB, where B is smooth. Then by Lemma 2.5,∫

Y
ch1(F , h) ∧ d(B ∧ ωn−2) = 0

and ∫
Y

ch1(F , h) ∧ ωn−1 =

∫
Y

ch1(F , h) ∧ PD(H1) ∧ ωn−2 .

Continuing in this way, we have∫
Y

ch1(F , h) ∧ ωn−1 =

∫
Y

ch1(F , h) ∧ PD(H1) ∧ · · · ∧ PD(Hn−1) .
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Since we have assumed that PD(H1) ∧ · · · ∧ PD(Hn−1) is supported in the
smooth locus of F , the usual Poincaré-Lelong formula gives∫

Y
ch1(F , h) ∧ PD(H1) ∧ · · · ∧ PD(Hn−1)

=

∫
H1∩Y

ch1(F , h) ∧ PD(H2) ∧ · · · ∧ PD(Hn−1)

=

∫
H1∩H2∩Y

ch1(F , h) ∧ PD(H3) ∧ · · · ∧ PD(Hn−1)

...

=

∫
α

ch1(F , h) .

�

Corollary 2.7. If h is an admissible HE metric on F , i.e. a solution to
(2.1), then

µ =
2π

rkF · vol(Y )

∫
Y

ch1(F , h) ∧ ωn−1

(n− 1)!
=

2π

(n− 1)! vol(Y )
µα(F) .

Furthermore, by [11, Ex. 18.3.6], we have the following, which explains
why we have defined the Chern classes in the way we did.

Corollary 2.8 (Asymptotic Riemann-Roch formula). The Hilbert
polynomial of F over (Y,OY (1)) is given by

PF (k) = rk(F)(a1k
n + a2(µ(F) + deg(Y ))kn−1) +O(kn−2)

for some universal constants a1, a2.

2.3. Singular Bott-Chern formula. In the following, we fix any admis-
sible metric on OY (−k). Assuming dimY s ≤ n − 3, the argument in [26]
gives the following singular Bott-Chern formula based on our definition of
ch2. Recall that associated to a torsion-free sheaf F is a cycle C(F) consist-
ing of the irreducible codimension 2 pieces of the support of F∗∗/F , with
multiplicities.

Proposition 2.9 (Singular Bott-Chern formula). Assume that F is
a torsion-free sheaf which admits an admissible HYM connection A∞ over
Y where dimY s ≤ n− 3. Given an exact sequence

(2.7) 0 −→ kerφ −→ OY (−k)⊕N
φ−−−→ F −→ 0 ,

then

ch2(A∞) + ch2(kerφ)− ch2(O(−k)⊕N ) = C(F)

in [H2n−4
c (Y reg)]∗.
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Proof. From the exact sequences (2.7) and

0 −→ F −→ F∗∗ −→ T −→ 0

and the naturality of the homological Todd class, we have

τ(F∗∗) = τ(F) + τ(T ) = τ(OY (−k)⊕N )− τ(kerφ) + τ(T ) .

By Proposition 2.3, ch2(A∞) = ch2(F∗∗), and since T is supported in codi-
mension 2, τn−1(T ) = 0, and τn−2(T ) = C(F) (cf. [2, Remark, p. 17]). The
result follows. �

2.4. Proof of Singular DUY theorem. By Hironaka’s resolution of sin-

gularities, we may choose a projective resolution of singularities p : P̂N → PN
with the strict transform Ŷ of Y being smooth. We may also assume that

F̂ = ((p|
Ŷ

)∗F)∗∗ is locally free. Let θ be any fixed Kähler metric on P̂N and

ωε = (p∗ωFS + εθ)|
Ŷ

. We sometimes use Ŷε to emphasize that Ŷ is endowed
with the Kähler metric ωε. We have the following elementary observation.

Lemma 2.10. µα(F) = lim
ε→0

µε(F̂).

Proof. As in Section 2.2, ch1(F) defines an element of H2(Y reg). Then

ch1(F̂) = p∗ ch1(F) +
∑

i aiEi, where Ei are the exceptional divisors of the
blow-up maps. The result follows from the definition (2.6) of degree. �

Proposition 2.11. (F̂ , ωε) is stable for 0 < ε� 1.

Proof. Write

ωn−1ε = ωn−1 +
∑
i

cεiαi ,

where αi is the wedge product of (p∗ωFS |Ŷ , θ|Ŷ and cεi are constants de-
pending on ε and 1 ≤ i ≤ n − 1. Furthermore, cεi → 0 as ε → 0. To

prove stability of F̂ we need to show that for any nontrivial proper subsheaf

Ŝ ⊂ F̂ , µε(Ŝ) < µε(F̂), where µε denotes the slope of a sheaf with respect

to the Kähler class [ωε]. Let S = p∗Ŝ. We have

µε(Ŝ) =
1

rk(Ŝ)

∫
Ŷ
c1(det Ŝ) ∧ ωn−1ε = µ(S) +

1

rk(Ŝ)

∑
i

cεi

∫
Ŷ
c1(det Ŝ) ∧ αi .

Let f(ε, Ŝ) = µε(F̂)− µε(Ŝ). Then

f(ε, Ŝ) = µ(F)− µ(S)

+
∑
i

cεi

(
1

rk(F̂)

∫
Ŷ
c1(det F̂) ∧ αi −

1

rk(Ŝ)

∫
Ŷ
c1(det Ŝ) ∧ αi

)
.

It suffices to show that for ε small enough, one has f(ε, Ŝ) > 0 for any such

Ŝ as above. In order to prove this, we first note that there exists C > 0 so
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that µ(F) − µ(S) ≥ C > 0, for any S = p∗Ŝ, since F is stable over (Y, ω).
So it suffices to show that there exists a constant C ′ so that

1

rk(Ŝ)

∫
Ŷ
c1(det Ŝ) ∧ αi ≤ C ′ .

To show this, take a line bundle L over Ŷ that is ample enough so that

we have an inclusion as F̂ ↪→ L⊕l, for some l > 0. In particular, Ŝ can

be viewed as a subsheaf of L⊕l, which implies det(Ŝ) can be viewed as a

subsheaf of ∧rk(Ŝ)(L⊕l). In particular, since
∫
D αi ≥ 0 for any divisor D, we

have
1

rk(Ŝ)

∫
Ŷ
c1(det Ŝ) ∧ αi ≤

∫
Ŷ
c1(L) ∧ αi .

The conclusion follows. �

Given the above, the idea is to take limits of the HYM connections Aε on

F̂ over (Ŷ , ωε). We need the following

Lemma 2.12. There exist C independent of ε so that∫
Ŷ
|FAε |2 dVolε ≤ C .

Proof. Indeed, we have∫
Ŷ
|FAε |2 dVolε ≤

∫
Ŷ

Tr(FAε ∧ FAε) ∧
ωn−2ε

(n− 2)!
+ cµ2ε Vol(Ŷε) ,

where c is some dimensional constant. Given this, the result follows from
Lemma 2.10. �

Fix any sequence Ai := Aεi with εi → 0+ as i→∞. Set

Σ = {x ∈ Y reg : lim
r→0

lim inf
i

r4−2n
∫
Bx(r)

|FAi |2 dVolεi > 0} ,

which is a complex subvariety of Y reg of codimension at least 2 (see [31,
Thm. 4.3.3]) and can be decomposed as

Σ = Σb ∪ Sing(A∞)

where Σb denotes the pure codimension 2 part of Σ. By passing to a subse-
quence we can assume

• as a sequence of Radon measures over Ŷ ,

µi := |FAi |2 dVoli ⇀ µ∞ = |FA∞ |2 dVol +ν ,

where ν|Y reg =
∑

k 8π2mkΣk. Here Σk denotes the pure codimen-
sion 2 components of Σ and mk ∈ Z is usually called the analytic
multiplicity of Σk.
• outside Σ, up to gauge transformation, Ai converge to A∞ locally

smoothly.
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Using Siu’s extension theorem [29], combined with [1, Thm. 2], we have the
following results regarding the extension property.

Proposition 2.13. Let F∞ be the holomorphic vector bundle on Y reg \ Σ
defined by ∂̄A∞. Then ι∗F∞ is a reflexive coherent sheaf on Y where ι :
Y reg \Σ→ Y denotes the natural inclusion map. Furthermore, for any local

section s of F∞, log+ |s|2 ∈W 1,2
loc ∩ L

∞
loc.

Proof. The extension can be done in two steps:

(1) by Theorem 2 in [1], F can be extended to be a coherent reflexive
sheaf F∞ → Y reg;

(2) by [29, Thm. 5], F∞ can be further extended as a coherent reflexive
sheaf over Y ; this is because Y s has codimension ≥ 3 and Y is
normal.

Now we prove the second part regarding local sections. For this, one
can directly repeat the argument in [1, Thm. 2] with known results from
[27]. Let y ∈ Y s. By choosing a local coordinate of PN at y, we can
assume Y ⊂ Bl×BN−l and p−1(t) is a smooth surface for generic t ∈ p(Y ).
Here y = (0, 0) and p : Bl × BN−l → BN−l denotes the natural projection.
Furthermore, we can assume the metric on Bl×BN−l is flat. In the following,
we will use A . B (resp. A & B) to denote A ≤ cB (resp. A ≥ cB) for
some constant c. For generic t ∈ p(Y ) as above, denote Yt = p−1(t) ∩ Y ,
ft = log+ |s|2|Yt and Ft = FA∞ |Yt . We know that

∆ft ≥ −|Ft| .

Let χ be a cut-off function in Bl supported in a small neighborhood of 0.
Now we can multiply the above inequality by χ2ft and do integration by
parts to get∫

Yt

|∇(χft)|2 ≤ ε
∫
Yt

|χft|2 + ε−1
∫
Yt

χ2|Ft|2 +

∫
Yt

|∇χ|2f2t

for any 0 < ε � 1. By the Sobolev inequality in [27, Thm. 18.6], we could
conclude ∫

Yt

|∇(χft)|2 .
∫
Yt

|∇χ|2f2t +

∫
Yt

χ2|Ft|2.

From this, we could integrate it with respect to t, and have that for any
K ⊂ p(Y ) compact∫

p−1(K)
|∇′(χft)|2 .

∫
p−1(K)

|∇χ|2f2t +

∫
p−1(K)

χ2|Ft|2

where ∇′ denotes the total derivatives in the fiber direction of the projec-
tion p. Now we can take finitely many such projections p to cover all the
derivatives, thus could conclude log+ |s|2 ∈ W 1,2

loc . Suppose s is a local sec-

tion of E∞. By [21, eq. (5.5)], we have a Sobolev inequality for any function
in W 1,2(Y reg). Since ∆ log+ |s|2 ≥ −µ(E∞), by Moser iteration applied to
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η2 log+ |s|2 where η is a local cut-off function near the point in PN , we know
log+ |s|2 ∈ L∞loc. �

Lemma 2.14. The closure of Σ is a subvariety of Y .

Proof. Using the Bishop extension theorem [3], to show Σb can be extended,
it suffices to show that Σk ⊂ M has bounded volume. Indeed, since µi
weakly converges to µ∞ as a sequence of Radon measures over Ŷ , we have

Vol(Σk) ≤ lim sup
i

∫
Ŷεi

|FAi |2 ≤ C .

The extension of Sing(A∞) follows from that F∞ can be extended to be
global reflexive sheaf over Y and Sing(A∞) = Sing(F∞). �

Now we prove the existence of admissible HE metric in the rank 1 case.

Corollary 2.15. Suppose rkF = 1. Then there exists an admissible HYM
metric on F .

Proof. Indeed, by choosing any higher curve C ⊂ Y reg so that Ai|C con-
verges to A∞ smoothly. Then it is easy to see that F∞|C is isomorphic to
F|C . Since C can be chosen to be any higher degree, we know F and F∞
must be isomorphic. �

Corollary 2.16. F∞ is semistable.

Proof. Suppose S ⊂ F∞ is a proper saturated destabilizing subsheaf with
rkS = m and L = detS. Then the sheaf (ΛmF∞ ⊗ L∗)∗∗ admits a global
nontrivial section s and

µ := µ((ΛmF∞ ⊗ L∗)∗∗) < 0 .

By Corollary 2.15, L admits a HE metric. Applying Proposition 2.13 to
(ΛmF∞ ⊗ L∗)∗∗, we know s is bounded. Moreover, we have

∆|s|2 = |∇s|2 − µ|s|2 ≥ 0 .

A contradiction to s 6= 0 then follows by integration against a cut-off near
the singularities Y s. �

Proof of Theorem 1.1. Since F∞ is semistable and F is stable, by the Mehta-
Ramanathan restriction theorem, we can choose a high degree curve C ⊂
Y \ (Y s ∪Σ) so that F∞|C is semistable and F|C is stable. By assumption,
we know Ai|C converges to A|C smoothly up to gauge. By the well-known
results regarding moduli space of semistable bundles over curves, we know
F|C and F∞|C must be S-equivalent, thus isomorphic. Since C can be
chosen to be of any high degree, we conclude that F and F∞ must be
isomorphic (cf. [14, Lemma 5.4]). For uniqueness, suppose h, h′ are two
admissible HE metrics on F . Then, as in Corollary 2.16, id ∈ Hom(F ,F)
is parallel with respect to the natural metric h∗ ⊗ h′. In particular, if we
write h′ = h(g, ), then g is a holomorphic endomorphism of F . By stability,
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it therefore must be a constant multiple of the identity, and the conclusion
follows. �

As a direct corollary of this, combined with the regularity results, we have

Corollary 2.17. If a reflexive sheaf F → Y admits an admissible HE met-
ric, then F is polystable.

Proof. Semistability follows as in the proof of Corollary 2.16. Suppose S ⊂
F is a proper stable saturated subsheaf with µ(S) = µ(F). Note that S is
reflexive. Let h′ be the admissible HE metric on S. Now as Corollary 2.16,
we know that id : S′ → F is parallel. This implies there is a holomorphic,
[18, Prop. 4.1.7]) implies there is a holomorphic, orthogonal splitting F =
S ⊕ S⊥ off a set of codimension ≥ 3 in Y reg. As above, the sheaves S and
S⊥ extend as reflexive sheaves on Y , and the induced metrics are admissible
HE. The result now follows by induction on the rank. �

3. Bogomolov-Gieseker equality and nef tautological classes

We begin this section with the

Proof of Corollary 1.3. Let Y s ⊂ S ⊂ Y be a closed subvariety of codimen-
sion at least 3 so that F is locally free on Y \ S. Using Proposition 2.3, it
follows exactly as in the proof of Proposition 2.6 that

(2rc2(F)− (r − 1)c21(F))·[H]n−2

=

∫
Y

(2rc2(F , h)− (r − 1)c21(F , h)) ∧ ωn−2

=

∫
Y \S

(2rc2(F , h)− (r − 1)c21(F , h)) ∧ ωn−2 .

The inequality then follows as in the smooth case (cf. [18, Thm. 4.4.7]).
Moreover, in the case of equality, F

∣∣
Y \S is projectively flat. Hence, there

is a representation ρ : π1(Y \ S) → PGLr(C). Since by the codimension
assumption, π1(Y \S) ' π1(Y reg), we obtain from ρ a PGLr(C) bundle P →
Y reg, isomorphic (as projective bundles) to P(F) on Y \S. Let L → P be the
pull-back of OP(F)(1) under this isomorphism. Again using the codimension
of S, we know that L extends as line bundle over π : P → Y reg. Moreover,

L restricts to O(1) on each fiber of P . Hence, π∗L =: F̃∗ is a vector bundle

with a projectively flat connection. Since F̃∗ ' F∗ on Y \ S, and F is

reflexive, we have F̃ ' F on Y reg. This completes the proof. �

These arguments can be further used to improve on several previous
algebro-geometric results corresponding to the case of the normalized tau-
tological class of F being nef, and F pseudo-effective, which we will give
definitions below. We start with Y ⊂ PN , a projective normal subvariety
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that is smooth in codimension 2. Let F be a reflexive sheaf over Y . Denote
F0 = F|Y \(Y s∪Sing(F)). Now we define the normalized tautological class by

ζF := c1(OP(F0)(1)⊗ π∗(det(F0)−1)) ∈ H2(P(F0),Z) ,

where π : P(F0)→ Y \ (Y s ∪ Sing(F)) denotes the natural projection. Here
we used the algebro-geometric convention P(F0) := Proj(⊕k≥0SymkF0).

Definition 3.1. Given F as above

• F is called nef if ζF |π−1(V ) is nef for any smooth projective subvari-
eties V ⊂ Y \ (Y s ∪ Sing(F) of dimension 1, 2.
• pseudo-effective if for any c > 0 there exists i, j ∈ N so that i > cj

and
H0(X,S[i]F ⊗O(jH)) 6= 0

for some ample Cartier divisor H. Here S[i](F) := (Symi(F))∗∗.

Following the argument as [24, Thm. 4.1], we will prove the following
generalization of Corollary 1.3.

Theorem 3.2 (Normalized tautological class is nef). Let F be a
reflexive sheaf over Y . The following are equivalent:

(1) F is locally free over Y reg and ζF is nef.
(2) F is semistable for some ample divisor A (not necessarily the one

from the embedding Y ⊂ PN ) and

(2rc2(F)− (r − 1)c1(F)2) · [A]n−2 = 0 ;

(3) F admits a filtration: 0 ⊂ F1 ⊂ · · · ⊂ Fm = F , where Fi/Fi−1 are
projectively flat over Y reg and µ(Fi/Fi−1) = µ(F).

Proof. Given any sheaf H, we denote

∆(H) := 2rc2(H)− (r − 1)c21(H) .

We assume (1) holds and prove (2). By definition, we know for any smooth
curve C lying in Y reg as the intersections of hypersurfaces in |O(A)|, τF0 |C
is nef, which by the well-known result is equivalent to F0|C being semistable.
This implies F is semistable. Choose S to be a smooth projective surface
in Y \ Y s as an intersection of smooth hypersurfaces in |O(A)| so that F|S
is locally free and semistable. Since τF |S is nef by assumption, by the well-
known result in the smooth case,

∆(F) · [A]n−2 = ∆(F
∣∣
S

) = 0 .

Suppose (2) holds. We prove (3) by induction on rank, where the rank 1
case follows from Corollary 1.3. Assume the statement holds for rank smaller
than rk(F). We can choose E1 ⊂ F to be a saturated stable subsheaf with
µ(E1) = µ(F). Then we have the following exact sequence

0→ E1 → F → G → 0

where E1 is projectively flat over Y reg by Corollary 1.3, and G is torsion-free
and semistable with µ(G) = µ(F). The statement follows from
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(a) ∆(E1) · [A]n−2 = ∆(G) · [A]n−2 = ∆(G∗∗) · [A]n−2=0;
(b) G∗∗ = G over Y reg.

Indeed, we can apply the induction to E1 and G∗∗ to get such filtrations as in
(3), and these naturally give a filtration for F over Y reg. We first prove (a).
Choose a smooth projective surface S ⊂ Y reg given by the intersection of
smooth hypersurfaces in |OY (A)|, and so that E1|S and G|S are torsion-free
and semistable, and F|S is locally free and semistable. We have the exact
sequence

0 −→ E1|S −→ F|S −→ G|S −→ 0 .

By [17, Corollary 7.3.2], we know that

∆(E1) · [S] = ∆(F) · [S] = ∆(G) · [S] = 0 .

Together with the Bogomolov inequality for (G|S)∗∗, this implies ∆((G|S)∗∗) =
0. Thus G|S = (G|S)∗∗ and ∆(G∗∗) · [S] = 0. Note this argument in particu-
lar implies supp(G∗∗/G) has codimension at least 3. But then the argument
in [26, Prop. 2.3] shows that G = G∗∗ on Y reg, and this proves (b). Now
suppose (3) holds and we prove (1). Obviously, F is locally free over Y reg.
For any smooth projective subvarieties V ⊂ Y reg of dimension 1 or 2, we
know F|V admits a filtration so that the graded factors are projectively flat
over V . The conclusion thus follows from the known results in the smooth
case. �

We also have

Theorem 3.3 (Pseudo-effective). Suppose F is a stable reflexive sheaf
over Y so that c1(F) · [A]n−1 = 0, for some ample Cartier divisor A and

S[l]F are all indecomposable. If F is pseudo-effective, then F|Y reg is flat.

Proof. By Theorem 1.1, F carries an admissible HE metric; hence, so does
S[l](F). By Corollary 2.17 and the assumption of indecomposability, S[l](F)
must be stable. By [16, Thm. 1.1] we know that

c1(F) · [H]n−1 = c2(F) · [H]n−2 = 0 ,

and by Theorem 3.2, we conclude that F|Y reg is flat. �

Remark 3.4. In [16], S[l]F is assumed to be stable, and it is concluded that
c1(F)2 · Hn−2 = 0 and c2(F) · Hn−2 = 0. Then by assuming Y is klt and

using [12], the authors can pass to a finite Galois cover ν : Ỹ → Y which is
étale in codimension 1, and thence conclude that the reflexive pullback of F
is a numerically flat bundle.

4. Degenerations of semistable bundles

In this section, we fix X to be a subvariety of PN × P1 so that

p : X −→ P1 = C ∪ {∞}
is a family with p−1(t) smooth for t 6= 0 and p−1(0) normal. Denote Xt =
p−1(t). Let {Et}t6=0 be a family of semistable bundles. We say that {Et}t6=0 is



SINGULAR DONALDSON-UHLENBECK-YAU THEOREM AND DEGENERATION 19

an algebraic family if we can find a coherent sheaf E → X so that E|Xt ∼= Et
for all t 6= 0. In the following we shall always consider such algebraic families.

4.1. The algebraic side. We use the hyperplane section D ⊂ PN to define
stability of sheaves on the fibers of π : X → P1.

Definition 4.1. A coherent sheaf E → X is called an algebraic degeneration
of {Et}t6=0 if E is flat over P1, E|Xt ∼= Et for t 6= 0, and E0 := E|X0 is torsion-
free. E is called a semistable degeneration of {Et}t6=0 if furthermore E0 is
torsion-free and semistable.

We need the following simple observation following from the flatness as-
sumption.

Lemma 4.2. For different semistable degenerations E ′ and E of the same
family {Et}t6=0, det E ′0 ∼= det E0.

To state the main results of this section, we make the following definition.
Given a semistable sheaf F over a projective normal variety Y ⊂ PN with
a fixed polarization. Let Gr(F) be the graded sheaf associated to a Jordan-
Hölder filtration of F . Assume that Y is smooth in codimension 2. Let
T = Gr(F)∗∗/Gr(F). Then dim supp(T ) ≤ n− 2.

Definition 4.3 (Lemma). The algebraic blow-up locus of F is defined as

(4.1) C(F) =
∑

malg
k Σk ,

where Σk are irreducible codimension 2 subvarieties of Y and malg
k is equal

to h0(D, T |D) where D is a generic transverse slice of Σk. In particular,
C(E) is a finite sum.

We refer the readers for detailed proof in Section 2.5 in [13], which is done
for smooth projective varieties but can be seen to work here.

4.1.1. Hecke transform and existence of semistable degenerations. In this
section, we will prove the first part of Theorem 1.5, i.e. a semistable de-
generation always exists which is a slight generalization of [19] using the
same argument outlined in [17, p. 59], where the completeness of the moduli
space of semistable sheaves over a fixed projective manifold is studied. For
the interest of the reader, the extension of a sheaf across a negative divisor
is also studied in [4].

We fix E to be any reflexive sheaf over X so that E|Xt = Et for t 6= 0.
This always exists by assumption. Since E is torsion-free, we know E always
defines a flat family on X over P1. We start with the following observation
which generalizes [5, Lemma 3.23] by the same argument.

Lemma 4.4. E0 is torsion-free.

Proof. Fix any x ∈ X0. By the assumptions, we can represent E near x as

(4.2) 0 −→ E|U −→ O⊕n1
U

φ−→ O⊕n2
U .
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where U is an open neighborhood of x in X . Restricting this exact sequence
to D = U ∩X0, one gets an exact sequence

Tor1(OD, Im(φ)) −→ E|D −→ O⊕n1
D .

Since Im(φ) is torsion-free, by using the natural resolution for OD we have
Tor1(OD, Im(φ)) = 0. This implies E|D ↪→ O⊕n1

D . In particular, E|D is
torsion-free. �

Given any saturated subsheaf S ⊂ E0, i.e. E0/S is torsion-free. Let E ′ be
the sheaf given by the following exact sequence

0 −→ E ′ −→ E −→ (ι0)∗(E0/S) −→ 0 .

Definition 4.5. E ′ is called a Hecke transform of E along S.

By repeating exactly the same argument as [4, Lemma 2.4], we have

Lemma 4.6. E ′ is reflexive and E ′0 is torsion-free. Furthermore, there exists
a short exact sequence

0 −→ E0/S −→ E ′0 −→ S −→ 0 .

Now we start with E as above. We define a sequence of Ek inductively
by defining E1 = E and Ek+1 to be the Hecke transform of Ek along the
maximal destabilizing subsheaf Fk of Ek0 . For each Ek, we can associate it
with a nonnegative number

βk := µ(Fk)− µ(Ek0 ) = µ(Fk)− µ(E0)
which measures how far Ek is from being semistable. Note that βk = 0 if
and only if Ek is a semistable degeneration of {Et}t6=0. In the following, we
denote

Gk = Ek0 /Fk.
By definition, we have the following exact sequence

(4.3) 0 −→ Fk−1 −→ Ek−10 −→ Gk−1 −→ 0 ,

and by Lemma 4.6, we have

(4.4) 0 −→ Gk−1 −→ E
k
0 −→ Fk−1 −→ 0 .

Lemma 4.7. βk decreases and for k large, the following hold:

• βk = βk−1;
• there are natural isomorphisms Fk ∼= Fk−1 and Gk ∼= Gk−1. In

particular, Ek0 = Fk ⊕ Gk.

Proof. It follows from (4.4) that µ(Fk) ≤ µ(Fk−1) since through the last
map in the exact sequence, one has a map Fk → Fk−1. Indeed, this follows
from Fk−1 being semistable if the map is nontrivial. Otherwise, we have a
nontrivial map Fk → Gk−1 and the maximal destabilizing sheaf of Gk−1 has
slope strictly smaller than Fk−1. In particular, we know βk decreases as k
increases, thus must stabilize for k large since it is nonnegative. Now we
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assume the equality holds βk = βk−1 i.e. µ(Fk) = µ(Fk−1). Then we must
have an injective map Fk → Fk−1. Otherwise, we have an exact sequence

0 −→ G′k −→ Fk −→ Fk−1
where G′k ⊂ Gk. This implies µ(Fk) < µ(Fk−1), which is a contradiction.
Given this, if the equality holds, we have the following exact sequence by
the sequence (4.4)

0 −→ Gk−1 −→ Gk = Ek0 /Fk −→ Fk−1/Fk −→ 0 ,

thus an injective map Gk−1 → Gk for k large. Since µ(Gk−1) = µ(Gk),
the inclusion map must induce an isomorphism in codimension 1, thus G∗∗k
are the same for k large. This then implies Gk−1 ∼= Gk for k large. Thus
Fk ∼= Fk−1. �

Now we are ready to prove the main results by following the argument in
[17, p. 59].

Proposition 4.8. For k larger, Ek is a semistable degeneration of {Et}t for
k sufficiently large.

Proof. Otherwise, by replacing E with Ek0 for some k0 large, we assume all
the conditions in Lemma 4.7 hold below. Denote F = Fk and G = Gk. Let

R be the complete DVR associated to the point 0 ∈ P1, and let XR be the
fiber over Spec(R). Denote z to be the generator of the maximal ideal of R
and the fibration still as p : XR → Spec(R). Abusing notation, we continue
to denote by Ek the restriction of Ek to XR. Then Ek is semistable on the
generic fiber of XR → Spec(R). Let Qk = E/Ek. Then Qk|X0

∼= G and by
definitions there are short exact sequence

0 −→ ι∗G −→ Qk+1 −→ Qk −→ 0 ,

where ι : X0 → XR denote the natural embedding. From this, we conclude
that Qk is an R/(zk)-flat quotient of E/(zk)E by [17, Lemma 2.1.3]. In
particular, SpecR/(zk) ∈ Im(π) where π : QuotXR/R(E , P (G)) → SpecR,
thus π must be surjective and this gives a flat quotient E → G in the quot
scheme QuotXR/R(E , P (G)) which destabilizes the sheaf on the generic fiber.
Contradiction. �

4.1.2. Uniqueness of Gr∗∗. The uniqueness of the double dual of the limiting
sheaf in Theorem 1.5 is a direct corollary of the following two lemmas.

Lemma 4.9. Given any two semistable degenerations E and E ′ of {Et}t,
for l large, for generic family of curves Y ⊂ X defined by O(l), denote
Yt = p−1(t) ∩ Y, then E|Y0 and E ′|Y0 are both semistable vector bundles for
t 6= 0. In particular, E|Y0 and E ′|Y0 are S-equivalent.

Proof. The first part is a direct corollary of the MR restriction theorem.
Now we also know E|Yt and E ′|Yt is semistable for t 6= 0. The second
conclusion follows from the geometry of a relative version of the moduli
space of semistable bundles over curves (see [17, Thm. 4.3.7]). �
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Also we need the following well-known lemma.

Lemma 4.10. Gr(E0)∗∗ = Gr(E ′0)∗∗ if and only if E0|Y and E ′0|Y are S-
equivalent for generic curves Y given as a complete intersection of hyper-
surfaces in P(H0(X0,O(l))∗), for l large.

4.1.3. Uniqueness of algebraic blow-up locus when codimXs
0 ≥ 3. In this

section, we assume n ≥ 3. Given E and E ′ two semistable degenerations of
{Et}t, assume C(E) 6= C(E ′), similar to [14, p. 64], we have

Proposition 4.11. By restricting to a generic family of smooth surfaces
transverse to C(E ′) ∪ C(E), we get two different semistable degenerations of
the corresponding restriction of {Et}t in terms of the algebraic blow-locus.

Given this, in the following, we can assume X to be a family of smooth
projective surfaces and two semistable degenerations E and E ′ of {Et} so
that C(E0) 6= C(E ′0). To show uniqueness of bubbling sets, we first briefly
recall how the moduli space of semistable sheaves with given determinants
of numerical classes over X0 = p−1(0) is constructed. We refer readers to
[17] for more details. Using the fact that the set of isomorphism classes of
semistable sheaves is bounded, and hence m-regular for some integer m, we
can put those sheaves in a fixed Quot scheme. More precisely, denote

H := OX0(−m)⊕P (m) ,

and let Rµss ⊂ Quot(H, P ) be the locally closed subscheme of all quotients
[q : H → F ] such that F is torsion-free µ-semistable with rank equal to r,
determinant equal to Q, and same numerical classes. Furthermore, q induces
an isomorphism between V and H0(F(m)). The group SL(V ) acts on Rµss

naturally. Now we consider the universal quotient q̃ : ORµss ⊗H −→ F̃ , and
the line bundle N := λF̃ (u1(c)), where u1(c) is certain sheaf associated to
O(1) and Ox for some point x ∈ X0. For some positive integer ν > 0, N v

is generated by SL(V )-invariant global sections. Furthermore, there is an
integer N > 0 so that ⊕

l≥0
H0(Rµss,N lN )SL(V )

is a finitely generated graded ring. Now define

Mµss := Proj

(⊕
k≥0

H0(Rµss,N kN )SL(V )

)
,

where H0(Rµss,N kN )SL(V ) denotes the space of sections in H0(Rµss,N kN )
invariant under the action of SL(V ). Also, we have a map

(4.5) Φ : Rµss −→Mµss.

which collapses the SL(V ) orbits into points. Furthermore, the image of two
points [q0 : H → E0] and [q′0 : H → E ′0] are the same in Mµss if and only if

Gr(E0)∗∗ = Gr(E ′0)∗∗ , and C(E0) = C′(E ′0) .
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We want now to do such constructions for the family X . Denote

HX = C⊕P (m) ⊗OX OX (−k) .

Now we define RµssX ⊂ Quot(HX , P ) to be the space of flat families of torsion-
free semistable sheaves over X with the same numerical classes and Hilbert
polynomial P as the sheaves in Mµss. By repeating the construction above
for a family, we have a well-defined object

Mµss
X := Proj

(⊕
k≥0

H0(RµssX ,N kN
X )SL(V )

)
,

which admits a natural rational map ΦX : RµssX 99KMµss
X over P1.

Proposition 4.12. For N large, near the central fiber, ΦX is well-defined
and restricts to Φ on the central fiber.

Proof. This follows directly from the construction actually. Indeed, the sec-
tions used to construct Mµss are pulled back from the moduli space of
semistable sheaves over a high degree generic curves. In our case, since
the family is flat, we can always assume the high degree curve in the central
fiber fits into a flat family. Now the conclusion follows from [17, Thm. 4.3.7],
which formulates the relative version of moduli space of semistable bundles
over curves, and this provides enough sections. �

Combined with Proposition 4.11, this implies the uniqueness of the bub-
bling set in Theorem 1.5. Indeed, this follows from that [E0] and [E ′0] give
the same point in Mµss by continuity. In particular, C(E0) = C(E ′0) which is
a contradiction to our assumption. We emphasize here by assumption, we
are working over a family of smooth surface.

4.2. The analytic side. Now we prove Theorem 1.6. Recall we assume
Et → Xt are stable vector bundles for t 6= 0, and we want to study the
analytic degeneration of the corresponding HYM connections with respect
to the natural Kähler metric ωt = ωFS |Xt on Xt induced from the embedding
X → P1 × PN .

As for this, we always fix a sequence Ei := Eti where ti → 0 as i → ∞.
Let Ai be the admissible HYM connection on Eti over (Xi, ωi) := (Xti , ωti).
By passing to a subsequence, up to gauge transforms, Ai converges to an
admissible HYM connection A∞ away from a complex codimension 2 sub-
variety Σ ⊂ Xreg

0 . More precisely, take a precompact exhaustion of Xreg
0

as U1 ⊂ U2 ⊂ · · · ⊂ Xreg
0 . Over each Uj , by fixing diffeomorphisms of the

base, we can assume ωi and the complex structure Ji of Xi are all defined
on Uj which converge to the complex structure and the Kähler metric of
Xreg

0 ∩Uj . Now we can apply Uhlenbeck compactness to get a limit over Uj
and a diagonal sequence argument gives the limiting connection A∞ as well
as the bubbling set

Σ = {x ∈ Xreg
0 : lim

r→0
lim inf

i
r4−2n

∫
Br(x)

|FAi |2 > 0}
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which is a subvariety of Xreg
0 and decomposes as Σ = Σb ∪Sing(A∞), where

Σb is of pure codimension 2 (cf. [31]). As a sequence of Radon measures
over Y reg,

µi := |FAi |2 dVoli ⇀ µ∞ = |FA∞ |2 dVol +ν ,

where ν|Y reg =
∑

k 8π2mkΣk and Σk denotes the pure codimension 2 com-
ponents of Σ. Here mk ∈ Z is called the analytic multiplicity of Σk. In
the following, abusing notation, we will use Σb =

∑
kmkΣk to include the

multiplicity information. Let E∞ be the holomorphic vector bundle defined
by A∞ over Xreg

0 .

4.2.1. Proof of Theorem 1.6 (I). Fix k large enough and a sequence {si}j of
holomorphic sections of H0(Xi, Ei(k)) with L2 norms normalized to be 1.

Lemma 4.13. There exists a constant C so that

‖si‖W 1,2 < C , ‖si‖L∞ < C .

In particular, by passing to a subsequence, si converges locally smoothly to a
nontrivial holomorphic section s∞ away from Σ satisfying ‖s∞‖L2 = 1 and

‖s∞‖W 1,2 ≤ C , ‖s∞‖L∞ ≤ C .

Proof. The W 1,2 bound follows from integration of the equation

∆|si|2 = |∇si|2 − µ|si|2.

Since we have a uniform Sobolev constant for Xti , which is due to the fact
that Xti is a family of minimal submanifold in PN (see [27]), the uniform
L∞ bound follows from Moser iteration. Note here that the Xti are all
smooth. �

Fix k large enough. Choose an orthonormal basis {sji}j for H0(Xi, Ei(k)).

By passing to a subsequence, we can assume sji converges to sj∞. Let

Fk∞ be the image sheaf of the map q∞ : O(−k)⊕Nk → E∞, where q∞ =
(s1∞, · · · , sNk∞ ). Using the argument in [13, p. 54], we have

Lemma 4.14. Fk∞ ⊂ Fk+1
∞ . Furthermore, over any fixed compact subset

K ⊂ Y reg, the equality holds for k large .

Proposition 4.15. E∞ can be extended to a coherent reflexive sheaf E∞ →
X0.

Proof. It suffices to prove that for any r ≤ rk(E∞), there exists a saturated
subsheaf Gr ⊂ E∞, so that Gr extends to a reflexive coherent sheaf on Y ,
and rkGr = r. Then for r = rk(E∞), we must have Gr = E∞ on Xreg

0 , and
the result follows. We prove the existence of Gr by induction on r.

r = 1: Take a nonzero section σ ∈ H0(Xreg
0 , E∞(k)). Then there is a Weil

divisor Z ⊂ Xreg
0 so that the image of the injection

0 −→ OXreg
0

(Z)
σ−−−→ E∞(k)
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defines a saturated rank 1 subsheaf G1 ⊂ E∞. By the Remmert-Stein exten-
sion theorem we know that Z can be extended to a Weil divisor over X0,
since X0 is normal. In particular, this tells us that G1 can be extended to a
coherent sheaf which admits a map to E∞ away from Xs

0 . This proves the
result for r = 1.

r ≥ 1: Assume the statement has been proved for rk = r−1, and let Gr−1 be
a saturated subsheaf of E∞ which can be extended to be a coherent sheaf over
X0. Now we look at E∞/Gr−1. By the asymptotic Riemann-Roch theorem
(see Corollary 2.8), E∞(k)/Gr−1(k) admits a section which generates a rank
1 subsheaf of E∞(k)/Gr−1(k) for k large. Otherwise, Gr−1(k) admits P (k)
sections for k large, which is a contradiction. We pick such a section σ
of E∞(k)/Gr−1(k). As above, we can assume σ gives a rank 1 saturated
coherent subsheaf of E∞/Gr−1. Let Gr ⊂ E∞ be the sheaf which fits into the
following exact sequence over Xreg

0 as

0 −→ Gr−1 −→ Gr −→ L1 −→ 0 .

Since Gr−1 and L1 are coherent over X0, we know Gr is also coherent over
X0. �

As Lemma 2.14, we have

Corollary 4.16. The closure of Σ is a subvariety of X0.

Proof. We first prove the pure codimension 2 part can be extended. Take
such a component Σk. Note for any compact set K ⊂ Y reg,

Σk ∩K ≤ lim sup
i

∫
Xi

|FAi |2 ≤ C

where C is independent of K. In particular, Σk has bounded volume in
PN , thus could be extended by Bishop extension theorem. The extension of
Sing(A∞) follows from Sing(A∞) = Sing(E∞) while E∞ can be extended to
be a coherent sheaf over X0 by Proposition 4.15. �

We still denote the closure of Σ and Σb in X0 by Σ and Σb. Given the
extension property and the asymptotic Riemann-Roch theorem 2.8, we have
the following.

Corollary 4.17. For k large, Fk∞ = Fk+1
∞ and µ(Fk∞) = µ(E). In par-

ticular, the inclusion Fk∞ ⊂ E∞ induces a bundle isomorphism outside a
codimension 2 subvariety.

As an easy corollary of this, we have

Proposition 4.18. For any local section s of E∞, log+ |s|2 ∈ Lqloc for any
q > 1.

Proof. Since E∞/Fk∞ is a torsion sheaf, there exists a holomorphic function
P so that Ps ∈ L2

loc. Note that

log+ |s|2 ≤ log+ |Ps|2 + log+
1

|P |2
.
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Since (log+ x)q ≤ Cq(|x|2+1) for some constant Cq, we know (log+ |Ps|2)q ∈
L1
loc for any q > 1. It remains to show (log+ 1

|P |2 )q ∈ L1
loc. This follows from

(log+ x)q ≤ Cx
1
N for some constant C = C(q,N) and the fact that 1/|P |

2
N

is integrable for N large, which follows from the smooth case by passing to
a resolution of singularities. �

Corollary 4.19. For any global section s of E∞, log+ |s|2 ∈ W 1,2. In
particular, |s| is bounded.

Proof. This follows from an easy cut-off argument. Indeed, we know

∆ log+ |s|2 ≥ −µ(E∞) .

Take a cut-off function χε supported outside an ε neighborhood of Y s∪Σ in
PN satisfying |∇χε| < 1/ε. Now the conclusion follows by multiplying the
equation above by χ2

ε log+ |s|2, integrating by parts, and letting ε→ 0. Then
we get log+ |s|2 ∈ W 1,2. Given this, the L∞ bound follows as Proposition
2.13. �

As a direct corollary of this, similar to Corollary 2.16, we have

Corollary 4.20. E∞ is semi-stable with slope equal to µ(F).

4.2.2. Proof of Theorem 1.6 (II). The first part about Gr∗∗ follows exactly
as section 4.1.2 since we know the limiting sheaf is semistable. The second
part follows from Corollary 2.17.

4.2.3. Proof of Theorem 1.6 (III). Now we assume X0 is smooth in codi-
mension 2. From above, we know E∞ can be extended as a reflexive sheaf
E∞ over X0 and we also have the following natural maps

qki : O(−k)⊕Nk
(s1i ,··· ,s

Nk
i )

−−−−−−−→ Ei
By passing to a subsequence, we can take a limit of {qki }i in the correspond-
ing relative Quot scheme, which we denote as

qalg,k∞ : O(−k)⊕Nk −→ Falg,k.
Similar to [13, Sec. 4.2], we have

Lemma 4.21. qalg,k∞ induces an isomorphism φ : Falg,k → Fk∞ over Y for
k large.

Denote F∞ = ∪kFk∞ which is equal to Fk∞ for any k large. Using Theorem
2.9 and the argument in [26, Sec. 4.3], we have

Proposition 4.22. Σalg
b = C(F∞).

We also observe

Lemma 4.23. By restricting to a smooth family of surfaces Y ⊂ X and
taking a discrete subsequence of smooth surfaces Yi := Y ∩ Xi which con-
verges to a smooth surface Y∞ ⊂ X0 on the central fiber, we can assume the
following
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(1) E0|Y∞ and F∞|Y∞ are torsion-free semistable with the same Hilbert
polynomial;

(2) [H|Yi⊗OYi(−m)→ Ei|Yi ] converges to [H|Y∞⊗OY∞(−m)→ F∞|Y∞ ]
in the corresponding relative Quot scheme.

In particular, C(E0|Y∞) = C(F∞|Y∞).

Proof. The first statement follows from the restriction theorem and a straight-
forward calculation using that E0 and F∞ have the same Hilbert polyno-
mial. For the second statement, we can always take a limit of the se-
quence [H|Yi ⊗ OYi(−m) → Ei|Yi ] in the corresponding Quot scheme as
[H|Y∞ ⊗ OY∞(−m) → F ′∞]; furthermore, F ′∞ and E0|Y∞ have the same
Hilbert polynomial. As [13, Lemma 4.4], there exists a surjective map
F ′∞ → F∞|Y∞ which now has to be an isomorphism since they have the
same Hilbert polynomial. The last statement follows from Proposition 4.12
which implies F∞|Y∞ and E0|Y∞ give the same points in Mµss

Y∞
by continu-

ity. �

Similar to the uniqueness of the cycle in Theorem 1.5, it follows from
Proposition 4.11, Lemma 4.23 and Proposition 4.22

Corollary 4.24. C(E0) = C(F∞) for any semistable degeneration E of {Et}t.
In particular, Σalg

b = C(E0).

5. The Mehta-Ramanathan restriction theorem

In this section, as an application, we will study the relationship between
the MR restriction theorem of semistable bundles with the degeneration of
the semistable bundles through the deformation to the projective cones.

5.1. Deformation to projective cones. Fix (X,L, ω) to be a Hodge man-
ifold, i.e. [ω] = c1(L) for some very ample line bundle L and let V be a
smooth hypersurface define by a section in H0(X,L). We recall the con-
struction of the projective cone. Through the embedding

X −→ PN := P(H0(X,L)∗) ,

V can be realized the intersection of X with a hyperplane PN−1 in PN . Here
PN is endowed with the Fubini-Study metric given by the L2 metric. Using
the L2 metric, we can write PN = CN ∪ PN−1 and a point in PN will be

denotes by Z := [Z1, · · · , ZN+1]. We also denote Ẑ := [Z1, · · · , ZN , 0]. Now
we can take the affine cone C(V ) given by V in CN and the projective cone

C(V ) is given by adding a copy of V to C(V ) at infinity. Denote by ω0 the

induced metric on C(V ) ⊂ PN . In general, C(V ) is not normal. We have
the following well-known lemma (see [15, I-Ex. 3.18, II-Ex. 5.14]).

Lemma 5.1. The following are equivalent:

(1) C(V ) is normal;
(2) H0(PN ,O(k))→ H0(V,O(k)|V ) is surjective for each k;
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(3) The homogeneous coordinate ring of X in PN is an integrally closed
domain.

Let X̂ be the blow-up of X × P1 along V × {0}. Denote q : X̂ → P1 as
the natural projection map. We know q−1(t) = X for t 6= 0 and q−1(0) =
X ∪V NV where NV denoes the space by adding an infinity copy of V to NV

and X are attached along V ⊂ X and the infinity section V . It is well-known

that we can blow down X̂ by contracting a copy of X in the central fiber to
get X , which now is a flat family of irreducible varieties. Let p : X → P1

denote the natural projection map and denote Xt = p−1(t) as before. The
subtlety is that X0 might not be normal in general, and so in order to apply
the degeneration results we obtained in Section 4 we need to make this extra
assumption.

Let L the line bundle obtained by first pulling back L over X × P1, then

pulling back to X̂ and tensoring it with −NV , finally pushing down to X
through the blow-down map. We have the following result and examples
from [7, 20].

Lemma 5.2. (1) There exists a natural map φ : C(V ) → X0 which is
an isomorphism away from the vertex. It is an isomorphism if and
only if H0(X,O(kL))→ H0(V,O(kL|V )) is surjective for each k.

(2) X is a flat family and there exists an embedding ι : X → PN × P1

where L = ι∗π∗1OPN (1). Here π1 : PN×P1 → PN denotes the natural
projection map.

Example 5.3. In the construction, let X be a Riemann surface of g ≥ 1
and V be a point p. In this case, one readily checks that C(V ) = P1 while
X0 has to be singular since its arithmetic genus is g ≥ 1.

Example 5.4. In the construction, if X is Fano or a simply connected
Calabi-Yau manifold, X0 always coincides with C(V ).

Example 5.5. In the construction, we take X = Pn, L = O(k) and V to
be a degree k smooth hypersurface. In this case, it is known that V must be
projectively normal (see [15, Ex. II.8.4]). Furthermore, all the conditions in

Lemma 5.2 are satisfied. The central fiber X0 is normal and X0 = C(V ).

When k = 1, we know C(V ) = Pn.

We will use the following notation for the cone C(V )

• denote the vertex of C(V ) by o ∈ C(V );

• let π : C(V ) \ {o} → V be the natural surjective map;

• denote ι : C(V ) \ {o} ↪→ C(V ) the natural embedding.

For use later, we observe the following

Corollary 5.6 (HE metrics on cone-type sheaves). Let E = ι∗π
∗(E|V ) be

a polystable stable reflexive sheaf over C(V ), then an admissible HE metric
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on E can be given by

h :=
|Ẑ|2µ

|Z|2µ
π∗h

where h is a HE metric on E|V and µ = µ(E). In particular, the admissible
HE metric on E restricts to the admissible HE metric on E|V .

Proof. It suffices to show that h is also an admissible HE metric on E .
Indeed, by definition

Fh = µ∂∂̄ ln |Z|2 Id−µ∂∂̄ ln |Ẑ|2 Id +Fπ∗h .

Since

ω0|C(V ) =
√
−1∂∂̄ ln(1 + |z|2) =

|z|2

1 + |z|2
√
−1∂∂̄ ln |z|2 +

√
−1∂|z|2 ∧ ∂̄|z|2

(|z|2 + 1)2|z|2
,

where z = ( Z1
ZN+1

, · · · , ZN
ZN+1

), by a direct computation we have

√
−1Λω0Fπ∗h =

|Z|2

|Ẑ|2
µ Id .

Similarly,
√
−1Λω0∂∂̄ ln |Ẑ|2 =

|Z|2

|Ẑ|2
Id .

In particular, we have
√
−1Λω0Fh = µ Id. Also it is obvious that the L2

norm of Fh is bounded over C(V ), since it has quadratic blow-up when
n ≥ 3, and

√
−1Fh = µ idωFS |V when n = 2. The conclusion follows. �

5.2. Semistable bundles through deformation to projective cones.
In the following, we will work under the assumption that X0 constructed
above is normal. We will use the induced metrics from the embedding
X ⊂ PN × P1 from (3) in Lemma 5.2 for the deformation of the base as
projective varieties. Notice that a semistable bundle F → X gives rise to
an algebraic family {Et = F}t. As a special case of Theorem 1.5, we have

Corollary 5.7. Assume X0 is normal. A semistable degeneration of {Et =
F}t always exists. For different semistable degenerations E and E ′,

Gr(E0)∗∗ = Gr(E ′0)∗∗ ,

and when n ≥ 3, C(E0) = C(E ′0).

Assume now that F is stable, and let At be the unique HYM connection
on Et = F with respect to the corresponding induced metric. As a special
case of the discussion in Section 4.2, by passing to a subsequence, we can
assume At converges to A∞ with blow-up locus Σb subvarieties of X0. Let
E∞ be the reflexive sheaf over X0 defined by A∞. As a consequence of
Theorem 1.6, we have

Corollary 5.8. Assume X0 is normal. For each limiting pair (A∞,Σb),
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• E∞ can be extended to a reflexive sheaf E∞ over C(V ). Furthermore,
for any q > 1; for any global section s, log+ |s|2 ∈W 1,2 ∩ L∞;
• Gr(E∞)∗∗ = Gr(E0)∗∗;
• Assume n ≥ 3. Then Σb = C(E0) for any semistable degeneration E

of {Et = F} through the deformation to projective cones and E∞ =
Gr(E0)∗∗

Remark 5.9. • In a sense, under the given assumptions, our results
produce a canonical object when the restrictions of semistable bun-
dles to smooth hypersurfaces fail to be semistable.
• Using the example E = TPn and V = Pn−1, A∞ does not have a cone

property. Indeed, in this example A∞ will be the original HYM
connection because the isomorphism class of TPn is C∗ invariant.
This is very different from [6].

By replacing L with Lk in the construction and choosing V generic, we
know from the MR restriction theorem that F|V is stable. In this case, a
natural semistable degeneration E can be constructed so that E0|C(V )\{o} =

π∗(E|V ). By Corollary 5.6 and Corollary 5.8, we have the following analytic
version of MR restriction theorem for stable bundles

Corollary 5.10. Assume X0 = C(V ) is normal and that F|V is stable.
Then F∞ = ι∗π

∗(F|V ) and A∞|V is the HYM connection on F|V .

Proof. The sheaf part is clear. For the connection part, it suffices to notice
that for the HE metric constructed on ι∗π

∗(FV ) in Corollary 5.6, the sheaf
is generated by L2 sections, as is the sheaf defined by the limiting HYM
connection. In particular, the isomorphism between F∞ and ι∗π

∗(FV ) is
uniformly bounded, thus parallel as in Corollary 2.17. �

Data Availability Statement. Data sharing not applicable to this article
as no datasets were generated or analyzed during the current study.

Conflict of Interest Statement. On behalf of all authors, the corre-
sponding author states that there is no conflict of interest.

References

1. Shigetoshi Bando and Yum-Tong Siu, Stable sheaves and Einstein-Hermitian metrics,
Geometry and analysis on complex manifolds, World Sci. Publ., River Edge, NJ, 1994,
pp. 39–50. MR 1463962

2. Paul Baum, William Fulton, and Robert MacPherson, Riemann-Roch for singular

varieties, Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 101–145. MR 412190
3. Errett Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11

(1964), 289–304. MR 168801
4. Xuemiao Chen and Song Sun, Algebraic tangent cones of reflexive sheaves, Int. Math.

Res. Not. IMRN (2020), no. 24, 10042–10063. MR 4190396
5. , Singularities of Hermitian-Yang-Mills connections and Harder-Narasimhan-

Seshadri filtrations, Duke Math. J. 169 (2020), no. 14, 2629–2695. MR 4149506



SINGULAR DONALDSON-UHLENBECK-YAU THEOREM AND DEGENERATION 31

6. , Reflexive sheaves, Hermitian-Yang-Mills connections, and tangent cones, In-
vent. Math. 225 (2021), no. 1, 73–129. MR 4270664

7. Ronan J. Conlon and Hans-Joachim Hein, Asymptotically conical Calabi-Yau mani-
folds, iii, (2014), http://arxiv.org/abs/1405.7140.

8. Simon Donaldson, Anti self-dual Yang-Mills connections over complex algebraic sur-
faces and stable vector bundles, Proc. London Math. Soc. 50 (1985), 1–26.

9. , Infinite determinants, stable bundles, and curvature, Duke Math. J. 54 (1987),
231–247.

10. Hubert Flenner, Restrictions of semistable bundles on projective varieties, Comment.
Math. Helv. 59 (1984), no. 4, 635–650. MR 780080

11. William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzge-
biete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag,
Berlin, 1984. MR 732620

12. Daniel Greb, Stefan Kebekus, and Thomas Peternell, Étale fundamental groups of
Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke
Math. J. 165 (2016), no. 10, 1965–2004. MR 3522654

13. Daniel Greb, Benjamin Sibley, Matei Toma, and Richard Wentworth, Complex alge-
braic compactifications of the moduli space of Hermitian Yang–Mills connections on
a projective manifold, Geom. Topol. 25 (2021), no. 4, 1719–1818. MR 4286363

14. Daniel Greb and Matei Toma, Compact moduli spaces for slope-semistable sheaves,
Algebr. Geom. 4 (2017), no. 1, 40–78. MR 3592465

15. Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52,
Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
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