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It is widely speculated that auditors’ public forecasts of bankruptcy are,
at least in part, self-fulfilling prophecies in the sense that they actually cause
bankruptcies that would not have otherwise occurred. This conjecture is hard
to prove, however, because the strong association between bankruptcies and
bankruptcy forecasts could simply indicate that auditors are skillful forecast-
ers with unique access to highly predictive covariates. In this paper, we in-
vestigate the causal effect of bankruptcy forecasts on bankruptcy using non-
parametric sensitivity analysis. We contrast our analysis with two alternative
approaches: a linear bivariate probit model with an endogenous regressor,
and a recently developed bound on risk ratios called E-values. Additionally,
our machine learning approach incorporates a monotonicity constraint corre-
sponding to the assumption that bankruptcy forecasts do not make bankrupt-
cies less likely. Finally, a tree-based posterior summary of the treatment effect
estimates allows us to explore which observable firm characteristics moderate
the inducement effect.

1. Introduction. A “going concern opinion” is an assessment by an auditor that a firm
is at risk of going out of business in the coming year. Here, a “concern” refers to a firm, and
“going” refers to staying, as opposed to going out of, business. According to U.S. securities
regulations, a public company that receives an adverse going concern opinion must disclose
it in the firm’s annual filings with the Securities and Exchange Commission. Once issued and
disclosed, a going concern opinion may directly contribute to a firm’s bankruptcy risk, for
example, by inducing lenders to pull lines of credit or increase borrowing costs.! As reported
in Maurer [2020]:

Keywords and phrases: BART, Causal Inference, heterogeneous treatment effects, self-fulfilling prophecy,
sensitivity analysis.

1See Maurer [2020] for a recent discussion of going concern opinions in the news. See Chen et al. [2016] for
a discussion of how adverse going concern opinions can adversely affect borrowing costs.



Companies that receive a going-concern audit opinion may be subjected to more rigorous covenant
terms or downgrades in their credit ratings, said Anna Pinedo, a partner at law firm Mayer Brown.
Fractured relationships with customers could also strengthen a business’s competitors, she said.

Estimating the magnitude of such an “inducement effect” is complicated by the unavail-
ability of the auditors’ private information to the analyst. That is, in addition to publicly
available firm information, auditors have access to “private information” gleaned from confi-
dential documents and via firsthand knowledge of undocumented attributes such as the firm’s
corporate culture. This paper considers the question: do going-concern opinions help to pre-
dict bankruptcy because they incorporate the auditor’s private information or because of an
inducement effect? This is a textbook example of causal inference where the potential un-
observed confounders are particularly pictureseque: what do auditors know that we (the an-
alysts) do not? We introduce methodology to quantify the impact of private information on
the probability that a firm files for bankruptcy in the fiscal year following the issuance of a
going concern opinion. We conduct a sensitivity analysis rooted in nonlinear, semiparametric
regression techniques and a generalization of the bivariate probit model with an endogenous
regressor. Our use of “machine learning” tools to study this problem adds to a growing liter-
ature on applying machine learning methods to accounting data. Bao et al. [2020] deploy an
ensemble model to predict fraud, Brown et al. [2020] incorporate a Bayesian topic modeling
algorithm to predict intentional financial misreporting, and Bertomeu et al. [2021] provide an
overview of how machine learning methods are growing in accounting research, specifically
in regards to the study of accounting misstatements. We conclude that there is evidence for
inducement under plausible assumptions on the distribution of the auditors’ private informa-
tion.

1.1. Methodological background. Denote the treatment variable by G; for “going con-
cern” so that G; = 1 for the ith firm in our sample if that firm received an adverse going
concern opinion in the prior year. Denote the outcome variable B; for “bankrupt” so that
B; =1 filed for bankruptcy. In terms of potential outcomes [Rubin, 1974], we are interested
in two scenarios: B} and BY, which are the outcome of a firm i if it had received the treatment
and if it had not received the treatment; only one of these potential outcomes is observed.

The primary estimand of interest will be the causal risk ratio (CRR):
(1) T=E(B")/E(B’)

which we will often refer to as simply the “inducement effect.” Alternatively, we can define
the inducement effect in terms of the “do”-operator of Pearl [2000] as

) 7=E(B=1|do(G=1))/E(B=1|do(G=0))

where do(G = g) refers to an exogeneous intervention, in contradistinction to probabilistic
conditioning. We will also consider the risk difference

3) A=E(B') —E(B"

and consider how these two estimands differ as a function of observable firm characteristics.

The fundamental problem of causal inference [Holland, 1986] is that (B!, B®) are never
observed simultaneously, rather only one or the other is observed. Consequently, the condi-
tions under which the CRR can be estimated must be carefully assessed and their plausibility
debated. There are three widely used methods for estimating average treatment effects: ran-
domization, regression adjustment (broadly construed to include matching and propensity
score based methods), and instrumental variables analysis. To briefly review:
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* In a randomized controlled trial, the treatment variable—G in the present context—is in-
dependent of the potential outcomes B! and B; in this case, E(B') = E(B | G = 1), the
right hand side of which is readily estimable from observed data (and likewise for the
G =0 case).

* When a randomized experiment is not possible (such as in the present example) one instead
may hope to find a set of control variables x for which E(B! | x) = E(B | G = 1,x)
and E(B° | x) = E(B | G = 0,x), in which case treatment effects can be estimated by
estimating these conditional expectations via regression modeling. This condition is called
conditional ignorability, or, alternatively, x are said to satisfy the back-door criterion Pearl
[2000].

* A third possibility is that a sufficient set of controls is unavailable, but an instrument for
the treatment assignment is available. An instrument is a variable that is causally related
to the treatment but not otherwise associated with the response variable. In the current
context, an instrument variable (IV) would be a one that affects the probability that an
auditor issues a going concern opinion without directly affecting bankruptcy probabilities
or sharing common causes with bankruptcies. Here, we do not elaborate on the details of
instrumental variable regression, but see Imbens [2014] for a recent survey and Larcker
and Rusticus [2010] for a discussion of the use of IV specifically in accounting research.

In the present context, none of these three approaches are available. A sufficient set of con-
trols is certainly not readily available and the existence of a valid instrument is doubtful be-
cause firms choose their own auditor, rendering auditor attributes endogenous. Although there
are other approaches—such as regression continuity design [Imbens and Lemieux, 2008,
Thistlethwaite and Campbell, 1960], difference-in-differences [Card and Krueger, 1994],
and the synthetic control method [Abadie et al., 2010, Abadie and Gardeazabal, 2003]—
they apply in idiosyncratic settings that are not representative of the bankruptcy inducement
problem.

With none of the usual tools available to us, it may be possible to make additional model-
ing assumptions that yield identification of the treatment effect. One such model for bivariate
binary observations is the bivariate probit model with an endogeneous regressor [Woolridge,
2010, Section 15.7.3]. Such model-based identification is generally undesirable because the
identifying form of the likelihood typically lacks plausible justification [Manski, 2007]. Ac-
cordingly, it is prudent to consider a range of different assumptions (model specifications)
and observe how the estimated treatment effects vary as a result. In this paper, we propose a
method for modeling the strength of unobserved confounding in a machine learning frame-
work which permits convenient sensitivity analysis without unrealistically constraining the
observed data distribution.

1.2. Methodological contribution of this paper. 'This paper brings together three lines of
methodological research. First, we develop a generalization of the bivariate probit with endo-
geneous regressor and use this unidentified model to conduct a sensitivity analysis. Second,
we use modern Bayesian tree-based classification models to estimate the identified parame-
ters in our model and describe a numerical procedure to map these parameters back to the
causal estimands of interest. This approach represents both a novel use of Bayesian machine
learning as well as a novel application of machine learning to the applied problem of whether
going concern opinions induce bankruptcy. Additionally, this model incorporates the assump-
tion that going concern opinions cannot make bankruptcies less likely, a plausible assumption
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that potentially improves estimation accuracy. Finally, we apply a tree-based posterior sum-
marization strategy to our estimates of the individual treatment effects to identify interesting
subgroups for further scrutiny, a method first described in Hahn et al. [2020], building on a
framework laid out in Hahn and Carvalho [2015] for linear models.

1.3. Paper structure. Because this work touches on many disparate areas, an overview
organizing the contents may be helpful.

* First, we review the traditional parametric model used for the binary-treatment-binary-
response setting with unmeasured confounding, which is the bivariate probit model with
endogenous regressor. We provide a novel justification of this model in terms of Pearl’s
causal calculus using a latent factor representation of the bivariate probit likelihood.

» Next, we generalize this model by relaxing the linearity and distributional assumptions,
making it robust to misspecification.

* The generalized bivariate probit model is not point identified, making a sensitivity analysis
necessary. A computationally efficient method for conducting the sensitivity analysis is
developed, which uses a single Bayesian model fit of the reduced form parameters.

* We then introduce monotone Bayesian additive regression trees, which is a custom modifi-
cation of the popular BART model [Chipman et al., 2010], and describe the Markov chain
updates for enforcing monotonicity in the treatment variable.

* Putting these pieces together, the new machine learning sensitivity analysis is applied to
over 20,000 data points from publicly traded U.S. firms. Results are compared to a model-
free sensitivity analysis approach called E-values [Peng and VanderWeele, 2016], which
generalize the well known Cornfield bounds [Cornfield et al., 1959]. Decision trees are
used as a posterior summarization tool to discover variables that moderate the inducement
effect.

» Additionally, the new approach is investigated via several simulation studies to evaluate its
behavior relative to alternative approaches when the data generating process is known.

2. The bivariate probit model with endogenous predictor. A well-known model that
has been used for problems similar to the one described here is the bivariate probit with
endogenous predictor [Woolridge, 2010, Section 15.7.3]. This model can be expressed in
terms of bivariate Gaussian latent utilities Z, and Z, that relate to going concern opinions
and bankruptcy:

Zgs\ iid Bo + B1x; 1p
4 )~ b)) = ! Y= .
) (Zb) NpZ)  p <a0 1 oy o1
The premise of this model is that p reflects the influence of private information available to
the auditor but not the researcher, and x; represents covariates of a company that is available

to both the auditor and to the researcher. The observed binary indicators, G and B, relate to
these latent utilities via

() G=1{Z,; >0}
6) B=1{Z;> -G}

The coefficient v governs the strength of the inducement effect.
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The basic identification strategy can be motivated geometrically. Let
o1 T
M = [ ™or T
00 710

where 7, = Pr(B = j,G = k), which describes the four scenarios resulting from our equa-
tions for G and B. Figure 1 gives a visual representation of the IT matrix.
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Fig 1: The bivariate probit entails ellipse shaped probability contours, where (when ~ = 0) the prob-
ability mass associated to each quadrant represents the four combinations of the bivariate binary ob-
served variables (B, ). The shaded region in the right panel, labeled “A”, is subtracted from the upper
left quadrant and added to the upper right quadrant when a going concern is issued, thus reflecting the
endogeneity of the going concern variable. The parameters p and ~ are estimable because changes
in the shape of the ellipses, governed by p, lead to more distinct apportioning of probability than do
changes in the width of the A region, governed by ~.

Note in Figure 1 that g determines the location (center of ellipse) and the correlation p
determines the tilt and concentration of the probability contours. Inducement introduces an
extra parameter which lowers the threshold for bankruptcy by ~.

2.1. A causal interpretation of v. Having presumed a particular parametric model for the
distribution of the data (G, B) (conditional on covariates x), we would like additional license
for the interpretation that p captures the contribution of auditor’s additional information on
bankruptcy likelihood while ~y captures the contribution of inducement effects on bankruptcy
likelihood. To justify this interpretation, we turn to the causal analysis framework of Pearl
[2000]. Recall that in Pearl’s framework, the inducement effect would be written as

(7 Pr(B=1|x,do(G=1))/Pr(B=1]|x,do(G=0)),

where do(G = 1) denotes the intervention of issuing a going concern, irrespective of the
stochastic data generating process. Denote by U the auditor’s additional information. Sup-
pressing the covariates x, the relationship between GG and B can be expressed using the causal
diagram depicted in Figure 2.

This diagram asserts several causal assumptions. First, the issuance of a going concern
does not cause the existence of auditor’s additional information: there is no arrow running
from G to U. Second, bankruptcies cannot cause going concerns: there is no arrow running
from B to G. Similarly, bankruptcies do not cause the creation of auditor’s additional infor-
mation for predicting bankruptcy: there is no arrow from B to U. All of these assumptions
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Fig 2: Conditional on observable attributes x (not shown), the causal diagram above stipulates the

temporal ordering among the firm’s private information U, the auditor risk assessment GG, and the
firm’s bankruptcy outcome, B.

follow straightforwardly from a temporal ordering—auditors first procure information con-
cerning bankruptcy propensity (U), they then issue going concern opinions (G), and then
firms either go bankrupt or not (B).

Because U disconnects alternative routes from B to G and no directed path exists from G
to U, U is said to satisfy the back-door criterion Pearl [2000], and we can compute Pr(B =
1| x,do(G = 1)) via the expression:

(8) Pr(B=1|x,do(G=1))= /Pr(B =1|x,U=u,G=1)f(u)du,
where f(u) is the marginal density of the random variable U'.

The difficulty, of course, is that U is unobserved in our problem so f(u) can never be
estimated from data. However, we can re-express the bivariate probit model directly in terms
of U in order to derive the expression of Equation 8 in terms of parameters p, v, and /3. This
demonstrates how the functional form of the model dictates the causal estimand in Equa-
tion 7, which in turn establishes the causal interpretation of the v parameter.

In detail, re-writing Equation 4 conditional on U gives a model with diagonal error covari-
ance:

Zgi [ Bo+ Bixi+ngU _ (v 0O
9) <Zb,i> N(p, %), u—<a0+alxi+mU , T = 0 )

where U ~N(0,1), vy =1 — 12, v, = 1 — n; and p = nyn. Although this representation is
non-unique in (g, 75, Vg, Vp), it turns out that the expression in Equation 8 will not depend
on these values. This representation allows us to apply the causal assumptions depicted in
the causal diagram above, which in turn allows us to derive the counterfactual probability of
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bankruptcy as:

Pr(B=1|x,do(G=1))= /Pr(B =1|x,U=u,G=1)N,(0,1)du,
= / 1—®(0;7 + ap + aax + mpu)N,, (0, 1)du,

0
:/1 —/ Ny (7 + ao + a1x + myu, vp)dwN, (0, 1)du,
—0o

(10) 0
=1 —/ /Nw<7+040+C¥1X+T]ba7vb>Nu(O;1)dadw7
—00

0
=1- / Nuw(y + ap + agx, 1)dw,

—00
=1-®(0;7+ ap + a1x),
=®(y+ ap + x).

Here ®(0; 1) denotes the CDF of a normal distribution with mean g and variance 1, evaluated
at 0. A similar calculation can be done for Pr(B = 1| x,do(G = 0)), allowing us to recover
the causal risk ratio as

T(xi) = @(7 + ag +xa1)/P(ap + x1).

In other words, fitting a bivariate probit model to the data (G, B, x), coupled with the causal
assumptions encoded in the causal diagram Figure 2, implies a causal inducement effect that
can be written in terms of « and . Although -y is a shared constant parameter, its impact on
the risk ratio for a given firm will depend on both x and .

2.2. Identification and estimation for bivariate probit models. The previous section re-
lated the parameters of the bivariate probit model with endogenous regressor to the causal
risk ratio. However, identifiability is a distinct concern. Identification of parameters in bi-
variate probit models is subtle and deserves a careful discussion. The treatment in Heckman
[1978] derives the bivariate probit model from a system of simultaneous equations. Section
3 of Heckman [1978], page 949, provides a proof that the associated reduced form parame-
ters of the model are identified without any exclusion restrictions, which would require that
the going concern and bankruptcy equations do not share all of their covariates in common.
Identification follows from the functional form of the probit likelihood, and indeed Heckman
[1978] contains a section devoted to maximum likelihood estimation. Heckman [1978] also
treats the continuous (non-binary response) version of the same structural system; in that
case, exclusion restrictions are necessary for identification, and, in that case, estimation can
proceed by a two-stage least squares procedure without specifying a likelihood function.

Evans and Schwab [1995] study an applied problem using the binary response formulation
of the Heckman [1978] model, but do not assume the probit formulation and rather proceed
to estimate parameters using an OLS based procedure. In this context, the role of an exclu-
sion restriction is an open question as Altonji et al. [2005] point out; however, the two-step
procedure applied to the binary response setting gives inconsistent estimates.

In summary, textbook treatments of the bivariate probit model equivocate on the necessity
of an exclusion restriction [Woolridge, 2010, Chapter 15]. To be clear, if one assumes the
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bivariate probit formulation, then an exclusion restriction is not necessary. If fitting a gen-
eralized linear model to a bivariate binary response without specifying a link function, an
exclusion restriction is necessary. Here, these concerns are secondary, as we do not demand
identification, but proceed instead via a sensitivity analysis.

3. Modular sensitivity analysis with machine learning. In this section we propose our
new approach for machine learning-based sensitivity analysis by generalizing the bivariate
probit model. We begin by defining the joint probability of treatment and outcome as

(11) Pr (B,G | x) :/Pr(B\X,U:u,G)Pr(G\X,U:u) f(u)du
R

for latent variable U. In this formulation, U has two special properties. First, it is as-
sumed to be the orthogonal component of the private information in the sense that U L X,
hence x does not appear in f(u). Second, U is assumed to be complete, in the sense that
Pr(B | x,u,G’) can be interpreted causally in G, because U is a sufficient control vari-

able. That is, Pr(B' | x,u) = Pr(B|x,do(G =1),u) = Pr(B|x,G =1,u) and similarly

for G = 0; accordingly, the inducement effect for firm 1 is

(12) r(xi) = JePr(B=1|x,G=1,u) f(u)du.
JePr(B=1]x,G=0,u) f(u)du

Because the outcome and treatment are both binary, we can expand this probability into its

four constituent parts. For convenience, we specify a probit link, yielding

Pr(le]x,U:u,G:I) :<I>(b1(x)+u),
(13) Pr(B=1|x,U=u,G=0)=%® (by(x) + u),
Pr(G=1|x,U=u)=® (g(x)+u).
Therefore, in terms of f, b1, by and g, the individual inducement effect for firm 4 is
~ Jr®(0i(x) +u) f(u)du
Jg @ (bo(x) + ) f(u)du
and we denote the sample average inducement effect (or average causal risk ratio: ACRR)
as T = %Z?:l 7(x;). Importantly, the orthogonality and completeness of U, as well as the
choice of the probit link, are not substantive assumptions, as U is unobserved and b1, bg
and g are nonparametric functions of x. Rather, these assumptions define U and give the

specification of f(-) meaning; the choice of f, therefore, is a substantive assumption (as it is
in the bivariate probit model as well).

14) T(Xi)

This formulation entails that as © — —oo, the probability of bankruptcy approaches O,
regardless of whether the treatment is administered or not. As u — oo, the probability of
bankruptcy approaches 1. The special case u = 0 corresponds to no unobserved confounding
and the inducement effect can be computed directly from the observed joint probabilities.
Finally, because G and B must have a valid joint distribution at each x value, we have the
following system of equations defining our data generating process:

Pr(B=1,G=1|x) :/R@(g(x) 1) B (b (%) + ) fu) du,

(15) Pr(B=1,G=0|x) :/ (1 —®(g(x) +u)><1>(b0(x) +u) f(u)du,

R

Pr(Bzo,G:Hx):/

R

P (g(x) +u) (1 — (b1 (x) + u))f(u)du
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Observe that this generalizes the bivariate probit model with endogenous regressor: when
U ~N(0,p/(1 = p)), bo(x) = ag + aux, bi(x) = o + a1x + 7, and g(x) = fo + fi1x we
recover that model exactly. Our formulation is quite a lot more flexible: we relax the Gaussian
assumption on the marginal distribution of U, drop the parallel relationship between b (-)
and b;(-), and allow by, by and g to be nonlinear.? The price of the extra flexibility of our
relaxed specification is that f(u) is now unidentified, whereas in the bivariate probit case it
is assumed to be Gaussian but with an identified correlation parameter p.

The left hand side of the system in Equation 15—the reduced form parameters—can be
estimated from the observed data. Any of a host of machine learning classification meth-
ods, such as random forest [Breiman, 2001], xgboost [Chen and Guestrin, 2016], Bayesian
additive regression trees (BART) [Chipman et al., 2010], among others, can be used to ob-
tain estimates of these probabilities. Here, we focus our attention on BART for two reasons:
one, we can impose monotonicity so that going concerns can only increase the probability of
bankruptcy, and two, we obtain a Bayesian measure of uncertainty based on Markov chain
Monte Carlo sampling methods.

3.1. Projecting the reduced form probabilities onto the causal parameters. What re-
mains is to solve for by(-),bo(-),g(-), the structural, or causal, parameters. To do so, we
take a numerical approach, by minimizing the sum of the squared distance between the three
left-hand right-hand pairs in Equation 15:

o <Pr (B=1,G=1] x)) _ ! (/ch(g(@ +u) B (by (x) + 1) £(u) du)

2
+

i (Pr (B=1,G=0)| x)> — ! (/R (1 —o(g(x) + u)><1>(b0(x + u))f(u)du>

2
+

o (Pr (B=0,G=1] x)) gt </R<I>(g(x) +u) (1 — B (b (x) +u))f(u)du)] 2.

Although it is unclear that Equation 15 has a unique solution in b1, by, g, numerical solvers
converge readily in our experience. Heuristically, as a convex combination of monotone func-
tions, each of the individual integrals in Equation 15 is likely to be nearly linear over much
of its domain. Note that the use of the normal inverse CDF simply ensures that the range of
our objective function is unbounded; we observe that this improves numerical stability of our
solver.

We refer to this process as modular because it requires fitting the reduced form model
just one time. Sensitivity of the causal estimates to different choices of f can be assessed
independently using the same estimates (or posterior samples) from a single reduced form
model fit.

4. Monotone BART for reduced form inference.

2Observe that when the form of b1, bg and g are constrained, as in the linear probit model, the choice of the
probit link becomes a substantive modeling assumption, while in our more flexible formulation it is merely a
convenience.
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Fig 3: (Left) An example binary tree, with internal nodes labelled by their splitting rules and terminal
nodes labelled with the corresponding parameters m;. (Right) The corresponding partition of the
sample space and the step function. Figure from Hahn et al. [2020].

4.1. Probit BART Overview. BART, Bayesian additive regression trees, is at its core a
sum-of-trees model. For a p-dimensional vector of covariates x and a continuous response
variable Y, the BART model is

(16) Y =t(x)+e, e ~N(0,0?)

where t(x) = E(Y | x) denotes a sum of L regression trees (i.e., t(x) = Zlel qi(x)). Figure 3
presents an example regression tree. In addition to this additive tree representation, BART
uses a stochastic process tree prior that favors smaller trees; the prior probability of splitting
at depth d is n(1+d)~¢, n € (0,1), ¢ € [0,00) [Chipman et al., 1998].

At each leaf of the tree, parameters are assigned independent regularization priors, m;; ~
N(0,07), where 0, = 0.5/(k\/L), and L is the number of trees.

To handle binary outcomes, BART may be extended through a latent probit formulation,
using the data augmentation approach of Albert and Chib [1998]. For binary outcome B:
B* =t(x) +e¢, e~N(0,1),
B=1(B*>0),
which implies
(17) Pr(B=1|x)=®(t(x))
where @ is the standard normal CDF.

The B* variables may be imputed from their truncated normal full conditional distribu-
tions; conditional on B* the BART fitting algorithm can be applied as usual.

4.2. Monotone probit BART. We turn now to a modification of the BART probit model
for the bankruptcy and going concern data. We model the left-hand side of the system in
Equation 15 using a compositional representation, using two “chained” regression models,
one for Pr (G \ x) and another for Pr(B | x, G). This formulation permits us to insist that
Pr(B=1|G=1,x) >Pr(B=1|G=0,x) for all x, encoding the uncontroversial belief
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that adverse going concern opinions never mitigate bankruptcy risk. To enforce this con-
straint, we parameterize Pr(B =1]|G, x) as follows:

Pr(B=1|G=1,x) = ®[h(x)],

P
(18) Pr(B=1|G=0,x) = ®[ho(x)|Pr(B=1|G=1,x),
= ®[ho(x)]®[h1(x)],
Pr(G=1]x) = o[w(x)).

For each function hg, h1, and w we specify independent BART priors which allows us to fit
the treatment and outcome models separately.

The likelihood for the bankruptcy model is

L(ho,h1;B,G,X) = H ®(hy(x;)) @(hl(xi)))lfBiX

i:G;=1
(19)

IT [@(ho(xi)@ (R (x:))]P (1 = @(ho(x:)) (R (%)) P
:G;=0
This likelihood is challenging: The expression 1 — ®(ho(x;))®P(h1(x;)) does not factor into
separate terms involving the unknown functions hg and h;, making it difficult to adapt the
BART MCMC sampler for posterior inference. To overcome this challenge, we introduce a

data-augmented representation that permits updating hg and h; independently using standard
MCMC for probit BART.

To begin, note that the first term above (corresponding to G = 1) involves only h; so we
only need to augment data in the G = 0 “arm.” When GG = 0, we relate B to two independent
binary latent variables Ry and R; as follows:

Pr(Ry=1|x,G=0) = ®(ho(x)),
Pr(Ri=1|x,G=0)=®(hi(x))

and B = Ry R . Integrating out the latent variables gives Pr(B =1|x,G = 0) = ®(ho(x))®(h1(x))
and Pr(B=0|x,G =0) =1 — ®(ho(x))®(h1(x)) as required.’ The augmented likelihood
function (including Ry, ;) is

L(ho,h1; R, B, G, X) = [ @(ha(x:))® (1 = ®(ha(x:)))' P x
i:Gi=1
[T @a(x)™ (1 = ®(ha(xi)))' i x
:G;=0

(20)
[T @(ho(e) (1 = @(ho(x;)))' "o x
1:G;=0

I 1(Bi=1if Ry;= Ry =1)
:G;=0

After rearranging terms, we have two separate probit likelihoods in hy and 7 (and the do-
main restriction in the last term). Conditional on Ry, R; we can update hg, k1 using standard

30bserve that Pr(B=1|x,G =1) = Pr(R; = 1| x,G = 0), so thinking about this as a generative model
we can interpret R as a simulated outcome if we had observed G = 1 and Ry as an indicator that this outcome
is “thinned” to enforce monotonicity, because, in reality, G = 0.
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probit BART MCMC steps. To update the latent variables Ry; and Ry;, first note that they are
fixed at 1 when B; =1 and G; = 0. When B; =0 and G; = 0, R; = (Ry;, R1;) is sampled
from:

Pr(R; =7 | ho,h1, By = 0,G; = 0) oc®(ho (x;)) ™ (1 — @(ho(x;))) "~ x
2y O (R (%)™ (1 = @ (ha (x3))) '~
1(r# (1,1)),

which is the joint probability distribution of the latent variables from Eq. (4.2), truncated

away from the Rg; = Ry; = 1 region.* For readers interested in convergence properties of
our MCMC sampler, we refer you to Appendix A.

4.3. BART Hyperparameters. We run the monotone BART and BART algorithms with
mostly the default specifications of Chipman et al. [2010]. As mentioned in Chipman et al.
[2010], a benefit of the BART model is its relative insensitivity to hyperparameter tuning.
Specific specifications that we change relative to the default hyperparameters are that we use
2,000 burn-in draws, 2,000 posterior draws, 1,000 cut-points generated uniformly, and 100
trees (the specifications we use throughout in the simulated data and empirical analysis). For
numerical evidence that our methodology performs well under a variety of settings, we refer
interested readers to section 6, where we present results of a robust simulation study.

5. Empirical analysis of bankruptcy data. In this section, we study the question of
whether adverse going concern opinions cause bankruptcy. We conduct a modular sensi-
tivity analysis based on a monotone BART model fit. This combination allows us to use
machine learning methods to learn potentially complex functional forms for the observable
data distribution—while reaping the estimation benefits of imposing monotonicity—and ob-
tain valid measures of uncertainty for average and subgroup average effects under different
assumptions about the distribution of private information.

Data collection is described in subsection 5.1. Results are presented in subsection 5.2,
specifically posterior summaries of firm-year estimated inducement effects as f(u) is var-
ied. For illustration, several individual firms are investigated in subsection 5.4. Finally, firm
characteristics that moderate the inducement effect are investigated in subsection 5.5.

5.1. Data. Data were collected and merged from Audit Analytics, Compustat, and
BankruptcyData.com for the sample period of 2000-2014 leading to 20,773 firm-year obser-
vations. Of these, 1,535 received an adverse going concern opinion, 522 filed for bankruptcy
the next year, and 282 of these bankruptcies received an adverse going concern opinion the
previous year. The bankruptcy indicator was assigned value of 1 if it occurred within a year
of the audit report. This was done because Statement of Auditing Standards No. 59 requires
audit firms to opine whether there is substantial doubt regarding a client’s ability to continue
operating as a “going concern” over the twelve months following the financial statement
audit.

The following are the control covariates that constitute x:

4Formally, this MCMC sampler affects joint updates for I?; and the latent variables in the two probit BART
models
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Log (Assets): Natural log of total assets

Leverage: Ratio of total liabilities to total assets

Investment: Ratio of short-term investments to total assets

Cash: Ratio of cash and cash equivalents to total assets

ROA: Ratio of income before extraordinary items to total assets

Log (Price) : Natural log of stock price

Intangible assets: Ratio of intangible assets to total assets

R&D: Ratio of research and development expenditures to sales

9. R&D missing: Indicator for missing R&D expenditures

10. No S&P rating: Indicator for the existence of an S&P credit rating

11. Rating below CCC+: Indicator for S&P credit rating below CCC+

12. Rating downgrade: Indicator for an S&P credit rating downgrade from above CCC+ to
CCC+ or below

13. Non-audit fees: Ratio of non-audit fees to total audit fees

14. Non-audit fees missing: Indicator for missing non-audit fees

15. Years client: Number of years client used auditor

16. Average short interest: Interest expense/total assets

17. Short interest ratio: Average short interest (measured in number of shares)/total shares
outstanding three months prior to the auditor signature date

18. Sum of log returns: The sum of log daily return in year ¢

19. Return Volatility: The standard deviation of daily returns in year ¢

20. Time fixed effect: A dummy variable for the years 2000-2014

PN AW

These variables are similar to those used in Gerakos et al. [2016], which were inspired by
DeFond et al. [2002], and were chosen due to their potential relevance to a companies’ up-
coming bankruptcy risk as well as their relevance to the issuance of a going concern opinion.

5.2. Sensitivity to the distribution of private information. For fixed conditional proba-
bilities on (B, G) outcomes in Equation 15, different choices of f(u) will yield different
causal estimates based on solutions to (bg, b1, g). Specifically, the right tail of the density
f(u) governs how likely an auditor is to observe information that would make a bankruptcy
much more likely than suggested by the available covariates, while the left tail governs how
likely an auditor is to observe information that would make bankruptcy much less likely than
indicated by the available covariates. For reference, in a bivariate probit analysis, f(u) is
assumed to have a N(0, o) distribution, where o = 1/p/(1 — p); larger 0 means the available
covariates are a more incomplete guide to actual bankruptcy risk. Table 1 reports estimated
inducement effects for various specifications of the standard deviation of the private informa-
tion, 0 = /V(U). Table 1 confirms our intuition that a larger variance on f(u) will shrink
both our inducement and risk ratio estimates to a null effect. From an empirical perspective,
the table gives us reasonable confidence that there is indeed an effect of going concern on
bankruptcy.

In addition to varying o for a Gaussian distribution over U, we also consider unimodal
asymmetric specifications, reflecting the belief that the unreported information is more likely
to inflate (or deflate) bankruptcy probabilities even though it is most likely that there is no
private information. Specifically, we consider a skewed unimodal (at zero) density with Gaus-
sian tails called the “sharkfin” [Hahn et al., 2017], which has the following expression:

2qf(B) B<0

(22) m(B) = 2f<1p%q,q).q B>0
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Distribution of f(u) Inducement 95% Credible interval Risk difference 95 % Credible interval
posterior mean  for mean inducement posterior mean for mean risk difference
N(0,0 =0.1) 111 (39.6,279) 0.100 (0.071,0.129)
N(0,0 =0.5) 33.9 (11.8,91.7) 0.041 (0.027,0.056)
N(0,0 =1) 4.08 (1.82,9.79) 0.007 (0.004,0.011)
Shark ¢ =0.25, s = 0.5 (0 = 1.05) 1.51 (1.14,2.46) 0.003 (0.001,0.004)
Shark ¢ = 0.75, s = 1.25 (0 = 0.88) 27.8 (9.69,74.9) 0.028 (0.018,0.040)
Symmetric mixture (o = 0.64) 24.4 (8.40,64.2) 0.023 (0.019,0.029)
Asymmetric mixture (¢ = 0.49) 25.6 (8.09,72.0) 0.025 (0.018,0.031)
TABLE 1

Posterior mean estimates and credible intervals for inducement effect and risk differences. See
subsubsection 5.5.1 for a discussion on differences vs. inducement. The reduced form probabilities in
Equation 15 were estimated using BART with a monotonicity constraint on the going concern variable. We
Surther require by (x) > bg(x) in the projection step. Posterior summaries based on 500 Monte Carlo samples
(of the posterior draws for all the firms in our dataset). o refers to the implied standard deviations of the
different distributions.

where f(-) is the pdf of the normal distribution with standard deviation s, and ¢ = Pr(U < 0)
controls the skewness. The right panel of Figure 4 depicts two sharkfin densities with ¢ = 0.1
and ¢ = 0.9 for illustration.

Additionally, we consider two three-component Gaussian mixtures, one symmetric about
zero and the other asymmetric with a high weight on the component with the positive mean
parameter:

f(u) =0.05¢(u; =2, 52) + 0.90¢(u; 0, 5%) + 0.05¢(u; 2, s%)
and
f(uw) =0.01¢(u; —2, s%) + 0.94¢(u; 0, s2) + 0.05¢(u; 2, s2)

respectively, with s = 0.05. Each of these models reflects the case of a small possibility of
quite strong positive or negative private information regarding a firm’s bankruptcy risk.

Table 1 reports posterior estimates of the average inducement effect across the firms in
our study for various choices of f(u). The left panel of Figure 4 shows the sample average
inducement effect (causal risk ratio) as a fraction of the observed risk ratio plotted against o
(the standard deviation of U) for various specifications of f(u); consistent with intuition, it
shows that greater dispersion of f(u) drives the estimated inducement effect to zero, while
the skewness dictates the rate of decay.

5.3. Comparison with the E-value. Rather than modeling the distribution of unobserved
information f(u), an alternative approach is to consider the strength of unobserved confound-
ing that would be necessary to entirely explain the observed association. This approach can
be found as early as Cornfield et al. [1959], and has recently been generalized in VanderWeele
and Ding [2017] and Peng and VanderWeele [2016], who prove that

@) max(RRav. RRum) > {RRE + /RRe5, (R, — RRE5) | /RRE
where

Pr(U=k|G=1,x)
Pr(U=k|G=0,x)’

RRgpy|x = max
k
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Mean Inducement over Mean Observed Risk Ratio for different f
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Fig 4: Left: Plot of inducement effect over observed risk ratio for different standard deviations o for f
normally distributed (red), sharkfin (¢ = 0.9) with right skew (black), and sharkfin (¢ = 0.1) with left
skew (blue). The mean observed risk ratio was 52.68. On right is a plot of the shark fin with ¢ = 0.1
and ¢ = 0.9, for visual purposes.

Pr(B:1|G:g,X,U:k)
RRUB‘x:maX
kg Pr(B=1|G=g,x,U=F)
for g € {0,1} and
[Pr(B=1|G=1,x,U)Pr(U|x)du

true __
(24) RRGB_fPr(B:l\GZO,X,U)PT(WX)d“.

Figure 5 provides a visualization of these terms.

P Unobserved
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X

Fig 5: RRy; is the maximum risk ratio comparing any two categories of confounding and RRy; g is
the maximum risk ratio for any specific level of the unmeasured confounders comparing those with
and without treatment, controlling for x.

Setting RR{ZE = 1 in expression Equation 23, Peng and VanderWeele [2016] define the
E-value (for evidence value) as

(25) mE-value = RRYS, + \/ RRE: (RRE — 1),

which can be interpreted as the minimum strength of association that an unmeasured con-
founder would need to have with both G and B (conditional on x) to fully explain the
observed treatment-outcome association. Note that for large observed risk ratios (that is,
RR ~ RR — 1), the E-value is essentially proportional to the observed risk ratio itself.
Accordingly, if we compare our model-based sensitivity analysis estimates to the E-value, we
find that when f(u) concentrates around zero, the associated causal risk ratio becomes the
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observed risk ratio, which is effectively the E-value. However, for different choices of f(u),
the associated causal risk ratio at different x values can differ from the observed risk ratio in
interesting ways, which we explore in the following sections. Figure 6 plots posterior means
of 7 against the posterior mean of the E-value for the auditing data for the distributions of U
reported in Figure 12. Essentially, E-values are simply a scale multiple of the observed risk
ratio, which is precisely the causal risk ratio when there is assumed to be no private infor-
mation (lower right panel of Figure 6). However, less dogmatic choices of f(u) also yield
substantial inducement effect estimates for some firms (first three panels of Figure 6).

Sharkfin q=0.75,s=1.25 ¢=0.88 Sharkfin q=0.25,5=0.5 6=1.05

o
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Fig 6: Posterior means of 7 across 500 draws for different distributions of f(u) vs. the
E-value per firm calculated from the posterior mean of the risk ratio from RR®S, =

GB|x —
Pr(B=1|G=1,x)/Pr(B=1|G=0,x).

5.4. Posterior Individual Inducement Effects for Specific Firms. By numerically solving
Equation 15 for (bg, b1, g) at each posterior draw, for a given firm-year observation and a
given choice of f(u), a full posterior distribution over causal estimands for that observa-
tion can be obtained. Scrutinizing these posteriors for specific firms provides an intuitive
approach to investigating the results of the sensitivity analysis that is more granular than
simply reporting sample averages across all observations. To this end, the posterior mean in-
ducement effect, as well as a 95% credible interval, are presented in Table 2 for a selection of
illustrative firms. Figure 7 depicts a histogram of posterior draws of the inducement effect for
Apple (from year 2001) and Radioshack (from 2014) using an asymmetric Gaussian mixture.

We find that the inducement effect varies both across posterior draws as well as across
firms as a function of the density f(u). Differences between firms are illuminating: for ex-
ample, Apple in 2001 had a significantly higher inducement effect than Blockbuster in 2009,
but this is at least in part an artifact of Apple 2001 having an extremely low probability of
bankruptcy. This points to a general phenomenon with risk ratios, which is that they can
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Firm Going Bankruptcy Auditor mean mean mean mean 7 95% Credible mean mean mean 7 95% Credible
Concern RRpg By By post interval for 7 By By post interval for 7
(%) (%)
JetBlue (2007) No No E&Y 4.96 0.005 0.062 1.96 (1.00,6.16) 0.030 0.035 1.20 (1.00,2.64)
JetBlue (2009) No No E&Y 44.1 0.001 0.011 12.6 (1.19,51.8) 0.005 0.024 8.26 (1.08,73.3)
Apple (2001) No No KPMG 957 0.001 0.024 247 (11.2,1392) 0.002 0.034 284 (1.05,2159)
Build a Bear (2010) No No KPMG 177 0.001 0.021 57.1 (3.21,463) 0.005 0.021 422 (1.09,518)
Build a Bear (2014) No No E&Y 18.1 0.005 0.030 6.93 (1.45,21.3) 0.008 0.011 1.42 (1.00,2.92)
Radioshack (2014) No Yes PWC 514 0.002 0.015 14.3 (1.49,59.2) 0.005 0.034 11.1 (1.08,70.8)
Blockbuster (2004) No No PWC 48.1 0.004 0.035 17.0 (1.48,76.6) 0.008 0.023 5.51 (1.07,11.0)
Blockbuster (2009) Yes No PWC 7.99 0.029 0.107 421 (1.51,10.8) 0.040 0.063 1.64 (1.00.4.19)
Six Flags (2006) No No KPMG 12.8 0.010 0.046 5.84 (1.31,18.9) 0.014 0.018 1.32 (1.00,3.34)
Six Flags (2009) Yes Yes KPMG 333 0.037 0.052 1.71 (1.00,5.14) 0.044 0.047 1.09 (1.00,2.06)
Largest RD Sub 188 41 19.3 0.073 0.193 6.24 (1.19,28.0) 0.075 0.151 242 (1.05,6.60)
Largest RR Sub 178 52 540 0.002 0.041 63.2 (3.91,234) 0.005 0.036 15.9 (1.69,67.9)
TABLE 2

Left: Posterior estimates of the inducement effect given f(u) ~ N(0,0 = 0.5) for select firms. Right: Posterior
estimates of the inducement effect given f(u) is the asymmetric Gaussian mixture with an upweighted right
component for the same firms. The second from bottom row references the bottom right of the tree (left panel) of
Figure 10, which are the firms with the largest subgroup risk difference effects. The bottom row is referencing the
bottom right of the tree (the left panel) of Figure 8, which are the firms with the largest subgroup risk ratio
effects. The going concern and bankruptcy columns in these two rows refer to the number of firms in those
respective subgroups that were issued going concern opinions and filed for bankruptcy.

Asymmetric Mixture(c=0.49) Apple 2001 Radioshack 2014
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Fig 7: Histogram of posterior estimates of the individual inducement effects given f(u) with the
distribution on the left (moderate confounding) for Apple 2001 and Radioshack 2014. Neither received
an adverse going concern, but Radioshack did go bankrupt. Radioshack was audited by PWC, and
Apple was audited by KPMG.

be dramatically impacted by the denominator; we explore this fact further in the following
section.

5.5. Exploratory subgroup analysis. With firm-year specific treatment effects in hand,
one can conduct an ex post regression tree analysis to isolate subgroups of firms with sub-
group average treatment effects that depart from the overall average. Specifically, we identify
moderating subgroup of variables by fitting a single regression tree using the individual in-
ducement effect estimates (posterior means) as the response variable and observable firm
(and auditor) features as predictors (as detailed in Woody et al. [2020]). For predictors we
use the same covariates reported in subsection 5.1, all of which are plausible moderators of
the inducement effect.

The subgroup analysis presented here is based on U ~ N(0,c = 0.5) to the left hand side
of Equation 15. The left panel of Figure 8 shows the resulting tree fit. Using this tree, we
can identify subgroups based on the corresponding partition implied by terminal node (leaf)
membership. However, the resulting point estimates only tell part of the story. For a fuller

100
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Fig 8: Left: A small tree fit to inducement effects (risk ratios). This is also the group of variables

Posterior Inducement
we investigate as moderators. Follow down tree to identify subgroup. Right: Plot of difference of
inducement effects across the posterior draws between the largest and smallest inducement effect
subgroups (bottom right and bottom left respectively on the tree).

picture, we can consider the posterior distribution of subgroup differences, even for different
choices of f(u) than the one used to produce the tree. We compute the subgroup difference of
mean inducement effects for each posterior draw between the subgroups with the largest and
smallest subgroup effects as determined by the regression tree. This analysis is repeated for
four different distributions of f(u): fi(u) ~N(0,0 =0.5), fo ~N(0,1), f3(u) which is a
mixture model with more weight on a far bump to the right (see Figure 7), and fy(u) which is
a three component Gaussian mixture with 90% of the area centered around 0, and 5% around
u = —2 and u = 2. The right panel of Figure 8 shows posteriors of subgroup differences in
inducement effects (causal risk ratios); the sign of the differences is preserved across various
choice, while the magnitude varies (as one might anticipate).

With respect to economic interpretation, the tree presented in Figure 8 shows that firms
with higher stock prices [Log (Price) ] and greater investments [Investments and R&D]
have higher risk ratios. Prior studies find that firms with higher stock prices [Campbell et al.,
2008] and greater R&D have lower bankruptcy risk [Jindal and McAlister, 2015]. Firms with
greater fixed assets investments are also considered being relatively “safe.” Thus, the higher
risk ratios for these firms are likely driven by small denominators.

5.5.1. Risk Difference vs. Inducement. At this point, it is instructive to consider whether
different estimands may be moderated by different covariates. In particular, the results in
Figure 8 suggest that risk ratios may be dominated by the denominator, which may be affected
by different variables than those which affect the numerator. Accordingly, in Figure 9, we fit
a regression tree to point estimates of the Pr(B =1 x,do(G =0)). For this tree, we find
that firms with higher leverage and lower stock returns and prices have higher probabilities
of bankruptcy absent a going concern opinion.’

We next consider the risk difference Pr(B=1|x,do(G=1)) —Pr(B =1]x,do(G =0)).
While risk ratios can be unappealingly large for firms with very small bankruptcy risk, risk

> Campbell et al. [2008] find similarly that the probability of bankruptcy increases in leverage and decreases
in share price.
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Fig 9: Left: A small tree fit to the Pr(B =1|x,do(G =0)), By for short. Right: Plot of differences
of By across the posterior draws between the largest and smallest By effect subgroups (bottom right
and bottom left respectively on the tree).

differences (necessarily) have the opposite complication, which is that a difference of 0.1
“means” something quite different for a firm with control probability of 0.5 than it does for
one with control probability 0.9. Fortunately, the risk difference has another interpretation in
contexts like the present one where treatment effects are assumed to be monotonic: the risk
difference is equivalent to the probability that a firm went bankrupt because of the going con-
cern opinion. This interpretation is derived as follows. Consider the four possible potential
outcomes, depicted in Table 3, which gives each configuration a suggestive name.

Name Bl BY

No Inducement 0 0

Prevention 0 1

Induced Bankruptcy 1 0

No Prevention 1 1
TABLE 3

Because we are operating in the binary treatment/binary response world, we have just four outcomes. The first
row refers to a firm that, regardless of a receiving going concern opinion, does not go bankrupt (“No
Inducement”). “Prevention” refers to the situation in which, without the treatment, the firm would have gone
bankrupt, but with the going concern opinion it does not. We do not allow for this situation given our
monotonicity assumption Pr(B =1|x,G= 1) > Pr(B =1|x,G= O). “Induced bankruptcy” refers to the
situation in which the firm goes bankrupt because of the going concern opinion. “No prevention” means,
regardless of a going concern opinion being issued, the company goes bankrupt.

The marginal probabilities are then simply the sum of rows where “1” appears in the
corresponding column of Table 3:

] Pr(B =1|x,do(G =0)) = Pr(Prevention) + Pr(No prevention)
(26)
Pr(B =1|x,do(G =1)) = Pr(Induced bankruptcy) + Pr(No prevention)

But, under the monotonicity assumption, Pr(Prevention) = 0, in which case

(27) Pr(B=1]|x,do(G=1)) — Pr(B=1|x,do(G = 0)) = Pr(Induced bankruptcy).

Accordingly, in Figure 10, we fit a regression tree to point estimates of the (causal) risk
difference Pr(B =1]|x,do(G =1)) — Pr(B =1]|x,do(G =0)). At the top of the tree, we
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Pr(B =1] x,do(G:O)), which under monotonicity of going concerns, is equivalent to the
probability that the bankruptcy was induced. Right: Posterior subgroup differences between the
largest and smallest treatment effect subgroups (bottom right and bottom left respectively on the tree).

find that firms with greater leverage are more likely to have an inducement effect. This result
1s consistent with Chen et al. [2016], who find that debt contracts often include covenants
that mechanically increase interest rates when the borrow receives an adverse going concern
opinion. At the second level, we find inducement is likely to occur when the firm has an S&P
credit rating. Consistent with this result, Feldmann and Read [2013] find that S&P tends
downgrade credit ratings after the issuance of a going concern opinion. At the third level,
larger firms are more likely to have an inducement effect. This result could be due to firms’
information environments varying with firm size.

It bears emphasis that the tree-based posterior subgroup analysis presented above is simply
an exploration of the posterior distribution. Consequently, the posterior difference shown in
the right panels of Figure 8, Figure 9, and Figure 10 require no further adjustment. Similarly,
the CART fits presented in the left panels cannot be “over-fit.” The posterior distribution
is where the inferences are performed, CART is being used merely as a way to navigate
a high dimensional posterior. Trees are restricted to be small to ease interpretation and to
focus on subgroups with relatively large sample sizes. Ideally, these summaries would not be
endpoints of an analysis, but the starting point for further investigation into the moderating
role of particular attributes.

5.6. Comparison with Bivariate Probit. In this section, we compare our methodology
directly to an implementation of the bivariate probit regression for the auditing data. Our
estimand of interest is the risk difference in this section (see subsubsection 5.5.1 for a dis-
cussion on risk differences vs. inducement), as this estimand more clearly shows the ad-
vantages of our flexible model. Figure 11 shows two advantages of our methodology. First,
as discussed throughout the document, we can model a variety of different “confounding”
situations through the choice of f(u). Second, our model seemingly gives more reasonable
estimates. Because of our monotonicity restraint, we do not have any negative estimates,
whereas the bivariate probit regression included multiple negative estimates of the risk differ-
ence, which in the context of the problem does not appear reasonable. Figure 11 specifically
compares two f(u) configurations with standard deviations similar to the estimated value
from the bivariate probit regression p = 0.420. As we show in subsection 6.1, if the true



DO FORECASTS OF BANKRUPTCIES CAUSE BANKRUPTCIES? 21

f(u) ~ N(0, 0.5) Asymmetric Mixture (6=0.49)
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Fig 11: On the horizontal axis is the estimates of the bivariate probit regression with seed 25678. The
estimate of p using the bivariate probit regression was 0.420, which corresponds to a standard devi-
ation (in our model’s form) of 1/p - (1 — p) = 0.494. On the verical axis is the mean of the posterior
risk differences for every firm across two different configurations of f(u). On the left panel, f(u) is
distributed N (0,0.5), and on the right the distribution is the asymmetric mixture from the left panel
of Figure 7 (0 = 0.486).

data generating process is from a bivariate probit model and our choice of f(u) is distributed
N(0,0 = /p(1 — p)), both methods return similar results. If the data generating process is
not the bivariate probit, our method still recovers true estimates well whereas the bivariate
probit does not. Therefore, Figure 11 gives more credence to the theory that the true data
generating process is unlikely to be a bivariate probit model.

6. Simulation studies. In this section we investigate how the new method performs un-
der a variety of different simulated data generating processes and modeling assumptions, in
an effort to build confidence in the empirical analysis above.

* subsection 6.1 shows that when the data are generated according to a linear bivariate probit
model our new approach is able to recover the the true parameter values, despite being
based on a more flexible non-parameteric machine learning specification.

* subsection 6.2 shows that our approach can recover true average causal risk ratios when
the data is generated according to more complicated non-linear data generating processes
(and f is correctly specified). This section also explores how misspecification of f affects
the accuracy of the treatment effect estimates.

* subsection 6.3 compares the estimated risk ratios to the corresponding E-values (as was
done in Figure 6), but using simulated data.

* subsection 6.4 demonstrates the improved statistical precision of using the monotonicity
constraint in BART.

6.1. Evaluation on bivariate probit data. 'To verify that the proposed machine learning
sensitivity analysis yields sensible answers, we take advantage of the relationship between
our model and the bivariate probit model with endogenous binary regressor: if we generate
the data from the bivariate probit model with U ~ N(0,0 = 1/p/(1 — p)), the true causal
risk ratios should be recoverable.® Table 4 reports the results of fitting our sensitivity analysis

6Note, the success of our sensitivity analysis is predicated upon minimizing the squared distance between
the three left hand-side pairs in Equation 15. We use the Nelder-Mead algorithm to do so, a commonly used
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model data generated from the bivariate probit

Zgi\ iid _ [ Bo+ Bix; _(1p

<Zb,i> ~ N(u7 2) K= (Oé() + alxi) %= (p 1)
We simulated 25,000 samples, where we sum five uniform(—1,1) x; covariates each with the
same (1 and «y coefficients respectively. We set 5y = 0,81 = —0.2,a9 = —0.5,a1 = —0.5
to generate a reasonable number of going concerns and bankruptcies. We fit the left hand
side of Equation 15 using BART with the monotonicity constraint, whose benefit is shown
in subsection 6.4. Note, in our simulations, we do not solve our systems for every BART
posterior estimate of Equation 15 due to computational constraints. Instead, we take the mean
of the posterior BART probability estimates in the fitting stage and then solving for our
causal parameters bg(+),b1(+), g(+) once for each observation.” We impose the constraint that
b1(x) > bo(x) when solving for the causal parameters.

In simulations (included in Appendix E), we observe that at N = 100,000 the bivariate
probit regression (unsurprisingly) works remarkably well when the data generation process
is in fact a bivariate probit model.® At lower sample sizes, maximum likelihood estimation
of the bivariate probit with endogenous regressor is quite unstable; somewhat surprisingly,
Table 4 shows that our method works well even with N = 25,000 and p = 5 meaning that
the new method has an advantage over the more restrictive, but correctly specified, model in
this case due to computational difficulties of maximum likelihood estimation.

¥ p ACRR true ACRRest ICRRcor ICRR rmse

1.00 025 290 2.94 0.88 1.12
1.75 025 5.35 5.08 0.88 3.74
250 025 834 7.37 0.89 11.03
1.00 040 290 2.82 0.86 1.06
1.75 040 5.35 4.99 0.90 3.57
250 040 8.34 6.74 0.89 12.83
1.00  0.60 2.90 2.77 0.83 1.18
1.75 0.60 5.35 4.68 0.86 4.45
250 0.60 8.34 6.75 0.85 13.53
1.00 0.80 290 2.23 0.61 1.82
1.75 0.80 5.35 335 0.67 6.97
250 0.80 8.34 4.53 0.67 18.99
TABLE 4

We simulate from the bivariate probit with 25,000 observations and deploy our methodology. ACRR = average
causal risk ratio. ICRR = individual causal risk ratio, cor refers to the correlation between predicted and true
for the individual causal risk ratios, and the rmse is the root mean square error.

numerical method for minimization of loss functions [Nelder and Mead, 1965] (although we also employed a
simulated annealing approach and the Broyden—Fletcher—Goldfarb—Shanno algorithm, both giving similar results
as Nelder-Mead).

"This methodology held for all the simulated data; when analyzing the real data we repeated the integrals for
random samples of the posterior BART estimates.

81t is well-known that maximum likelihood estimates of the bivariate probit model can be unstable (i.e., many
local modes), especially when there are a large number of predictor variables (see Meng and Schmidt [1985]
and Freedman and Sekhon [2010]). Our simulations bear this out; with thousands of observations, estimates
of p were quite inaccurate. Therefore, to verify that we obtain consistent parameter estimates with maximum
likelihood estimation (and to cross-check our data generating process), we generate and train our models on
100,000 observations (see the supplementary material [Papakostas et al., 2020]).



DO FORECASTS OF BANKRUPTCIES CAUSE BANKRUPTCIES? 23

6.2. Sensitivity to f. We do much better with our methodology when the data were gen-
erated from a non-linear data generating process, as described below:

bo(x) = x5 + x1 sin(2x¢) — 1.75
b1(x) = bo(x) + 1.5
g(x) =0.5bp(x) + x2 + 0.25
(28) U ~N(p,0?)
G ~Bin(®(g(x) +u))
B|G=1~Bin(®(b(x) + u))
B|G=0~Bin(®(by(x) + u))

where we draw v and b;(-), G conditional on those values, and subsequently the values of B
are drawn conditional on our values of G. The x; are drawn uniform(—1,1), with some x;
passed as covariates in our monotone BART fitting stage that do not appear in the DGP; these
extraneous variables serve as “noise” to complicate the problem and make it more realistic.
Table 5 demonstrates how in this setting our model performs much better than the bivariate
probit. Additionally, we misspecify f(u) to see if we can still return true individual treatment
effects, and, if we fail, what type of distributions cause problems. In Table 5, we misspecify
with Laplacian distributions, as the fatter tail weight could be problematic, and the table
confirms this does appear to be an issue. Additionally, we compare our methodology with the
bivariate probit model, fit with regression spline smoothing and without. Our methodology
does comparatively much better in this setting, as the DGP is highly non-linear.

In Table 6, we generate f(u) according to the shark fin but with o varied to attain certain
variances. The choice of ¢ affects the skewness of the distribution. The shark fin provides
us insight into whether or not skewness or large variances affect our models estimates; as
the previous table showed mean offsets do not seem to impact our estimates too badly. In
Table 7, we see getting ¢ wrong (skewness) seems less impactful, meanwhile downwardly
estimating variance seems to bias the estimates of the average causal risk ratio (ACRR) up,
while guessing variance too high downwardly biases the average causal risk ratio. Table 8
investigates more drastically misspecifying ¢ or o.

flw) true true est. RMSE Wrong f(u) Wrong  Wrong LBP LBP SBP SBP
ACRR ACRR est. RMSE  est. RMSE  est. RMSE
N(0,1) 443 4.71 1.66  Lap(0,1.2) 2.02 3.09 4.19 1.98 4.46 2.00
N(0,1.5) 2.80 2.81 0.70  Lap(0, 1.75) 1.68 1.36 3.22 0.85 3.38 0.94
N(0,2) 2.14 2.11 0.36  Lap(0, 2.5) 1.42 0.83 0.44 1.81 0.37 0.73
N(0,2.5) 1.81 1.80 0.25  Lap(0, 2) 2.04 0.37 1.81 0.46 0.37 1.46
N(-1,1) 8.18 9.38 5.07 Lap(—1,1.3) 1.53 7.83 2.96 6.51 2.83 6.61
N(1,2) 1.74 1.45 0.34  Lap(l,2.4) 1.20 0.57 1.89 0.30 0.62 1.15
N(-2,2) 3.43 5.88 432 Lap(—2,2.3) 1.02 2.49 2.77 0.92 3.03 0.76
N(2,1) 1.68 1.62 0.23  Lap(2,1.3) 1.18 1.39 0.61 0.45 1.75 1.42
TABLE 5

Different f(u) as described in the DGP of Equation 28. N = 25,000. Wrong f(u) indicates the distribution of
U we used to solve the system of equations in Equation 13 (i.e., how we misspecified). True indicates true
average causal risk ratio (ACRR), and correct est. indicates our estimate of the ACRR when correctly specifying
f(u). We use standard deviation instead of variance for our spread parameter. Lap refers to the Laplacian
distribution. LBP refers to bivariate probit regression without smoothing, and SBP refers to bivariate probit
regression with smoothing covariates (i.e., where the smooth term for each covariate is made of basis functions).
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f (w) sharkfin true true est. true  wrong g wrong wrong g

with parameters ~ ACRR ACRR RMSE q est. RMSE
q. s

(0.25,0.82; 3) 1.79 1.81 0.21 (0.40,1.37;3.00) 1.80 0.23

(0.40, 1.37; 3) 2.07 2.08 031  (0.70,2.34;3.00)  2.55 0.94

(0.60, 1.06; 3) 3.10 2.97 0.80  (0.30,1.00;3.00) 1.97 1.43

(0.75, 2.46; 3) 5.86 5.37 259 (0.922.77;3.00)  8.41 5.13
(0.25,0.34;0.5) 4.11 4.27 1.54 (0.10,0.12;0.50) 4.13 1.44
(0.40, 0.56; 0.5)  5.28 5.95 2.71 (0.20,0.26;0.50) 5.25 2.01
(0.60, 0.84; 0.5)  8.63 8.80 5.31 (0.80,1.05;0.50) 10.9 7.60
(0.75, 1.00; 0.5) 13.4 12.3 8.25 (0.45,1.63;0.50) 7.74 10.6

TABLE 6

Different f(u) as described in DGP of Equation 28, all of the “sharkfin” family. ACRR = average causal risk

ratio. N = 25,000. Wrong q indicates that we purposely misspecified g when solving our system of equations,

whereas the true est. columns indicate where we correctly specified f(u) (both the q and s parameters) when

solving our system. ; indicates the variance, whereas the first two entries in shark are the q and s parameters.
Here we vary the skewness while keeping variance constant.

f(u) sharkfin true true est. true wrong o? wrong  wrong
with parameters ACRR ACRR RMSE o est. o
q, s RMSE
(0.25, 0.82; 3) 1.79 1.76 0.38  (0.25,0.47;1.0) 3.55 2.12
(0.40, 1.37; 3) 2.07 2.09 0.61 (0.40,1.12;2.0) 2.76 0.90
(0.60, 1.06; 3) 3.10 3.27 1.54  (0.60,0.92;0.6) 11.3 10.4
(0.75, 2.46; 3) 5.86 7.40 794  (0.75,1.74;1.5) 9.79 6.20
(0.25,0.34; 0.5) 4.11 5.34 6.25  (0.25,0.67;2.0) 1.56 3.16
(0.40, 0.56; 0.5) 5.28 8.91 10.7  (0.40,1.12;2.0) 1.83 4.28
(0.60, 0.84; 0.5) 8.63 9.65 225  (0.60,2.38;4.0) 1.40 9.29
(0.75, 1.00; 0.5) 134 16.6 572 (0.75,3.18;5.0) 1.90 15.5
TABLE 7

Different f(u) as described in DGP of Equation 28, all of the “sharkfin” family. N = 25,000. Wrong o2
indicates that we purposely misspecified our variance (by varying the o parameter) when solving our system of
equations, whereas the true est. columns indicate where we correctly specified f(u) (both the q and s
parameters) when solving our system. ; indicates the variance, whereas the first two entries in shark are the q
and s parameters. Here we vary the variance keeping skewness constant.

True f(u) true ACRRT ACRRC ACRRC Wrongq f(u) ACRRT est. ACRRC est.
ACRRT est. true est. wrong wrong
shark(0.1, 0.30; 3) 1.60 1.62 1.67 1.69 shark(0.9, 2.74;3) 1.36 1.60
shark(0.1, 0.12; 0.5) 3.18 3.16 3.79 3.75 shark(0.9, 1.12; 0.5) 3.82 5.19
shark(0.1, 0.18; 1) 2.32 2.39 2.58 2.69 shark(0.9, 1.58; 1) 2.75 3.72
shark(0.1, 0.18; 1) 2.32 2.39 2.58 2.69 shark(0.5, 1; 1) 243 2.97
shark(0.5, 1; 1) 4.00 4.18 4.66 5.18 shark(0.1, 0.18; 1) 3.16 3.47
shark(0.5, 1; 1) 4.00 4.18 4.66 5.18 shark(0.9, 1.58; 1) 6.78 9.32
shark(0.9, 1.58; 1) 13.1 12.0 19.2 17.6 shark(0.1, 0.18; 1) 2.75 2.56
shark(0.9, 1.58; 1) 13.1 12.0 19.2 17.6 shark(0.5, 1; 1) 4.96 5.66
TABLE 8

Comparing estimates of average causal risk ratio on treated (ACRRT) and average causal risk ratio on controls
(ACRRC) when we more aggressively misspecify the q parameter, which controls the skewness.

6.3. Relationship with E-values: Simulations. Here, we replicate the analysis presented
in Figure 6 with simulated data. Rather than using all the posterior draws given by the BART
model in the simulated data setting, we instead take the mean of the posterior BART proba-
bility estimates in the fitting stage and then solve for the causal parameters by (+), b1 (), g(+)
once for each observation. We impose the constraint that by (x) > bo(x) when solving for
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Sharkfin g=0.75,0=1.25 Sharkiin q=0.25,0=0.5
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Fig 12: Comparison of our individual causal risk ratio estimates vs. individual E-value estimates for
25,000 simulations drawn from the same dgp as specified in Equation 28. Shown are different distri-
butions of f(u), with the bottom right “low u” setting recapitulating the E-value.

the causal parameters. We do this for different distributions of f with the data generated ac-
cording to Equation 28. In Figure 12, we compare our estimate of the inducement effect vs.
the E-value, for different distributions of U. For choices of f that concentrate near zero, the
estimated individual causal risk ratios effectively recapitulate the E-values, while for choices
of f that entail higher probability of relevant unobserved private information the estimates
differ from the E-value in ways that depend on the specific shape of f.

6.4. Value of monotonicity. Figure 13 compares estimates of the individual causal risk
ratios under a BART model with versus without monotonicity. As expected, because the
monotonicity constraint is satisfied in this data generating process, the model that imposes
that restriction exhibits greater accuracy.

7. Discussion. Compared to the popular bivariate probit model, the machine learning
sensitivity analysis introduced here is more flexible and hence, more credible in empirical
analyses. This increased flexibility comes at the price of identification, but this should not
be a barrier to empirical investigation: a thorough sensitivity analysis can still yield evidence
and insight, especially when coupled with posterior subgroup analysis.

Specifically, we conclude that at least some firms appear to experience induced bankrupt-
cies; the degree of private information would have to be extreme to rule this out entirely.
Moreover, it appears that induced bankruptcies are more likely to occur for firms that have
high levels of leverage and that have an S&P credit rating. These results are reassuring given
that adverse going concern opinions can mechanically lead to higher borrowing costs and
credit rating downgrades. The fact that these moderating variables were uncovered by the
model without explicit instruction lends credence to the inducement hypothesis.
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Fig 13: Plots of expected individual causal risk ratios vs. our estimates; i.e., a plot comparing the ratio
of potential outcomes from the model described in Equation 4 (®(ag + a1x; + )/ ®(ap + a1x;))
versus our estimate within the integral of Equation 14. In the DGP, p = 0.25, = 1. The monotone
BART correlation between the truth and estimate is 0.88 and for BART it is 0.83. We simulate 25,000
samples.

Data analyses which mirror the “self-fulfilling prophecy” of the bankruptcy inducement
problem have the potential to benefit from the modular machine learning sensitivity analysis
developed here. For example, the question of whether Catholic high schools lead to higher
college enrollment [Evans and Schwab, 1995] would be of particular interest, as that analysis
employed the bivariate probit with endogenous regressor approach that we have generalized.

Another area of future research would be to allow for the distributions of U to be dependent
across firms. For an individual firm, the interpretation of U is indeed dictated by the choice
of the unidentifiable density function f. However, we are making a substantive assumption
in this paper that the distribution of private information between firms is uncorrelated; this
assumption is what allows us to solve the equations one by one for each firm. In one sense,
this assumption is clearly unreasonable, as unobservable shocks to industries could affect all
firms in that industry. However, such modeling would be entirely assumption-driven (since U
is unobserved) and would not, we surmise, affect the marginal point estimates much. Permit-
ting strong dependencies would, we suppose, affect the resulting uncertainty intervals, but at
the cost of an infeasible computational burden.

In Appendix B, we study the usefulness of a rich economic model that explicitly accounts
for auditor behavior economically. We suggest estimating such a model as a future area of
research. Discussion of this model is left in the appendix as it conflicts with our general ap-
proach, which is agnostic about details of the data generating process. Moreover, it is unclear
whether auditors are actively trying to avoid inducement effects. In this regard, what our
approach is measuring is the observed inducement effect and not the counterfactual induce-
ment effect if auditors had accounted for it when considering the issuance of a going concern
opinion.
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APPENDIX A: MCMC DIAGNOSTICS

We run the monotone BART model with mostly the default specifications of Chipman
et al. [2010] but with 2,000 burn-in draws, 2,000 posterior draws, and 100 trees (the speci-
fications we use throughout in the simulated data and empirical analysis). The BART model
in the convergence comparison uses 1,000 cut-points generated uniformly, as was consistent
throughout the paper. Convergence diagnostics are presented in Table 9.

Name Geweke Toeff
Diagnostic
Bart Pr(B | G =0,x) 0.27 40
Bart Pr(B| G =1,x) 0.40 261
Monotone Bart Pr(B | G =0, x) 0.24 46
Monotone Bart Pr(B |G =1,x) 0.30 187
TABLE 9

The Pr(B |G =0, x) rows refer to training on (only) firms that did not receive a going concern and predict on
the entire dataset. Similarly, Pr(B |G =1, x) refers to only training on firms that received a going concern.
The effective sample size is estimated such that Varycpyc(7) = % The Geweke diagnostics refers to the

convergence diagnostics of Geweke [1992], which returns a Z-score (which we convert to the probability scale)

for test of equality of means between the first and last parts of the MCMC chain. We present the mean of these

diagnostics across 1,000 of the firms in the dataset, checking for the convergence in the posterior predictions.
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Fig 14: Top row are trace plots for the posterior (after 2,000 burn-in samples) of the Apple-2001 firm
year observation. On the left is a trace plot for the monotone BART estimate of Pr(B |G =0, x), the
right is Pr (B |G =1, x). Bottom row are plots of auto-correlation for the MCMC chain.
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1.

APPENDIX B: AUDITORS MODELING ENDOGENEITY

Why auditors do not avoid inducement effects.

Inducement effects occur when lenders (e.g., banks), observing a going concern opin-
ion, force borrowers into bankruptcy. Auditors cannot prevent such inducement effects for
at least two reasons.

First, auditors have an asymmetric loss function. An auditor who fails to issue an ad-
verse going concern opinion for a client that subsequently goes bankrupt (type 2 error) will
face significant litigation risk. In contrast, issuing a going concern opinion for a client that
does not go bankrupt (type 1 error) has lower litigation concerns, because the auditors’ job
is to evaluate whether there is substantial doubt about the entity’s ability to continue as a
going concern for a reasonable period, not to predict bankruptcy. Due to this asymmetric
loss function, auditors have strong incentives to issue a going concern opinion prior to
bankruptcy to reduce their exposure to litigation risk and lower settlement amounts (see
Kaplan and Williams [2013]), implying that their incentive to prevent bankruptcy is not
strong.

Second, whether a firm goes bankrupt depends on the bargaining outcome with its
lenders. It is difficult for auditors to directly interfere with this bargaining process and
prevent bankruptcy from happening.

2. A structural model of going concern opinion.

The auditor chooses to issue a going concern opinion g € {0,1} by maximizing its
expected utility (we drop the conditioning variable X; to economize notation):

@) B {g + (1= B)us + gBua + (1 g)Bug + (1 - g)(1 - Bm] |
ge bl
where B is an indicator for bankruptcy and u;c(y, ... 4 are the utilities for the auditor that
depend on X;, g, and B.
In what follows, we normalize the utilities corresponding to a correct going concern
opinion to zero, that is, ug = u4 = 0. A going concern opinion is issued if and only if

(30) Gzl@E[(l—B)ul\Gzl} ZE[BU3|G:0}

The model is completed by noting that bankruptcy occurs when
(31) e <7 +mnG.

The probability of a bankruptcy equals ®(vy + 71G), where ®(-) is the CDF of a stan-
dard normal distribution. Substituting it into Equation 30, we know that a going concern
opinion is issued if and only if

(32) (1= @(y0 +71))u1 — P(v0)uz > 0.

The auditor uses a threshold strategy to issue a going concern opinion. Our discussion
below assumes that u; < 0 and ug < 0, which is reasonable in that they capture the utilities
to the auditor when issuing an “incorrect” going concern opinion that differs from the
bankruptcy outcome. As shown in Equation 32, the auditor is more likely to issue a going
concern opinion when the cost of type 1 error, |u;], is small, relative to the cost of type 2
error, |us].

The discussion above assumes that the auditor internalizes the inducement effect of a
going concern opinion. On the one hand, the auditors’ job is to evaluate whether there is
substantial doubt about the entity’s ability to continue as a going concern for a reasonable
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period. If a going concern opinion can induce bankruptcy, this effect should be accounted
for. On the other hand, internalizing the inducement effect implies a greater likelihood of a
going concern opinion. This may cause client objection, which may discourage the auditor
from internalizing the inducement effect. This is plausible as going concern opinions are
issued after evaluating business plans proposed by the client. In this case, a going concern
opinion is issued if and only if

(33) (1= ®(0))uy — D(~0)us > 0.

Our structural model captures the utility difference in Equation 32 or Equation 33 us-
ing observable client firm characteristics. The benefit of this structural model is that re-
searchers can separately estimate the sources of inducement effects driven by auditors’
concerns of type 1 and type 2 errors. Estimating this model requires data that can be used
to separate the costs of type 1 and type 2 errors for auditors (e.g., auditor litigation data).

APPENDIX C: ESTIMATING THE RISK DIFFERENCE AS ESTIMAND OF
INTEREST

Rather than looking at the ratio of potential outcomes, it is often the case we want to
investigate the difference in the expected value of each, i.e. we can look at risk differences:

Risk Difference — A = E(B') — E(B°)

In our framework, following similar reasoning as in section 3, risk differences can be defined
as

A(x;) = /R(I)(bl(x) +u) f(u)du — /R<I>(b0(x) +u) f(u)du

The sample average risk difference (ARD) is therefore % Yo A(x;). In the case of the audit
data, the average risk difference refers to percentage point difference in going bankrupt after
receiving a going concern opinion. We esimate the risk difference using our methodology as
well as the bivariate probit with endogenous regressor model, (described in equation(4) in
the main file), to the audit data. Specifically, we used the same covariates as we used when
fitting monotone bart, used the bankruptcy indicator as the binary outcome, and whether or
not a going concern was issued as the “treatment” indicator. Using our methodology, results
for estimating risk differences on the audit data are presented in Table 10.

Analogs of Table 5, Table 6, Table 7, and Table 8 with the causal risk difference as the
estimand of interest are presented in Table 11, Table 12, Table 13, and Table 14.

APPENDIX D: BIVARIATE PROBIT SIMULATION STUDY

Table 15 shows the results when fitting the bivariate probit regression with a maximum
likelihood estimate to the simulated bivariate probit data. Unsurprisingly, this performs well,
with the caveat that we require large N (N = 100, 000) to get these impressive results. We
simulated the samples from the bivariate probit model of the main document, where we sum
5 uniform(-1,1) x; covariates each with the same 3; and «; coefficients respectively. We set
Bo=0,61 =—0.2,a9 = —0.5, 1 = 0.7 to generate reasonable number of going concerns
and bankruptcies.
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Distribution of f(u) ARD post (%) mean By (%) 95% Credible interval for ARD (%)
N(0,0 =0.1) 9.97 11.5 (7.08,12.9)
N(0,0 =0.5) 4.12 5.96 (2.74,5.60)
N(0,0=1) 0.70 2.90 (0.40,1.01)
Shark ¢ =0.25, s =0.5; 0 = 1.05 0.28 2.60 (0.14,0.45)
Shark ¢ =0.75, s =1.25; 0 = 0.89 2.84 4.87 (1.81,3.97)
Symmetric Mixture (o = 0.64) 2.30 4.52 (2.23,2.92)
Asymmetric Mixture (o = 0.49) 2.47 4.62 (2.43,3.14)
TABLE 10

The reduced form probabilities (Equation 15 in the main file) were estimated using BART with a monotonicity
constraint on the going concern variable. We further require by (x) > by(x) in the projection step. Posterior
summaries based on 500 Monte Carlo samples. o refers to the implied standard deviations of the different

distributions. Values listed as the percentage increase in probability of bankruptcy.

f(u) true ARD  Correctest. Correct Wrong f(u) Wrong  Wrong LBP LBP SBP SBP
RMSE est. RMSE est. RMSE est RMSE
N(0,1) 0.30 0.31 0.05 Lap(0,1.22 ) 0.17 0.15 0.14 0.16 0.16 0.16
N(0,1.5%) 026 0.26 005 Lap(0,1.752) 016 012 013 013 006  0.19
N(0, 22) 0.23 0.23 0.04  Lap(0, 2.52) 0.12 0.12 0.23 0.06 0.25 0.07
N (O, 2.52) 0.20 0.20 0.04  Lap(0, 22) 0.25 0. 0.07 0.07 0.23 0.06
N(-1,1) 0.17 0.18 0.04  Lap(-1, 1.32) 0.05 0.14 0.10 0.16 0.11 0.16
N(1, 22) 0.25 0.22 0.06  Lap(l, 2.42) 0.11 0.16 0.17 0.06 0.16 0.08
N(-2, 22) 0.11 0.03 0.09  Lap(-2, 2.32) 0.00 0.12 0.07 0.08 0.07 0.09
N(2,1) 0.30 0.29 0.05 Lap(2, 1.32) 0.10 0.22 0.28 0.13 0.24 0.13
TABLE 11

Different f(u) as described in Equation 28 of the main file. N = 25000. Wrong f(u) indicates the distribution
of U we used to solve the system of equations in Equation 15, i.e. how we mis-specified. True indicates true
ARD, and correct est indicates our estimate of the ARD when correctly specifying f(u). Lap refers to the

Laplacian distribution. Smooth refers to bivariate probit regression with smoothing covariates.

Different f(u) as described in Equation 28, all of the “sharkfin” family. N = 25000. Wrong q indicates that we
purposely mis-specified q when solving our system of equations, whereas the true est. AR and true RMSE
columns indicate where we correctly specified f(u), both the q and s parameters, when solving our system. ;

f (w) sharkfin with true  true est. true wrong q wrong q wrong q

parameters g, s ARD ARD RMSE ARD est. RMSE
(0.25,0.82; 3) 0.28 0.28 0.04  (0.40,1.37;3.00) 0.22 0.05
(0.40, 1.37; 3) 0.26 0.27 0.05  (0.70,2.34;3.00) 0.29 0.05
(0.60, 1.06; 3) 0.23 0.22 0.04  (0.30,1.00;3.00) 0.15 0.07
(0.75, 2.46; 3) 0.18 0.17 0.04  (0.92,2.77;3.00) 0.21 0.08
(0.25,0.34; 0.5) 0.38 0.39 0.05  (0.10,0.12;0.50) 0.39 0.05
(0.40, 0.56; 0.5) 0.35 0.36 0.06  (0.20,0.26;0.50) 0.35 0.06
(0.60, 0.84; 0.5) 0.29 0.30 0.05  (0.80,1.05;0.50) 0.31 0.06
(0.75, 1.00; 0.5) 0.24 0.25 0.05  (0.45,1.63;0.50) 0.21 0.06

TABLE 12

indicates the variance, whereas the first 2 entries in shark are the q and s parameters. Here we vary the
skewness while keeping variance constant.

Table 16 shows the results when we simulated from the bivariate probit and fit with our
methodology, with f(u) assigned appropriately, only this time we are interested in the treat-

ment effect. Our method does well here, with N = 25,000 and p = 5.
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f(u) sharkfin with ~ true  true est. true wrong o? wrong o? wrong o?

parameters g, s ARD ARD RMSE ARD est. RMSE
(0.25,0.82; 3) 0.28 0.28 0.06  (0.25,0.47;1.0) 0.50 0.23
(0.40, 1.37; 3) 0.26 0.27 0.06  (0.40,1.12;2.0) 0.35 0.10
(0.60, 1.06; 3) 0.23 0.22 0.06  (0.60,0.92;0.6) 0.48 0.27
(0.75, 2.46; 3) 0.18 0.17 0.05  (0.75,1.74;1.5) 0.26 0.09

(0.25,0.34; 0.5) 0.38 0.39 0.07  (0.25,0.67;2.0) 0.15 0.24

(0.40, 0.56; 0.5) 0.35 0.36 0.07  (0.40,1.12;2.0) 0.13 0.23

(0.60, 0.84; 0.5) 0.29 0.30 0.07  (0.60,2.38;4.0) 0.04 0.28

(0.75, 1.00; 0.5) 0.24 0.25 0.06  (0.75,3.18;5.0) 0.04 0.24

TABLE 13

Different f(u) as described in Equation 28, all of the “sharkfin” family. N = 25000. Wrong o? indicates that
we purposely mis-specified our variance (by varying the s parameter) when solving our system of equations,
whereas the true est. ARD and true RMSE columns indicate where we correctly specified f(u), both the q and s
parameters, when solving our system. ; indicates the variance, whereas the first 2 entries in shark are the q and s
parameters. Here we vary the variance keeping skewness constant.

True f(u) true ACRDT ACRDC ACRDC Wrongq f(u) ACRDT est. ACRDC est.
ACRDT est. true est. wrong wrong
shark(0.1, 0.30; 3) 0.28 0.29 0.29 0.29 shark(0.9, 2.74;3) 0.14 0.20
shark(0.1, 0.12; 0.5) 0.40 0.40 0.38 0.39 shark(0.9, 1.12; 0.5) 0.39 0.40
shark(0.1, 0.18; 1) 0.37 0.37 0.37 0.36 shark(0.9, 1.58; 1) 0.32 0.37
shark(0.1, 0.18; 1) 0.37 0.37 0.37 0.36 shark(0.5, 1; 1) 0.34 0.36
shark(0.5, 1; 1) 0.32 0.31 0.28 0.29 shark(0.1, 0.18; 1) 0.29 0.24
shark(0.5, 1; 1) 0.32 0.31 0.28 0.29 shark(0.9, 1.58; 1) 0.35 0.34
shark(0.9, 1.58; 1) 0.21 0.20 0.16 0.16 shark(0.1, 0.18; 1) 0.11 0.06
shark(0.9, 1.58; 1) 0.21 0.20 0.16 0.16 shark(0.5, 1; 1) 0.15 0.10
TABLE 14

Comparing estimates of average causal risk difference on treated (ACRDT) and average causal risk difference
on controls (ACRDC) when we more aggressively misspecify the q parameter, which controls the skewness.

ACRD true  ACRDest ICRD cor ICRD ACRR ACRR est ICRR cor ICRR ytrue yest. p p est.
RMSE true rmse
0.23 0.24 0.97 0.02 2.24 2.07 1.00 0.24 1.00 077 025 0.37
0.46 0.46 0.99 0.02 4.32 3.89 1.00 0.87 1.75 1.62 025 031
0.58 0.57 1.00 0.02 6.24 5.40 0.99 2.34 2.50 238 025 030
0.26 0.26 0.99 0.01 242 2.27 1.00 0.22 1.00 085 040 047
0.46 0.46 0.99 0.02 433 3.89 1.00 0.90 1.75 1.63 040 045
0.57 0.56 0.99 0.02 6.14 5.13 1.00 2.83 2.50 234 040 046
0.28 0.28 0.99 0.01 2.57 2.46 1.00 0.17 1.00 092 0.60 0.63
0.47 0.47 1.00 0.01 4.51 4.24 1.00 0.63 1.75 1.70  0.60 0.61
0.59 0.58 1.00 0.01 6.41 5.89 0.99 1.67 2.50 245  0.60 0.61
0.31 0.31 1.00 0.00 2.79 2.80 1.00 0.02 1.00 1.02 0.80 0.80
0.47 0.47 1.00 0.01 4.51 4.26 1.00 0.56 1.75 170  0.80 0.81
0.58 0.58 1.00 0.01 6.31 5.56 0.99 2.25 2.50 2.41 0.80 0.82
TABLE 15

N=100,000. Fit the simulated bivariate probit with the bivariate probit regression. Validates the MLE of the
bivariate probit regression performs well, as well as the validity of our data generation process, however
required a large N to get accurate results. ACRD refers to average causal risk difference, ICRD individual
causal risk difference. ACRR refers to average causal risk ratio, whereas ICRR refers to individual causal risk
ratio.

It was stressed in the main document how using a BART model with a monotonicity con-
straint improves our estimation of the ICRR, but the improvement is even more pronounced
when studying risk differences. In figure Figure 15, we look at the comparison of ICRD (in-
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¥ p ACRD true  ACRDest ICRDcor ICRD RMSE

1.00 0.25 0.29 0.29 0.89 0.05
1.75 025 047 0.47 0.96 0.04
250 025 0.58 0.57 0.97 0.05
1.00 040 0.29 0.29 0.90 0.05
1.75 040 047 0.46 0.94 0.06
2.50 040 0.58 0.55 0.96 0.09
1.00 0.60 0.29 0.29 0.90 0.05
1.75 0.60 047 0.46 0.95 0.05
250 0.60 0.58 0.57 0.98 0.04
1.00 0.80 0.29 0.27 091 0.05
1.75 0.80 047 0.44 0.95 0.05
250 0.80 0.58 0.55 0.98 0.05
TABLE 16

We simulated from the bivariate probit with 25,000 observations and deploy our methodology. cor refers to the
correlation between predicted and true for the average causal risk difference (ACRD), and the rmse is the root
mean square error. Fit using the ‘GJRM’ package of Marra and Radice [2011].

dividual causal risk difference) estimates from data generated by the bivariate probit, with
the left hand side of our system of equation probabilites estimated with BART and monotone
BART. We display in the main file, but with inducements as the estimand of interest.

Monotone BART Fit BART Fit

Estimated ICRD
Estimated ICRD

true ICRD true ICRD

Fig 15: Plots of expected individual causal risk differences (ICRD) vs. our estimates, i.e. a plot com-
paring the difference in potential outcomes from the bivariate probit model (® (g + a1x; + ) —
D (ap 4+ a1x;)) versus our estimate. In the DGP, p = 0.25,+ = 1. The monotone BART correlation
between 7 and 7 is 0.928 and for BART is 0.826

APPENDIX E: COMPARING MACHINE LEARNING METHODS FOR THE
OBSERVATIONAL DATA

Here we present our results from fitting the left hand side of equation(15) in the main
file. In this section, we compare the performance in predicting the left hand side of equa-
tion(15) using various non-parametric “machine learning” tools. In particular, we compare
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Fig 16: Left: Area under curve of ROC plot, balanced 5-fold CV. Plot of ROC performance for pre-
dicting Pr(B |G = 1,x) . Corresponds to shaded row in table on right. Right: case 1 is predicting
bankruptcy when no going concern is issued, case 2 is when no concern issued, and case 3 predicts if
concern is issued. All the methods are similar, with monotone BART seeming to be the top performer.

using monotone BART 9 random forests [Breiman, 2001], and xgboost [Chen and Guestrin,
2016]. Referencing Figure 16 seems to indicate our methodology outperforms competitors in
a cross-validation assessment'*.

9We use a BART [Chipman et al., 2010] model for the Pr (G | x) scenario, consistent with the main text.

1070 our main text, we do not do a cross validation to obtain our probabilities, but rather get the probabilities
from deploying the monotone BART models on the entire dataset. In this case, our By, G auc was 0.88, B1, G
was 0.83, and G was 0.92.
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