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Abstract Understanding the subsurface structure and function in the near-surface
groundwater system, including fluid flow, geomechanical, and weathering processes,
requires accurate predictions of the spatial distribution of petrophysical properties,
such as rock and fluid (air and water) volumetric fractions. These properties can be
predicted from geophysical measurements, such as electrical resistivity tomography
and refraction seismic data, by solving a rock physics inverse problem. A Bayesian
inversion approach based on a Monte Carlo implementation of the Bayesian update
problem is developed to generate multiple realizations of porosity and water satura-
tion conditioned on geophysical data. The model realizations are generated using a
geostatistical algorithm and updated according to the ensemble smoother approach, an
efficient Bayesian data assimilation technique. The prior distribution includes a spa-
tial correlation function such that the model realizations mimic the geological spatial
continuity. The result of the inversion includes a set of realizations of porosity and
water saturation, as well as the most likely model and its uncertainty, that are cru-
cial to understand fluid flow, geomechanical, and weathering processes in the critical
zone. The proposed approach is validated on two synthetic datasets motivated by the
Southern Sierra Critical Zone Observatory and is then applied to data collected on a
mountain hillslope near Laramie, Wyoming. The inverted results match the measure-
ments, honor the spatial correlation prior model, and provide geologically realistic
petrophysical models of weathered rock at Earth’s surface.
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1 Introduction

Predicting rock and fluid properties in the layer of soil and weathered rock at Earth’s
surface is important across a broad range of cross-disciplinary problems, from under-
standing the processes that drive subsurface weathering (e.g., St. Clair et al. 2015;
Riebe et al. 2017, 2021; Hayes et al. 2019) to quantifying effects of subsurface water
storage on forest productivity and drought response (e.g., Hahm et al. 2019; Dawson
et al. 2020; McCormick et al. 2021). Predictions of porosity and fluid (air and water)
saturation are especially important to understanding the factors that regulate subsur-
face water flow and storage and thus to quantifying hydrological processes (Rempe
and Dietrich 2018; Harman and Cosans 2019). Hence, predictions of petrophysical
properties such as porosity, mineral volume, and fluid saturation are central to advanc-
ing the science of the critical zone, the layer that extends from treetop to bedrock and
is so named because of its importance to life at Earth’s surface (Anderson et al. 2005;
Brantley et al. 2007).

Direct measurements of petrophysical properties can be obtained from outcrops,
well logs, and core samples, but these measurements may be rare in the critical zone.
To overcome this limitation, the spatial distributions of petrophysical properties are
often estimated from surface-based geophysical images, such as electrical resistivity
tomography and seismic refraction tomography (Holbrook et al. 2014; Parsekian et al.
2015). Seismic velocity and electrical resistivity in the subsurface depend on petro-
physical properties; hence, they can be combined with plausible or measured ranges
in the properties of weathered rock and soil to estimate the thicknesses of soil, sapro-
lite, and weathered rock and to quantify how both porosity and fluid content vary in
each layer (Flinchum et al. 2018a, b; Callahan et al. 2020). For example, low veloci-
ties are observed in weathered rocks with low water content, whereas high velocities
are measured in unweathered rocks with high water content. High resistivity may be
indicative of rocks with low porosity and water content, whereas low resistivity may
be indicative of highly porous, water-rich soil.

Rock physics models (Mavko et al. 2020) generally provide the physical relations
between geophysical data (e.g., elastic and electrical properties) and petrophysical
variables (e.g., rock and fluid properties). Examples of rock physics models include
empirical relations, granular media models based on Hertz–Mindlin grain contact
theory, and inclusion models. These models are used to estimate the elastic response
(P- and S-wave velocities) and electrical response (resistivity) of a saturated porous
rock with known porosity, mineralogy, and fluid saturations. Rock physics models
have largely been developed for hydrocarbon-saturated porous rocks in oil and gas
reservoirs (Mavko et al. 2020) and have been heuristically extended to groundwater
modeling and near-surface geophysics applications (Knight et al. 1998; Knight and
Endres 2005; Moysey et al. 2005; Singha and Moysey 2006; Nenna et al. 2011, 2013;
Holbrook et al. 2014; Flinchum et al. 2018a; Gu et al. 2020).

At the field scale, the prediction of the spatial distribution of rock and fluid prop-
erties from the measured elastic and electrical data in the near subsurface requires
the solution of a geophysical inverse problem (Tarantola 2005; Grana et al. 2021).
Such predictions are then used in near-surface geophysics studies to make quantita-
tive interpretations of water storage and weathering in the critical zone. For example,
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geophysical measurements in mountain watersheds, conducted at the hillslope scale,
have been used to predict porosity to quantify subsurface water-holding capacity (e.g.,
Robinson et al. 2008; Holbrook et al. 2014; Flinchum et al. 2018a; White et al. 2019)
and weathering in the critical zone (Hayes et al. 2019; Callahan et al. 2020). From a
mathematical point of view, calculating the solution of geophysical inverse problems
is challenging due to the uncertainty in the measurements and the non-uniqueness of
the solution. Estimating petrophysical properties is also complicated by the fact that
they are spatially correlated, usually with long correlation in the lateral direction and
short correlation in the vertical direction (Isaaks and Srivastava 1989; Kitanidis 1997;
Chiles and Delfiner 2009).

Deterministic methods, such as gradient-based algorithms, and probabilistic
approaches, such as Bayesian inversion, are commonly adopted in geophysical inverse
problems (Tarantola 2005; Aster et al. 2018; Menke 2018). Joint inversion of geo-
physical data from multiple sources has been presented in exploration geophysics
(Doyen 2007; Grana et al. 2021) as well as near-surface geophysics (Gallardo and
Meju 2003; Meju et al 2003; Linde and Doetsch 2016), mining (Astic et al. 2020),
and CO2 sequestration (Grana et al. 2020; Tveit et al. 2020). Statistical methods
for flow unit classification and zonation problems have been used in Doetsch et al.
(2010), Hachmöller and Paasche (2013), Hermans and Irving (2017), and Parsekian
et al. (2021); however, the extension of these methods to continuous variables for the
prediction of petrophysical properties is still an ongoing research topic.Bayesian inver-
sion for petro-elastic characterization is commonly used in exploration geophysics for
the estimation of elastic properties (Tarantola and Valette 1982; Ulrych et al. 2001;
Scales and Tenorio 2001; Buland and Omre 2003; Tarantola 2005) and petrophysical
properties (Eidsvik et al. 2004; Bachrach 2006; Larsen et al. 2006; Grana and Della
Rossa 2010; Grana 2016; Grana et al. 2017). Reviews of Bayesian inversion meth-
ods for reservoir characterization can be found in Doyen (2007), Azevedo and Soares
(2017), and Grana et al. (2021). Bayesian inversion methods have also been applied to
electromagnetic inversion (Minsley 2011; Ray andKey 2012; Buland andKolbjørnsen
2012; Blatter et al. 2019), ground-penetrating radar tomography (Gloaguen et al. 2007;
Dubreuil-Boisclair et al. 2011; Brunetti and Linde 2018; Hunziker et al. 2019), and
refraction seismic data (Huang et al. 2021). Geostatistical sampling and stochastic
optimization approaches have been applied to multiple geophysical datasets in differ-
ent earth and environmental science applications (Allard et al. 2021; Athens and Caers
2021; Goodwin et al. 2021; Loe et al. 2021; Miltenberger et al. 2021; Redoloza and
Li 2021).

The focus of this work is the rock physics inversion (i.e., a geophysical inverse
problem where the physics is approximated using a rock physics model) for the
estimation of the spatial distribution of the petrophysical properties in unconsoli-
dated, weathered, and unweathered rocks, partially saturated with water and air, in
the critical zone. In particular, this work introduces a geostatistical inversion method
to predict petrophysical properties, specifically porosity and water saturation, from
P-wave velocity and electrical resistivity. The advantage of the proposed inversion is
that it generates geologically realistic realizations of petrophysical properties using
geostatistical algorithms that account for spatial correlation models, computes the
geophysical response by applying nonlinear rock physics relations, and updates the
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initial realizations using stochastic updating conditioned on the measured geophysical
data in a Bayesian framework. The result of the inversion is a set of model realizations
of petrophysical properties of the critical zone representing the posterior probability
distribution of the properties of interest. The proposed implementation is applied in the
joint velocity and resistivity domain and assumes that preliminary seismic and elec-
trical inversion results are available. The objectives herein are as follows: (i) illustrate
the proposed mathematical framework, (ii) demonstrate the approach on plausible
synthetic subsurface models with “known” characteristics of the near-surface critical
zone, and (iii) apply the methodology to real field data with unknown subsurface char-
acteristics and measurements affected by noise, limited resolution, and preprocessing
uncertainty.

2 Method

A rock physics model is a physical relation between the petrophysical property of
interest (m), for example porosity and water saturation, and the available geophysical
data (d), for example P-wave velocity and resistivity. The rock physics model can
be extended to include other model variables such as mineral volumetric fractions,
and multiple geophysical data, such as S-wave velocity and density. The rock physics
model might take different formulations in different lithologies depending on the
mineral composition and structure of the porous rocks (Mavko et al. 2020).

Generally, the input of the rock physics model is a set of volumetric fractions
(i.e., defined between 0 and 1) and the output is a set of geophysical data. Hence,
mathematically, the rock physics model can be written as a function f : [0, 1]nm →
R
nd that approximates the physical relation between m and d as

d � f (m) + ε, (1)

with measurement error ε, where nm is the number of model variables (e.g., nm � 2,
for porosity and water saturation) and nd is the number of geophysical variables (e.g.,
nd � 2, for P-wave velocity and electrical resistivity). The prediction of the model
variables m from the available data d is an inverse problem. Several methods have
been proposed for the solution of inverse problems associated with Eq. (1), including
deterministic and stochastic methods (Tarantola 2005).

In this work, a Bayesian approach is adopted. The solution of the inverse problem is
the probability distribution P(m|d) of themodel variables conditioned on the available
data, and it is calculated according to Bayes’ rule

P(m|d) � P(d|m)P(m)

P(d)
, (2)

where P(m) is the prior distribution of the model variables, P(d|m) is the likelihood
function, and P(d) is a normalizing term such that the posterior distribution P(m|d)
is a valid probability density function (PDF) with integral equal to 1. In some special
cases, for example for linear functions f and Gaussian prior distributions of m, the
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solution can be analytically computed (Tarantola 2005).However, rock physicsmodels
are generally nonlinear. One of the main challenges in petrophysical characterization
is that petrophysical properties are spatially correlated and the prior distribution should
include a spatial correlationmodel (Isaaks and Srivastava 1989; Kitanidis 1997; Chiles
and Delfiner 2009).

A stochastic method based on stochastic sampling and optimization is adopted. In
the proposed approach, an initial ensemble of geostatistical realizations of the model
variables porosity andwater saturation is first generated using the probability field sim-
ulation (PFS)method (Srivastava 1992). Then the ensemble ofmodels is updated using
the ensemble smoother multi-data assimilation (ES-MDA) algorithm (Emerick and
Reynolds 2013) according to the available measurements of P-wave velocity and resis-
tivity to minimize the mismatch between the rock physics model predictions and the
available data. Ensemble-based methods are generally faster than traditional stochas-
tic sampling algorithms such as Markov chain Monte Carlo (Evensen 2009; Posselt
and Bishop 2012). Ayani et al. (2020) show the advantage of using ensemble-based
methods for a geophysical inverse problem for carbon dioxide storage monitoring, by
comparing the inversion results of the ensemble smoother to those of a traditional deter-
ministic inversion, using the same initial geostatistical model and showing the higher
accuracy and lower uncertainty of the predicted solution obtained with the ensemble
smoother. In the following sections, the prior model used to generate model realiza-
tions of porosity and water saturation is first introduced; then the rock physics model
used to compute the predicted data of P-wave velocity and resistivity is described, and
the inversion algorithm to obtain the posterior realizations of the model variables is
presented.

2.1 Geostatistical Simulations

In stochastic sampling and optimization methods for geophysical inverse problems,
model realizations of the variables of interest are sequentially simulated and updated
until their geophysical response (the rock physics model predictions, in this approach)
match the available data. Prior realizations of porosity and saturation are generated
using geostatistical algorithms (Grana et al. 2021) such as sequential Gaussian simu-
lation (SGS), truncated Gaussian simulation (TGS), pluri-Gaussian simulation (PGS),
or PFS. Geostatistical simulations are stochastic algorithms that generate realizations
of the properties of interest by sampling multidimensional random fields with a spatial
correlation model to mimic the expected spatial variability. In general, these methods
assume that the model variables are distributed according to Gaussian prior distribu-
tions. Petrophysical volumetric fractions are bounded between 0 and 1, by definition,
and are generally non-stationary and non-ergodic; therefore, to apply traditional geo-
statistical methods, a normal score transformation maybe be necessary. In this case,
the simulation is performed in the domain of the quantiles of the cumulative density
function of the initial distribution and the results are transformed back. Alternatively,
Gaussian distributions with truncation can be adopted; however, this method is recom-
mended only when the likelihood of values outside of the physical range is negligible.
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In the proposed approach, prior realizations of porosity and water saturation are
generated using the PFS method. The PFS method is chosen for its computational
efficiency in generating conditional Gaussian realizations and its ability to account for
spatially variable mean and variance values (Srivastava 1992); however, the method-
ology could be applied to several geostatistical algorithms including two-point and
multi-point statistics methods (Caers 2011). To simulate a spatial realization x of
a random variable, a spatially correlated realization of a Gaussian random field
z ∼ N (z; 0, C) is first generated assuming a spatial correlation matrix C, for exam-
ple, using the fast Fourier transform with moving average; then, at each location, the
correlated realization z is multiplied by the local standard deviation σ x and the local
mean μx is added

x � μx + σ x z. (3)

The local meanμx and variance σ x can be obtained from a prior trend or computed
from available direct measurements using a kriging approach. If direct measurements
are available, for example from a borehole location, the geostatistical realizations can
be conditioned on the available data by setting σx � 0 at the measurement locations.

The prior distribution of the petrophysical properties, porosity and water saturation,
is defined based on direct measurements (e.g., core samples), nearby outcrop data,
and prior geological information. A prior trend of porosity and water saturation is
adopted, where porosity is a monotonically non-increasing function of depth, and
water saturation is a monotonically non-decreasing function of depth. The prior model
also includes a spatial correlation function that describes how the spatial correlation
of each model variable varies with respect to the distance. In the proposed approach,
the same spatial correlation model is assumed for porosity and water saturation, and
it is a two-dimensional anisotropic spherical correlation function

ρsph(h, θ) �
{
1 − 3h

2l(θ)
+ h3

2l(θ)3
h ≤ l(θ)

0 h > l(θ),
(4)

where h is the distance, θ is the angular coordinate (i.e., the counterclockwise angle
from the Cartesian horizontal axis), and l(θ) is the correlation length defined as

l(θ) � lmaxlmin√
l2max sin

2(α − θ) + l2min cos
2(α − θ)

. (5)

Equation (5) describes the radius of an ellipse parameterized by the maximum and
minimumcorrelation length, lmax and lmin, and by the azimuth angleα, such that l(θ) �
lmax when θ � α, and l(θ) � lmin when θ � α + π . Stochastic realizations are then
generated using the PFS and transformed back in the original domain according to the
inverse cumulative distribution function of the prior distribution. This transformation
might affect the spatial correlation length of the realizations in the vertical direction;
nevertheless, it produces an ensemble of realistic petrophysical realizations with large
variability between the realizations.
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2.2 Rock Physics Model

To predict P-wave velocity and resistivity in the critical zone, an elastic rock physics
model and electrical rock physics relation are adopted. Several rock physics models to
compute the elastic and electrical response of fluid-saturated porous rocks have been
presented (Mavko et al. 2020). One mineral phase (for example, quartz) and two fluid
components, namely water and air, are initially assumed. Therefore, the variables of
interest are porosity φ, water saturation Sw, and air saturation 1 − Sw. Several rock
physics models have been developed to compute the elastic response of fluid-saturated
porous rocks. An overview of rock physics theory is given in Mavko et al. (2020). The
P-wave velocity VP of a fluid-saturated porous rock is computed as

VP �
√

Ksat(φ, Sw) + 4
3Gsat(φ)

ρ(φ, Sw)
, (6)

where Ksat(φ, Sw) and Gsat(φ) are the bulk and shear moduli of the saturated rock,
and ρ(φ, Sw) is the density of the saturated rock. Density ρ(φ, Sw) can be computed
as

ρ(φ, Sw) � (1 − φ)ρm + φρf � (1 − φ)ρm + φ[(1 − Sw)ρa + Swρw], (7)

where ρm is the density of the mineral phase, and ρf is the density of the fluid mixture
that depends on water saturation Sw and the densities of air and water, ρa and ρw. The
bulk and shear moduli of the saturated rock, Ksat(φ, Sw) and Gsat(φ), are generally
computed using Gassmann’s equations (Mavko et al. 2020) and are functions of the
bulk and shear moduli of the mineral, porosity, the bulk moduli of air and water, and
water saturation. Several formulations have been proposed to link the dry rock elastic
moduli to porosity andmineral elasticmoduli, includinggranularmediamodels such as
the soft and stiff sand models (Dvorkin and Nur 1996; Gal et al. 1998; Dvorkin et al.
2014), and inclusion models such as self-consistent approximation and differential
effective medium models (Mavko et al. 2020). The details of the rock physics models
are given in the Appendix.

The resistivity R of the fluid-saturated rock can be computed using modified
Archie’s law (Archie 1942) for sandstone

R � a
Rw

φmSnw
, (8)

or the Simandoux equation (Simandoux 1963) for shaley sandstone

R � a(
φm

Rw
+ vc

Rc

)
Snw

, (9)

where Rw is the resistivity of water, m is the cementation exponent, and n is the
saturation exponent, a < 1 is an empirical constant, vc is the volume of clay, and Rc is
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the resistivity of clay (Mavko et al. 2020). The Archie and Simandoux equations are
often empirically applied in other lithologies by fitting themodel parameters according
to laboratory measurements.

2.3 Inverse Method

The inversion workflow combines geostatistical algorithms for the generation of the
prior realizations of porosity and water saturation, rock physics models for the predic-
tion of the elastic and electrical response of the prior models, and stochastic inverse
theory for the updating of the models. The inverse method is based on the ES-MDA
(Emerick and Reynolds 2013), in which an ensemble of prior realizations is first gen-
erated and then updated using a Bayesian updating step based on the Kalman filter
equations.

In the proposed approach, an ensemble of Ne porosity and water saturation models
m j for j � 1, . . . , Ne is predicted to match the available P-wave velocity and resis-
tivity d. The posterior mean (i.e., the mean of the updated realizations) is the most
likely model of porosity and water saturation.

The ES-MDA algorithm is iterative and includes the following steps:

1. For the first iteration i � 1, an ensemble of Ne realizations
{
mi

j

}
j�1, ..., Ne

of the

model variables is generated.

2. The rock physics model is then applied to predict the data
{
dij

}
j�1, ..., Ne

with

a perturbation to the available data dip � d + αi�
1/2
e zd , where zd ∼ N (0, In)

is a vector sampled from a multivariate Gaussian distribution with 0 mean and
covariance matrix equal to In (the identity matrix of size n × n, with n being the
number of data points),�1/2

e is the square root of the covariance matrix of the data
errors, and 0 < αi ≤ 1 is the inflation factor at iteration i .

3. The model ensemble is updated according to the Bayesian updating equation

mi+1
j � mi

j + �i
m, d

(
�i

d, d + αi�e

)−1(
dip − dij

)
, (10)

for j � 1, . . . , Ne, where �i
m, d is the cross-covariance matrix of models mi and

prior data predictions di , and �i
d, d is the n × n covariance matrix of the data

predictions di .
4. The prediction-updating steps 2 and 3 are repeated for Na iterations with the

condition
∑Na

i�1
1
αi

� 1.

Due to the non-linearity of the rock physics model, the covariance matrices cannot
be analytically computed and are estimated using the ensemble of models and predic-
tions. In the proposed applications, the data include measurements of P-wave velocity
and resistivity obtained after preprocessing of geophysical data. The data errors depend
on the noise and resolution of the measured data as well as the uncertainty associated
with the preprocessing step such as inversion parameters and regularization terms.
Generally, the data errors are assumed to be spatially independent, and �e is assumed
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to be diagonal. The diagonal elements of the matrix, that is, the variances of the mea-
surements, represent the variability of the data and account for the different resolution,
noise, and preprocessing uncertainty of the various geophysical sources, in this case
seismic and electrical data.

3 Application

The proposed methodology is first validated on two synthetic models in the near sub-
surface and then applied to a real dataset. The first synthetic example represents a
plausible critical zone structure of a two-dimensional section of a mountain hillslope
with soils and highly weathered regolith near the surface and fractured rock at depth.
The second example represents a synthetic two-dimensional section of the critical
zone across a forested slope and swampy meadow, conceptually reproducing similar
conditions as found in the P301 catchment at the Southern Sierra Critical Zone Obser-
vatory (Holbrook et al. 2014). In the first example, the same rock physics is adopted for
the entire dataset, whereas in the second example the rock physics model formulation
varies across the section based on the spatial distribution of the facies (i.e., saprolite
versus weathered bedrock).

The first synthetic dataset of a section of mountain hillslope (Fig. 1) is modified
after the model presented in Parsekian et al. (2021). Themodel represents a 40m-thick
and 144 m-long section and includes four main litho-fluid facies (i.e., geobodies with
specific petrophysical properties), namely dry soft rock, dry stiff rock, wet soft rock,
and wet stiff rock, where wet indicates predominant water saturation and dry indicates
predominant air saturation; soft indicates unconsolidated rocks and stiff indicates
consolidated rocks (Fig. 1). In this application, all rocks across the section are assumed
to be sandstones with known mineral composition, and their stiffness depends only on
the compaction, and hence it is a function of porosity. Synthetic models of porosity
and water saturation are then generated by sampling from facies-dependent Gaussian
distributions. A two-dimensional Gaussian smoothing functionwith correlation length
of 3m is used as a convolutional filter tomimic a realistic geological continuity (Fig. 1).
The average porosity is 0.41 in dry soft rocks, and 0.37 inwet soft rocks, 0.22 in dry stiff
rocks and 0.20 in wet stiff rocks. The average water saturation is 0.25 in dry soft rocks,
and 0.69 in wet soft rocks, 0.33 in dry stiff rocks and 0.77 in wet stiff rocks. Porosity
decreases as a function of depth,whereaswater saturation increases, due to compaction
and gravity, respectively. The variability of porosity and water saturation within the
same litho-fluid facies is smaller than between different litho-fluid facies. The gradual
transitions at the facies boundaries are due to the application of the spatial filter to
mimic realistic data resolution. The geophysical response of the synthetic model is
shown in Fig. 2. P-wave velocity is computed according to Dvorkin’s model (Dvorkin
and Nur 1996; Appendix) and electrical resistivity is calculated according to Archie’s
law (Archie 1942). Both properties include a random error corresponding to a signal-
to-noise ratio of 10. The mineralogy composition is 0.50 quartz, 0.25 feldspar, and
0.25 clay, corresponding to a bulk modulus of 30 GPa and a shear modulus of 30 GPa.
The mineral fractions are assumed to be homogeneous across the section. The critical
porosity value (i.e., the porosity value above which the rock becomes a suspension) is
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Fig. 1 Synthetic model of a mountain hillslope (modified from Parsekian et al. 2021): a litho-fluid facies
model, b porosity, and c water saturation

assumed to be 0.6, and the coordination number (i.e., the average number of contacts
per grain) is 4. In Archie’s law, the cementation and saturation exponents are equal
to 2. In real applications, these parameters should be calibrated according to real data
(Mavko et al. 2020). The rock physics relations are shown in Fig. 3.

The rock physics inversion method is applied to the dataset of P-wave velocity
and resistivity. For the prior distribution of porosity and water saturation, a bivariate
truncated Gaussian model is assumed (Fig. 3). For the prior spatial correlation model,
a two-dimensional spherical correlation function is assumed with correlation range of
75 m in the horizontal direction and 25 m in the vertical direction and azimuth angle
of 16 degrees, based on the available prior geological information. A set of 1,000 prior
realizations of porosity and water saturation is generated using PFS. Figure 4 shows
a subset of five randomly selected realizations. All the prior realizations honor the
vertical trends, the priormeans andvariances, and approximately the spatial correlation
function. The ES-MDA method is applied with four data assimilations, with inflation
factors equal to 0.25 at each iteration. The posterior mean models of porosity and
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Fig. 2 Geophysical response of the synthetic model of a mountain hillslope: a P-wave velocity and b resis-
tivity (in logarithmic domain)

water saturation are computed as the average of the 1,000 updated simulations and
are shown in Fig. 5. Overall, the posterior mean models show a good match with
the actual models in Fig. 1. The correlation coefficient between predicted and actual
porosity is 0.97, and the coefficient between predicted and actual water saturation
is 0.93. The root-mean-square error for porosity is 0.017 and for water saturation is
0.021. The average coverage ratio of the 0.90 confidence interval (i.e., the fraction of
actual samples that fall in the 0.90 confidence interval) is 0.84 for porosity and 0.88
for water saturation, showing a slight underestimation of the uncertainty possibly due
to the normal score transformation of the prior distributions. Figure 5 also shows a
litho-fluid facies classification for validation purposes. The classification is obtained
using linear discriminant analysis with a training dataset extracted from a subsample
consisting of 25% of the reference model. The predicted litho-fluid model matches
the conceptual model in Fig. 1 with a success rate of 0.92. Consistent results are
also obtained using standard cutoff classifications and unsupervised cluster analysis.
A set of five realizations randomly selected from the ensemble of 1,000 updated
realizations is shown in Fig. 6. The posterior uncertainty is analyzed by applying
multidimensional scaling (MDS, Caers 2011), with the Euclidean distance, to the prior
and posterior realizations and comparing the variability of the first two components
(Fig. 7). The MDS plot shows that the posterior uncertainty is reduced compared to
the prior uncertainty. The first two components of the prior models explain 70% of the
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Fig. 3 Rock physics model and prior distribution of petrophysical properties: a P-wave velocity versus
porosity (color-coded by water saturation); b log-resistivity versus water saturation (color-coded by poros-
ity); c log-resistivity versus P-wave velocity (color-coded by porosity); d contour plot of the prior bivariate
distribution of porosity and water saturation

total variance, and the first three components 91%; whereas first two components of
the posterior models explain 30% of the total variance, and the first three components
43%, possibly due to the noise, resolution, and spatial structure of the geophysical
data. The results of a traditional Bayesian rock physics inversion (Grana et al. 2021)
without spatial correlation prior model or geostatistical sampling are shown in Fig. 8.
The traditional Bayesian rock physics inversion is performed with and without prior
vertical trend. The results without the prior trend do not capture the vertical variations
of petrophysical properties, and the predictions regress towards the mean values of
the prior distribution. The results with prior trend capture the overall spatial behaviors
of the petrophysical properties but fail to accurately predict the petrophysical values
in the intermediate litho-fluid facies with similar elastic and electrical properties. To
investigate the effect of the data resolution on the inversion results, a spatial filter
is applied to the geophysical data in Fig. 2 to obtain a realistic resolution of the
geophysical measurements (Fig. 9). The inversion results of the rock physics inversion
applied to the low-resolution dataset are shown in Fig. 9 and still capture the main
structure of the critical zone, despite smoother transitions between the litho-fluid facies
due to the smoothing effect in the measured data.

The proposed method is then validated on a conceptual model developed for
a weathered hillslope in the P301 catchment in the Southern Sierra Critical Zone
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Fig. 4 Five randomly selected prior geostatistical realizations of porosity (left) and water saturation (right)
along the two-dimensional section of a synthetic mountain hillslope

Observatory and inferred from seismic velocity and electrical resistivity. The concep-
tual model is modified after Holbrook et al. (2014). The model includes saprolite,
moderately weathered bedrock, and relatively unweathered bedrock (Fig. 10). The
two-dimensional section is 40 m thick and 151 m long. Synthetic models of porosity
and water saturation are sampled from facies-dependent Gaussian distributions with
parameters estimated fromHolbrook et al. (2014). The hillslope section is divided into
three facies: saprolite, where the rock is chemically weathered but retains the fabric
of the underlying rock; moderately weathered bedrock, where the rock is fractured
and chemical weathering occurs along fracture surfaces; and relatively unweathered
bedrock with limited fracturing and chemical weathering. In saprolite, the average
porosity is 0.37 and the average water saturation is 0.34; in moderately weathered
bedrock, the average porosity is 0.19 and the average water saturation is 0.88; and in
relatively unweathered bedrock, the average porosity is 0.14 and the average water
saturation is 1. Porosity decreases as a function of depth, whereas water saturation
increases. The variability of porosity and water saturation is higher within sapro-
lite than in bedrock. The elastic response is computed using a facies-dependent rock
physics model where models are chosen to best represent the medium for each facies.
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Fig. 5 Posterior mean models of a litho-fluid facies classification, b porosity, and c water saturation along
the two-dimensional section of a synthetic mountain hillslope

For example,Dvorkin’smodel (Dvorkin andNur 1996)was chosen for saprolite,which
should behave like a granular medium, and Berryman’s inclusion model (Berryman
1995) was chosen for weathered bedrock, where most of the porosity is generated
by fracturing. In saprolite, Dvorkin’s model with coordination number 4 and criti-
cal porosity 0.6 is adopted, and in bedrock, Berryman’s inclusion model with aspect
ratio 0.2 (Appendix). Electrical resistivity is calculated according to Archie’s law,
with cementation and saturation exponents equal to 2. The parameters were calibrated
such that the rock physics models predict elastic and electrical properties consistent
with Holbrook et al. (2014). The reference P-wave velocity and resistivity models are
shown in Fig. 11, assuming a signal-to-noise ratio of 10.

The stochastic inversion is then applied to P-wave velocity and resistivity. The
prior distribution of porosity and water saturation is a bivariate truncated Gaussian
mixture model and three Gaussian components for saprolite, moderately weathered
bedrock, and relatively unweathered bedrock. The prior spatial correlation model is
a two-dimensional spherical correlation function with correlation range of 75 m in
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Fig. 6 Five randomly selected posterior geostatistical realizations of porosity (left) and water saturation
(right) along the two-dimensional section of a synthetic mountain hillslope

the horizontal direction and 10 m in the vertical direction and azimuth angle of −14
degrees, according to prior geological knowledge. A set of 1,000 prior realizations
of porosity and water saturation is generated using the PFS. Five randomly selected
realizations are shown in Fig. 12. The ES-MDA method is applied with four data
assimilations with inflation factors equal to 0.25 at each iteration. Because the rock
physics model formulation depends on the lithology, at each step of the inversion a
classification is applied using linear discriminant analysis to classify the geostatistical
realizations into saprolite, moderately weathered bedrock, and relatively unweathered
bedrock, and the appropriate rock physics model is applied.

The posterior mean models of porosity and water saturation, computed from the
1,000 updated simulations, are shown in Fig. 13 and match relatively accurately the
conceptual model in Fig. 10. The trend, the mean, and the variances of the petrophys-
ical properties are accurately predicted; however, some misclassifications are present
at the boundaries between rock types, in particular between moderately weathered
bedrock and relatively unweathered bedrock, possibly due to the similar elastic prop-
erties of the two rock types. The litho-fluid facies classification obtained by applying
linear discriminant analysis to the predicted mean models has a success rate of 0.81.
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Fig. 7 Analysis of the posterior variance in the multidimensional scale coordinate domain for the synthetic
mountain hillslope: black crosses represent the prior models and red crosses represent the posterior models

Fig. 8 Posterior mean models of litho-fluid facies classification, porosity, and water saturation obtained by
applying a traditional Bayesian inversion method without prior vertical trends (a–c) and with prior vertical
trends (d–e)
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Fig. 9 Geostatistical rock physics inversion results with low-resolution data: a P-wave velocity and b resis-
tivity (in logarithmic domain); and posterior models of c litho-fluid facies classification, d porosity, and
e water saturation along the two-dimensional section of a synthetic mountain hillslope

The correlation coefficient between predicted and actual porosity is 0.94 and the coef-
ficient between predicted and actual water saturation is 0.92. The root-mean-square
error for porosity is 0.021 and for water saturation is 0.024. The average coverage ratio
of the 0.90 confidence interval is 0.88 for porosity and 0.89 for water saturation. Com-
pared to the first example where only one rock physics model is used, the variability of
the realizations is slightly larger, leading to misclassifications of lithologies with sim-
ilar geophysical responses. Figure 14 shows a set of five randomly selected updated
realizations. The MDS plot of the first two components of the prior and posterior
realizations shows a clear reduction in the posterior uncertainty (Fig. 15).

Finally, the proposed method is applied to a real dataset acquired on a moun-
tain hillslope near Laramie, Wyoming, detailed in Kotikian et al. (2019). The spatial
distribution of the water volume depends on the porosity of the rocks and the fluid sat-
urations. The acquired geophysical dataset includes refraction seismic and electrical
resistivity tomography data that have been preprocessed (inverted using the software
Geogiga Seismic Pro for the seismic and R2 for the electrical) to map P-wave velocity
and resistivity along a 60 m section of the hillslope (Fig. 16). The relation between the
properties of interest (i.e., porosity andwater saturation) and the geophysical data is the
multivariate rock physics model based on Dvorkin’s model for the elastic component
and Archie’s equation for the electrical component (Fig. 17). The mineral composi-
tion and the rock physics model parameters are defined according to nearby fields
(Flinchum et al. 2018a). The rock physics parameters are assumed constant due to the
small dimension of the dataset: the critical porosity is 0.6, the coordination number is
4, the cementation exponent is 2, and the saturation exponent is 2. However, spatial
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Fig. 10 Conceptual model of a weathering zone in the Southern Sierra Critical Zone Observatory (mod-
ified from Holbrook et al. 2014): a rock type (saprolite, moderately weathered bedrock, and relatively
unweathered bedrock), b porosity, and c water saturation

trends of the parameters could also be adopted and integrated in the forward rock
physics operator. The prior distribution of porosity and water saturation is a bivariate
truncated Gaussian model with prior correlation equal to −0.2, and the prior spatial
correlation model is a two-dimensional spherical correlation function with correla-
tion range of 50 m in the horizontal direction and 7.5 m in the vertical direction and
azimuth angle of 25 degrees, according to prior geological knowledge (Kotikian et al.
2019) and nearby sites (Flinchum et al. 2018b). The error of the seismic velocities
is assumed to be 10% of their variance, whereas the error of the electrical resistivity
is assumed to be 15% of their variance, based on the sensitivity analysis of seismic
and electrical inversion (Parsekian et al. 2021). The predicted models of porosity and
water saturation along the two-dimensional section are shown in Fig. 18. The inversion
results show relatively high porosity at the top of the section that gradually reduces
in depth. The porosity values around 0.4 in the unconsolidated rocks near the surface
and the values around 0.05 in the fractured bedrock at depth are consistent with the
available geological information. The inversion results also show relatively low water

123



Math Geosci

Fig. 11 Geophysical response of the conceptual model of a weathering zone: a P-wave velocity and b resis-
tivity (in logarithmic domain)

saturation at the top of the section which gradually increases in depth. The saturation
values around 0.2 in the relatively dry rock near the surface are consistent with the
soil moisture measurements (Kotikian et al. 2019). The results in the upper part of the
section are also consistent with the nuclear magnetic resonance observations of water
volume in a nearby borehole (Parsekian et al. 2021). The posterior uncertainty in the
real case is larger (approximately 20%) than in the previous synthetic cases due to the
noise and resolution of the measured data (Fig. 19).

4 Discussion

The three examples demonstrate the applicability and validity of the proposed geo-
statistical inversion methodology. The first synthetic example validates the method
assuming a unique rock physics model for the entire dataset as well as to investi-
gate the effect of the data resolution. The second synthetic example demonstrates the
methodology for a complex structure with different rock physics models in each rock
type. The real case application illustrates the applicability of the method to real data
with low resolution and affected by noise.

The proposed method enables the prediction of the spatial distribution of porosity
andwater saturation. The volumetric fractions of theminerals are assumed to be known
and constant in each lithology. The extension to petrophysical problems with variable
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Fig. 12 Five randomly selected prior geostatistical realizations of porosity (left) and water saturation (right)
along the two-dimensional section of the conceptual model of a weathering zone

mineralogy is straightforward, because the formulation of the inverse problem is not
limited by the number of model variables and can be applied to any finite number of
volumetric fractions of solid and fluid phases. However, the inverse problem becomes
underdetermined, and it would require additional geophysical data, such as S-wave
velocity or density, to obtain accurate predictions of the rock and fluid volumetric
fractions (Doyen 2007; Grana et al. 2021). If these properties are available, and the
rock physics model can be adequately calibrated with direct measurements, one could
predict porosity, fluid saturations, and the volume of the main mineral component,
such as quartz, feldspar, or clay.

One of the main challenges in applying the proposed method to real data is the
calibration of the parameters of the rock physics model. Indeed, the rock physics rela-
tions generally require laboratory experiments to measure rock and fluid parameters,
such as the elastic moduli and density of mineral and fluid components (Mavko et al.
2020).Model parameters such as critical porosity, coordination number, or aspect ratio
should be calibrated by fitting a statistically significant number of direct measurements
from core samples or borehole data (Mavko et al. 2020). Similarly, the spatial correla-
tion models must be calibrated using available data and nearby outcrop information.
In practical applications, the horizontal and vertical correlation functions are often
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Fig. 13 Posterior mean models of a rock type classification (saprolite, moderately weathered bedrock, and
relatively unweathered bedrock), b porosity, and c water saturation along the two-dimensional section of
the conceptual model of a weathering zone

assumed a priori based on prior geological knowledge of the area, for example based
on outcrop data and analogues (Isaaks and Srivastava 1989; Grana et al. 2021). In
theory, it is possible to estimate the spatial correlation model from the geophysical
data, but the limited resolution of the measured data might lead to overestimation of
the spatial correlation parameters of the petrophysical properties, due to the smoothing
effects associated with the data as well as regularization methods used in data process-
ing. Spatial correlation parameters can also be assumed unknown and stochastically
generated in the geostatistical simulations; in this case, a larger number of realizations
should be generated to capture the larger variability of the model space.

In general, any prior distribution can be used; however, for non-Gaussian distri-
butions, normal-score transformations must be applied to perform the inversion in
the transformed domain (Grana et al. 2021). Examples of non-Gaussian distributions
include Gaussian mixture models for multimodal distributions, generalized Gaus-
sian models for skewed distributions, and beta or Kumaraswamy distributions for
double-bounded concave and convex distributions. Stochastic inversion methods with
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Fig. 14 Five randomly selected posterior geostatistical realizations of porosity (left) and water saturation
(right) along the two-dimensional section of a conceptual model of a weathering zone

complex prior models based on Markov chain Monte Carlo methods for spatially cor-
related variables were also proposed in Hansen et al. (2012) but are generally applied
to discrete random variables.

The proposed method is efficient due to the limited computational cost of the for-
ward operator (i.e., the rock physics model). The computational cost of the inversion
is of the order of minutes for datasets with less than 104 data points. The inversion
can be efficiently applied to datasets with a large number of data, for example of the
order of 105. For larger datasets, dimensionality-reduction methods based on statis-
tical approaches (e.g., principal component analysis or multidimensional scaling) or
deep learning (e.g., convolutional autoencoder and variational autoencoder) could be
applied to compress the dimension of the data and reduce the computational time (Liu
and Grana 2020). A sensitivity analysis on the size and variability of the initial ensem-
ble should generally be performed to ensure that the ensemble is large enough to avoid
ensemble collapse (Emerick and Reynolds 2013). The choice of the covariance matrix
of the error affects the posterior predictions. If the variances of the errors are too large,
then the inversion tends to predict models that are similar to the prior realizations;
if the variances of the errors are too small, then inversion might predict unphysical
values of the model variables in order to match the data within the error variances.
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Fig. 15 Analysis of the posterior variance in the multidimensional scale coordinate domain for the con-
ceptual model of a weathering zone: black crosses represent the prior models and red crosses represent the
posterior models

The data errors are generally assumed to be spatially uncorrelated, resulting in a diag-
onal covariance matrix of the error; however, in many practical applications, errors in
geophysical data are spatially correlated due to the prior geophysical modeling steps,
such as seismic and electrical inversion.

The main limitation of the proposed inversion is the implementation in the joint
velocity and resistivity domain rather than in the domain of the measured seismic and
electrical data. If a Bayesian approach to seismic and electrical inversions is applied,
as in Huang et al. (2021) and Minsley (2011), then uncertainty in the posterior dis-
tribution of velocity and resistivity can be integrated in the proposed inversion using
the Chapman Kolmogorov approach (Grana et al. 2021). Alternatively, the proposed
approach can be extended to the seismic and electrical domain by combining the rock
physics model with seismic and electrical wave propagation models. However, geo-
physical models based on wave propagation are more computationally demanding
than the rock physics model, leading to increased computational time for stochastic
inversion approaches. A possible solution is to apply dimensionality reduction to per-
form the inversion in lower-dimensional spaces (Liu and Grana 2020). Rock physics
and spatial correlation parameters are assumed to be constant, but they could also be
assumed spatially variable or unknown and be stochastically simulated in the geosta-
tistical algorithms. The main challenge in rock physics inverse modeling in the critical
zone is the limited number of direct measurements for the validation, in the absence
of borehole data. A potential research direction is combining geophysical and hydro-
logical models to predict the spatial distribution of the subsurface water that flows and
is stored in mountain watersheds. Additionally, model validation would benefit from
laboratory measurements of petrophysical, elastic, and electrical properties on core
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Fig. 16 Geophysical attributes estimated along a 60 m section of a mountain hillslope near Laramie,
Wyoming: P-wave velocity computed from first-arrival travel-time tomography and resistivity from elec-
trical resistivity tomography

samples, to improve the accuracy of the rock physics model calibration and reduce
the uncertainty in the posterior distribution.

5 Conclusions

An innovative stochastic methodology is presented for predicting petrophysical prop-
erties such as porosity and fluid saturation from geophysical data that are commonly
estimated from seismic and electrical data. The proposed approach is based on the
following steps: geostatistical sampling of prior models of petrophysical properties,
application of a rock physics model to compute the geophysical response, and updat-
ing of the prior models according to the likelihood of the available data. The result is
a set of updated realizations that honor the prior model and match the available data.
The inverted petrophysical models represent more realistic images of the critical zone
compared with traditional inversion methods where the predictions regress towards
the mean. The proposed approach integrates stochastic sampling with rock physics
and spatial correlation models and generates spatially correlated realizations of petro-
physical properties conditioned on geophysical data. The spatial correlation model
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Fig. 17 Rock physics model based on Dvorkin’s model for the elastic component and Archie’s equation for
the electrical component: P-wave velocity versus porosity color-coded by water saturation and resistivity
versus water saturation color-coded by porosity

is included in the prior model of the petrophysical properties. In the examples pre-
sented herein, the proposed method is applied to evaluate the water-holding capacity
of weathering zones in mountain watersheds. Such methods can be extended to other
near-surface geophysics applications, if adequate geophysical data and rock physics
models are available and can be directly integrated with hydrological models. The
results of the rock physics inversion workflow can then be used to improve the under-
standing of subsurface weathering and how it relates to ecosystem and hydrological
processes, thus contributing to advances in the critical zone.
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Fig. 18 Predicted models of porosity and water saturation along the mountain hillslope near Laramie,
Wyoming

Fig. 19 Analysis of the posterior variance in themultidimensional scale coordinate domain for themountain
hillslope near Laramie, Wyoming: black crosses represent the prior models and red crosses represent the
posterior models
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Appendix: Rock Physics Model

The elastic component of the rock physics model computes P-wave velocity proper-
ties from petrophysical properties of rocks and fluids. The mineral phase is assumed
homogeneous and constant. Themodel variables are porosity andwater saturation, and
the model prediction is P-wave velocity. For a porous rock saturated with a mixture of
two fluid components (water and air), the density ρ is computed according to Eq. (7)
and the P-wave velocity according to Eq. (6).

For the saprolite, Dvorkin’s model (Dvorkin and Nur 1996) is adopted to compute
P-wave velocity VP as a function of the saturated rock elastic moduli, Ksat and Gsat,
by combining Hertz–Mindlin equations, modified Hashin–Shtrikman lower bounds,
and Gassmann’s equations as

Ksat(φ, Sw) � Ksol
(
α − 4

3GHMβφ + γ
)

α + Ksolβφ + γ
, (A1)

where

α � Kfl(Sw)

(
Ksol +

4

3
GHM

)
(Ksol − KHM),

β � (Ksol − KHM)(Ksol − Kfl(Sw)),

γ � Ksol

(
KHM +

4

3
GHM

)
(Ksol − Kfl(Sw))φc, (A2)

and

Gsat(φ) � φ(GHM − Gsol)ξ + δGsol

φ(Gsol − GHM) + δ
, (A3)

where

ξ � 1

6
GHM

9KHM + 8GHM

KHM + 2GHM
,

δ � (ξ + GHM)φc, (A4)

with Ksol being the solid-phase bulk modulus, Gsol the solid-phase shear modulus,
Kfl the fluid-phase bulk modulus, φc the critical porosity, KHM the Hertz–Mindlin
bulk modulus, and GHM the Hertz–Mindlin shear modulus (Dvorkin and Nur 1996).
The Hertz–Mindlin elastic moduli depend on the solid-phase elastic moduli, the crit-
ical porosity, the coordination number, and the effective pressure. In the proposed
approach, the solid-phase elastic moduli Ksol and Gsol are assumed to be constant
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and known, whereas in the general case they are computed using Voigt–Reuss–Hill
averages. The fluid-phase bulk modulus Kfl is computed using the Reuss average for
homogeneous mixtures and Voigt average for patchy mixtures.

For the bedrock, an inclusion model is adopted based on the self-consistent approx-
imation model proposed in Berryman (1995) and Te Wu (1966), which provides the
elastic moduli for a porous rock with a single inclusion type equal to the pore volume

Ksat(φ, Sw) � Ksol + φ(Kfl(Sw) − Ksol)P , (A5)

Gsat(φ) � Gsol − φGsolQ, (A6)

where P and Q are geometrical factors. The fluid-phase bulk modulus Kfl is computed
using Reuss or Voigt mixing laws. The geometrical factors P and Q depend on the
aspect ratio of the pores (Berryman 1995; Mavko et al. 2020; Grana et al. 2021).
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