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Abstract 
Forests are increasingly threatened by climate-change-fueled cycles of drought, dieback, and wildfires. 
However, for reasons that remain incompletely understood, some forest stands are more vulnerable than 
others, leaving a patchwork of varying dieback and wildfire risk after drought. Here, we show that spatial 
variability in forest drought response can be explained by differences in underlying bedrock. Our analysis 
links geochemical measurements of bedrock composition, geophysical measurements of subsurface 
weathering, and remotely sensed changes in evapotranspiration during the 2011-2017 drought in 
California. We find that evapotranspiration plummeted in dense forest stands rooted in weathered, 
nutrient-rich bedrock. In contrast, relatively unweathered, nutrient-poor bedrock supported thin forest 
stands that emerged unscathed from the drought. By influencing both subsurface weathering and nutrient 
supply, bedrock composition regulates the balance of water storage and demand in mountain ecosystems. 
However, rather than enhancing forest resilience to drought by providing more water storage capacity, 
bedrock with more weatherable and nutrient-rich minerals induced greater vulnerability by enabling a 
boom-bust cycle in which higher ecosystem productivity during wet years drives excess plant water 
demand during droughts. 
 
Main text 
The 2011–2017 California drought killed over 140 million trees1, leaving swaths of desiccated vegetation2 
that have fueled some of the most ecologically3 and economically4 devastating wildfires on record. 
Although tree death after the drought was widespread, some stands emerged unscathed or exhibited 
temporary drought stress, creating meter-to-kilometer-scale patchiness in forest dieback5,6 spanning the 
spectrum of forest drought response, from leaf browning to complete topkill7,8. This patchiness cannot be 
fully explained by differences in topography, climate, or forest structure9,10. Bedrock mineralogy also 
varies over the scale of dieback patchiness, suggesting that spatial variations in dieback can be explained 
by differences in bedrock composition. For example, forests on substrates derived from bedrock 
containing abundant weatherable minerals11,12 may be buffered against reduced precipitation by water 
stored in highly weathered and thus highly porous substrates13. Alternatively, highly weathered substrates, 
with high water storage capacity, may make forests more prone to dieback by promoting high plant 
growth during wet years, leading to plant-water demand that cannot be satisfied during drought14—a 
phenomenon known as structural overshoot7,15. Such boom-bust cycles of growth and dieback may also 
occur where forest productivity is enhanced by high concentrations of plant-essential nutrients in bedrock. 
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We tested these hypotheses by quantifying the relationship between patchy dieback and bedrock 
composition at three geologically distinct sites with forests spanning a 15-fold range in 
evapotranspiration-based estimates of drought-related dieback (Fig. 1; Extended Data Fig. 1; Methods). 
The site-to-site differences in dieback cannot be explained by differences in average climate, climate 
seasonality, or microclimate. The sites lie within a 4500 m radius (Fig. 1a), experience the same weather 
patterns, and share a similar average climate (Extended Data Table 1). They also have similar elevations 
on ridgetops with similar distributions of hillslope gradient and aspect (Extended Data Fig. 2). Hence, 
they have similar aridity (Fig. 1d), climate seasonality, and snowmelt timing, which could otherwise 
influence drought vulnerability16. In contrast, the sites lie within three geochemically distinct plutons 
(Methods) that vary both in the abundance of mafic minerals (e.g., biotite, Extended Data Fig. 3) that 
promote subsurface weathering and the concentration of nutrients (e.g., phosphorus) that promote plant 
growth17 and thus water demand (Fig. 1b). Thus, our study exploits the similarity in climate, variability in 
bedrock composition, and patchiness of dieback across our sites as a natural experiment for isolating 
subsurface weathering and nutrient supply18 as geologic controls on drought response. 
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Fig. 1 |  Differences in dieback, forest cover, and bedrock composition. a, Bald Mountain (BM), 
Dinkey Dome (DD), and Duff Creek (DC) have differing bedrock (black outlines)19 but similar elevation, 
climate (Extended Data Table 1), and erosion rates20. b, Biotite concentration correlates with phosphorus 
concentration in bedrock ([P]). c, Yearly average evapotranspiration (lines show 95% CI) from Landsat-
based normalized difference vegetation index (NDVI; Methods). Dieback lagged start of 2011–2017 
drought (gray box) by three years. d, Aridity index (potential evapotranspiration divided by precipitation) 
varies from year to year, but is similar across the sites each year. National Agricultural Imagery Program 
(NAIP) imagery from before e–g,  and after, h-j widespread dieback. k-m, Spatial variations in 
percentage change in evapotranspiration from 2014 to 2016 (Methods) match observations of leaf 
browning and tree mortality from aerial imagery, supporting reduction in evapotranspiration as a measure 
of dieback. n, Distribution of dieback differs markedly between sites (p<0.0001; Kolomogorov-Smirnov 
test with Bonferroni correction for 3 samples) and collectively spans 94% of range in dieback at similar 
elevations in surrounding region (black line; Extended Data Fig. 1). Colors throughout figure correspond 
to site labels in a.  

 
From the isolated, sparsely populated tree stands on Bald Mountain to the denser forests at Duff 

Creek, tree canopy cover increases fivefold (Fig. 1e–j), average evapotranspiration increases threefold 
(Fig. 1c), and year-to-year variability in evapotranspiration increases tenfold (Extended Data Table 1). 
The sites also differ in tree species, with slow-growing, drought-tolerant Jeffrey pine21 dominating at Bald 
Mountain and faster-growing white fir, sugar pine, and ponderosa pine at Dinkey Dome and Duff Creek 
(Extended Data Fig. 4). The site-to-site differences in species and evapotranspiration cannot be explained 
by differences in precipitation or potential evapotranspiration, because aridity index does not vary across 
the sites in any given year, even as it varies from year to year (Fig. 1d). Instead, site-to-site differences in 
species distribution, average evapotranspiration, and evapotranspiration variability all correlate with 
differences in bedrock composition. In particular, bedrock with higher biotite concentrations had higher 
dieback in overlying vegetation (Fig. 1m), contrary to the hypothesis that greater concentrations of 
weatherable minerals should buffer forests against reduced water inputs during drought by creating 
greater water storage capacity.  

This counterintuitive finding raises questions about links between bedrock composition and 
dieback that cannot be answered with the geologic maps and remote sensing data alone. Do differences in 
biotite concentration drive differences in weathering and thus water storage capacity that are big enough 
to affect overlying forests? If so, are forests nonetheless more vulnerable where weathering is greater, 
because the buffering effect of greater water storage capacity is overwhelmed by higher plant water 
demand? Finally, if higher plant water demand dominates in making forests more vulnerable to drought, 
is it because of higher bedrock nutrient content, greater water availability in wet years (due to greater 
storage capacity), or both? Answering these questions requires measurements of subsurface weathering at 
the scale of patchiness in forest drought response. However, subsurface weathering has typically only 
been measured from shallow soil pits22, which do not characterize vital water storage capacity at depth23–
25, and from deeper but isolated boreholes26,27, which are rarely numerous enough to quantify spatial 
variability in subsurface weathering28. 

 
Bedrock controls on water storage and plant water demand 
To investigate how water-storage capacity over the full thickness of weathered rock and soil varies at the 
101–102 m scales of patchy dieback, we quantified how subsurface porosity varies with depth using 
hillslope-spanning seismic refraction surveys at each site (Methods). Porosity (in m3/m3) was derived 
from a rock physics model calibrated in previous work using push-core data from a nearby site 
(Methods).  

We quantified total subsurface water-storage capacity by integrating porosity over depth. The 
resulting measurements of total unit pore volume (in m3/m2) quantify the depth of water required to fill all 
voids in a vertical column of weathered soil and saprolite29 (Methods; Extended Data Fig. 5). Because the 
geophysical measurements of porosity have a resolution of 100–101 m, we can aggregate them into 
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estimates of water storage capacity averaged over the ~40,000 m2 scale of each survey site and the 900-
m2 scale of Landsat pixels (Fig. 1k-m). 

Joint distributions of porosity and depth aggregate the geophysical data at the scale of each site28, 
revealing sharp contrasts in subsurface weathering that correspond as expected to site-to-site differences 
in bedrock composition (Fig. 2a-c). Porosity, which combines effects of physical and chemical 
weathering30,31, increases with weatherable mineral concentrations across the sites. For example, mean 
porosity in the top 2 meters, where roots are concentrated, increases from ~0.37 m3/m3 at Bald Mountain, 
where biotite concentrations are lowest, to ~0.54 m3/m3 at Duff Creek, where they are highest (Fig. 2d). 
Biotite concentrations also correlate positively with unit pore volume (Fig. 2e)—i.e., the sum of porosity 
integrated over the entire soil-saprolite profile, including deep storage space that may be vital to forests 
during drought32. These differences in unit pore volume in part reflect differences in the combined 
thickness of soil and saprolite, which increases from 1.5±0.1 m (mean±s.e.m) at Bald Mountain, to 
7.7±0.3 m at Duff Creek (Fig. 2f). Together, these results support the hypothesis that site-to-site 
differences in forest cover (Fig. 1e-j) are driven by differences in water storage capacity that are regulated 
by weatherable mineral concentrations in bedrock (Fig. 2g). However, the strong correlation between 
weatherable mineral and bedrock nutrient concentrations between the sites (Fig. 1b) implies that either or 
both of these factors could explain the site-to-site differences in forest cover17,33.  

 

 
 

Fig. 2 | Porosity and water storage capacity controlled by bedrock composition. a–c, Joint 
distribution of porosity and depth from rock physics model of seismic refraction data and condensed into 
site-wide porosity profiles28 (Methods). Frequency distributions of d, mean porosity in top 2 m; e, unit 
pore volume, the depth of water required to fill pores in soil and saprolite (Methods); and f, combined 
thickness of soil and saprolite, material with VP <1.1 km s-1 28,34. Circles represent averages over 
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individual Landsat pixels. Box plots show median (center line), first and third quartile (box), and 
whiskers that extend up to 1.5 times the interquartile range past the first and third quartile. Average (±1 
s.d.) pore volume per unit area increases with average bedrock concentration of biotite (g) and 
phosphorus (h).  

 
Analysis of Landsat data provides evidence that both factors contributed to differences in pre-

drought evapotranspiration (Fig. 3). Evapotranspiration from remote sensing increases with unit pore 
volume from geophysical surveys (Fig. 3a, dashed line), suggesting that differences in forest cover and 
thus evapotranspiration are regulated by water storage capacity. Moreover, each site has a statistically 
distinct, vertically offset trend (Fig 3a, colored lines; Extended Data Table 2), indicating that locations at 
Duff Creek, Dinkey Dome, and Bald Mountain with the same unit pore volume have different 
evapotranspiration rates (p<0.0001). Hence, the variation in forest productivity across our sites cannot be 
explained by water storage capacity alone.  

An additional control on forest productivity may be variations in bedrock nutrient 
concentrations17. Vegetation on the nutrient-rich Duff Creek bedrock, had higher evapotranspiration per 
unit pore volume than vegetation at Dinkey Dome (Fig. 3a), which in turn had higher evapotranspiration 
than vegetation growing on the nutrient-poor Bald Mountain bedrock17.  Lower evapotranspiration at Bald 
Mountain may also reflect species-related differences in evapotranspiration per unit pore volume (Fig. 
3a). However, the species differences across our sites correlate with bedrock nutrient concentration and 
water storage capacity, and cannot be explained by climate. This suggests that any species-related 
differences in evapotranspiration are indirectly controlled by differences in bedrock composition. 

 

 
 
Fig. 3 | Plant water demand, water storage potential, and drought response. a, Pre-drought (2007–
2011 average) evapotranspiration versus unit pore volume, showing averages (±1 s.e.m.) by site (squares) 
and pixel (circles) with linear-log fit to all data (dashed; r2=0.75) and statistically distinct linear 
relationships for Duff Creek (green), Dinkey Dome (blue), and Bald Mountain (red). b, Dieback increases 
with unit pore volume (r2=0.51). c, Evapotranspiration in 2016 along survey lines was generally lower 
than evapotranspiration in 2014 and thus plots below dashed 1:1 line, reflecting dieback during the 
drought. A three-parameter log-log regression, with a slope, intercept, and offset between Bald Mountain 
and the other two sites (Methods; Extended Data Table 3) yields slope=0.88±0.02, indicative of structural 
overshoot, in which locations with higher pre-dieback evapotranspiration (and higher forest productivity) 
had disproportionately higher dieback (colorbar).  

 
 
Bedrock controls on dieback 
The bedrock-driven differences in evapotranspiration (Fig. 3a) correlate with observed differences in 
dieback during the 2011–2017 drought (Fig. 1). Dieback was greatest between 2014 and 2016 across the 
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sites (Fig. 1c,k-m, Extended Data Fig. 6) and was more pronounced at locations with higher unit pore 
volume (Fig. 3b). Those locations also had greater evapotranspiration and thus greater plant water 
demand before the drought (cf. Figs. 3a,b). Hence, dieback increased with pre-dieback plant water 
demand (Fig. 3b), despite the greater storage capacity of locations with greater demand (Fig. 3a). This 
suggests that forests with more vegetation can be more vulnerable to dieback during drought due to 
structural overshoot, even when vegetation is anchored in substrates with more subsurface weathering.  

To directly show how vulnerability increases with forest productivity, we plot post- versus pre-
dieback evapotranspiration in log-log space, revealing the fractional reduction in evapotranspiration with 
increasing demand (contours in Fig. 3c). The data can be fit with a three-parameter log-log regression, 
with a slope, an intercept, and an offset between Bald Mountain and the other two sites (Methods; 
Extended Data Table 3) that is indicative of 9±2% (p=0.0002) greater dieback at Dinkey Dome and Duff 
Creek for a pre-dieback evapotranspiration of 0.3 m/yr (Fig. 3c). We hypothesize that this offset reflects 
the drought tolerance of slow-growing Jeffrey pine21, which dominates at Bald Mountain because it is 
adapted to the site’s low bedrock nutrient content and low water-storage capacity. If this is the case, then 
dieback was partly controlled by differences in species distributions that are regulated by bedrock 
composition through its influence on nutrient supply and subsurface weathering. 

The slope in the three component regression is 0.88±0.02, which is significantly less than 1.00 
(p<0.0001), the minimum slope consistent with the hypothesis that denser forests are equally or less 
vulnerable to drought because of greater water storage capacity. Contrary to that hypothesis, we observe a 
disproportionate increase in relative dieback with increasing pre-dieback evapotranspiration and thus with 
increasing water storage capacity. This is true within each site and across the three sites combined, 
irrespective of site-to-site differences in tree species. Hence, at all sites, including Bald Mountain, dieback 
correlates strongly with demand (Fig. 3c), suggestive of widespread structural overshoot that is regulated 
by differences in subsurface weathering. These results emerge whether dieback is measured as a 
percentage change in evapotranspiration (Fig. 3c) or NDVI measurements (Extended Data Fig. 7). 

To determine whether bedrock control of dieback during the California drought was widespread, 
we quantified the reduction in evapotranspiration from 2014 to 2016 at 18 granitic sites selected from a 
1425-m-wide elevation band spanning a 186-km-long transect through the Sierra Nevada (Fig. 4a). The 
results are consistent with structural overshoot (slope<1.0 in Fig. 4b), extending the findings from the 
three main sites (Fig. 3c) to the surrounding region. The regional analysis also supports strong bedrock 
control of structural overshoot, despite site-to-site differences in climate due to differences in latitude and 
elevation. Site-to-site differences in bedrock phosphorus concentration [P] alone can explain 42% of the 
variance (p=0.004) in both evapotranspiration (Fig. 4c) and dieback (Fig. 4d). Meanwhile, neither mean 
annual temperature (MAT) nor precipitation (MAP) alone explain more than 14% of the variance in either 
evapotranspiration or dieback (p>0.1). However, when [P], MAT, and MAP are combined in multiple 
linear regression, they explain 67% of the variance in evapotranspiration (p=0.001) and 65% of the 
variance in dieback (p=0.002), and the regression slopes for [P], MAT, and MAP in both regressions are 
all statistically significant (p<0.04). Collectively, the regression statistics in Extended Data Table 3 
suggest that bedrock composition is the dominant control on structural overshoot-driven dieback not only 
at the three sites with similar climates (Fig. 3), but also across a broader range of mid-elevation climates 
in Sierra Nevada (Fig. 4). 
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Fig. 4 | Bedrock control on drought response in the Sierra Nevada. a, Bedrock sample locations from 
ref. (17) (black) and ref. (35) (gray) within the Sierra Nevada Batholith (blue outline). b, Dieback increased 
disproportionately with average evapotranspiration (ET) in 2014 (p<0.001), implying widespread bedrock 
control on dieback. This is confirmed by positive correlations between [P] and both pre-dieback 
evapotranspiration c, and dieback d (average±1 s.e.m.). e, Mafic mineral concentrations in bedrock (color 
index, in volume %) increase with [P] after ref. (35). f, Systems diagram showing links between bedrock 
composition and forest dieback in the critical zone (conceptualized in background image). Positive and 
negative couplings are arrows and lines terminated by circles, respectively. Labels refer to supporting 
results. Dashed connector near top shows hypothesized buffering of dieback by storage capacity, an effect 
that was overwhelmed here by the positive coupling between forest vulnerability and water demand. 
Based on regression offset in Fig. 3c, we hypothesize that the strength of the coupling between forest 
productivity and dieback depends on species distribution, which in turn depends on bedrock composition. 

 
Although we did not measure subsurface porosity at the 18 regional sites, our results suggest that 

subsurface weathering varies across them due to differences in bedrock composition. Mafic mineral 
concentrations correlate with [P] in regional granitic bedrock35 (Fig. 4e), similar to our findings at the 
three main sites (Fig. 2g), implying that bedrock with higher [P] is more susceptible to weathering and 
produces greater porosity in soil and saprolite, all else equal. Together, our results are consistent with 
strong, bottom-up controls on subsurface weathering, water storage capacity, forest productivity, and 
dieback, due to variations in nutrient or weatherable mineral concentrations (or both) (Fig. 4f). These 
bottom-up bedrock controls on forests are at least as strong as top-down climatic controls and may drive a 
positive feedback between forest productivity and water storage capacity (Fig. 4f), if tree roots enhance 
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chemical36,37 and physical weathering30,38 that contribute to greater subsurface porosity31. The couplings 
documented here suggest that wet-year plant growth is fueled by nutrients and subsurface water and 
supercharged by the positive correlation between these factors in granitic bedrock of the region (Fig. 4f). 
This results in bedrock-driven structural overshoot and a boom-bust cycle of wet-year growth and dieback 
during droughts, with greater volatility in forest productivity—and greater vulnerability to drought—at 
sites with greater bedrock nutrient and weatherable mineral concentrations. 
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Methods: 
Seismic refraction surveys 
Seismic refraction surveys were conducted during the 2015 and 2016 dry seasons. We used multiple 24-
channel geodes with vertical component geophones as receivers. Details about geophone deployment for 
each survey line are included in Supplemental Table 3. To generate seismic energy, we slammed a 
twelve-pound sledgehammer against a metal plate, stacking observations from multiple blows together to 
increase the signal-to-noise ratio. By repeating these hammer “shots” at ten-meter spacing along each 
survey, we generated a series of travel times for each shot-receiver combination. 

To quantify vertical and lateral variations in P-wave velocity (VP) in the subsurface, we inverted 
manually identified first arrival times from the geophones using a ray-tracing algorithm that minimizes 
the misfit between the modeled and observed travel times. The algorithm is described in detail in ref. (39). 
To estimate the robustness of the VP inversion, we quantified the sensitivity of our results to the choice of 
starting model by repeating the analysis 50 times using randomly chosen starting models that range from 
350 to 600 m/s in surface velocity and from 50 to 300 m/s/m in vertical velocity gradient. The average 
and standard deviation of VP from the 50 models were used to estimate porosity across the survey lines. 
 
Estimating porosity from VP 
To estimate porosity from VP across the geophysical surveys, we used rock-physics relationships that 
express the subsurface as a matrix of interconnected spherical grains with interstitial pore volume less 
than or equal to a critical porosity that defines the threshold of suspension40. The rock physics model is a 
poro-elastic relationship based on an idealized geometric description originally developed to predict the 
elastic response of sedimentary reservoir rocks. Nevertheless, the model has been successfully applied to 
quantify subsurface porosity in weathered soil and saprolite29,30,34,41,42. Our model employs parameters that 
minimize the misfit between modeled and observed soil and saprolite porosities at a nearby calibration 
site28, and was only applied to soil and saprolite, defined at our sites as material with a VP < 1.1 km/s. 
This is the velocity at the base of saprolite at the Duff Creek site28 and in granitic saprolite elsewhere in 
the western US34. 
 
Joint distributions of porosity and depth 
To visualize subsurface weathering at each site, we condensed the collection of four saprolite porosity 
tomograms from each site into a single joint distribution of porosity and depth28 (Fig. 2a-c). This 
approach reveals how the spread and central tendency of porosity vary with depth at each site. Site-to-site 
comparisons in turn show how subsurface weathering varies across the sites (c.f., Fig 2 a-c). To directly 
compare these joint frequency distributions, we first calculated the depth-porosity frequency distributions; 
then weighted them by the total depth of saprolite per meter of survey line at each site; and, finally, 
normalized them by the sum of the weighted distribution at Duff Creek, which had the greatest overall 
volume of subsurface void space. Hence, the sum of the frequency distribution at Duff Creek is one, while 
the sums of the distributions at Dinkey Dome and Bald Mountain each represent the amount of the 
subsurface weathering relative to Duff Creek. This approach accounts for variations in the volume of 
saprolite at each site and allows for direct comparisons of the frequency of porosity at each depth and at 
each site. 
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Unit pore volume and water storage capacity 
To convert the vertical and lateral distributions of porosity from the survey lines into a metric that is 
relevant to vegetation, we integrated the porosity distribution vertically at each location along the surveys 
to obtain the total pore volume per unit area in the saprolite29, referred to here as unit pore volume. We 
calculated it by integrating the rock physics-based estimates of porosity over depth from the base of 
saprolite (i.e., where VP = 1.1 km s-1) to the ground surface at each point along the survey lines (Extended 
Data Fig. 5). 

Unit pore volume represents the depth of water required to fill all the void space in soil and 
saprolite29. It is the maximum amount of water that could be stored in the soil and saprolite in the absence 
of drainage, including water held in fine pores at pressures that prevent extraction by plants23. However, 
the site-to-site differences in unit pore volume should reliably represent site-to-site differences in water 
storage capacity that might buffer forests against dieback during drought given that (i) we can safely 
assume that the relationship between porosity and field capacity is similar across our sites due to low clay 
content in granitic soils at the mid elevations in the Sierra Nevada43; (ii) the ratio of tightly bound water to 
total storage capacity is low in clay-poor substrates such as those at our sites; and (iii) tree species at the 
sites can have roots that extend to the measured base of saprolite, as previous rooting studies have 
shown44.  
 
Geochemical and mineralogical measurements of bedrock 
To quantify bedrock composition at each site, we used previously published bulk geochemical data from 
the Bald Mountain, Dinkey Dome, and CZO Duff (Bass Lake) (here referred to as Duff Creek) sites of 
ref. (17); bulk mineralogy from 52 additional granitic sites reported in ref. (35); and volumetric 
concentrations of quartz, potassium feldspar, plagioclase, biotite, and hornblende measured here using 
standard point counting techniques on thin sections created from 15 unweathered outcrop samples that we 
collected from Duff Creek, Dinkey Dome, and Bald Mountain (Extended Data Fig. 3). Results are 
reported in Supplemental Tables 1 and  2. 
 
Quantifying evapotranspiration 
We quantified evapotranspiration (ET) at our sites using Equation 1, a previously reported exponential 
relationship between Landsat-based estimates of NDVI and ground-based estimates of evapotranspiration 
from eddy covariance towers at sites spanning diverse ecosystems in southern California8, including three 
towers within 20 km of study sites. 

𝐸𝑇 = 	117.16𝑒!.#$!%×'()*       (1) 
Here ET is expressed in mm/yr. Since each tower’s sensors were stationed above the overstory, the tower-
based estimates of ET combine water vapor fluxes from the base of the canopy (i.e., the soil), the 
understory, and the overstory, and thus represent total forest productivity at a given point in time. 
Estimates of ET from Eq. 1 should likewise represent total forest productivity. The contribution of 
understory to leaf area index (LAI) partially explains why the relationship between ET and NDVI is 
exponential. As LAI increases, NDVI also increases but begins to saturate45, because the canopy top 
begins to block leaf area in the understory and lower parts of the overstory. Since LAI is strongly coupled 
with ET through its control on water exchange with the atmosphere, we expect NDVI to also saturate with 
increasing ET, providing a physical basis for the exponential relationship of Eq. 18. 

Eq. 1 allows evapotranspiration to be quantified at the 30-m resolution of Landsat pixels in areas 
lacking direct measurements from eddy covariance towers. It has been applied in the Sierra Nevada to 
quantify spatial variations in evapotranspiration46; temporal changes in evapotranspiration due to fire and 
changes in forest management47,48; and changes in evapotranspiration due to 2011–2017 California 
drought8,49. Here we use it to compare remotely sensed ecosystem productivity to geophysically measured 
subsurface weathering and geochemically inferred bedrock composition both from site to site and from 
location to location along individual geophysical survey lines. 

To calculate yearly mean NDVI for use in calculating yearly mean ET from Equation 1, we 
followed methods in ref. (8), but averaged by calendar year, rather than by water year. All Tier 1 Landsat 
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5, 7, and 8 surface reflectance data for time periods between 1984 and 2018 were extracted for all center 
points of Landsat pixels within our study sites using Google Earth Engine. All surface reflectance data 
were masked for pixels with clouds, cloud shadow, and snow cover using the Landsat Quality Assurance 
(LQA) band in Google Earth Engine. Landsat 5 and 8 data were homogenized with Landsat 7 data using 
the methods of ref. (8) to account for slight differences in reflectance values between the different Landsat 
satellites50,51. Following homogenization, we combined time-series data for all satellites and used linear 
interpolation to fill data on dates masked by the LQA band. We then used the resulting yearly estimates of 
mean NDVI to calculate ET for each year from 1985 to 2017 using Eq. 1.  

 
Quantifying forest dieback 
We quantified dieback at each Landsat pixel as the percentage reduction in evapotranspiration from 2014 
to 2016, the two years spanning the largest declines in forest health during the drought8,52 (Extended Data 
Fig. 6). Dieback measured this way reflects the full spectrum of forest drought response, ranging from 
leaf browning to complete topkill, consistent with usage of “dieback” elsewhere in the literature7,8. 
Because dieback is calculated as the change from 2014 to 2016, positive values represent dieback and 
negative values represent greening due to forest growth and recovery. Because we sought to determine 
whether forests with greater pre-dieback evapotranspiration had disproportionately higher dieback, we 
quantified dieback as a percentage rather than as an absolute change in evapotranspiration.  

Our analysis confirmed that forests with higher evapotranspiration had disproportionately higher 
dieback across our sites (Figs. 3c and 4b). To rule out the possibility that this result is an artifact of using 
Eq. 1 to quantify evapotranspiration from the remote sensing data, we quantified the effects of the drought 
using the NDVI data alone. The results confirm that our findings about bedrock controls on dieback are 
robust irrespective of whether dieback is measured from evapotranspiration (Figs. 3c and 4b) or NDVI 
(Extended Data Fig. 7).  
 
Water and energy limitations 
To quantify differences in the water and energy limitations among the sites, we calculated the aridity 
index, equal to the ratio of potential evapotranspiration to precipitation (PET/P), and the evaporative 
index, equal to the ratio of evapotranspiration to precipitation (ET/P). These indices can be used in the 
Budyko plotting space53 to identify site-to-site differences in the energy and water balance (Extended 
Data Fig. 6). PET was estimated using the Hargreaves method54, which requires daily estimates of mean, 
minimum, and maximum temperature, retrieved in this case from the PRISM Daily Spatial Climate 
Dataset55. The approach also requires daily estimates of incoming solar radiation, calculated here as a 
function of latitude and day of the year using the PyETo python package. Daily estimates of potential 
evapotranspiration were summed across all days of the year to estimate the total potential 
evapotranspiration for each year from 1985 to 2017. Yearly estimates of precipitation were also acquired 
from the PRISM Daily Spatial Climate Dataset and were corrected using a linear least-squares regression 
between PRISM- and gauge-based measurements of precipitation for a meteorological station close to 
Duff Creek56.  
 
Vegetation surveys  
To quantify species distributions, we conducted vegetation surveys along the geophysical survey lines at 
each site. For each tree within five paces of a survey line, we identified the species and measured the 
diameter at breast height (DBH), equal to 1.37 m above the ground surface. In some cases, the species 
was not identifiable, because dieback during the drought led to a loss of identifying needles, cones, or 
both; these trees were counted and classified as “unknown.” Only 6% of species were classified this way 
in our surveys.  
 
Regression relationships 
To quantify the relationships between evapotranspiration, dieback, and unit pore volume and 
evapotranspiration in Fig. 3, we used least-squares regression, with evapotranspiration and dieback 
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weighted by the length of geophysical survey within each Landsat pixel. This captures the degree to 
which average unit pore volume represents subsurface weathering across the 30-by-30-m area represented 
by each pixel. To account for the vertical offset between Bald Mountain and the other two sites in the log-
log plotting space of Fig. 3c, we used a categorical regression with three parameters: a slope, an intercept, 
and an offset. 
 To quantify the relative importance of climate and bedrock composition in regulating 
evapotranspiration and dieback across the 18 sites in the regional analysis, we first used simple linear 
regression to gauge the individual effects of [P], MAP, and MAT, and then used multiple linear 
regression to gauge the combined effects of MAP and MAT and the combined effects of [P], MAP, and 
MAT. The results are summarized in the main text, and regression parameters, uncertainties, and p values 
for all regressions are reported in Extended Data Table 3. 
 
Data Availability: Data used in this study is available via Hydroshare57 
(doi.org/10.4211/hs.edbb6ebfbc744186b5800932cd00b507) . Landsat Data can be accessed at 
https://www.usgs.gov/landsat-missions/landsat-data-access. PRISM climate data55 can be accessed at 
https://prism.oregonstate.edu/ NAIP imagery58 can be accessed at 
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-aerial-photography-national-agriculture-
imagery-program-naip. 
 
Code Availability: Code used to generate figures is available on the Hydroshare repository 
(doi.org/10.4211/hs.edbb6ebfbc744186b5800932cd00b507). Code for geophysical and remote sensing 
analyses is available from the corresponding author upon request. 
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Extended Data Figures and Tables: 
 

 
 
Extended Data Fig. 1 | Forest dieback in the region around the study sites. a, Percentage reduction in 
evapotranspiration from 2014 to 2016 (colorbar) across a 14,876-pixel subset of nearby Landsat pixels 
(colored squares) with elevations between 1800 and 2400 m but still outside the extent of Pleistocene 
glaciation. NAIP imagery from 2014 (background) shows differences in vegetation density and white 
lines represent boundaries between bedrock types (Kbm is Bald Mountain Granite; Kdd is Dinkey Dome 
Granite; Kbl is Bass Lake Tonalite). b, The distribution of dieback differs markedly between the sites (p < 
0.0001 for all three comparisons in a two-sample K-S test after adjusting for multiple comparisons) and 
collectively spans 94% of the range in dieback spanned by the surrounding region (black). 
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Extended Data Fig. 2 | Topography at study sites. Study sites are located on ridgetops and therefore 
have gentle hillslope gradients (with most <30%) (a-c) and have surfaces pointing in multiple directions, 
leading to wide distributions in slope aspect (d-f).   
 

 
 
Extended Data Fig. 3 | Variations in bedrock composition. Thin sections cut from bedrock sampled at 
each of the study sites in Fig. 1. We quantified bulk mineralogy from these thin sections using standard 
point-counting techniques (see Methods; Fig. 1b; Supplemental Tables 1 and 2). 
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Extended Data Fig. 4 | Vegetation surveys. Relative abundance of the eight species identified in surveys 
at the three study sites in Fig 1 (see Methods). Numbers in parentheses are the number of individuals 
found at each site. Some trees were not identifiable due to a dieback-related lack of needles or pine cones, 
so numbers do not sum to 100% at any site. 
 
 

 
 
 
Extended Data Fig. 5 | Calculating unit pore volume. a, Idealized landscape with geophysical transects 
(black lines) at surface above weathered soil and saprolite with a vertical gradient in porosity. b, 1×1 m 
plot and underlying column of soil and saprolite spanned by the survey. c, Unit pore volume (φv) is 
calculated by integrating geophysics-based porosity (φ(z), gray shaded area) over depth (z) between the 
base of saprolite (zsap) and the surface (zsurf), where zsap is defined by a threshold VP = 1.1 km/s (see 
Methods). d, We define unit pore volume as the total pore volume per unit area at the surface. It therefore 
represents the depth of water required to fill all the void space in the column of soil and saprolite in panel 
b. 
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Extended Data Fig. 6 | Drought effects on water and energy balances. a, Variations in 
evapotranspiration through time at three main study sites with Palmer Drought Severity Index57 (top) and 
gray band highlighting 2011-2017 California drought. Dashed lines span the 2014 and 2016 interval in 
which forests experienced the greatest declines in evapotranspiration. Although the drought began in late 
2011, forests at our sites did not experience a marked decline in evapotranspiration until 2015. b, Site-to-
site differences in evapotranspiration and similarities in climate drive differences in evaporative index 
(evapotranspiration divided by precipitation) for a given aridity index (potential evapotranspiration 
divided by precipitation). Points are water-year averages. Bold lines mark Budyko’s energy and water 
limitations on evapotranspiration when runoff is negligible53. Points above and just beneath the water 
limit indicate plants used water stored during prior wet years. 
    

 
 
Extended Data Fig. 7 | Drought-related dieback from NDVI. NDVI data from 2014 to 2016 generally 
plot below 1:1 line, indicative of drought-related declines at all 3 sites. Like the ET-ET plot in the main 
text (Fig. 3c), the data are consistent with a three parameter regression, with a slope, an intercept, and an 
offset between Bald Mountain and the other two sites (see Extended Data Table 3 for regression 
parameters, uncertainties, and p values). The statistically significant offset is consistent with a species-
related control on forest dieback, as discussed in the main text. In addition, the slope of the relationship is 
not ≥1 (p<0.0001), so we can reject the null hypothesis that greater water storage capacity at sites with 
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higher pre-dieback forest productivity compensates for the higher water demand. Hence, dieback from 
NDVI increases disproportionately with increasing pre-dieback NDVI. Moreover, our results are 
consistent with bedrock control of dieback, irrespective of whether dieback is quantified using NDVI or 
ET derived from NDVI. 
 
 
 
 
 
 
 


